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Introduction

In numerous applications of survival analysis, analyzing the heterogeneity of a
population is a key issue. For example, in insurance, many risk evaluations are
linked with the analysis of duration variables, such as lifetime, time between
two claims, time between the opening of a claim and its closure. A strategic
question is then to determine clusters of individuals which represent differ-
ent levels of risk. Once such groups have been identified, it becomes possible
to improve pricing, reserving or marketing targeting. In this paper, we show
how to adapt CART methodology (Classification And Regression Trees) to a
survival analysis context, with such applications in mind. The presence of cen-
soring is a specific feature of data involving duration variables. Here, these
variables appear naturally in the applications we consider, either because we
are focusing on lifetimes, or because we are interested in quantities that are
observed only when some event has occurred (typically, the final settlement of
a claim). The procedure we develop is shown to be consistent, while its prac-
tical behavior is investigated through a simulation study and two real dataset
analyses.

The CART procedure (Breiman et al. (1984)) is a natural candidate for deal-
ing with such problems, since it simultaneously provides a regression analy-
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sis (which allows us to consider nonlinearity in the way the response depends
on covariates) and a clustering of the population under study. Moreover, its
tree-based algorithmic simplicity makes it easy to implement. It consists of
successively splitting the population into less heterogeneous groups. A model
selection step then allows us to select from this recursive partition a final sub-
division into groups of observations of reasonable size, with simple classifica-
tion rules to affect an individual to one of these classes. Tree-based methods
have met with many successes in medical applications, due to the need for
clinical researchers to define interpretable classification rules for understand-
ing the prognostic structure of data (see e.g., Fan, Nunn and Su (2009), Gao,
Manatunga and Chen (2004), Ciampi, Negassa and Lou (1995), Bacchetti and
Segal (1995)). In survival analysis, a recent review of these methods can be
found in Bou-Hamad, Larocque and Ben-Ameur (2011). Let us also mention
Wey, Wang and Rudser (2014), who recently considered tree-based estima-
tion of a censored quantile regression model, which extends the methodol-
ogy of Wang and Wang (2009). For insurance applications, Olbricht (2012)
highlighted their usefulness to approximate mortality curves in a reinsurance
portfolio and compare them to German life tables in a nonparametric way,
but based on fully observed data, which is not the case in the present pa-
per.

As already mentioned, one of the most delicate problems when dealing with
survival analysis is the presence of censoring in the data, and the necessity to
correct the bias it introduces when using statistical methods. Our approach is
based on the IPCW strategy (“Inverse Probability of Censoring Weighting”),
see van der Laan and Robins (2003), Chapter 3.3. It consists in determining
a weighting scheme that compensates the lack of complete observations in the
sample. Therefore, our procedure is connected with the technique presented in
Molinaro, Dudoit and van der Laan (2004). The main differences in our approach
involve the specificity of the weighting scheme we consider (based on the Kaplan-
Meier estimator of the censoring distribution) and the fact that we do not only
focus on a duration (subject to censoring); our interest lies in the conditional
distribution of a related variable, which is observed only if the duration is. This
particular framework is motivated by applications in insurance where the final
claim amount to be paid is known only after the claim has been settled, which
can take several years in some cases. Another difference with Molinaro, Dudoit
and van der Laan (2004) is that their approach requires modeling the conditional
distribution of the censoring. In our case, no such model is required since we
use weights based on a Kaplan-Meier estimator (Kaplan and Meier (1958)), and
our strategy relies on Kaplan-Meier integrals (see e.g., Stute (1999), Gannoun
et al. (2005) and Lopez, Patilea and Van Keilegom (2013) for the application of
similar strategies to censored regression).

The paper is organized as follows. In Section 1, we describe specific details of
the censored observations we consider. Section 2 is devoted to the description of
the regression tree procedure, and its adaptation to the presence of censoring. Its
consistency is shown in Section 3. A simulation study and two real data examples
from the insurance field are respectively presented in Sections 4 and 5.
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1. Observations and general framework

This section aims to describe the type of observations we have at our disposal
(Section 1.1) and define the regression function we wish to estimate (Section 1.2).
Section 1.3 is devoted to the nonparametric estimation of the distribution func-
tion of the variables involved in our model.

1.1. Censored observations

In the following, we are interested in a random vector (M,T,X), where M ∈ Rp,
T ∈ R+ is a duration variable, and X ∈ X ⊂ Rd denotes a set of random
covariates that may have an impact on T and/or M. The presence of censoring
prevents the direct observation of (M,T ), while X is always observed. Next, let
us introduce a censoring variable C ∈ R+. For the sake of simplicity, we assume
that T and C are continuous random variables. We also assume, for convenience
but without loss of generality, that the components of M are all strictly positive.
The variables that are observed instead of (M,T ) are

Y = inf(T,C),

δ = 1T≤C ,

N = δM.

The data is made up of i.i.d. replications (Ni, Yi, δi,Xi)1≤i≤n. Compared to a
classical censoring regression scheme, such as the one described for example in
Stute (1993), the variables Mi correspond to quantities that are observed only
when the individual i is fully observed. An illustration of such a case is described
in Section 5.2, where T represents the time before a claim is fully settled, and M
the total corresponding amount (only known at the end of the claim settlement
process). The censored regression framework of Stute (1993) can be seen as a
special case, taking M = T.

1.2. Regression function

Our aim is to understand the impact ofX, and possibly T, onM.More precisely,
we wish to estimate a function

π0 = argmin
π∈P

E [φ(M,π(T,X))] , (1.1)

where P is a subset of an appropriate functional space and φ a loss function.
In the following, we will restrict ourselves to real-valued functions π. Table 1
shows the different types of regression models corresponding to different possible
choices of φ, and the corresponding set P . These examples cover mean regression
and quantile regression.
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Table 1

Expressions for π0 for some classical choices of φ and P. The notation Lp(Rd) indicates a
restriction to the set of functions π(x, t) which do not depend on t, and, for a random vector
U , qτ,U (u) denotes the τ -th conditional quantile of M with respect to U, that is, the value of

mu such that P(M ≤ mu|U = u) = τ.

Function φ P π0(t,x)

(m− π)2 L2(Rd) π0(t,x) = E[M |X = x]

L2(Rd+1) π0(t,x) = E[M |T = t,X = x]

(m− π)(τ − 1(m−u)≤0) L1(Rd) π0(t,x) = qτ,X(x)

L1(Rd+1) π0(t,x) = qτ,T,X(t,x)

1.3. Estimation of the distribution function of (M,T,X)

In this framework, the empirical distribution function of (M,T,X) cannot be
computed, since M and T are not directly observed. Since most statistical meth-
ods rely on this nonparametric estimator, an effort should be made to finding an
alternative estimator that takes censoring into account. Due to classical identi-
fiability issues, an assumption on the way C depends on the variables (M,T,X)
must be specified. In the following, we assume that Assumption 1 below holds.

Assumption 1. Assume that:

1. C is independent of (M,T ),
2. P(T ≤ C |M,T,X) = P(T ≤ C |T ).
Under Assumption 1, observe that, for all functions ψ ∈ L1,

E

[
δψ(N,Y,X)

1−G(Y−)

]
= E [ψ(M,T,X)] , (1.2)

where G(t) = P(C ≤ t). The function G is usually unknown. However, As-
sumption 1 ensures that it can be estimated consistently by the Kaplan-Meier
estimator (see Kaplan and Meier (1958)), i.e.,

Ĝ(t) = 1−
∏
Yi≤t

(
1− δi∑n

j=1 1Yj≥Yi

)
,

since T and C are independent, and P(T = C) = 0 for continuous random vari-
ables (see Stute and Wang (1993) for consistency of Kaplan-Meier estimators).
Therefore, a natural estimator of F (m, t,x) = P(M ≤ m,T ≤ t,X ≤ x) is

F̂ (m, t,x) =
1

n

n∑
i=1

δi1Ni≤m,Yi≤t,Xi≤x

1− Ĝ(Yi−)
, (1.3)

while the integral∫
ψ(m, t,x)dF̂ (m, t,x) =

1

n

n∑
i=1

δiψ(Ni, Yi,Xi)

1− Ĝ(Yi−)
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is a consistent estimator of E[ψ(M,T,X)] due to consistency of Ĝ and formula
(1.2) under appropriate conditions. This type of approach can be linked with
the IPCW method (van der Laan and Robins (2003), Chapter 3.3). In the case
where M = T (where we are only interested in time T ), estimator (1.3) is the
same as that defined by Stute (1993), due to a connection between Ĝ and the
jumps of the Kaplan-Meier estimator of the distribution of T (see Satten and
Datta (2001)).

Remark 1.1. Assumption 1 is a natural extension of the identifiability condi-
tion considered by Stute (1993). Alternative assumptions have been proposed by
several authors for censored regression. For example, Van Keilegom and Akritas
(1999), Heuchenne and Van Keilegom (2010a), and Heuchenne and Van Kei-
legom (2010b) assume that T and C are independent conditionally on X (in
the absence of an additional variable M). A special case of Assumption 1 is the
situation where (M,T,X) is independent of C. But, as shown in Stute (1993)
(where Assumptions (i) and (ii) p. 91 are identical to ours in the case where
T = M), Assumption 1 is more general. However, it still introduces constraints
on the way C is allowed to depend on the covariates. An alternative would be to
assume that (M,T ) is independent of C conditionally on X. A way to adapt our
approach to this framework would be to replace the Kaplan-Meier estimator Ĝ by
the conditional Kaplan-Meier estimator of Beran (1981) and Dabrowska (1989),
as in Lopez (2011) (see also Lopez, Patilea and Van Keilegom (2013)). How-
ever, this complicates the procedure due to the introduction of kernel smoothing
with respect to X, with potentially erratic behavior when the dimension of the
covariates d is high. We therefore restrain ourselves to the condition in Assump-
tion 1, which is well-adapted to the practical applications we have in mind (see
Section 5).

Remark 1.2. In practice, we use a learning sample to build the regression
tree, and a validation sample to select the best-adapted subtree (further details
in Section 2.3). Suppose that the learning sample is of size n, while there are
v observations in the test sample. In this situation, the estimator Ĝ can be
computed either from the learning sample (n observations) or from the whole
sample (n+v observations), this latter option leading to a slight modification in
the definition of Ĝ. As we will explain in Section 2.3, we use this second strategy
in practice, which has no significant consequence in the theory, provided that v
is at most of the same order as n.

2. Adapting CART to survival data with Kaplan-Meier weights

This section is devoted to the description of our regression tree methodology,
adapted to censoring. Section 2.1 explain the growing procedure, i.e., the suc-
cessive partitions of the observations into elementary classes, while Section 2.2
shows the link between a subtree extracted from this procedure and an esti-
mator of the regression function. Section 2.3 presents the pruning strategy for
selecting our final estimator.
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2.1. Growing the tree

The building procedure of a regression tree is based on the definition of a splitting
criterion that furnishes partition rules at each step of the algorithm. More
precisely, at each step s, a tree with Ls leaves is constituted, each of these
leaves representing disjoint subpopulations of the initial n observed individuals.
In our case, the rules used to create these populations are based on the values
of Y and X. More precisely, the leaves correspond to a partition of the space

T = R+ ×X into Ls disjoint sets T (s)
1 , ..., T (s)

Ls
. The individual i belongs to the

subpopulation of the leaf l if X̃i := (Ti,Xi) ∈ T (s)
l .

At step s+1, each leaf is likely to become a new node of the tree by making
use of the splitting criterion. Let X̃(j) denote the j-th component of X̃. In the
absence of censoring, to partition the subpopulation of the l-th leaf into two

subpopulations, one determines, for each component X̃(j), the threshold x
(j)
l

that minimizes

min
(π,π′)∈Γ2

{∫
φ(m,π)1

x̃∈T (s)
l

1
x̃(j)≤x

(j)
l

dF̂n(m, t,x)

+

∫
φ(m,π′)1

x̃∈T (s)
l

1
x̃(j)>x

(j)
l

dF̂n(m, t,x)

}
=: Ll(j, x

(j)
l ), (2.1)

where Γ ⊂ R, x̃ = (t,x), and F̂n denotes the empirical distribution of (M,T,X).

The first term of (2.1) can be seen as an estimator of E[φ(M,π) | X̃ ∈ T (s)
l ,

X̃(j) ≤ x
(j)
l ], while the second term estimates E[φ(M,π) | X̃ ∈ T (s)

l , X̃(j) > x
(j)
l ].

Then, one determines j0 = argminj=1,..,d+1 Ll(j, x
(j)
l ). Next, the partition of

the population of the l-th leaf is performed by separating the individuals having

X̃
(j0)
i ≤ x

(j0)
l from those for which X̃

(j0)
i > x

(j0)
l .

In our framework, the empirical distribution function F̂n is unavailable. The
idea is then to replace F̂n in (2.1) by F̂ defined in (1.3). In other words, in
the previous regression tree procedure, the empirical means that we would
use in the absence of censoring are replaced by weighted sums, with weight
Wi,n = δin

−1[1 − Ĝ(Yi−)]−1 being affected to the i-th observation in order to
compensate the presence of censoring.

An important remark can be made in view of both the definition of the split-
ting criterion and the weights Wi,n. The splitting criterion consists of a rule

which is based on the values of X̃, whose first component T is unobserved for
the censored individuals. Hence, under random censoring, this procedure cannot
be understood as a rule to perform classification of all the observations in the
sample; only uncensored individuals are classified. Nevertheless, the fact that
the censored ones are not assigned to any leaf of the tree does not constitute an
obstacle in view of performing the growing procedure. Indeed, if the i-th individ-
ual is censored, Wi,n = 0. Therefore, at each step, a censored observation could

be assigned to any subpopulation without modifying the value of Ll(j, x
(j)
l ).

This does not mean that the information contained in censored observations is
not used, since they play an important role in computing Ĝ, and thus Wi,n.
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To summarize, the aforementioned procedure thus produces clusters of in-
dividuals with rules to assign uncensored observations to one of them. The
question about how to assign a censored observation should be considered sep-
arately; see the application in Section 5.2. The details of our modified CART
algorithm (with censoring weights) are as follows:

Step 0: Compute the estimator Ĝ from the dataset with n individuals.
Step 1: initialization. Consider the tree with only one leaf (L1 = 1),

corresponding to the population composed of all nU uncensored observations

(nU ≤ n). Set T (1)
1 = T .

Step s: splitting. Consider the tree obtained at step s−1, with Ls−1 leaves.

Each leaf l corresponds to a set T
(s−1)
l such that T (s−1)

l ∩ T (s−1)
l′ = ∅ and

∪lT (s−1)
l = T . The uncensored observations (denote el their number) such that

X̃ ∈ T (s−1)
l are assigned to leaf l. For each leaf l, with 1 ≤ l ≤ Ls−1:

s.1 if el = 1 or if all observations have the same values of X̃, do not split;

s.2 else, the leaf becomes a node in the next tree: determine the j0 and x
(j0)
l

that minimize Ll(j, x
(j)
l ) and define Ll = T (s−1)

l ∩ {X̃(j0) ≤ x
(j0)
l } and

Ul = T (s−1)
l ∩ {X̃(j0) > x

(j0)
l }.

Define a new collection of disjoint sets T (s)
l′ which consist of the sets Ll, Ul for

1 ≤ l ≤ Ls−1 (or T (s−1)
l if the l-th leaf satisfied condition s.1). Set Ls the new

number of leaves. Go to step s+1, unless Ls = Ls−1. The procedure stops when
all leaves are in step s.1. This produces the maximal tree from which our final
estimator is extracted.

2.2. From the tree to the regression function

Recall that our aim is to estimate the function π0 in (1.1). Consider a subtree
S of the maximal tree built from the algorithm in Section 2.1. We now describe
how this subtree can be associated with an estimator of π0. Let K(S) denote
the total number of leaves of S. As previously explained, this subtree can be
seen as a collection of rules (see Meinshausen (2009) for further formalization
of this concept). By construction, a leaf l is associated with a set Tl (recall that
the sets Tl are disjoint with their union equal to T ) and a rule Rl(x̃) = 1x̃∈Tl

that determines if an individual is affected or not to the corresponding cluster.
This induces the following estimator of π0:

π̂S(t,x) =

K(S)∑
l=1

γ̂l Rl(t,x), (2.2)

where

γ̂l = argmin
π∈Γ

∫
φ(m,π)Rl(x̃) dF̂ (m, t,x).

The coefficient γ̂l can be seen as an estimator of

γl = argmin
π∈Γ

E[φ(M,π) | X̃ ∈ Tl].
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Hence, defining

πS(t,x) =

K(S)∑
l=1

γl Rl(t,x),

πS(t,x) can be seen as a piecewise-constant approximation of π0, which tends
to be closer to π0 when the partition of T is finely spaced. On the other hand,
π̂S should be close to πS provided that the sets Tl are not too small. In view of
estimating π0, a crucial issue is thus to extract an appropriate subtree from the
maximal tree, corresponding to a good compromise between a sharp partition of
T and the necessity of having enough observations in each leaf to estimate well
the coefficients γl. Achieving this is the aim of the pruning strategy developed
in the following section.

Remark 2.1. In the presence of right-censored observations, a classical diffi-
culty is handling observations that are close to the right tail of the distribution.
Indeed, little information is available on this part of the distribution due to the
lack of large uncensored observations. Our procedure is impacted by this problem,
which translates to a blowing up in the value of the weights when 1 − Ĝ(Yi−)
tends to zero, that is, when Yi is large.

For this reason, a careful look at the leaves containing large observations is
required. In the following, our theoretical results do not cover the case where
weights may blow up. In other words, we exclude too-large uncensored observa-
tions from the procedure in order to avoid the instability they cause. This is a
classical issue in censored regression, where, instead of π0, one is often required
to consider π0(τ) = argminπ∈P E [φ(M,π(T,X))|T ≤ τ ] , where τ is strictly
included in the support of Y, introducing a small bias.

2.3. Selection of a subtree: Pruning algorithm

Denote by Kn ≤ n the number of leaves of the maximal tree. The pruning
strategy consists of selecting from the data a subtree Ŝ with K̂ leaves. Let S
denote the set of subtrees of the maximal tree. The pruning strategy consists of
determining Ŝ(α) such that

Ŝ(α) = argmin
S∈S

{∫
φ(m, π̂S(x, t))dF̂ (m, t,x) +

αK(S)
n

}
,

and to use π̂Ŝ(α) as a final estimator of π0. We will denote K̂α the number of
leaves in Ŝ(α). A penalty term proportional to K(S)/n was first proposed by
Breiman et al. (1984), see also Gey and Nedelec (2005). The procedure consists of
starting with α = 0, then progressively increasing its value, in order to determine
a sequence 0 < α1 < ... < αKn such that K̂αj+1 = K̂αj . The existence of such
a sequence has been proved by Breiman et al. (1984). Moreover, it follows from
Breiman et al. (1984, p. 284–290) that S(αj+1) ⊂ S(αj), and that S(α) = S(αj)
for αj ≤ α < αj+1. Then, the question is to select the right αj in this list. To
this end, a test sample (see Remark 1.2) of size v is used. More precisely, let
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(Ni, Yi, δi,Xi)n+1≤i≤n+v denote the observations in the test sample. For all j,
we compute

V(αj) =

n+v∑
i=n+1

δi φ(Ni, π̂
K(αj)(Yi,Xi))

1− Ĝ(Yi−)
, (2.3)

and select αj0 such that V(αj) is minimal. This procedure differs from the

classical one by the introduction of the weights involving Ĝ. Section 3.3 shows
that this strategy remains valid in the presence of censoring.

Observe that different strategies may be used for computing the estimator
Ĝ involved in (2.3). We choose to compute it once for all, i.e., using the whole
sample (Ni, Yi, δi,Xi)i=1,...,n+v, and using this estimator both in the construc-
tion of the trees and in the validation step. Alternatively, one could use in the
growing step an estimator Ĝ computed from the learning sample, and, in the
validation step, another one computed from the test sample. We argue that such
a strategy is likely to increase the instability of the procedure since the estimator
Ĝ computed from the information contained in the test sample would usually
have poorer performance (usually v << n). Therefore, taking an estimator Ĝ
computed from the whole sample seems preferable, observing that correcting the
presence of censoring and selecting the most appropriate tree are two separate
problems.

Remark 2.2. This selection criterion, in its uncensored version, has been shown
to be consistent for selecting the best subtree in many cases, see Breiman et al.
(1984) and Gey and Nedelec (2005). See also Molinaro, Dudoit and van der
Laan (2004) for similar strategies. Optimality properties and practical evidence
for some of these techniques can be found in van Der Laan, Dudoit and van der
Vaart (2006), van Der Laan and Dudoit (2003), and Dudoit et al. (2003).

3. Consistency of the CART weighted estimator

This section is devoted to the proof of the consistency of the tree procedure.
The roadmap of the proof consists of the three following steps:

1. We consider the value of the criterion that we wish to optimize on each
leaf of the tree. We provide a quasi-exponential bound for the deviations
of the difference between this criterion and the limit that it is supposed
to estimate. The result is presented in Theorem 1, Section 3.2.

2. Under some regularity assumptions on this criterion, the consistency of
the parameters γ̂l is obtained for each leaf of the tree, see Proposition 1
(Section 3.2). Next, the consistency of the global regression estimator π̂S

is deduced in Corollary 1.
3. We show in Proposition 2 of Section 3.3 that the pruning strategy is le-

gitimate, in the sense that it leads to, from a collection of subtrees, an
estimator which achieves the best convergence rate, up to some smaller
remainder terms. This is a consequence of the two previous steps, where
the non-asymptotic results that are provided permit to easily track the
effect of the size of the tree on estimation quality.
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3.1. A bound on the deviations of the criterion

We consider in this section a tree with leaves Tl (l = 1, . . . ,K), where Tl is a
random subdivision of T corresponding to the scheme defined in Section 2.1.
Let

Mn,l(γ) =
1

n

n∑
i=1

δi

1− Ĝ(Yi−)
φ(Ni, γ)1(Yi,Xi)∈Tl

,

Ml(γ) =

∫
φ(m, γ)1x̃∈Tl

dF (m, t,x),

and define the relative variation of Mn,l −Ml around γl as

Δl(γ, γl) =
{Mn,l(γ)−Mn,l(γl)} − {Ml(γ)−Ml(γl)}

|γ − γl|
.

The quantity Δl(γ, γl) is a way of measuring, in leaf l, a normalized variation
of the error made by replacing the criterion Ml by its empirical counterpart.
The cornerstone of our theoretical results is Theorem 1 below, which furnishes
a bound for the deviations of Δl. Before stating the result, some assumptions
on the regularity of the loss function are required.

Assumption 2. There exists a constant M < ∞ such that, for all m,

sup
(π,π′)∈Γ2

|φ(m,π)− φ(m,π′)|
|π − π′| ≤ M.

Assumption 2 holds provided that φ is continuously differentiable with respect
to π, with uniformly bounded derivative. The second assumption that we need
on φ requires us to introduce notation concerning covering numbers. For a class
of functions F and a probability measure Q, let N(ε, L2(Q),F) denote the
minimum number of L2(Q)-balls of radius ε required to cover the set F . In
the following, for a class of functions F with envelope function E (by envelope,
we mean that all functions in F are uniformly bounded by E), we will use the
following notation:

NE(ε,F) = sup
Q:‖E‖L2(Q)<∞

N(ε‖E‖L2(Q), L
2(Q),F).

Assumption 3. Define the class of functions Φ = {m → (φ(m,π)−φ(m,π′))
(π−π′) :

(π, π′) ∈ Γ2}.
Assume that, for some positive constants C1 and w,

NM (ε,Φ) ≤ C1
(
1

ε

)w

,

where we recall that the functions in Φ are bounded by M from Assumption 2.
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Assumption 3 holds provided that the function φ is regular enough. For ex-
ample, assume that φ is twice continuously differentiable with respect to π. Also
assume that its second order derivative with respect to π is, for a fixedm, Hölder
with Hölderian constant Hm. If this constant satisfies E[Hm] < ∞, it is easy to
check that we are in the situation of Example 19.7 in van der Vaart (1998), and
Assumption 3 holds.

We now state the main result of this section.

Theorem 1. Let τ be such that P(Y ≤ τ) < 1, and let Tτ ⊂ [0; τ ]×X . Assume
that X is a random vector with d continuous and k discrete components, where
each discrete component takes at most m values. Then, under Assumptions 2
and 3, there exist positive constants Cj (j = 1, . . . , 5) such that

P

(
sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δl(γ, γl)| > x

)
≤ 2

{
exp
(
−C1nx2

)
+ exp (−C2nx)

}
+2.5 exp

(
−C3nx2 + C4x

)
+ un, (3.1)

with un = O(exp(−n)), for x ≥ C5[kd logm]1/2n−1/2. Moreover, the constants
Cj (j = 1, . . . , 5) do not depend on n nor (k, d,m).

The introduction of τ is required due to the erratic behavior of the Kaplan-
Meier estimator at the right-hand side of the distribution. We therefore need to
remove the observations that are too large, which is the purpose of considering
only leaves such that Tl ⊂ Tτ . This type of truncation is classical in censored re-
gression, see e.g., Sánchez Sellero, González Manteiga and Van Keilegom (2005),
Heuchenne and Van Keilegom (2010b) and Lopez, Patilea and Van Keilegom
(2013).

Sketch of the proof of Theorem 1. The probability (3.1) can be decomposed into

P

(
sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δl(γ, γl)| > x

)
≤ P

(
sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δl,C(γ, γl)| > x/2

)

+P

(
sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δ∗
l (γ, γl)| > x/2

)
, (3.2)

where

Δl,C(γ, γl) =
{Mn,l(γ)−Mn,l(γl)} − {M∗

n,l(γ)−M∗
n,l(γl)}

|γ − γl|
,

Δ∗
l (γ, γl) =

{M∗
n,l(γ)−M∗

n,l(γl)} − {Ml(γ)−Ml(γl)}
|γ − γl|

,

with

M∗
n,l(γ) =

1

n

n∑
i=1

δi
1−G(Yi−)

φ(Ni, γ)1(Yi,Xi)∈Tl
.
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This means that Δl,C corresponds to the replacement of Ĝ by G in the definition
of Mn,l, while Δ

∗
l corresponds to the deviation we would consider in a situation

where the distribution of the censoring is known exactly.

The two probabilities in the decomposition (3.2) are studied separately in
Lemmas 1 and 2 respectively. We proceed as follows:

1. Lemma 1 handles the replacement of Ĝ by G in the criterion (correspond-
ing to Δl,C) via the adaptation of the Dvóretsky-Kiefer-Wolfowitz inequal-
ity for the Kaplan-Meier estimator given by Bitouzé, Laurent and Massart
(1999).

2. Lemma 2 is obtained through a concentration inequality due to Talagrand
(Talagrand (1994)) to study the deviations of Δ∗

l , that is, of the criterion
we would compute if we knew exactly the distribution of the censoring.

Using the notation in these two lemmas, the result follows by taking C1 =
B1/4, C2 = B2/2, C3 = A/4, C4 = B/2, and C5 = 2B3.

Remark 3.1. The sequence un appears in Lemma 1 as un = P(En), where
En = {supt<τ |Ĝ(t) − G(t)| > cG/2} with cG = (1 − G(τ)). From the proof of
Theorem 1,

P

({
sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δl(γ, γl)| > x

}
∩ Ec

n

)
≤ 2

{
exp
(
−C1nx2

)
+ exp (−C2nx)

}
+2.5 exp

(
−C3nx2 + C4x

)
. (3.3)

Remark 3.2. If n + v observations are used to compute Ĝ, n simply becomes
n+ v in the third exponential term of (3.1), and un is replaced by un+v.

3.2. Consistency of the regression tree

Consider a leaf Tl ⊂ Tτ . Once again, restraining ourselves to Tτ is required
due to the poor performance of the Kaplan-Meier estimator near the tail of
the distribution. Theorem 1 allows us to easily deduce consistency of γ̂l, up to
adding some regularity assumptions on the function φ, which we now present.

Assumption 4. φ(m, γ) is twice continuously differentiable with respect to γ
for all m, and there exists a constant c > 0 such that

inf
γ∈Γ,l

∣∣∣∣
∫

∂2
γφ(m, γ)1x̃∈Tl

dF (m, t,x)

∣∣∣∣ ≥ cμX̃(Tl),

where μX̃(χ) =
∫
1x̃∈χdF (m, t,x).

We also require some reasonable restrictions on the parameter space Γ.

Assumption 5. Γ is compact, convex with non-empty interior, and for all
l = 1, . . . ,K, γl belongs to the interior of Γ.
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By the definition of γ̂l, we have Mn,l(γ̂l) − Mn,l(γl) ≥ 0, while Ml(γ̂l) −
Ml(γl) ≤ 0 by the definition of γl. Hence,

0 ≤ −{Ml(γ̂l)−Ml(γl)}
|γ̂l − γl|

≤ Δl(γ̂l, γl) ≤ sup
γ∈Γ

|Δl(γ, γl)|.

Moreover, if follows from a second-order Taylor expansion and Assumptions 4
and 5 that

−{Ml(γ̂l)−Ml(γl)} ≥ cμX̃ (Tl) |γ̂l − γl|2
2

,

from which one deduces

|γ̂l − γl|μX̃ (Tl) ≤
2 supγ∈Γ |Δl(γ, γl)|

c
. (3.4)

The following Proposition 1 then easily follows from (3.4) and Theorem 1.

Proposition 1. Under the conditions of Theorem 1 and Assumptions 4 and 5,

P

(
sup

l:Tl⊂Tl

|γ̂l − γl|μX̃ (Tl) > x

)
≤ 2

{
exp
(
−C1nc2x2/4

)
+ exp (−C2ncx/2)

}
+2.5 exp

(
−C3nc2x2/4 + C4cx/2

)
+ un,

for x ≥ 2C5[kd logm]1/2c−1n−1/2, where we have used the notation in Theo-
rem 1, and where μX̃ is defined as in Assumption 4.

This Proposition means that in each leaf, the estimator γ̂l is close to γl with
high probability. Nevertheless, the term μX̃(Tl) shows that estimation perfor-
mance in the leaf deteriorates when the leaf is “too small” (that is, when the
selection rules define a region of the space T which has a small measure with re-
spect to the distribution of X̃). This is a classical issue when proving consistency
of regression trees, see e.g., Condition 1 in Chaudhuri (2000) and Condition 1
in Chaudhuri and Loh (2002). Condition (3.5) in Corollary 1 below is clearly
linked to this issue since, in a random design, μX̃(Tl) represents in a sense the
number of observations in Tl.
Corollary 1. Let T′

τ = ∪l:Tl⊂TτTl. Assume that, for all Tl ⊂ Tτ ,

μX̃(Tl) ≥ m > 0. (3.5)

Define ‖π̂S − πS‖2,τ =
{∫ ∣∣π̂S(t,x)− πS(t,x)

∣∣2 1x̃∈T′
τ
dF (m, t,x)

}1/2
and

P (x) = P(‖π̂S − πS‖22,τ > x). Then, for some positive constants C′
j ,

P (x) ≤ K
(
2
{
exp (−C′

1nx) + exp
(
−C′

2nx
1/2
)}

+2.5 exp
(
−C′

3nx+ C′
4x

1/2
)
+ un

)
, (3.6)

for x ≥ C′
5n

−1. Moreover,

E
[
K(S)−1‖π̂S − πS‖22,τ

]
= O(1/n). (3.7)
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Proof. We have∫ ∣∣π̂S(t,x)− πS(t,x)
∣∣2 1x̃∈T′

τ
dF (m, t,x) ≤

K∑
l=1

[|γ̂l − γl|μX̃(Tl)]2
1Tl⊂Tτ

m
,

since the intersection of Tl and Tl′ is empty for l �= l′, and using (3.5). Equation
(3.6) then follows from Proposition 1.

To show (3.7), observe, following Remark 3.1, that P (n)(x) := P({‖π̂S −
πS‖22,τ > x} ∩En) = P (x)− 2.5un, where Ec

n = {supt<τ |Ĝ(t)−G(t)| > cG/2}.
Then, since ‖π̂S − πS‖22,τ is bounded (say by a finite constant A),

E
[
K(S)−1‖π̂S − πS‖22,τ

]
≤
∫ ∞

0

P (n)(x)dx+AP(En),

and the result follows since P(En) = 2.5un.

3.3. Consistency of the pruning strategy

The next result shows that penalizing the subtree S by a factor αK(S)/n is
a relevant strategy. This idea already seems reasonable in view of (3.7). In-
deed,

∫
φ(m, π̂S)dF̂ (m, t,x) is, due to the regularity assumptions on φ (As-

sumption 4), of the same order as ‖π̂S − πS‖22,τ , which is of order K(S)/n.
Penalizing by αK(S)/n can then be interpreted as compensating the structural
decrease in ‖π̂S − πS‖2,τ when K(S) increases. Proposition 2 below confirms
this.

Proposition 2. Let S = (S1, . . . ,SKn) denote a sequence of subtrees all satis-
fying the assumptions of Corollary 1, and with S1 ⊂ S2 ⊂ ... ⊂ SKn . Let

K0 = argmin
K=1,...,K(n)

∫
φ(m,πSK (t,x))dF (m, t,x).

Define π̂Ŝ(α) as the estimator selected using the pruning strategy with parameter
α. Let

Δ(K) = −
∫

[φ(m,πSK0 (t,x))− φ(m,πSK (t,x))] dF (m, t,x).

Assume that

inf
K<K0

Δ(K)− α[K −K0]n
−1 ≥ C−1

6 n−1 logn, (3.8)

for some absolute constant C6 > 0, and supγ,m |∂2
γφ(m, γ)| ≤ B for some finite

constant B. Then, if C6 is small enough, under the assumptions of Corollary 1,⎛
⎝E

[
‖π̂Ŝ(α) − π0‖22,τ

]
K0

⎞
⎠

1/2

=
‖πK0 − π0‖2,τ

K
1/2
0

+O(n−1/2),

where the O(n−1)-term does not depend on K0.
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The proof of Proposition 2 is postponed to the appendix. It introduces an
optimal choice of complexity K0 for the selected tree. It is optimal in the sense
that K0 minimizes

∫
φ(t, πK)dF (t,m,x) over K, that is, the unknowable crite-

rion that would be optimized if we knew the distribution F. Proposition 2 means
that the penalization strategy gives approximately the same performance as we
would have if we knew the optimal complexity K0. Indeed, the L2-norm of the
error is of order K0n

−1, plus some approximation term (the distance between
πK0 and π0).

4. Simulations

We investigate here the practical behaviour of tree-based estimators for censored
data via simulations. For the sake of simplicity, we consider the case where we
are interested in the distribution of the lifetime T , thus focusing on estimat-
ing π0(x) = E[T |X = x]. Consider the following simulation scheme (see the
parameter values in Table 2):

1. draw n + v i.i.d. replications (X1, . . . ,Xn) of the covariate, with Xi ∼
U(0, 1);

2. draw n + v i.i.d. lifetimes (T1, . . . , Tn) following an exponential distribu-
tion such that Ti ∼ E(β = α111Xi∈[a,b[ + α211Xi∈[b,c[ + α311Xi∈[c,d[ +
α411Xi∈[d,e]).
(Notice that there thus exist four subgroups in the whole population.)

3. draw n+ v i.i.d. censoring times, Pareto-distributed: Ci ∼ Pareto(λ, μ);
4. from the simulated lifetimes and censoring times, get for all i the actual

observed lifetime Yi = inf(Ti, Ci) and the indicator δi = 1Ti≤Ci ;

5. compute the estimator Ĝ from the entire generated sample (Yi, δi)1≤i≤n+v.

Descriptive statistics corresponding to various simulated datasets (of different
sizes) are available in Table 3. To each simulated sample, we fit a regression tree
with the algorithm in Section 2.1, and prune it using the strategy in Section 2.3.

Table 2

Parameters involved in the simulation scheme.

Group-specific means Component probabilities Censorship rate
α1 α2 α3 α4 [a, b[ [b, c[ [c, d[ [d, e] 10% 30% 50%
0.08 0.05 0.16 0.5 [0, 0.3[ [0.3, 0.6[ [0.6, 0.8[ [0.8, 1] (λ, μ) (λ, μ) (λ, μ)
12.5 20 6.25 2 30% 30% 20% 20% (80,1.03) (20,1.2) (14,2)

Table 3

Descriptive statistics of simulated datasets.

Sample Group-specific exposure Sample
size n Group 1 Group 2 Group 3 Group 4 mean
100 35% 28% 17% 20% 11.08
500 26.8% 31.6% 20% 21.6% 11.37
1 000 30.1% 28.7% 20.6% 20.6% 11.33
5 000 31.42% 29.96% 19.5% 19.12% 11.53
10 000 30.25% 30.19% 19.79% 19.77% 11.52
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Table 4

Mean weighted squared errors w.r.t. the censoring rate and sample size.

% of Sample Group-specific MWSE Global

censored size Group 1 Group 2 Group 3 Group 4 MWSE

observations n MWSE MWSE MWSE MWSE

100 0.19516 0.42008 0.17937 0.30992 1.10454

500 0.03058 0.07523 0.03183 0.06029 0.19796

10% 1 000 0.01509 0.03650 0.01517 0.02619 0.09306

5 000 0.00295 0.00714 0.00289 0.00530 0.01804

10 000 0.00105 0.00378 0.00117 0.00292 0.00910

100 0.20060 0.43664 0.17448 0.29022 1.10765

500 0.03736 0.07604 0.04301 0.06584 0.22217

30% 1 000 0.01748 0.04095 0.01535 0.02674 0.10043

5 000 0.00319 0.00758 0.00291 0.00547 0.01904

10 000 0.00117 0.00372 0.00125 0.00292 0.00930

100 0.19784 0.45945 0.17387 0.28363 1.11476

500 0.04906 0.08993 0.05301 0.06466 0.25668

50% 1 000 0.02481 0.05115 0.01788 0.03004 0.12387

5 000 0.00520 0.00867 0.00389 0.00516 0.02299

10 000 0.00153 0.00407 0.00162 0.00308 0.01057

Then, we compute the weighted squared errors given by WSEi = δin
−1[1 −

Ĝ(Yi−)]−1(γ̂l(i)−π0(Xi))
2, where the ith observation belongs to leaf l(i), where

we know that π0(Xi) = 1/β.

In order to gain some robustness in our results, we repeated 5000 times the
simulation scheme above to compute empirical means of WSEi, leading to the
MWSE. We also considered different values for (λ, μ) in the censoring process
so as to measure the impact of censoring on the procedure’s performance (see
Table 2 for these values for the Pareto distribution). The performance of the
procedure is shown in Figure 1 and Table 4. Clearly, the strength of the censoring
has an impact on performance. One can also observe that the performance in
the group with the highest mean (Group 2) is worse than in the others, which
is linked with the fact that largest observations are more likely to be censored.
However, the hierarchy of the groups in term of performance cannot be entirely
summarized with respect to the typical size of the lifetimes (see Group 4 which
has a lower mean, but performs worse than Group 1).

5. Applications to real-life insurance datasets

In this section, we consider two applications in insurance. The first, described
in Section 5.1, focuses on the prediction of a duration variable only (duration
in a state of disability). The second, in Section 5.2, is dedicated to claim reserv-
ing, and illustrates the need to introduce a supplementary variable M. In this
situation, the key issue is to predict the claim amount, this being known only
after some time T , subject to censoring.
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Fig 1. MWSE as a function of the sample size (n=100, 500, 1 000, 5 000, 10 000).

5.1. Income protection insurance

The real-life database we consider reports the claims of income protection guar-
antees over six years. It consists of 83 547 claims, with the following information
for each claim: a policyholder ID, cause (sickness or accident), gender (male or
female), socio-professional category (SPC: manager, employee or miscellaneous),
age at the claim date, duration in the disability state (perhaps right-censored),
commercial network (3 kinds of brokers). All insurance contracts considered
have a common deductible of 30 days.

Here, the censoring rate equals 7.2%, the mean observed duration in the
disability state is about 100 days (beyond the deductible of 30 days), with a
median of 42 days. There is strong dispersion among the observed durations,
the standard deviation being 162 days. Our goal is to find a segmentation into
several classes of homogeneous individuals, and to predict the duration in the
disability state in each class.

To begin, we compute the Cox proportional-hazards model with the (dis-
cretized) age at the claim date as covariate, since the recovery rates used in
the calculation of technical provisions for this kind of guarantee depends on the
age range at the claim date. This adjustment leads us to consider the high pre-
dictive power of this variable. However, the proportional hazards assumption
is thoroughly rejected by all classical statistical tests (likelihood ratio, Wald
and log-rank tests). Nevertheless, the obtained results are retained, to enable
a comparison with those from the tree approach. We thus try to explain the
disability duration by sex, SPC, commercial network, age at the claim date (5
pre-determined classes, due to local prudential regulation) and cause of disabil-
ity. The final tree (after pruning) is given in Figure 2. We see in Table 5 the
significant differences between tree and Cox estimates. These differences can be
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Fig 2. Disability duration in terms of sex, SPC, commercial network, age and cause.

Table 5

Estimates of expected disability time (days) depending on age.

Classes Mean Age Tree Cox
a 26.83 64.44 80.01
b 34.19 85.48 96.35
c 39.57 100.04 110.19
d 45.05 111.38 126.03
e 51.29 126.40 146.28

explained by two phenomena resulting from using the Cox proportional-hazards
model:

• our approach directly targets the duration expectation while Cox partial-
likelihood is focused on estimating the hazard rate;

• the estimation of the baseline hazard is very sensitive to the longer du-
rations (mainly concentrated in class e), which affect the estimates of all
other classes (whereas our estimation is expected to be less sensitive to
this phenomenon for classes a to d).

These differences reinforce the interest of such an approach to incorporate het-
erogeneity in the reserving process of an insurance portfolio.

More generally, the predictive performance of duration models for censored
survival endpoints can be assessed using various techniques including time-
dependent ROC curves using independent test data (hereafter denoted by
ROC(t), see e.g., Heagerty, Lumley and Pepe (2000) and Heagerty and Zheng
(2005)). Figure 3 illustrates such ROC curves (at t = 15, 100, 110, which cor-
respond respectively to the first quartile, mean and third quartile of observed
lifetimes), obtained from previously-built models. The only difference lies in age,
which is considered here as a continuous covariate to benefit from one of the
strengths of tree-based procedures, i.e., eliciting good cut-points for continuous
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Fig 3. Dynamic ROC curves at t = 15, 100, 110 (from left to right). The dotted line corre-
sponds to the CART model and the black line to the Cox model.

Table 6

Dynamic Area Under Curve AUC(t).

t 15 40 100 110
AUC(t) CART 0.787 0.802 0.824 0.839

Cox 0.518 0.531 0.576 0.585

covariates and capturing potential nonlinearity. Table 6 gives the value of the
AUC (Area Under Curve) at various time points, corresponding to previous
durations to which were added the median of observed lifetimes. The tree ap-
proach seems significantly better than the Cox one at predicting lifetime, with
an excellent mean AUC of 80%. Once again and in this more general framework,
these results prove the interest of using trees as opposed to the Cox model for
prediction, whatever the duration threshold under study.

5.2. Reserving in third-party liability insurance

This real-life database was extracted in the 2000s by an international insurance
company, and reports about 650 claims related to medical malpractice insurance
during seven successive years. The initial dataset contains information about
various dates concerning the claims (date for reporting, opening or closing the
case, etc.), contract features, and some data on associated payments. These pay-
ments encompass indemnity payments and ALAE (Allocated Loss Adjustment
Expenses), where ALAE are assignable to specific claims and represent fees paid
to outside attorneys used to defend the claims. After some pre-processing, one
can compute useful quantities for our purposes, especially (potentially censored)
development times and total payments. Here Ti is the “lifetime” of a claim, that
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Table 7

Statistics on the information selected for our application.

Statistical indicators
Type Median Mean Std. Min. Max. # categories

Insurance type categorical 2
Specialty categorical 41
Class categorical 19
Report date date N N+7
Area categorical 30
Closed without payments boolean 2
Closed without indemnity boolean 2
Time before opening (days) continuous 1164 1223 614 2 4728
Time before declaration continuous 734 724 560 0 4657
Reopen status boolean 2
Cancel status boolean 2
Reserves continuous 0 44170 138867 0 1062000
Development time continuous 419 606 506 0 2249
Observed payments continuous 2617 41810 152319 0 1557000

is, the time between its issue date and the claim settlement date. The consor-
ship Ci is the delay between the claim issue date and the extraction date of the
database, and Mi is the total amount of the ith claim. The latter is observed
only if the claim has been fully settled (32% of the observations are censored). In
this setting, it is reasonable to assume that Ci does not depend on (Mi, Ti,Xi),
but this would clearly be wrong in the case of covariates depending on the claim
issue date. Table 7 summarizes some descriptive statistics about the covariates
that are used when running the weighted CART algorithm to explain the re-
sponse Mi. As could be expected in this type of business, the data are highly
skewed; for instance, many declared claims are assigned no payments because
the company is still waiting for a court decision before paying. A parametric
model would then be quite difficult to fit, which emphasizes the interest of using
such techniques.

As we have already mentioned, a key issue is to predict the future coming
expenses related to claims that are still under payment. Typically, computing

M∗(Ni, Yi, δi,Xi) := E[Mi |Ni, Yi, δi, Xi],

would give the best L2-approximation of the amount Mi based on the infor-
mation available on claim i. Our aim is then to produce an estimator M̂ of
this ideal (but unattainable) predictor. Of course, M∗ is known if δi = 1, that
is, M∗(m, y, 1,x) = m, but the key issue is to predict it for unsettled claims
(δi = 0). For such claims, rewrite

M∗(m, y, 0,x) = E[M |M > m,T > y,X = x]

=
E[M 11(M > m,T > y) |X = x]

P(M > m,T > y |X = x)
, (5.1)

and introduce Z1(m, y) = 11(M > m,T > y), and Z2(m, y) = M Z1.
In view of (5.1), we have to estimate the quantities πm,y

0,1 (x) = E[Z1|X = x]
and πm,y

0,2 (x) = E[Z2|X = x]. Each of these are estimated using the CART pro-
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cedure described in Section 2. Hence, for each censored claim, we use two regres-
sion trees to compute a prediction M̂i, obtained as the ratio M̂i = π̂Ni,Yi

0,2 (Xi)/

π̂Ni,Yi

0,1 (Xi). Note that, for each censored claim, the trees we compute are dif-
ferent since the values of Yi and Ni are. We now determine a reserve to be
constituted by summing the M̂i. To check that the proposed amount is reason-
able, we can compare the values of M̂i with the prediction of experts that are
present in the database. The aggregated results are presented in Tables 8 and 9.

The predictions are highly overdispersed for both “expert” and “tree” re-
serves (see Table 8) but, as mentioned earlier, this is not surprising from a
business point of view. We observe that our regression tree approach produces
reserve amounts which are significantly higher than the reserves made by the
experts, except for lower amounts. We argue that this has to be linked with
the fact that the expert reports are made close to the opening of the claim. In
our approach, we use posterior information: if a claim is open for a long time,
our procedure tends to predict an higher final value (claims with long duration
before settlement are more likely to be associated with larger amounts). This
difference justifies the use in practice of our technique as a second diagnosis,
complementary to expert judgment. Finally, notice in Table 9 that the gap be-
tween the two reserves is not necessary increasing when increasing the level of
information. For instance, the tree global reserve is 1.22 times bigger than the
expert one when considering two thirds of the censored observations (from the

Table 8

Descriptive statistics of the reserves (in US$) computed from both approaches (tree
estimators and expert’s judgment) and for different quantile levels.

Expert reserves Tree reserves
Mean Std Mean Std

Quantiles
0-25% 52 193 45 324 55 566 45 446
0-33% 58 703 68 427 95 198 118 237
0-50% 84 251 134 878 122 293 109 460
0-66% 112 551 188 676 145 005 108 844
0-75% 115 216 196 829 209 696 478 048
0-90% 150 790 224 863 308 190 494 322
0-99% 144 239 218 913 343 892 500 388

Table 9

Reserve gaps (reserves by tree estimators minus reserves following experts’ judgments) for
different level of information, going from the lowest censored observation up to the x-th

percentile of censored observations.

Reserve gap total US$ in % mean std min. max.
Censored data:

0-25% 158 496 +6% 2 911 116 233 -170 288 205 082
0-33% 2 262 728 +38% 321 655 669 894 -170 288 2 262 728
0-50% 3 576 000 +31% 1 383 074 1 626 570 -170 288 4 522 203
0-66% 4 024 335 +22% 2 175 544 2 024 009 -170 288 5 870 474
0-75% 13 321 685 +45% 2 660 409 2 484 695 -170 288 13 321 685
0-90% 26 600 691 +51% 5 779 725 7 587 193 -170 288 27 079 860
0-99% 37 135 400 +58% 8 216 874 10 594 793 -170 288 37 135 400
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minimum to the 66-th percentile of the censored observations), whereas it is
1.31 times bigger with half.

Conclusion

In this paper, we defined a regression tree procedure well-adapted to the pres-
ence of incomplete observations due to censoring, and proved its consistency.
The framework that we considered is motivated by the field of survival analy-
sis, but also allows us to consider related applications, such as claim reserving
in insurance. In such types of problem, a duration is present (and subject to
censoring), but also an additional variable (the claim amount) that is observed
only if the observation is uncensored. We presented two practical applications
of this technique that demonstrate its feasibility and interest. The next step
is to extend the procedure we have developed to random forests, in the same
spirit as Hothorn et al. (2006). Indeed, regression tree procedures, although
they produce an easily understandable model at the end, are known for their
sensitivity to changes in the dataset. This investigation is left for future work,
but we would like to emphasize the role of ensemble methods in improving the
predictive abilities of the technique we described in the present paper.

Appendix A: Main lemmas

Lemmas 1 and 2 below are the key results required to prove Theorem 1.

Lemma 1. Under Assumption 2, we have

P

(
sup

l:Tl∈Tτ

sup
γ∈Γ

|Δl,C(γ, γl)| > x

)
≤ 2.5

{
exp
(
−nAx2 +Bn1/2x

)
+ un

}
,

with un = O(exp(−n)), and A and B two positive constants.

Proof. Since Tl ∈ Tτ , we have that 1x̃∈Tl
= 0 if t > τ. Let cG = (1−G(τ)) and

cF = (1− F (τ)). We have cF > 0 and cG > 0.Therefore, we have

sup
l:Tl⊂Tτ

sup
γ∈Γ

|Δl,C(γ, γl)| ≤ sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
× 1

n

n∑
i=1

δiM

1−G(Yi−)
,

where we have used Assumption 2. Since (1 − G) is bounded away from zero,
the empirical mean on the right-hand side is bounded by Mc−1

G . On the other
hand,

P

⎛
⎝sup

t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
> y

⎞
⎠ ≤ P

(
sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ > cG/2

)

+P

⎛
⎝sup

t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ ≤ cG/2, sup

t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t)
> y

⎞
⎠ .
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On the event {supt<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣ ≤ cG/2}, we have

sup
t<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

1− Ĝ(t−)
= sup

t<Y(n)

∣∣∣Ĝ(t)−G(t)
∣∣∣

1−G(t) + {G(t)− Ĝ(t−)}

≤
supt<τ

∣∣∣Ĝ(t)−G(t)
∣∣∣

cG/2
.

Moreover,

P

(
sup
t<τ

cF

∣∣∣Ĝ(t)−G(t)
∣∣∣ > z

)
≤ P

(
sup
t<τ

(1− F (t))|Ĝ(t)−G(t)| > z

)
,

and the probability on the right-hand side can be bounded by 2.5 exp(−2nz2 +
Cn1/2z), for some absolute constant C > 0, using the Dvoretsy-Kiefer-Wolfowitz
inequality for the Kaplan-Meier estimator proved in Bitouzé, Laurent and Mas-
sart (1999). Hence the result follows, with A = c2F c

4
G[2M ]−1, B = CcF c2G[2M ]−1,

and un = exp(−n1/2cF cG[C + n1/2cF cG]/2).

Lemma 2. Assume that X is a random vector with d continuous components
and k discrete components, where each discrete component takes at most m
values. Then, under Assumptions 2 and 3, there exist strictly positive constants
B1, B2 and B3, such that

P

(
sup

l:χl∈Tτ

sup
γ∈Γ

|Δ∗(γ, γl)| > x

)
≤ 2
{
exp
(
−B1nx

2
)
+ exp (−B2nx)

}
,

for x ≥ B3[kd logm]1/2n−1/2, where Bj for j = 1, 2, 3 depend on M, w, and
cG = (1−G(τ)).

Proof. Let

F =

{
(n, y, d,x) →

d{φ(m, γ)− φ(m, γ′)}1(y,x)∈χ

{1−G(y−)}(γ − γ′)
: γ ∈ Γ, χ ∈ Eτ

}
, (A.1)

with Eτ denoting the set of subsets of Tτ of the type
∏d+1

j=1 [xj−;xj+]. From
Lemma 3,

NMc−1
G
(ε,F) ≤ 2w+4(d+1)(d+2)C1m

k

(
K̃

ε

)w+4d(d+1)

,

where cG = (1 − G(τ)) as in the proof of Lemma 1. As in Proposition C1
in Appendix C, introduce a sequence of i.i.d. Rademacher variables (εi)1≤i≤n,
independent from (Ni, Yi, δi,Xi)1≤i≤n, and define

Z = E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Ni, Yi, δi,Xi)εi

∣∣∣∣∣
]
.
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Since

n sup
l:Tl⊂Tτ

sup
γ∈Γ

|Δ∗(γ, γl)| ≤ sup
f∈F

∣∣∣∣∣
n∑

i=1

{f(Ni, Yi, δi,Xi)

−
∫

f(n, y, d, x̃)dP(n, y, d, x̃)}
∣∣∣∣∣,

we get, from Proposition C1,

P

(
n sup

l:Tl⊂Tτ

sup
γ∈Γ

|Δ∗(γ, γl)| > A1(Z + y)

)

≤ 2

{
exp

(
−A2y

2

nσ2
F

)
+ exp

(
−cGA2y

M

)}
,

with σ2
F ≤ M2c−2

G . It follows from Proposition C2 that

Z ≤ Ã[kd logm]1/2n1/2,

for some constant Ã. Hence, for y > Ã[kd logm]1/2n1/2, we get

P

(
n sup

l
sup
γ∈Γ

|Δ∗(γ, γl)| > 2A1y

)
≤ 2

{
exp

(
−A2c

2
Gy

2

nM2

)
+ exp

(
−cGA2y

M

)}
.

The result follows by applying this inequality to y = nx/(2A1), with B1 =
A2c

2
G[4A2

1M
2]−1, B2 = A2cG[2A1M ]−1, and B3 = 2A1Ã.

Appendix B: Technical lemmas

B.1. Covering numbers

This section is devoted to the computation of covering numbers of classes of
functions that appear naturally in the proof of Theorem 1.

Lemma 3. Let F denote the class of functions defined in (A.1). Then, assum-
ing that X is a random vector with d continuous components and k discrete
components, where each discrete component takes at most m values,

NMc−1
G
(ε,F) ≤ 2w+4(d+1)(d+2)C1m

k

(
K̃

ε

)w+4d(d+1)

,

where K̃ is a constant depending only on cG = (1−G(τ)), and w is defined in
Assumption 3.

Proof. We combine Lemma 4 and Assumption 3 using Lemma A.1 in Einmahl
and Mason (2000). This shows that the class

G =

{
(m, x̃) → (φ(m,π)− φ(m,π′))

(π − π′)
1x̃∈χl

: (π, π′) ∈ Γ× Γ, χl ∈ E

}
,
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satisfies

NM (ε,G) ≤ 2w+4(d+1)(d+2)C1m
k

(
K

ε

)w+4(d+1)(d+2)

.

Multiplying the class G by some fixed bounded function (that is, (d, y) → d[1−
G(y−)]−1) barely changes the covering number, leading to

NMc−1
G
(ε,F) ≤ 2w+4(d+1)(d+2)C1m

k

(
K̃

ε

)w+4d(d+1)

,

with K̃ = 2Kc−1
G , since 1−G(y−) ≥ cG for y ≤ τ.

Lemma 4. Assume that X is a random vector with d continuous components
and k discrete components, where each discrete component takes at most m
values. Then, letting Fτ = {x̃ → 1x̃∈χ : χ ∈ Eτ}, we have

N1(ε, Fτ ) ≤ mk

(
K

ε

)4(d+1)(d+2)

,

for some universal constant K.

Proof. Without loss of generality, we can assume that the first d variables inX =
(X(1), . . . , X(d), X(d+1), . . . , X(d+k)) are continuous, while the k other variables

are discontinuous with at most m values each. Let {x(j)
1 , . . . , x

(j)
m } denote these

values for variable X(j) for j > d. A set χl is of the form

(t,x) ∈ χl ⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0 < t ≤ β0

α1 < x(1) ≤ β1

...
αd < x(d) ≤ βd

x(d+1) = x
(d+1)
gd+1

...

x(d+k) = x
(d+k)
gd+k

,

with g := (gd+1, . . . , gd+k) ∈ {1, . . . ,m}k. For any g ∈ {1, . . . ,m}k, let Eg,τ =

Eτ ∩ {(t,x) ∈ χl : (x
(d+1), . . . , x(d+k)) = (x

(d+1)
gd+1 , . . . , x

(d+k)
gd+k )}. Let Hd be the

family of subsets of Rd+1 which are projections on Rd+1 of sets of Eτ (that is,
we keep only the first d coordinates). Clearly, for any probability measure Q,

N1(ε, Fτ , L
2(Q)) ≤

∑
g∈{1,...,m}k

N1(ε, Fg,τ , L
2(Q)), (B.1)

where Fg,τ = {(t, x) → 1(t,x)∈χ : χ ∈ Eg,τ}, and N1(ε, Fg,τ , L
2(Q)) = N1(ε,Hd,

L2(Q)). Moreover, a set H ∈ Hd can be expressed as

H = ∩j=0,...,d

(
{y ∈ Rd :< y, ej > ≤ βj} ∩ {y ∈ Rd :< y, ej > ≤ αj}c

)
,
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where Ac denotes the complement of a set A, ej denotes the vector of Rd+1

with all components equal to zero except the (j + 1)-th one, and < ·, · > the
scalar product in Rd+1. It follows from Example 8.4 in van der Vaart and Wellner
(1996), combined with points (i) and (ii) in Proposition 8.2 in the same (stability
properties of VC-classes), that Hd is a VC-class of sets (see van der Vaart and
Wellner (1996) for definition), with VC-index 2(d+1)(d+2). As a consequence,

N1(ε,Hd, L
2(Q)) ≤

(
K

ε

)4(d+1)(d+2)

,

for some universal constant K (see Dudley (1999)), and the result follows from
(B.1).

B.2. Proof of Proposition 2

Observe that, for K > K0, π
SK = πSK0 . Hence,

‖π̂Ŝ(α) − πSK0 ‖22,τ = ‖π̂S(K0) − πSK0 ‖22,τ1Kα=K0+

K0−1∑
K=1

‖π̂SK − πSK0 ‖22,τ1Kα=K

+

kmax∑
K=K0+1

‖π̂SK − πSK‖22,τ1Kα=K . (B.2)

Following the proof of Corollary 1, one has K−2E[‖π̂SK − πSK‖42,τ ] = O(1/n2).
Hence, from the Cauchy-Schwarz inequality,

E

[
1

K0

kmax∑
K=K0+1

‖π̂SK − πSK‖22,τ1Kα=K

]

≤
(

kmax∑
k=K0+1

K

K0
P(Kα = K)1/2

)
×O(n−1).

Rewrite

kmax∑
k=K0+1

KP(Kα = K)1/2 = K0

kmax∑
k=K0+1

P(Kα = K)1/2

+

kmax∑
k=K0+1

[K −K0]P(Kα = K)1/2.

Due to Lemma 5 below, we have

K−1
0

kmax∑
k=K0+1

KP(Kα = K)1/2 = O(1). (B.3)
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Next, since there exists a finite constant A such that ‖π̂SK − πSK0 ‖22,τ ≤ A, we
have

E

[
K0−1∑
K=1

‖π̂SK − πSK0 ‖22,τ1Kα=K

]
≤ A

K0−1∑
K=1

P(Kα = K).

We now use Lemma 5 to deduce that

K−1
0

K0−1∑
K=1

P(Kα = K) = O(n−1). (B.4)

From (B.2), Corollary 1, and the combination of (B.3) and (B.4), we get

E

[
1

K0
‖π̂Ŝ(α) − πSK0 ‖22,τ

]
= O(n−1),

and the result follows from the fact that ‖π̂Ŝ(α) − π0‖2,τ ≤ ‖π̂Ŝ(α) − πSK0 ‖2,τ +
‖π̂SK0 − π0‖2,τ . We now state our auxiliary Lemma 5.

Lemma 5. Under the Assumptions of Proposition 2, we have

P (Kα = K)

K
=

{
O(n−1) if K < K0,

O(exp(−C′
6[K −K0])) if K > K0,

for some positive constant C′
6 < ∞.

Proof. On the event {Kα = K}, we have∫
φ(m, π̂SK0 (x, t))dF̂ (m, t,x)−

∫
φ(m, π̂SK (x, t))dF̂ (m, t,x)+

α[K0 −K]

n
≥ 0.

(B.5)
We decompose the left-hand side of (B.5) into A1(K0)−A1(K)−Δ(K)+A2(K)−
A2(K0), where

A1(K) =

∫
[φ(m, π̂SK (x, t))− φ(m,πSK (x, t))]d[F̂ (m, t,x)− F (m, t,x)],

A2(K) =

∫
[φ(m, π̂SK (x, t))− φ(m,πSK (x, t))]dF (m, t,x).

We have, due to the regularity of φ,

|A1(K)| ≤ B‖π̂SK − πSK‖22,τ ,
|A2(K)| ≤ B‖π̂SK − πSK‖22,τ .

We can distinguish two cases, depending whether K < K0 or K > K0.

A bound for K < K0.
In this case, Δ(K) > 0, and

P(Kα = K) ≤ P

(
2B‖π̂SK − πSK‖ >

Δ(K)− α[K0 −K]/n

2

)
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+P

(
2B‖π̂SK0 − πSK0 ‖ >

Δ(K)− α[K0 −K]/n

2

)
.

Hence,

P(Kα = K)/K = O (exp (−min(C′
6{Δ(K)− α[K0 −K]/n}, 1)n)) ,

for some positive constant C′
6 from Corollary 1. Using (3.8), we have

P(Kα = K)/K = O
(
exp
(
−min(C′

6C−1
6 [logn]/n, 1)n

))
,

and the result follows if C6 ≤ C′
6.

A bound for K > K0.
In this case, Δ(K) = 0, and α[K0 −K]/n < 0, and

P(Kα = K) ≤ P
(
2B‖π̂SK − πSK‖ > α[K −K0]/[2n]

)
+P
(
2B‖π̂SK0 − πSK0 ‖ > α[K −K0]/[2n]

)
.

From Corollary 1,
P(Kα = K)

K
= O (exp(−C′

6α[K −K0])) for some constant

C′
6 > 0.

Appendix C: Concentration inequality

The following inequality was proved initially by Talagrand (1994). See also Ein-
mahl and Mason (2005).

Proposition C1. Let (Ui)1≤i≤n denote i.i.d. replications of a random vector U,
and let (εi)1≤i≤n denote a vector of i.i.d. Rademacher variables (that is, P(εi =
−1) = P(εi = 1) = 1/2) independent from (Ui)1≤i≤n. Let F be a pointwise
measurable class of functions bounded by a finite constant M0. Then, for all u,

P

(
sup
f∈F

∥∥∥∥∥
n∑

i=1

{f(Ui)− E[f(U)]}
∥∥∥∥∥ > A1

{
E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Ui)εi

∣∣∣∣∣
]
+ u

})

≤ 2

{
exp

(
−A2u

2

nσ2
F

)
+ exp

(
−A2u

M0

)}
,

with σ2
F = supf∈F V ar(f(U)), and where A1 and A2 are universal constants.

The difficulty in using Proposition C1 comes from the need to control the
symmetrized quantity E

[
supf∈F |

∑n
i=1 f(Ui)εi|

]
. Proposition C2 is due to Ein-

mahl and Mason (2005) and permits this control via some assumptions on the
class of functions F considered.

Proposition C2. Let F be a pointwise measurable class of functions bounded
by M0 such that, for some constants C, ν ≥ 1, and 0 ≤ σ ≤ M0, we have

(i) NM0(ε,F) ≤ Cε−ν , for 0 < ε < 1,
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(ii) supf∈F E
[
f(U)2

]
≤ σ2,

(iii) M0 ≤ 1
4ν

√
nσ2/ log(C1M0/σ), with C1 = max(e, C1/ν).

Then, for some absolute constant A,

E

[
sup
f∈F

∣∣∣∣∣
n∑

i=1

f(Ui)εi

∣∣∣∣∣
]
≤ A
√
νnσ2 log(C1M0/σ).
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Sánchez Sellero, C., González Manteiga, W. and Van Keilegom, I.

(2005). Uniform representation of product-limit integrals with applications.
Scand. J. Statist. 32 563–581. MR2232343 (2007i:62078)

Satten, G. A. and Datta, S. (2001). The Kaplan-Meier estimator as an

http://www.ams.org/mathscinet-getitem?mr=2195639
http://www.ams.org/mathscinet-getitem?mr=2657075
http://www.ams.org/mathscinet-getitem?mr=2232341
http://www.ams.org/mathscinet-getitem?mr=2054888
http://www.ams.org/mathscinet-getitem?mr=2236074
http://www.ams.org/mathscinet-getitem?mr=2135849
http://www.ams.org/mathscinet-getitem?mr=2608458
http://www.ams.org/mathscinet-getitem?mr=2640298
http://www.ams.org/mathscinet-getitem?mr=MR0093867
http://www.ams.org/mathscinet-getitem?mr=2860770
http://www.ams.org/mathscinet-getitem?mr=3079294
http://www.ams.org/mathscinet-getitem?mr=2566188
http://www.ams.org/mathscinet-getitem?mr=2064940
http://www.ams.org/mathscinet-getitem?mr=2954472
http://www.ams.org/mathscinet-getitem?mr=2232343


2716 O. Lopez et al.

inverse-probability-of-censoring weighted average. Amer. Statist. 55 207–210.
MR1947266

Stute, W. (1993). Consistent estimation under random censorship when covari-
ables are present. J. Multivariate Anal. 45 89–103. MR1222607 (94d:62117)

Stute, W. (1999). Nonlinear censored regression. Statist. Sinica 9 1089–1102.
MR1744826

Stute, W. and Wang, J. L. (1993). The strong law under random censorship.
Ann. Statist. 21 1591–1607. MR1241280 (94j:62092)

Talagrand, M. (1994). Sharper bounds for Gaussian and empirical processes.
Ann. Probab. 22 28–76. MR1258865 (95a:60064)

van Der Laan, M. J. and Dudoit, S. (2003). Unified Cross-Validation
Methodology for Selection Among Estimators and a General Cross-Validated
Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities and Ex-
amples.

van Der Laan, M. J., Dudoit, S. and van der Vaart, A. W. (2006).
The cross-validated adaptive epsilon-net estimator. Statistics and Decisions
24 373–395. MR2305113

van der Laan, M. J. and Robins, J. M. (2003). Unified Methods for Cen-
sored Longitudinal Data and Causality. Springer Series in Statistics. Springer-
Verlag, New York. MR1958123 (2003m:62003)

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in
Statistical and Probabilistic Mathematics. Cambridge. MR1652247

van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence
and Empirical Processes with Applications to Statistics. Springer Series in
Statistics. Springer-Verlag, New York. MR1385671 (97g:60035) MR1385671

Van Keilegom, I. and Akritas, M. G. (1999). Transfer of tail in-
formation in censored regression models. Ann. Statist. 27 1745–1784.
MR1742508 (2001b:62082)

Wang, H. J. and Wang, L. (2009). Locally weighted censored quantile regres-
sion. JASA 104 1117–1128. MR2562007

Wey, A., Wang, L. and Rudser, K. (2014). Censored quantile regression
with recursive partitioning based weights. Biostatistics 15 170–181.

http://www.ams.org/mathscinet-getitem?mr=MR1947266
http://www.ams.org/mathscinet-getitem?mr=1222607
http://www.ams.org/mathscinet-getitem?mr=1744826
http://www.ams.org/mathscinet-getitem?mr=1241280
http://www.ams.org/mathscinet-getitem?mr=1258865
http://www.ams.org/mathscinet-getitem?mr=2305113
http://www.ams.org/mathscinet-getitem?mr=1958123
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=MR1385671
http://www.ams.org/mathscinet-getitem?mr=1385671
http://www.ams.org/mathscinet-getitem?mr=MR1742508
http://www.ams.org/mathscinet-getitem?mr=2562007

	Introduction
	Observations and general framework
	Censored observations
	Regression function
	Estimation of the distribution function of (M,T,X)

	Adapting CART to survival data with Kaplan-Meier weights
	Growing the tree
	From the tree to the regression function
	Selection of a subtree: Pruning algorithm

	Consistency of the CART weighted estimator
	A bound on the deviations of the criterion
	Consistency of the regression tree
	Consistency of the pruning strategy

	Simulations
	Applications to real-life insurance datasets
	Income protection insurance
	Reserving in third-party liability insurance

	Conclusion
	Main lemmas
	Technical lemmas
	Covering numbers
	Proof of Proposition 2

	Concentration inequality
	Acknowledgements
	References

