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Fig 1. Unlabeled data is generated from three targets and using minimizers of (2) we can
find a partitioning of the data set and nonparametrically estimate each trajectory using the
k-means algorithm.

1. Introduction

Given observations from multiple moving targets we face two (coupled) prob-
lems. The first is associating observations to targets: the data association prob-
lem. The second is estimating the trajectory of each target given the appropriate
set of observations. When there is exactly one target the data association prob-
lem is trivial. However, when the number of targets is greater than one (even
when the number of targets is known) the set of data association hypotheses
grows combinatorially with the number of data points. Very quickly it becomes
infeasible to check every possibility. Hence fast approximate solutions are needed
in practice.

In this paper we interpret the problem of estimating multiple trajectories
with unknown data association (see Figure 1) in such a way that the k-means
method [32] may be applied to find a solution. As in [42], this is a non-standard
application of the k-means method in which we generalize the notion of a ‘cluster
center’ to partition finite dimensional data using infinite dimensional cluster
centers. In this paper the cluster centers are trajectories in some function space
and the data are space-time observations.

Let Θ ⊂ (Hs)k where Hs is the Sobolev space of degree s (where we consider
the case s ≥ 1, see Section 2.1 for a precise definition). We have a data set
{(ti, yi)}ni=1 ⊂ [0, 1]× Rd and a model for the observation process

yi = μ†
ϕ(i)(ti) + εi (1)

where μ† = (μ†
1, . . . , μ

†
k) is some unknown function, εi

iid∼ φ0 and ti
iid∼ φT for

densities φ0 and φT on [0, 1] and Rd respectively. We assume that the index
of the cluster responsible for any given observation is an independent random
variable with a categorical distribution of parameter vector p = (p1, . . . , pk),
writing ϕ(i) ∼ Cat(p) to mean P(ϕ(i) = j) = pj . This assumptions allow us
to write the density of y given t (and, implicitly, the cluster centres), which we
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denote by φY (y|t), as

φY (y|t) =
k∑

j=1

pjφ0(y − μ†
j(t)).

We can summarize the stylized data generating process as follows. A cluster is
selected at random: P(ϕ = j) = pj , the time and observation error are drawn
independently from their respective distributions, t ∼ φT , and ε ∼ φ0; and we
observe (t, y = μ†

ϕ(t) + ε).

The aim is to estimate μ† = (μ†
1, . . . , μ

†
k) ∈ Θ from observed data {(ti, yi)}ni=1.

In particular the data association

ϕ : {1, 2, . . . , n} → {1, 2, . . . , k}

is unknown. With a single trajectory (k = 1) the problem is precisely the spline
smoothing problem, see for example [46]. For k > 1 trajectories there is an ad-
ditional data association problem coupled to the spline smoothing problem. We
call this the smoothing-data association (SDA) problem. Although the estima-
tor μn we propose is not necessarily a consistent estimator for μ† (we do not
show μn → μ†) we do consider our estimator a natural choice. We believe it is
possible to bound the asymptotic error limn→∞ ‖μn − μ†‖(L2)k ≤ C where C
depends on the distribution of the data points, however it is beyond the scope
of this work to show such a bound. We refer to [28, Section 4.5] for a bound
of the type ‖μ∞ − μ†‖ ≤ C, where μ∞ = limn→∞ μn, for k-means in Hilbert
spaces.

We assume k is fixed and known. The aim of this paper is to construct
a sequence of estimators μn of μ† based upon increasing sets of observations
{(ti, yi)}ni=1 and to study their asymptotic behavior as n → ∞. For each n our
estimate is given as a minimizer of fn : Θ → R defined by

fn(μ) =
1

n

n∑
i=1

k∧
j=1

|yi − μj(ti)|2 + λ

k∑
j=1

‖∇sμj‖2L2 (2)

where | · | is the Euclidean norm on Rd,
∧k

j=1 zj = min{z1, . . . , zk} and λ is a

positive constant. Penalizing the sth derivative ensures that the problem is well
posed. Optimizing this function can be interpreted as seeking a hard data asso-
ciation: given μ ∈ Θ each observation (ti, yi) is associated with the trajectory
closest to it so the corresponding data association solution is given by

ϕμ(i) = argmin
j=1,2,...,k

|μj(ti)− yi|.

As with many ill-posed inverse problems with a data association component re-
covering the ‘true’ values of the (infinite-dimensional) parameters is in general
infeasible. Two approaches are possible: to impose strong parametric assump-
tions, reducing the problem to that of inferring a (finite-dimensional) collection
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of parameters (which will perform poorly when those assumptions are inap-
propriate) or to proceed nonparametrically, optimising a cost function which
balances the trade-off between a good fit to the data and regularity of the so-
lution (which requires the precise specification of the notion of regularity). In
this paper we pursue the second route, showing that in the large data limit
the proposed estimators behave well. The main contribution of this paper is to
establish the stability of k-means like estimators to the SDA problem.

Although exact solution of the underlying optimization problem is NP com-
plete even in benign Euclidean settings [17], the computational cost of iterative
numerical approximation has been shown to have a polynomial (smoothed) cost
in certain Euclidean settings, e.g. [3], and in practice the performance is often
much better than these bounds would suggest: it is accepted to be a numerically
efficient method for obtaining approximate solutions (i.e. local minimizers). Our
empirical experience is that this property holds also within the context consid-
ered by this paper. Our focus is upon the asymptotic properties of the ideal
estimator and it is beyond the scope of this paper to upper bound the com-
putational complexity of the numerical iteration scheme. We do however point
out that a key advantage of the k-means method is that it reduces the problem
of solving the multiple target problem (k > 1) to the problem of repeatedly
solving the single target problem (k = 1) which can be done efficiently with, for
example, splines.

There are of course several variations of the k-means method, e.g. fuzzy
C-means clustering [6] (a soft version of k-means closely-related to the EM
algorithm [19]), k-medians clustering [8] (an L1 version of k-means), Minkowski
metric weighted k-means [18] for which the analysis, particularly the convergence
result in Theorem 3.1, could be easily adapted. Indeed, for bounded noise, the
weak convergence k-medians clustering is a special case of [42] and to extend
the result to unbounded noise one can follow the strategy given in the proof
of Theorem 3.4. The strong convergence and rate of convergence will require a
different approach as one loses differentiability when going from L2 to L1.

The choice of regularization scheme and, in particular, of λ is not straightfor-
ward. For k = 1 there are many results in the spline literature on the selection
of λ = λn and the resulting asymptotic behavior as n → ∞, see for exam-
ple [1, 11, 12, 13, 29, 33, 37, 38, 39, 40, 43, 44, 45, 47]. In this case one has
λn → 0 and can expect μn to converge to μ†. Convergence is either with respect
to a Hilbert scale, e.g. L2, or in the dual space, i.e. weak convergence. Using a
Hilbert scale in effect measures the convergence in a norm weaker than Hs. We
remark that when k > 1 and λn → 0 sufficiently slowly we would expect that
minimizers μn converge to a minimizer μ∗ of

∫ 1

0

∫
Rd

k∧
j=1

|y − μj(t)|2φY (y|t)φT (t) dy dt.

In particular we do not expect that μ∗ = μ†, indeed even the k-means in Eu-
clidean spaces is known to be asymptotically biased. In this paper we do not
take λn → 0 which adds a further bias.
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The approach we take, as is common in settings in which smooth solutions
are expected, is to penalize the sth derivative. By Taylor’s Theorem we can write
Hs = H0 ⊕H1 where

H0 = span

{
ζi(t) =

ti

i!
: i = 0, 1, . . . , s− 1

}
,

H1 =
{
g ∈ Hs : ∇ig(0) = 0 for all i = 0, 1, . . . , s− 1

}
.

We use ‖ · ‖1 = ‖∇s · ‖L2 as the norm on H1 and denote the H0 norm by ‖ · ‖0,
and therefore we use the norm ‖ · ‖Hs = ‖ · ‖0+‖ · ‖1 on Hs (which is equivalent
to the usual Sobolev norm). Since H0 is finite dimensional we are free to use any
norm we choose without changing the topology. We can view Hs = H0 ⊕ H1

as a multiscale decomposition of Hs. The polynomial component represents a
coarse approximation. The regularization penalizes oscillations on the fine scale,
i.e. in H1.

In the case k = 1, fn is quadratic and one can find an explicit representation
of μn, i.e. there exists a random function Gn,λ such that with probability one
μn = Gn,λν

n for some function νn which depends on the data. When k > 1 the
problem is no longer convex and the methodology used in the k = 1 case fails.

The first result of this paper (Theorem 3.1) is a weak convergence result, we
show that there exists μ∞ ∈ Θ such that (up to subsequences) μn ⇀ μ∞ a.s. in
Hs and μ∞ is a minimizer of f∞ defined by

f∞(μ) =

∫ 1

0

∫
Rd

k∧
j=1

|y − μj(t)|2 φY (y|t)φT (t) dy dt+ λ

k∑
j=1

‖∇sμj‖2L2 . (3)

One should note that if μ∞ = (μ∞
1 , . . . , μ∞

k ) is a minimizer of f∞ then so is
μ̃∞ = (μ∞

ρ(1), . . . , μ
∞
ρ(k)) for any permutation ρ : {1, . . . , k} → {1, . . . , k} and

therefore we do not expect uniqueness of the minimizer. Considering the law of
large numbers the limit f∞ is natural. The functional f∞ can be seen as a limit
of fn, the nature of which will be made rigorous in Section 3. The second result
is to go from almost sure weak convergence to strong convergence in probability.
In other words, we obtain convergence of the minimizing sequence in a stronger
topology at the expense of considering a weaker mode of stochastic convergence.

We recall that one motivation for considering the minimization problem (2)
is to embed the problem into a framework that allows the application of the k-
means method. Large data limits for the k-means have been studied extensively
in finite dimensions, see for example [2, 5, 10, 25, 31, 34, 36, 35]. There are
fewer results for the infinite dimensional case, with [4, 14, 15, 22, 26, 28, 27,
30, 41, 42, 7] the only results known to the authors. Of these, only [42] can be
applied to finite dimensional data and infinite dimensional cluster centers but
required bounded noise and furthermore the conclusion were limited to weak
convergence. The first contribution of this paper is to extend this convergence
result to unbounded noise for the SDA problem (Section 3). We point out that
[4, 7, 26, 28] give results for the convergence and rates of convergence of the
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minimum min fn (in infinite dimensional settings) and [27] gives results for the
convergence of the minimizers.

The result of Theorem 4.1 is that, upto subsequences, the convergence is
strong in Hs. The final result is to show that the rate of convergence is of order
1√
n
in probability. I.e.

‖μn − μ∞‖(Hs)k = Op

(
1√
n

)
.

This is closely related to the central limit theorem first proved for the k-means
method by Pollard [36] for Euclidean data. We extend his methodology to clus-
ter centers in Hs to prove our rate of convergence result and in doing so provide
a theoretical justification for using this method in the more complex scenario
which we consider and, in particular, for using such approaches to address post
hoc tracking of multiple targets using k-means type algorithms. As with Pol-
lard’s finite dimensional result we require an assumption on the positive defi-
niteness of the second derivative of the limiting function f∞.

In the next section we remind the reader of some preliminary material which
underpins our main results. Section 3 contains the weak convergence result. In
Section 4 we go from weak convergence to strong convergence with rates.

2. Preliminaries

2.1. Notation

The Borel σ-algebra on [0, 1]×Rd is denoted B([0, 1]×Rd) and the set of proba-
bility measures on ([0, 1]×Rd,B([0, 1]×Rd)) by P([0, 1]×Rd). Our main results
concern sequences of data {(ti, yi)}∞i=1 sampled independently with common
law P ∈ P([0, 1]×Rd) which is assumed to have a Lebesgue density, φ((t, y)) =
φY (y|t)φT (t). We work throughout on a probability space (Ω,F ,P) rich enough
to support a countably infinite sequence of such observations, (ti, yi) : Ω →
[0, 1]×Rd. All random elements are defined upon this common probability space
and all stochastic quantifiers are to be understood as acting with respect to P un-
less otherwise stated. With a small abuse of notation we say (ti, yi) ∈ [0, 1]×Rd.

We will define the space Θ ⊂ (Hs)k in Section 3. The Sobolev space Hs is
given by

Hs :=
{
μ : [0, 1] → Rd s.t. ∇iμ is abs. cts. ∀i = 0, 1, . . . , s− 1 and ∇sμ ∈ L2

}
.

Note that data is of the form {(ti, yi)}ni=1 ⊂ [0, 1]× Rd.
We denote weak convergence by ⇀: if νn, ν ∈ Hs satisfies F (νn) → F (ν) for

all F ∈ (Hs)∗ then νn ⇀ ν. A sequence of probability measures Pn is said to
weakly converge to P if for all bounded and continuous functions h we have

Pnh → Ph.

Where we write Ph =
∫
h(x) P (dx). If Pn weakly converges to P then we write

Pn ⇒ P .
We use the following standard definitions for rates of convergence.
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Definition 2.1. We define the following.

(i) For deterministic sequences an and rn, where rn are positive and real
valued, we write an = O(rn) if an

rn
is bounded. If an

rn
→ 0 as n → ∞ we

write an = o(rn).
(ii) For random sequences an and rn, where rn are positive and real valued,

we write an = Op(rn) if an

rn
is bounded in probability: for all ε > 0 there

exist deterministic constants Mε, Nε such that

P

(
|an|
rn

≥ Mε

)
≤ ε ∀n ≥ Nε.

If an

rn
→ 0 in probability: for all ε > 0

P

(
|an|
rn

≥ ε

)
→ 0 as n → ∞

we write an = op(rn).

When a = a(r) can be written as a function of r we will often write a = O(r)
or a = o(r) to mean for any sequence rn → 0 that an := a(rn) satisfies an =
O(rn) or an = o(rn) respectively.

2.2. Γ-convergence

Our proof of convergence will use a variational approach. In particular the nat-
ural convergence for a sequence of minimization problems is Γ-convergence. The
Γ-limit can be understood as the ‘limiting lower semi-continuous envelope’. It
is particular useful when studying highly oscillatory functionals when there will
often be no strong limit and the weak limit (if it exists) will average out os-
cillations and therefore change the behavior of the minimum and minimizers.
See [9, 16] for an introduction to Γ-convergence and [23, 24, 42] for applications
of Γ-convergence to problems in statistical inference. We will apply the following
definition and theorem to H = Θ ⊂ (Hs)k.

Definition 2.2 (Γ-convergence [9, Definition 1.5]). Let H be a Banach space
and Θ ⊂ H be a weakly closed set. A sequence fn : Θ → R ∪ {±∞} is said to
Γ-converge on Θ to f∞ : Θ → R ∪ {±∞} with respect to weak convergence on
H, and we write f∞ = Γ- limn fn, if for all ν ∈ Θ we have

(i) (lim inf inequality) for every sequence (νn) ⊂ Θ weakly converging to ν

f∞(ν) ≤ lim inf
n

fn(ν
n);

(ii) (recovery sequence) there exists a sequence (νn) weakly converging to ν
such that

f∞(ν) ≥ lim sup
n

fn(ν
n).
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When it exists the Γ-limit is always weakly lower semi-continuous [9, Propo-
sition 1.31] and therefore achieves its minimum on any weakly compact set.
An important property of Γ-convergence is that it implies the convergence of
minimizers. In particular, we will make use of the following result which can be
found in [9, Theorem 1.21].

Theorem 2.3 (Convergence of Minimizers). Let H be a Banach space, Θ ⊂ H
be a weakly closed set and fn : Θ → R ∪ {±∞} be a sequence of functionals.
Assume there exists a weakly compact subset K ⊂ Θ with

inf
Θ

fn = inf
K

fn ∀n ∈ N.

If f∞ = Γ- limn fn and f∞ is not identically ±∞ then

min
Θ

f∞ = lim
n

inf
Θ

fn.

Furthermore if μn ∈ K minimizes fn then any weak limit point is a minimizer
of f∞.

2.3. The Gâteaux derivative

As in Section 2.2 we will apply the following to H = Θ ⊂ (Hs)k.

Definition 2.4. We say that f : H → R is Gâteaux differentiable at μ ∈ H in
direction ν ∈ H if the limit

∂f(μ; ν) = lim
r→0+

f(μ+ rν)− f(μ)

r

exists. We may define second order derivatives by

∂2f(μ; ν, ω) = lim
r→0+

∂f(μ+ rω; ν)− ∂f(μ; ν)

r

for μ, ν, ω ∈ H. In cases where the second derivative does not necessarily exist
we will define ∂2

−f by

∂2
−f(μ; ν, ω) = lim inf

r→0+

∂f(μ+ rω; ν)− ∂f(μ; ν)

r
.

To simplify notation, we write:

∂2
−f(μ; ν) := ∂2

−f(μ; ν, ν).

Theorem 2.5. Let μ, ν ∈ H. If f : H → R is continuously Gâteaux differen-
tiable on the set {tμ+ (1− t)ν : t ∈ [0, 1]} then

f(ν) ≥ f(μ) + ∂f(μ; ν − μ) +
1

2
∂2
−f((1− t∗)μ+ t∗ν; ν − μ)

for some t∗ ∈ [0, 1].
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Proof. The theorem is only a slight generalisation of Taylor’s theorem. Indeed,
if there exists t ∈ [0, 1] such that ∂2

−f((1− t)μ+ tν; ν − μ) = −∞ then we have
nothing to prove. So we assume ∂2

−f((1− t)μ+ tν; ν−μ) > −∞ for all t ∈ [0, 1],
define g(t) = f((1− t)μ+ tν) then we can show that g(1) = f(ν), g(0) = f(μ),
g′(0) = ∂f(μ; ν − μ) and g′′−(t) = ∂2

−f((1− t)μ+ tν; ν − μ) where we define

g′′−(t) = lim inf
r→0+

g′(t+ r)− g′(t)

r
. (4)

Hence we can equivalently show that g(1) ≥ g(0) + g′(0) + 1
2g

′′
−(t

∗) for some
t∗ ∈ [0, 1]. Define J = 2(g(1)− g(0)− g′(0)) and we are left to show J ≥ g′′−(t

∗).
Let

F (t) = g(t) + g′(t)(1− t) +
(t− 1)2

2
J − g(1)

and note that, by definition of J , F (0) = F (1) = 0. Since F ′
−(t) = (1−t)(g′′−(t)−

J) (where F ′
− is defined analogously to (4)), then if we can show there exists

t∗ ∈ (0, 1) such that F ′
−(t

∗) ≤ 0 we are done. One can easily show that if
F ′
−(t) > 0 for all t then F is strictly increasing, which contradicts F (1) = F (0),

and so there must exist such a t∗.

3. Weak convergence

To show weak convergence we apply Theorem 2.3. The following two subsections
prove that the conditions required to apply this theorem, i.e. that f∞ is the
Γ-limit of fn and that the minimizers μn are uniformly bounded, hold with
probability one.

For a fixed δ > 0 we define the set Θ to be the set of functions in (Hs)k

which have minimum separation distance of δ:

Θ =
{
μ ∈ (Hs)k : |μj(t)− μl(t)| ≥ δ ∀t ∈ [0, 1] and j �= l

}
. (5)

For d = 1 this is a strong assumption as we restrict ourselves to trajectories
that do not intersect. When considering the tracking of real objects in 2 or more
dimensions, the assumption is typically physically reasonable. For example if μj

are to represent trajectories of extended objects by modelling the location of
the centroid, it is natural to require a minimum separation of those centroids
on a scale corresponding to the extent of the objects in question.

In practical implementations the constraint could be difficult to implement,
but it is straightforward to check whether it is satisfied post hoc. For a wide
range of distributions on the data it is reasonable to expect that any two cluster
centers obtained by numerical procedures will not intersect and therefore have a
minimum separation distance. Of course, this separation distance is only known
with posterior knowledge and not prior knowledge as we assume here. We expect
that one could improve this reasoning to state explicitly that with high proba-
bility any two cluster centers are at least δ∗ apart for some δ∗ that depends upon
the distribution of the data. We do not attempt to prove any such statement
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here. Such a statement would imply that one could carry out the classification
using a k-means method without directly imposing the constraint.

We use the assumption in order to infer that the spatial partitioning induced
by any set of cluster centers μ ∈ Θ is such that every element of the partition
is non-empty, at every time t, i.e. the sets

Xj(t) =
{
x ∈ Rd : |x− μj(t)| < |x− μi(t)| for i �= j

}
for j = 1, . . . , k are all non-empty.

First let us show that Θ is weakly closed in (Hs)k. Take any sequence μn ∈ Θ
such that μn ⇀ μ ∈ (Hs)k. We have to show μ ∈ Θ. Pick t ∈ [0, 1], j �= l and
define F : Θ → Rd by F : ν → νj(t)− νl(t), note that F is in the dual space of
(Hs)k (since s ≥ 1). Hence

δ ≤ |μn
j (t)− μn

l (t)| = |F (μn)| → |F (μ)| = |μj(t)− μl(t)|.

Therefore μ ∈ Θ. Furthermore we can show that fn, f∞ are weakly lower semi-
continuous [42, Propositions 4.8 and 4.9] hence they obtain their minimizers over
weakly compact subsets of Θ. We will show that minimizers are contained in a
bounded, and hence weakly compact set, and therefore there exists minimizers
of fn and f∞ on Θ.

We now state our assumptions.

Assumptions. 1. The data sequence (ti, yi) is independent and identically
distributed in accordance with the model (1), with μ† ∈ (L∞)k, ϕ(i) ∼
Cat(p), εi ∼ φ0, ti ∼ φT : ϕ(i), εi and ti are mutually independent, and
(ϕ(i), εi, ti), (ϕ(j), εj , tj) are independent for i �= j. We assume φ0 and
φT are continuous densities with respect to the Lebesgue measure on Rd

and [0, 1] respectively and use the same symbols to refer to these densities
and to their associated measures.

2. The density φ0 is centered and has finite second moments.
3. For all ε ∈ Rd, φ0(ε) > 0.
4. There exists α < −d− 3 and c1 such that supt∈[0,1] φY (y|t) ≤ c1|y|α.
Observe that

fn(μ
†) =

1

n

n∑
i=1

k∧
j=1

|μ†
j(ti)− yi|2 + λ

k∑
j=1

‖∇sμ†
j‖2L2

≤ 1

n

n∑
i=1

|μ†
ϕ(i)(ti)− yi|2 + λ

k∑
j=1

‖∇sμ†
j‖2L2

=
1

n

n∑
i=1

ε2i + λ

k∑
j=1

‖∇sμ†
j‖2L2

→ Var(εi) + λ

k∑
j=1

‖∇sμ†
j‖2L2 =: α < ∞
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where the convergence is almost surely by the strong law of large numbers. Hence
Assumption 2 implies that there exists N such that minμ∈Θ fn(μ) < α + 1 for
n ≥ N and N < ∞ with probability one (although N could depend on the
sequence {ti, yi}ni=1 and so we could have supω∈Ω N = ∞).

To simplify our proofs we use Assumption 3 although the results of this paper
can be proved without it. The assumption is used in bounding the minimizers
of fn. Clearly if φ0 has bounded support then each yi is uniformly bounded
(a.s.) and one can show that |μn(t)| is bounded uniformly in n and t (a.s.).
Assumption 3 can be relaxed at the expense of some trivial but notationally
messy modifications.

Assumption 4 is used the next section to uniformly control the decay in
the density φY . In particular the assumption allows us bound the error due to
restricting to bounded sets. Although Assumption 4 implies that φ0 has at least
two moments we include the second moment condition in Assumption 2 as the
decay in density is not needed until later sections.

Note the second moment condition implies that φ0 decays as |ε| → ∞ and
therefore, by continuity, φ0 is bounded in L∞.

We now state the main result for this section. The proof is an application
of Theorem 2.3 once we have shown that f∞ is the Γ-limit (Theorem 3.2) and
established the uniform bound on the set of minimizers Theorem 3.4 (which by
reflexivity of the space (Hs)k implies weak compactness).

Theorem 3.1. Define fn, f∞ : Θ → R by (2) and (3) respectively, where
Θ ⊂ (Hs)k for s ≥ 1 is given by (5). Under Assumptions 1–3 any sequence of
minimizers μn of fn is, with probability one, weakly compact and any weak limit
μ∞ is a minimizer of f∞.

3.1. The Γ-limit

We claim the Γ-limit of (fn) is given by (3).

Theorem 3.2. Define fn, f∞ : Θ → R by (2) and (3) respectively where Θ ⊂
(Hs)k for s ≥ 1 is given by (5). Under Assumptions 1–2

f∞ = Γ- lim
n

fn

for almost every sequence of observations (t1, y1), (t2, y2), . . . .

Proof. We are required to show that the two inequalities in Definition 2.2 hold
with probability 1. In order to do this we follow [42] and consider a subset of Ω
of full measure, Ω′, and show that both statements hold for every data sequence
obtained from that set.

For clarity let P (d(t, y)) = φY (dy|t)φT (dt). Let P
(ω)
n be the associated em-

pirical measure arising from the particular elementary event ω, which we define

via it’s action on any continuous bounded function h : [0, 1]×Rd → R: P
(ω)
n h =

1
n

∑n
i=1 h

(
t
(ω)
i , y

(ω)
i

)
where

(
t
(ω)
i , y

(ω)
i

)
emphasizes that these are the observa-

tions associated with elementary event ω. Define gμ(t, y) =
∧k

j=1(y − μj(t))
2.
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To highlight the dependence of fn on ω we write f
(ω)
n . We can write

f (ω)
n (μ) = P (ω)

n gμ + λ

k∑
j=1

‖∇sμj‖2L2 and f∞ = Pgμ + λ

k∑
j=1

‖∇sμj‖2L2 .

We define

Ω′ =
{
ω ∈ Ω : P (ω)

n ⇒ P
}
∩
{
ω ∈ Ω : P (ω)

n (B(0, q)c) → P (B(0, q)c) ∀q ∈ N

}

∩
{
ω ∈ Ω :

∫
(B(0,q))c

|y|2 P (ω)
n (d(t, y)) →

∫
(B(0,q))c

|y|2 P (d(t, y)) ∀q ∈ N

}

then P(Ω′) = 1 by the almost sure weak convergence of the empirical mea-
sure [20] and the strong law of large numbers.

Fix ω ∈ Ω′ and we start with the lim inf inequality. Let μn ⇀ μ. By Theo-
rem 1.1 in [21] we have∫

[0,1]×Rd

lim inf
n→∞,(t′,y′)→(t,y)

gμn((t′, y′)) P (d(t, y))

≤ lim inf
n→∞

∫
[0,1]×Rd

gμn(t, y) P (ω)
n (d(t, y)).

By the same argument as in Proposition 4.8.ii in [42] we have

lim inf
n→∞,(t′,y′)→(t,y)

(
y′ − μn

j (t
′)
)2 ≥ (y − μj(t))

2
.

Taking the minimum over j we have

lim inf
n→∞,(t′,y′)→(t,y)

gμn(t′, y′) ≥ gμ(t, y).

And, as norms in Banach spaces are weak lower semi-continuous,

lim inf
n→∞

‖∇sμn
j ‖2L2 ≥ ‖∇sμj‖2L2 .

Therefore
lim inf
n→∞

f (ω)
n (μn) ≥ f∞(μ)

as required.
We now establish the existence of a recovery sequence for every ω ∈ Ω′ and

every μ ∈ Θ. Let μn = μ ∈ Θ. Let ζq be a C∞(Rd+1) sequence of functions such
that 0 ≤ ζq(t, y) ≤ 1 for all (t, y) ∈ Rd+1, ζq(t, y) = 1 for (t, y) ∈ B(0, q− 1) and
ζq(t, y) = 0 for (t, y) �∈ B(0, q). Then the function ζq(t, y)gμ(t, y) is continuous
for all q. We also have, for any (t, y) ∈ [0, 1]× Rd,

ζq(t, y)gμ(t, y) ≤ ζq(t, y)|y − μ1(t)|2

≤ 2ζq(t, y)
(
|y|2 + |μ1(t)|2

)
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≤ 2ζq(t, y)
(
|y|2 + ‖μ1‖2L∞([0,1])

)
≤ 2|q|2 + 2‖μ1‖2L∞([0,1]) < ∞

so ζqgμ is a continuous and bounded function, hence by the weak convergence

of P
(ω)
n to P we have

P (ω)
n ζqgμ → Pζqgμ

as n → ∞ for all q ∈ N. For all q ∈ N we have

lim sup
n→∞

|P (ω)
n gμ − Pgμ| ≤ lim sup

n→∞
|P (ω)

n gμ − P (ω)
n ζqgμ|

+ lim sup
n→∞

|P (ω)
n ζqgμ − Pζqgμ|+ lim sup

n→∞
|Pζqgμ − Pgμ|

= lim sup
n→∞

|P (ω)
n gμ − P (ω)

n ζqgμ|+ |Pζqgμ − Pgμ|.

Therefore,

lim sup
n→∞

|P (ω)
n gμ − Pgμ| ≤ lim sup

q→∞
lim sup
n→∞

|P (ω)
n gμ − P (ω)

n ζqgμ|

by the dominated convergence theorem. We now show that the right hand side
of the above expression is equal to zero. We have

|P (ω)
n gμ − P (ω)

n ζqgμ| ≤ P (ω)
n I(B(0,q−1))cgμ

≤
∫
[0,1]×Rd

I(B(0,q−1))c(t, y)|y − μ1(t)|2 P (ω)
n (d(t, y))

≤ 2

∫
[0,1]×Rd

I(B(0,q−1))c(t, y)|y|2 P (ω)
n (d(t, y))

+ 2‖μ1‖2L∞([0,1])

∫
[0,1]×Rd

I(B(0,q−1))c(t, y) P
(ω)
n (d(t, y))

n→∞−→ 2

∫
[0,1]×Rd

I(B(0,q−1))c(t, y)|y|2 P (d(t, y))

+ 2‖μ1‖2L∞([0,1])

∫
[0,1]×Rd

I(B(0,q−1))c(t, y) P (d(t, y))

q→∞−→ 0

where the last limit follows by the monotone convergence theorem and Assump-
tion 2. We have shown

lim
n→∞

|P (ω)
n gμ − Pgμ| = 0.

Hence
f (ω)
n (μ) → f∞(μ)

as required.
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3.2. Boundedness

The aim of this subsection is to show that the minimizers of fn are uniformly
bounded in n for almost every sequence of observations. We divide this into two
parts; bounding each of the H0 and H1 norms. The H1 bound follows easily
from the regularization. For the H0 bound we exploit the equivalence of norms
on finite-dimensional vector spaces to choose a convenient norm on H0.

By the argument which followed the assumptions we have, for n sufficiently
large and with probability one, minμ∈Θ fn(μ) ≤ α + 1 < ∞. Now we let μn be

a sequence of minimizers. Then there exists Ω̂ ⊂ Ω such that P(Ω̂) = 1 and for
all ω ∈ Ω̂ we have

fn(μ
†) = P (ω)

n gμ† + λ

k∑
j=1

‖∇sμ†
j‖2L2 → Pgμ† + λ

k∑
j=1

‖∇sμ†
j‖2L2 =: α.

Therefore for all ω ∈ Ω̂ there exists N = N (ω) such that for n ≥ N we have

λ

k∑
j=1

‖μn
j ‖21 ≤ fn(μ

n) ≤ fn(μ
†) ≤ α+ 1.

Therefore ‖μn
j ‖1 is bounded almost surely for each j. We are left to show the

corresponding result for ‖μn
j ‖0.

The following lemma will be used to establish the main result of this subsec-
tion, Theorem 3.4. It shows that, if for some sequence νn ∈ Hs with ‖∇sνn‖L2 ≤√
α and ‖νn‖0 → ∞, then we have that, up to a subsequence, |νn(t)| → ∞ with

the exception of at most finitely many t ∈ [0, 1]. When applied to μn
j this will be

used to show that in the limit, if any center is unbounded, then the minimization
can be achieved over k − 1 clusters — and hence to provide a contradiction.

Lemma 3.3. Let ν ∈ Hs satisfy ‖∇sνn‖L2 ≤ √
α and ‖νn‖0 → ∞. Then there

exists a subsequence such that, with the exception of at most finitely many t ∈
[0, 1], we have |νnm(t)| → ∞. Furthermore for each t ∈ (0, 1) with |νn(t)| → ∞
and any tn → t we have |νn(tn)| → ∞.

Proof. Let the norm on H0 be given by

‖ν‖0 :=

s−1∑
i=0

|∇iν(0)|
i!

. (6)

By Taylor’s theorem and the bound on ‖∇sνn‖L2 we have∣∣∣∣∣νn(t)−
s−1∑
i=0

∇iνn(0)

i!
ti

∣∣∣∣∣ ≤ √
α.

Now let Qn(t) =
∑s−1

i=0
∇iνn(0)

i! ti and Q̂n(t) = Qn(t)
‖Qn‖0

. In particular ‖Q̂n‖0 =

1. Take any subsequence nm then since diQ̂n

dti are uniformly bounded equi-
continuous for all i = 0, 1, . . . , s−1 so by the Arzelà-Ascoli theorem there exists
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a further subsequence (which we relabel) for which diQ̂n

dti converges uniformly to
diQ̂
dti for some Q̂ and all i = 0, 1, . . . s− 1. In particular ds−1Q̂

dts−1 is a constant and

therefore Q̂ is a polynomial of degree at most s − 1. It follows that ‖Q̂‖0 = 1
and therefore Q̂ is not identically zero, hence Q̂ has at most s − 1 roots. For
any t that is not a root of Q̂ we have |Qnm(t)| = |Q̂nm(t)|‖Qnm‖0 → ∞. This
implies that |νn(t)| → ∞.

Now pick t ∈ [0, 1] with |νn(t)| → ∞ and assume tn → t. We assume that
there exists a subsequence nm such that |Qnm(tnm)| is bounded. By going to
a further subsequence (which we relabel) we assume that Q̂nm → Q̂ uniformly.
Choose δ > 0 sufficiently small then there exists ε > 0 and N < ∞ such that
for all s with |s− t| < ε and nm ≥ N then

|Q̂(s)| ≥ δ, ‖Q̂nm − Q̂‖L∞ ≤ δ

2
and |tnm − t| ≤ ε.

It follows that

|Q̂nm(tnm)| ≥ |Q̂(tnm)| − |Q̂(tnm)− Q̂nm(tnm)| ≥ δ

2
.

In particular |Qnm(tnm)| = ‖Qn‖0|Q̂nm(tnm)| ≥ δ‖Qnm‖0

2 → ∞. This contra-
dicts the assumption that |Qnm(tnm)| is bounded. Hence |νn(tn)| → ∞.

We proceed to the main result of this subsection.

Theorem 3.4. Define fn, f∞ : Θ → R, where Θ ⊂ (Hs)k for s ≥ 1 is given
by (5), by (2) and (3) respectively. Let μn be a minimizer of fn then, under As-
sumptions 1–3, for almost every sequence of observations there exists a constant
M < ∞ such that ‖μn‖(Hs)k ≤ M for all n.

Proof. As in the proof of Theorem 3.2 we let ω ∈ Ω′′ where

Ω′′ =

{
ω ∈ Ω′ :

1

n

n∑
i=1

ε2i → Var(ε1)

}

⋂(
∩c∈Qd

{
ω ∈ Ω′ : P (ω)

n

(
B

(
c,

δ

4

))
→ P

(
B

(
c,

δ

4

))})

where Ω′ is defined in the proof of Theorem 3.2. We have P(Ω′′) = 1. For the
remainder of the proof we assume ω ∈ Ω′′. Then there exists N (ω) < ∞ such

that f
(ω)
n (μn) ≤ α+ 1 for all n ≥ N (ω). Hence, for sufficiently large n,

λ

k∑
j=1

‖μn
j ‖21 ≤ f (ω)

n (μn) ≤ α+ 1.

It remains to show the H0 bound. The structure of the proof is similar to [27,
Lemma 2.1]. We will argue by contradiction. In particular we argue that if a
cluster center is unbounded then in the limit the minimum is achieved over the
remaining k − 1 cluster centers.
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Step 1: The minimization is achieved over k − 1 cluster centers. We assume
supj ‖μn

j ‖0 is unbounded, then there exists j∗ and a subsequence (which we
relabel) such that ‖μn

j∗‖0 → ∞. By Lemma 3.3 there exists a further subsequence
(again relabelled) such that |μn

j∗(t)| → ∞ for all but finitely many t. For any
such t, by Lemma 3.3, we have

lim
n→∞,t′→t

|μn
j∗(t

′)| = ∞.

This easily implies

lim
n→∞,(t′,y′)→(t,y)

∣∣μn
j∗(t

′)− y′
∣∣2 = ∞

for any y ∈ Rd. Therefore

lim inf
n→∞,(t′,y′)→(t,y)

⎛
⎝ k∧

j=1

∣∣μn
j (t

′)− y′
∣∣2 − ∧

j 
=j∗

∣∣μn
j (t

′)− y′
∣∣2
⎞
⎠ = 0.

Note that the above expression holds for P -almost every (t, y) ∈ [0, 1]× Rd (as
by Lemma 3.3 the collection of t for which |μn

j∗(t)| �→ ∞ has Lebesgue measure
zero). By Fatou’s lemma for weakly converging measures [21, Theorem 1.1] and
the above we have

lim inf
n→∞

⎛
⎝∫

[0,1]×Rd

k∧
j=1

|μn
j (t)− y|2 −

∧
j 
=j∗

|μn
j (t)− y|2 P (ω)

n (dt, dy)

⎞
⎠ ≥ 0.

Hence
lim inf
n→∞

(
f (ω)
n (μn)− f (ω)

n ((μn
j )j 
=j∗)− λ‖∇sμn

j∗‖2L2

)
≥ 0

where we interpret f
(ω)
n ((μn

j )j 
=j∗) accordingly. So,

lim inf
n→∞

(
f (ω)
n (μn)− f (ω)

n ((μn
j )j 
=j∗)

)
≥ 0.

Step 2: The contradiction. If we can show that there exists ε > 0 such that

lim inf
n→∞

(
f (ω)
n (μn)− f (ω)

n ((μn
j )j 
=j∗)

)
≤ −ε.

(i.e. we can do strictly better by fitting k centers than fitting k−1 centers) then
we can conclude the theorem.

Now,

f (ω)
n (μn) ≤ f (ω)

n (μ̂n) =
1

n

n∑
i=1

k∧
j=1

|μ̂n
j (ti)− yi|2 + λ

∑
j 
=j∗

‖∇sμ̂n
j ‖2L2 ,

where

μ̂n
j (t) =

{
μn
j (t) for j �= j∗

cn for j = j∗
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for a constant cn. By definition, the μ̂n
j must have a minimum separation dis-

tance of δ. For now we assume that we can choose cn such that this criterion is
fulfilled. So if |yi − cn| ≤ δ

4 then

|yi − cn|+
δ

4
≤ |μn

j (ti)− yi|

for all j �= j∗. And therefore |yi − cn|2 + δ2

16 ≤ |μn
j (ti)− yi|2 which implies

f (ω)
n ((μn

j )j 
=j∗) =
1

n

n∑
i=1

∧
j 
=j∗

|μn
j (ti)− yi|2 + λ

∑
j 
=j∗

‖∇sμj‖2L2

=
1

n

n∑
i=1

∧
j 
=j∗

|μn
j (ti)− yi|2I(ti,yi)�nj∗

+
1

n

n∑
i=1

∧
j 
=j∗

|μn
j (ti)− yi|2I(ti,yi)∼nj∗ + λ

∑
j 
=j∗

‖∇sμj‖2L2

≥ 1

n

n∑
i=1

∧
j 
=j∗

|μn
j (ti)− yi|2I(ti,yi)�nj∗ + λ

∑
j 
=j∗

‖∇sμj‖2L2

+
1

n

n∑
i=1

|cn − yi|2I(ti,yi)∼nj∗ +
δ2

16
P (ω)
n

(
[0, 1]×B

(
cn,

δ

4

))

= f (ω)
n (μ̂n) +

δ2

16
P (ω)
n

(
[0, 1]×B

(
cn,

δ

4

))
.

Where (ti, yi) ∼n j means coordinate (ti, yi) is associated to center μ̂n
j in the

sense that (t, y) ∼n j ⇔ j = argmini=1,...,k |y−μ̂n
i (t)| (and if the minimum is not

uniquely achieved then we take the smallest j such that j ∈ argmini=1,...,k |y −
μ̂n
i (t)|). If we can show that P

(ω)
n

(
[0, 1]×B

(
cn,

δ
4

))
is bounded away from zero,

then the result follows.
Since we assumed ε1 has unbounded support on Rd if we can show that

|cn| ≤ M for a constant M and n sufficiently large (a.s.) then we can infer the
existence of a subsequence such that

lim inf
n→∞

P (ω)
n

(
[0, 1]×B

(
cn,

δ

4

))
= lim

m→∞
P (ω)
nm

(
[0, 1]×B

(
cnm ,

δ

4

))

and cnm converges to some c. This implies (after applying Fatou’s lemma for
weakly converging measures [21, Theorem 1.1])

lim inf
n→∞

P (ω)
n

(
[0, 1]×B

(
cn,

δ

4

))
≥ lim

m→∞
P (ω)
nm

(
[0, 1]×B

(
cnm ,

δ

4

))

≥ P

(
[0, 1]×B

(
c,

δ

4

))

=

∫ 1

0

∫
Rd

I|y−c|≤ δ
4
φY (y|t)φT (t) dydt.
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By Assumption 3 and the continuity in Assumption 1, there exists ε′ > 0 such
that φY (y|t) ≥ ε′ for all y ∈ [−M,M ]d and t ∈ [0, 1]. Hence we may bound the
final expression above by

inf
c∈[−M,M ]

∫ 1

0

∫
Rd

I|y−c|≤ δ
4
φY (y|t)φT (t) dydt ≥ ε′Vol

(
B

(
0,

δ

4

))
.

We are left to show such an M exists. Assume there exists Mk−1 such that
for all j �= j∗ we have ‖μn

j ‖Hs ≤ Mk−1. By the Sobolev embedding of Hs into
L∞ there exists a constant C ′ such that ‖μ‖L∞ ≤ C ′‖μ‖Hs for all μ ∈ Hs. And
therefore |μn

j (t)| ≤ C ′Mk−1 for all j �= j∗ and t ∈ [0, 1]. Let C = C ′Mk−1 + δ

then it follows that there exists cn ∈ [0, C]d such that μ̂n
j∗(t) = cn and μ̂n ∈ Θ.

Now if no such Mk−1 exists then there exists a second cluster such that
‖μn

j∗∗‖Hs → ∞ where j∗∗ �= j∗. By the same argument

lim inf
n→∞

(
f (ω)
n (μn)− f (ω)

n ((μn
j )j 
=j∗,j∗∗)

)
≥ 0

and

f (ω)
n (μn)−f (ω)

n ((μn
j )j 
=j∗,j∗∗) ≤ − δ2

16
P (ω)
n

(
B

(
cn,

δ

4

))
− δ2

16
P (ω)
n

(
B

(
c′n,

δ

4

))

for a constant c′n. By induction it is clear that we can find Mk−l such that k− l
cluster centers are bounded. The result then follows.

Remark 3.5. Note that in the above theorem we did not need to assume a
correct choice of k. If the true number of cluster centers is k′ and we incorrectly
use k �= k′, then the resulting cluster centers are still bounded. In fact for all
the results of this paper the correct choice of k is not necessary: although the
minimizers of f∞ may no longer make physical sense, the problem is still robust
in that the conclusions of Theorems 3.1 and 4.1 and Corollary 4.2 hold.

4. Weak to strong convergence

We now strengthen the result of the previous section and show that in fact
(upto subsequences) convergence of minimizers is strong in Hs. Our proof is
based on the methodology Pollard used for proving the central limit theorem
for the k-means method in Euclidean spaces [36]. In Pollard’s proof he assumed
a positive definiteness condition on the second derivative of, what we call in
this paper, f∞. Under an analogous condition we are also able to give a rate
of convergence on convergent sequences of minimizers. Whether this condition
holds will depend on the interplay between the integral over the boundaries of
each partition and the size of each partition.

We state the main results of this section now but leave the proofs to the end.
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Theorem 4.1. Define fn, f∞ : Θ → R, where Θ is given by (5), by (2) and (3),
respectively. Let {μn}n∈N ⊂ Θ where μn minimizes fn. Let μ

nm be any subse-
quence that weakly converges almost surely to some μ∞ then under Assump-
tions 1–4 we have that, after passing to a further subsequence, μnm converges
to μ∞ strongly in Hs and in probability.

Corollary 4.2. If in addition to the conditions in Theorem 4.1 and where μ∞

is a minimizer of f∞ we assume that there exists ρ > 0 and κ > 0 such that

∂2
−f∞(μ; ν) ≥ κ‖ν‖2(Hs)k

for all μ with ‖μ − μ∞‖(Hs)k ≤ ρ. Then any sequence μn of minimizers with
μn → μ∞ in Hs obeys the rate of convergence

‖μn − μ∞‖2(Hs)k = Op

(
1

n

)
.

For clarity, we will assume that the entire sequence μn weakly converges in
the remainder of this paper to avoid reference to subsequences. Relaxing this
assumption is trivial, but notationally cumbersome.

We let Yn(μ) =
√
n(fn(μ) − f∞(μ)) and then, by Taylor expanding around

μ∞, we have

Yn(μ
n) = Yn(μ

∞) + ∂Yn(μ
∞;μn − μ∞) + h.o.t.

In Lemma 4.6, using Chebyshev’s inequality, we bound the Gâteaux derivative
of Yn in probability. Similarly one can Taylor expand f∞ around μ∞. After some
manipulation of the Taylor expansion, where we leave the details until the proof
of Theorem 4.1, one has

∂2
−f∞(μ∞;μn − μ∞) ≤ fn(μ

n)− fn(μ
∞) +Op

(
1√
n
‖μn − μ∞‖(L2)k

)
.

We note that fn(μ
n)− fn(μ

∞) ≤ 0. We also show that

2λ‖∇sν‖2(L2)k − 2‖ν‖2(L∞)k ≤ ∂2
−f∞(μ∞; ν).

Therefore

λ‖∇s (μn − μ∞) ‖2(L2)k ≤ Op

(
1√
n
‖μn − μ∞‖(L2)k + ‖μn − μ∞‖2(L∞)k

)
.

The above expression allows us to convert weak convergence into strong conver-
gence. Lemmata 4.3 and 4.5 provide the first Gâteaux derivative and a lower
bound on the second Gâteaux derivatives of f∞, respectively.

Lemma 4.3. Define f∞ by (3) and Θ ⊂ (Hs)k for s ≥ 1 by (5). Then, under
Assumptions 1, 2 and 4, for μ ∈ Θ ∩ (L∞)k, ν ∈ (Hs)k we have that f∞ is
Gâteaux differentiable at μ in the direction ν with

∂f∞(μ; ν) =2

∫ 1

0

∫
Rd

(
μj(t,y)(t)− y

)
· νj(t,y)(t)φY (y|t)φT (t) dydt
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+ 2λ

k∑
j=1

(∇sνj ,∇sμj)

where j(t, y) is chosen arbitrarily from the set argminj |y − μj(t)|, so that

j(t, y) ∈ argmin
j

|y − μj(t)|. (7)

Remark 4.4. Since μj are continuous the boundary between each element of
the resulting partition is itself continuous and has Lebesgue measure zero. The
set on which j(t, y) is not uniquely defined therefore has measure zero. Hence
we will treat j(t, y) as though it was uniquely defined.

Proof of Lemma 4.3:. Fix μ ∈ Θ, ν ∈ (Hs)k and r > 0. We will assume d ≥ 2.
The case when d = 1 simplifies as the boundaries between partitions are points
and so we exclude the argument. Let β = − 1+ε

α+2+d where ε > 0 is chosen

sufficiently small so that 1− β = α+3+d+ε
α+2+d > 0 (true for any ε < −(α+ d+ 3)).

Then

1

r

∫
|y|≥r−β

|y|2φY (y|t) dy ≤ c1
r

∫
|y|≥r−β

|y|2+α dy

=
c

r

∫ ∞

r−β

t2+α+d−1 dt for some c > 0

= − c

α+ 2 + d
r−β(α+2+d)−1. (8)

Since α+ 2+ d < 0 and −β(α+ 2+ d)− 1 = ε > 0 the above converges to zero
as r → 0. Analogously, one can show 1

r

∫
|y|≥r−β φ(y|t) dy → 0 as r → 0.

Define jr(t, y) by

jr(t, y) = argmin
j

|y − μj(t)− rνj(t)|.

Then for (t, y) in the interior of the partition associated with μj we have

jr(t, y) = j(t, y) for r sufficiently small.

More precisely consider two points y1, y2 ∈ Rd, with |y1− y2| ≥ δ and let By1,y2

be the boundary defined by

By1,y2 =
{
y ∈ B(0,M) : |y − y1| = |y − y2|

}
for a constant M > 0. Let ỹ1 ∈ B(y1, Cr) and ỹ2 ∈ B(y2, Cr). We will denote
by dH the Hausdorff distance between sets in Rd, in particular we wish to bound
dH(By1,y2 , Bỹ1,ỹ2). Elementary geometry implies that this can be bounded by
the Euclidean distance between points on the boundary of each set, in particular

dH(By1,y2 , Bỹ1,ỹ2) ≤ dH(∂By1,y2 , ∂Bỹ1,ỹ2)
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where
∂By1,y2 =

{
y ∈ Rd : |y| = M and |y − y1| = |y − y2|

}
.

Without loss of generality assume that By1,y2 ⊂ {x : x1 = 0}. (All assumptions
other than 4 are rotation and translation invariant, whilst 4 is rotation invariant
it is not translation invariant as the constant c1 could increase with the size of the
translation. However the cluster centers are bounded in L∞, so in particular the
size of the translation can be bounded. Therefore, up to redefining the constant
c1, all the assumptions hold in the rotated and translated coordinate system.
For d ≥ 3 we consider a cross section at x3:d = a ∈ Rd−2, then there exists
constants γ1, γ2 ∈ R (depending on a) such that x1 = γ1x2 + γ2 parametrizes
the set {x ∈ Bỹ1,ỹ2 : x3:d = a} (for a > M the set is empty and we have nothing
to prove). Let θa = | tan−1 γ1| ∈ [0, π

2 ] be the angle between the lines x1 = 0 and
x1 = γ1x2+γ2. When d = 2 the set Bỹ1,ỹ2 is already a straight line in R2 and it
is unnecessary to take a cross section (i.e. x3:d is null and θa is independent of
a). We will find θ∗ such that sin θ∗ = O(r) and supa θa ≤ θ∗ then we can bound
the Hausdorff distance by

dH(∂By1,y2 , ∂Bỹ1,ỹ2) ≤ rC + 2M sin θ∗ = O(r),

the above bound holding as it is the maximum distance that can arise from
rotation plus the maximum possible translation of the set ∂By1,y2 .

Let � be the ray through y1 and y2 and �̃ be the ray through ỹ1 and ỹ2. Let
P be the point of intersection between � and �̃. The point P exists if and only
if the lines � and �̃ are not parallel. The lines � and �̃ are parallel if and only if
θ = 0, trivially any choice of θ∗ ≥ 0 will bound this case. Therefore we assume
that θ > 0 and therefore the point P exists.

One can easily show that ̂̃y1Py1 = θ (the angle between the lines ỹ1P and
Py1 is θ). There are two possibilities, either (1) P is between y1 and y2 or (2)
it isn’t.

In the second case we assume that |y2−P | < |y1−P | and therefore |y1−P | >
δ. Let Q be the closest point on �̃ to y1 (see Figure 2). So, P, y1, Q form a

triangle with P̂Qy1 = π
2 , Q̂Py1 = θ and |Q − y1| ≤ |y1 − ỹ1| ≤ Cr. Hence

sin θ = |Q−y1|
|y1−P | ≤

Cr
δ .

The first case is similar. Assume that |y1−P | ≥ |y2−P | then |y1−P | ≥ δ
2 . Let

Q be the closest point on �̃ to y1 then |Q− y1| ≤ |y1 − ỹ1| ≤ Cr and Q̂Py1 = θ,

ŷ1QP = π
2 . In particular sin θ = |Q−y1|

|y1−P | ≤
2Cr
δ .

In both cases sin θ ≤ 2Cr
δ which implies

dH(By1,y2 , Bỹ1,ỹ2) ≤ dH(∂By1,y2 , ∂Bỹ1,ỹ2) ≤ rC +
4MCr

δ
.

Let
B(t) =

{
y ∈ Rd : j(t, y) is not uniquely defined

}
and X(r, t) =

{
y ∈ B(0, r−β) : dist(y,B(t)) ≤ ‖ν‖(L∞)k

(
r + 4r1−β

δ

)}
. By the

previous calculation with C = ‖ν‖(L∞)k and M = r−β , if jr(t, y) �= j(t, y) then
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Fig 2. The geometry considered in the proof of Lemma 4.3 admits two cases: in the first (left)
the intersection of l and l̃ lies between y1 and y2; in the second (right) it does not.

dist(y,B(t)) ≤ rC + 4Mr
δ = ‖ν‖(L∞)k

(
r + 4r1−β

δ

)
. And therefore if y �∈ X(r, t)

then jr(t, y) = j(t, y).
We now partition X(r, t) into �2r−β−1� subsets (where �t� is the smallest

integer greater than or equal to t) by defining

Bm
y1,y2

=

{
y ∈ By1,y2 :

∣∣∣∣y − y1 + y2
2

∣∣∣∣ ∈ [(m− 1)r,mr]

}

and

Xm(r, t) =

{
y ∈ X(r, t) : ∃i, j s.t. dist(y,Bm

μi(t),μj(t)
) ≤

2r‖ν‖(L∞)k(δ + 2r−β)

δ

and dist(y,Bm
μi(t),μj(t)

) ≤ dist(y,Bm′

μi(t),μj(t)
) for all m′ �= m

}
.

So X(r, t) ⊂ ∪�2r−β−1�
m=1 Xm(r, t) (assuming ‖ν‖(L∞)k ≤ r−β). This implies∣∣∣∣∣

∫
|y|≤r−β

(
2y − μj(t,y)(t)− μjr(t,y)(t)

)
·
(
μj(t,y)(t)− μjr(t,y)(t)

)
φY (y|t) dy

∣∣∣∣∣
=

∣∣∣∣∣
∫
X(r,t)

(
2y − μj(t,y)(t)− μjr(t,y)(t)

)
·
(
μj(t,y)(t)− μjr(t,y)(t)

)
φY (y|t) dy

∣∣∣∣∣
≤ 2

�2r−β−1�∑
m=1

(
mr + ‖ν‖(L∞)k

(
r +

4r1−β

δ

))

×
∫
Xm(r,t)

|μj(t,y)(t)− μjr(t,y)(t)|φY (y|t) dy.

Now if y ∈ Xm(r, t) then
∣∣∣y − μj(t)+μi(t)

2

∣∣∣ ≥ (m − 1)r for some i, j and

therefore |y| ≥ (m− 1)r −A where ‖μ‖(L∞)k ≤ A. In particular

φY (y|t) ≤
{

c1(m− 1−A)α if m > A+ 1
‖φY ‖L∞ else.
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Note that

Vol(Xm(r, t)) ≤ k(k − 1) [Vold−1(B(0,mr))−Vold−1(B(0, (m− 1)r)]

×
[
‖ν‖(L∞)k

(
r +

4r1−β

δ

)]
� md−1rd−β .

Therefore

1

r

∣∣∣∣∣
∫
|y|≤r−β

(
2y − μj(t,y)(t)− μjr(t,y)(t)

)
·
(
μj(t,y)(t)− μjr(t,y)(t)

)
φY (y|t) dy

∣∣∣∣∣
≤

2‖μ‖(L∞)k

r

�2r−β−1�∑
m=1

(
mr + ‖ν‖(L∞)k

(
r +

4r1−β

δ

))∫
Xm(r,t)

φY (y|t) dy

≤
2‖μ‖(L∞)k‖φY ‖L∞

r

A+1∑
m=1

(
mr + ‖ν‖(L∞)k

(
r +

4r1−β

δ

))
Vol(Xm(r, t))

+
2c1‖μ‖(L∞)k

r

�2r−β−1�∑
m=A+2

(
mr + ‖ν‖(L∞)k

(
r +

4r1−β

δ

))

× (m− 1−A)αVol(Xm(r, t))

� rd−β−1
A+1∑
m=1

(rm+ r1−β)md−1

+ rd−β−1

�2r−β−1�∑
m=A+2

(rm+ r1−β)(m− 1−A)αmd−1

� rd−2β + rd−2β
∞∑

m=1

md+α

= O(rd−2β)

with the above following as rd−β is dominated by rd−2β as r → 0. Since d−2β ≥
2(1− β) > 0 then the above is o(1).

Hence

1

r

∣∣∣∣
∫
Rd

∣∣y − μjr(t,y)(t)
∣∣2 − ∣∣y − μj(t,y)(t)

∣∣2 φY (y|t) dy
∣∣∣∣

≤ 1

r

∣∣∣∣∣
∫
|y|≤r−β

∣∣y − μjr(t,y)(t)
∣∣2 − ∣∣y − μj(t,y)(t)

∣∣2 φY (y|t) dy
∣∣∣∣∣+ o(1) by (8)

=
1

r

∣∣∣∣∣
∫
|y|≤r−β

(
2y − μj(t,y)(t)− μjr(t,y)(t)

)
·
(
μj(t,y)(t)− μjr(t,y)(t)

)

φY (y|t) dy
∣∣∣∣∣+ o(1)
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which converges (uniformly in t) to zero. Therefore

∂f∞(μ; ν) = lim
r→0

f∞(μ+ rν)− f∞(μ)

r

= lim
r→0

1

r

{∫ 1

0

∫
Rd

(
|y − μjr(t,y)(t)|2 − |y − μj(t,y)(t)|2

+ r2|νjr(t,y)(t)|2 − 2r
(
y − μjr(t,y)(t)

)
· νjr(t,y)(t)

)
φY (y|t)φT (t) dydt

+ λ

k∑
j=1

(
2r(∇sνj ,∇sμj) + r2‖∇sνj‖2L2

)}

= −2

∫ 1

0

∫
Rd

(
y − μj(t,y)(t)

)
· νj(t,y)(t)φY (y|t)φT (t) dydt

+ 2λ

k∑
j=1

(∇sνj ,∇sμj)

by the dominated convergence theorem.

Lemma 4.5. Under the same conditions as Lemma 4.3 we have

∂2
−f∞(μ; ν, ν) ≥ 2λ‖∇sν‖2(L2)k − 2‖ν‖2(L∞)k .

Proof. The proof is similar to that of Lemma 4.3 so we only sketch the details.
The key step is in showing the following limit converges to zero

lim sup
r→0

1

r

∫ 1

0

∫
Rd

{(
μjr(t,y)(t)− y

)
· νjr(t,y)(t)−

(
μj(t,y)(t)− y

)
· νj(t,y)(t)

}

φY (y|t)φT (t) dy dt ≤ 2‖μ‖(L∞)k‖ν‖(L∞)k lim sup
r→0

1

r

∫ 1

0

∫
jr 
=j

φY (y|t)φT (t) dy dt

+ 2‖ν‖(L∞)k lim sup
r→0

1

r

∫ 1

0

∫
jr 
=j

|y|φY (y|t)φT (t) dy dt.

As in the proof of Lemma 4.3 we divide Rd = B(0, r−β) ∪ (Rd \B(0, r−β)) and
recall that X(r, t) contains the set where jr(t, y) �= j(t, y) in the ball B(0, r−β)

and X(r, t) ⊂ ∪�2r−β−1�
m=1 Xm(r, t) with Vol(Xm(r, t)) = O(md−1rd−β). The limit

1

r

∫
|y|≥r−β

(|y|+ 1)φY (y|t)φT (t) dy dt → 0

as in the proof of Lemma 4.3. Now,∫
jr 
=j,|y|≤r−β

(|y|+ 1)φY (y|t) dy
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≤
∫
X(r,t)

(|y|+ 1)φY (y|t) dy

≤
A+1∑
m=1

∫
Xm(r,t)

(|y|+ 1)φY (y|t) dy + c1

�2r−β−1�∑
m=A+2

∫
Xm(r,t)

(|y|+ 1)|y|α dy

≤
A+1∑
m=1

‖φY ‖L∞(A+mr + 1)Vol(Xm(r, t))

+ c1

�2r−β−1�∑
m=A+2

(m−A) (m− 1−A)
α
Vol(Xm(r, t))

= O(rd−β).

Since d− β ≥ 2− β > 1 then the above limit is o(r).

We now consider Yn. In particular we want to bound ∂Yn(μ
∞;μn − μ∞).

Lemma 4.6. Define fn, f∞ : Θ → R by (2) and (3) respectively where Θ is
given by (5). Take Assumptions 1, 2 and 4 and define

Yn : Θ → R, Yn(μ) =
√
n (fn(μ)− f∞(μ)) .

Then for μ ∈ Θ, ν ∈ (Hs)k we have that Yn is Gâteaux differentiable at μ in
the direction ν with

∂Yn(μ; ν) = 2
√
n

(∫ 1

0

∫
R

(
y − μj(t,y)(t)

)
· νj(t,y)(t)φY (y|t)φT (t) dydt

− 1

n

n∑
i=1

(
yi − μj(ti,yi)(ti)

)
· νj(ti,yi)(ti)

)

where j(t, y) is defined by (7). Furthermore, for a sequence νn with

‖νn‖(L2)k = op(1) and ‖νn‖(Hs)k = Op(1)

we have ∂Yn(μ; ν
n) = Op(‖νn‖(L2)k).

Proof. Calculating the Gâteaux derivative is similar to Lemma 4.3 and is omit-
ted. By linearity and continuity of ∂Yn we can write

∂Yn

(
μ;

νn

‖νn‖(L2)k

)
=

∑
m

(νn, em)

‖νn‖(L2)k
∂Yn(μ; em)

where em is the Fourier basis for (L2)k (we assume em = (êm1 , . . . , êmk
) where

êm is the Fourier basis for L2). Let Vm = E (∂Yn(μ; em))
2
and Zi = (yi −

μj(ti,yi)(ti)) · êmj(ti,yi), then

Vm =
4

n
E

(
n∑

i=1

(Zi − EZi)

)2
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= 4E (Z1 − EZ1)
2

≤ 4

⎛
⎝4

k∑
j=1

k∑
l=1

‖μ†
l − μj‖L∞ + E |ε1|2

⎞
⎠ =: C.

By Assumptions 1 and 2 and since μ ∈ (L∞)k (by the embedding of (Hs)k into
(L∞)k)) C is finite. Therefore,

P

(∣∣∣∣∂Yn

(
μ;

νn

‖νn‖(L2)k

)∣∣∣∣ ≥ M

)
≤ 1

M
E

(∣∣∣∣∂Yn

(
μ;

νn

‖νn‖(L2)k

)∣∣∣∣
)

≤
∑
m

|(νn, em)|
‖νn‖(L2)k

1

M
E (|∂Yn(μ; em)|)

≤
∑
m

|(νn, em)|
‖νn‖(L2)k

√
Vm

M

≤
√
C

M

where the first inequality is by Markov’s inequality and the third inequality is

by Hölder’s inequality. This implies ∂Yn

(
μ; νn

‖νn‖
(L2)k

)
= Op(1).

We now have the necessary pieces in place to prove Theorem 4.1 and Corol-
lary 4.2.

Proof of Theorem 4.1. By Theorem 3.1 we have that (up to subsequences) ‖μn−
μ∞‖(L2)k = op(1), ‖μn − μ∞‖(L∞)k = op(1) and ‖μn‖(Hs)k = Op(1).

By Theorem 2.5, for some t ∈ [0, 1], we have

f∞(μn) ≥ f∞(μ∞) + ∂f∞ (μ∞;μn − μ∞)

+
1

2
∂2
−f∞ ((1− t)μ∞ + tμn;μn − μ∞)

≥ f∞(μ∞) + 2λ‖∇s(μn − μ∞)‖2(L2)k − 2‖μn − μ∞‖2(L∞)k

after applying Lemma 4.5 and since μ∞ minimizes f∞ the first derivative must
be zero.

Similarly, and using Lemma 4.6,

Yn(μ
n) = Yn(μ

∞)+Op (∂Yn (μ
∞;μn − μ∞)) = Yn(μ

∞)+Op

(
‖μn − μ∞‖(L2)k

)
.

From the definition of Yn we also have

fn(μ
n) = f∞(μn) +

1√
n
Yn(μ

n).

Substituting into the above we obtain

fn(μ
n) ≥ f∞(μ∞) +

1√
n
Yn(μ

n) + 2λ‖∇s (μn − μ∞) ‖2(L2)k − 2‖μn − μ∞‖2(L∞)k
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= f∞(μ∞) +
1√
n
Yn(μ

∞) +Op

(‖μn − μ∞‖(L2)k√
n

)
+ 2λ‖∇s (μn − μ∞) ‖2(L2)k − 2‖μn − μ∞‖2(L∞)k

= fn(μ
∞) +Op

(‖μn − μ∞‖(L2)k√
n

+ ‖μn − μ∞‖2(L∞)k

)
+ 2λ‖∇s (μn − μ∞) ‖2(L2)k .

Rearranging and using fn(μ
n) ≤ fn(μ

∞) we have

2λ‖∇s (μn − μ∞) ‖2(L2)k ≤ Op

(‖μn − μ∞‖(L2)k√
n

+ ‖μn − μ∞‖2(L∞)k

)
+ fn(μ

n)

− fn(μ
∞)

≤ Op

(‖μn − μ∞‖(L2)k√
n

+ ‖μn − μ∞‖2(L∞)k

)
.

We have shown, via Theorem 3.1, that ‖∇s (μn − μ∞) ‖(L2)k → 0 and therefore
μn → μ strongly in Hs and in probability.

Proof of Corollary 4.2. The proof is similar to the proof of Theorem 4.1 since

f∞(μn) ≥ f∞(μ∞) + ∂f∞ (μ∞;μn − μ∞)

+

∫ 1

0

(1− t)∂2
−f∞ ((1− t)μ∞ + tμn;μn − μ∞)

≥ f∞(μ∞) + κ‖μn − μ∞‖2(Hs)k .

One can then show

f∞(μn)− f∞(μ∞) = fn(μ
n)− 1√

n
Yn(μ

n)− f∞(μ∞)

= fn(μ
n)− f∞(μ∞)− 1√

n
Yn(μ

∞) +Op

(‖μn − μ∞‖(L2)k√
n

)

= fn(μ
n)− fn(μ

∞) +Op

(‖μn − μ∞‖(L2)k√
n

)

≤ Op

(‖μn − μ∞‖(L2)k√
n

)
.

Hence,

κ‖μn−μ∞‖(Hs)k‖μn−μ∞‖(L2)k ≤ κ‖μn−μ∞‖2(Hs)k ≤ Op

(‖μn − μ∞‖(L2)k√
n

)
.

Dividing by ‖μn − μ∞‖(L2)k completes the proof.
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