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1. Introduction

The Birnbaum-Saunders (BS) distribution has been widely studied and applied;
see the seminal paper by Birnbaum and Saunders [2] and the books by Johnson
et al. [12, pp. 651–663] and Leiva [13]. The BS distribution is skewed positively,
has nice properties and a close relation with the normal distribution. It was de-
rived in terms of shape and scale parameters, but the latter is also its median.
The original parameterization of the BS distribution is useful in several set-
tings, for example, when modeling biological, environmental and fatigue data;
see Owen and Padgett [25], Owen [24], Qu and Xie [28], Villegas et al. [46],
Ferreira et al. [8], Li et al. [20], Saulo et al. [36], Leiva et al. [15, 14, 19], Garcia-
Papani et al. [10] and Marchant et al. [22, 23].

Santos-Neto et al. [34] proposed several parameterizations for the BS distri-
bution by using different arguments. One of them indexes the BS distribution
by its mean and precision, which we name the reparameterized BS (RBS) dis-
tribution. As mentioned, the original BS parameterization is based on its shape
and median and then the associated BS modeling is formulated by its median
instead of its mean. However, in statistics, it is usual to model the mean. Thus,
because the RBS distribution is parameterized by its mean, it can be used as
a competitor of the normal distribution, but also of well-known asymmetrical
distributions, such as gamma and lognormal. Therefore, the RBS distribution
is useful in settings for which the original parameters are limited. For exam-
ple, when modeling economic, financial and management data; see the works
by Jin and Kawczak [11], Bhatti [1], Paula et al. [27], Leiva et al. [16, 18, 17],
Santos-Neto et al. [35], Rojas et al. [32] and Wanke and Leiva [47], applications
that, such as in the original parameterization, were conducted by international,
transdisciplinary groups of researchers.

Note also that the original BS parameterization describes data based on a
logarithmic transformation, inducting to an interpretation problem of the ob-
tained results. Regression models are often concerned on the mean response
and in its original scale, because there the interpretations become simpler. By
using the RBS distribution, one can model the mean with no transformations
similarly as in generalized linear models (GLM), but the BS and RBS distri-
butions do not belong to the exponential family. However, a GLM type mod-
eling based on the RBS distribution can also be carried out; see Leiva et al.
[16]. Thus, the mean response is related to a linear predictor by one of several
possible link functions, encompassing parameters to be estimated. Differently
from all the existing BS regression models studied until now, the approach
proposed by Leiva et al. [16] allows data to be modeled in their natural scale
with a wide flexibility. In addition, the RBS distribution has properties that
its competitor distributions of the exponential family do not have; see Subsec-
tion 2.1.

The RBS distribution has a precision parameter. Variability is often mea-
sured by dispersion parameters, but it can also be described by precision pa-
rameters, which are inversely proportional to the dispersion. Variability mod-
eling has been widely discussed in the literature related to heteroscedasticity;
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see Van Keilegom and Wang [43] and Saumard [37]. For example, Cook and
Weisberg [3] studied heteroscedastic normal models. Taylor and Verbyla [42] de-
scribed jointly the location and dispersion parameters of the Student-t model.
Lin et al. [21] considered tests for heteroscedasticity in Student-t regression
models. Wu et al. [49] proposed a method to select variables describing the
mean and dispersion of lognormal models. In the context of GLM, Smyth [39]
defined sub-models to describe the mean and dispersion, whereas Smyth and
Verbyla [40] proposed an extension of GLM allowing both the mean and disper-
sion to be modeled. Cysneiros et al. [5] considered heteroscedastic symmetric
linear models and their diagnostics. However, there exists few works modeling
heteroscedasticity by precision parameters. Ferrari et al. [7] considered beta re-
gression models for which the precision parameter is not constant across data
and described it as a function of explanatory variables (covariates). Simas et al.
[38] assumed a non-linear regression structure for the precision parameter by
using a beta distribution, whereas Rocha and Simas [31] derived local influence
in this model. Paula [26] modeled simultaneously the mean and precision of the
gamma distribution, and carried out diagnostics in double generalized linear
models.

For BS regressions based on its original parameterization, Rieck and Nedel-
man [30] and Galea et al. [9] assumed that the corresponding shape parameter
is homogeneous across data. Xie and Wei [50] proposed a test for homogeneity
of this shape parameter. Heterogeneous BS log-linear and non-linear regressions
with both shape and scale parameters modeled by covariates were studied by
Qu and Xie [28], Li et al. [20] and Vanegas et al. [44]. For the RBS regression
model proposed by Leiva et al. [16], it is assumed that the precision is constant
across data. Modeling of precision based on the RBS distribution has not been
studied.

The main objective of this paper is to propose an RBS regression model with
precision varying, allowing heteroscedasticity to be described, extending the
work by Leiva et al. [16]. The specific objectives are (i) to estimate the param-
eters with the maximum likelihood (ML) method; (ii) to introduce hypothesis
tests for the precision parameter and evaluate their performance; (iii) to present
four types of residuals for the RBS model and study their distributions by Monte
Carlo (MC) simulations; (iv) to analyze the sensitivity of the ML estimators to
perturbations by using local influence (LI) and generalized leverage (GL) meth-
ods [see 45]; and (v) to apply the obtained results to two real-world case-studies
with the R software; see www.R-project.org and R-Team [29].

In Section 2, we formulate the RBS regression model with varying precision,
estimate its parameters and discuss gradient (GR), likelihood ratio (LR), score
(SC) and Wald (WA) tests for the precision parameter. In Section 3, we conduct
a diagnostic analysis, including residuals, GL and LI under case-weight, response
and covariate perturbations. In Section 4, we carry out MC simulation studies
to evaluate the performance of the proposed hypothesis tests and the empirical
distribution of the residuals. In Section 5, we illustrate the potential applica-
tions of the proposed methodology by means of two real-world case-studies. In
Section 6, we provide our conclusions and possible future work.

www.R-project.org
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2. Modeling and inference

2.1. RBS distribution

A random variable T follows a BS distribution with shape (ϕ > 0) and scale
(ρ > 0) parameters, which is denoted by T ∼ BS(ϕ, ρ), if its probability density
function (PDF) is given by

fT (t;ϕ, ρ) = 1√
2π

exp
(
− 1

2ϕ2

[
t
ρ + ρ

t − 2
])

[t+ρ]
2ϕ
√

ρ t3
, t > 0.

The mean and variance of T are E[T ] = ρ[1 + ϕ2/2] and Var[T ] = ρ2ϕ2[1 +
5ϕ2/4]. Santos-Neto et al. [34] defined the RBS distribution by the parameters
μ = ρ [1 + ϕ2/2] > 0 and δ = 2/ϕ2 > 0. Under this parameterization, we use
the notation Y ∼ RBS(μ, δ), with E[Y ] = μ and Var[Y ] = �(μ) ς(δ)2, where
�(μ) = μ2 acts as a “variance function” and ς(δ) =

√
[2δ + 5]/[δ + 1] is the

coefficient of variation (CV) of Y (0 < CV(Y ) <
√

5), which is function only of
δ. In addition, δ plays the role of a precision parameter in the sense that, for
fixed μ, as δ increases, the corresponding variance decreases. If Y ∼ RBS(μ, δ),
then its PDF and log-PDF are given respectively by

fY (y;μ, δ) = exp(δ/2)
√
δ+1

4√πμ y3/2

[
y + δμ

δ+1

]
exp
(
− δ

4

[
y{δ+1}

δμ + δμ
y{δ+1}

])
, y > 0 (2.1)

�(y;μ, δ) = δ
2 + log(δ+1)

2 + log
(
y + δμ

δ+1

)
− y[δ+1]

4μ − μδ2

4y[δ+1] −
log(16π μ y3)

2 . (2.2)

In addition, the cumulative distribution function (CDF), quantile function (QF)
and hazard rate of Y ∼ RBS(μ, δ) are defined respectively as

FY (y;μ, δ) = Φ(
√

{δ/2}[
√
{δ + 1}y/{μδ} −

√
(μδ/{δ + 1})y]), y > 0,

QY (q;μ, δ) = [δμ/{δ + 1}][QN (q)/
√

2δ +
√

{QN (q)/
√

2δ}2 + 1]2, 0 < q < 1,

HY (y;μ, δ) = exp(δ/2)
√
δ+1

4
√

πμy3

[
y + δμ

δ+1

] exp
(
− δ

4

[
y{δ+1}

δμ + δμ
y{δ+1}

])
Φ
(
−
√

δ
2

[√
{δ+1}y

μδ −
√

μδ
{δ+1}y

]) , y > 0,

where Φ and QN are the N(0, 1) CDF and QF, respectively. The RBS model has
the properties: (i) b Y ∼ RBS(b μ, δ), with b > 0; (ii) 1/Y ∼ RBS(μ�, δ), with
μ� = [δ+1]/[δμ]; (iii) as its QF has closed form, its median is [δ/{δ+1}]μ; and
(iv) its hazard rate has increasing, decreasing and upside-down shapes. All of
these properties are shared by few distributions, in particular, several of them
are not shared by exponential family distributions used in GLM. Moreover, note
that, for modeling asymmetric data, the median might be more suitable than the
mean. However, in the case of the RBS distribution, the median is proportional
to its mean. Figure 1 presents the relation between the median and mean of the
RBS distribution. From this figure, observe that, as the parameter δ increases,
the two measures tend to be equal. For instance, from δ = 4, we have that the
median is 80% of the mean. Generally, in real-world applications, the estimate
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of δ is large, thus providing a good approximation between the median and
mean. In the application of the work by Leiva et al. [16], the estimate of δ
is 49.65, which means that the median represents 98.03% of the mean. In the
two data analyses of the present paper, the estimates of δ are 82.38 and 35.32,
representing 98.80% and 97.25% of mean, respectively. Thus, in practice, our
model has no relevant loss of information by modeling the mean instead of the
median. In addition, for the RBS regression model, we have the advantage of not
transforming the response. Furthermore, a GLM type method, as that used in
the RBS model [see 16], provides more flexibility in the functional relationship
between the mean response and the linear predictor. More properties of the RBS
distribution can be found in Santos-Neto et al. [35].

Fig 1. Relation between median and mean of the RBS distribution.

2.2. RBS regression model with varying precision

Let Y = [Y1, . . . , Yn]� be a sample from an RBS population, that is, independent
(IND) random variables but not independent identically distributed, such that,
Yi

IND∼ RBS(μi, δi), for i = 1, . . . , n, and y = [y1, . . . , yn]� its observed value.
The RBS regression model with varying precision can be written supposing
that the corresponding mean and precision parameters satisfy, respectively, the
functional relations

g(μi) = ηi = x�
i β, h(δi) = τi = z�

i α, i = 1, . . . , n, (2.3)

where μi = g−1(x�
i β), with β = [β1, . . . , βp]� being a p× 1 vector of unknown

parameters to be estimated, and xi = [1, xi2, . . . , xip]� being a p×1 vector that
contains the values of p covariates, which can be summarized as X = [xij ]. In
addition, δi = h−1(z�

i α), with α = [α1, . . . , αq]� being also a q × 1 vector of
unknown parameters to be estimated, and zi = [1, zi2, . . . , ziq]� being a q × 1
vector that contains the values of q covariates, which can be summarized as Z =
[zij ]. Note that p+q < n. The link functions g: R → R

+ and h: R → R
+ defined
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in (2.3) must be strictly monotone, positive and at least twice differentiable.
Table 1 lists the most common link functions for g and h along with their first
and second derivatives.

Table 1

Derivatives for the indicated link function.

Link function g h dμ/dη dδ/dτ d2μ/dη2 d2δ/dτ2

Identity μ = η δ = τ 1 1 0 0
Logarithm log(μ) = η log(δ) = τ μ δ μ δ

Squared root √
μ = η

√
δ = τ 2√μ 2

√
δ 2 2

2.3. Estimation

The log-likelihood function for the parameter θ = [β�,α�]� obtained from
(2.2), related to μ = [μ1, . . . , μn]� and δ = [δ1, . . . , δn]� for the class of models
with link functions in (2.3), is given by

�(θ) =
n∑

i=1
�i(μi, δi; yi), (2.4)

where (ignoring the constant term)

�i(μi, δi; yi) = δi
2 − log(δi + 1)

2 − log(μi)
2 − 3 log(yi)

2 + log(δiyi + yi + δiμi)

−yi[δi + 1]
4μi

− δ2
i μi

4yi[δi + 1] .

The [p + q] × 1 score vector with first derivatives is obtained from (2.4) as

�̇(θ) =
[

�̇(β)
�̇(α)

]
=

⎡⎣ ∂�(θ)
∂β

∂�(θ)
∂α

⎤⎦ =
[

X�A(y� − μ�)
Z�B(y� − δ�)

]
;

see details in Appendix A.1. The [p + q] × [p + q] Hessian matrix with second
derivatives also is obtained from (2.4) as

�̈(θ) =
[

�̈(β) �̈(βα)
�̈(αβ) �̈(α)

]
=

⎡⎣ ∂2�(θ)
∂β∂β�

∂2�(θ)
∂β∂α�

∂2�(θ)
∂α∂β�

∂2�(θ)
∂α∂α�

⎤⎦ =
[

X�CX X�MZ
Z�MX Z�WZ

]
;

see details in Appendix A.2. The corresponding expected Fisher information
matrix is given by

i(θ) =
[
i(β) i(βα)
i(αβ) i(α)

]
=
[

X�V X X�SZ
Z�SX Z�UZ

]
;

see detail in Appendix A.2. The ML estimates of β and α are computed as
the solution of the non-linear system �̇(θ) = 0[p+q]×1, where 0[p+q]×1 is [p +
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q] × 1 vector of zeros. In practice, the ML estimates can be obtained through
a numerical maximization of the log-likelihood function. Consider the 2n × 2n
augmented matrix of the form

W̃ =
[

W̃ (β) W̃ (βα)
W̃ (αβ) W̃ (α)

]
=
[

V S
S U

]
, (2.5)

where the elements of V , S and U are given in Equation (A.2). Also consider
X̃ as being another 2n× [p + q] augmented matrix of the form

X̃ =
[

X 0p×1
0q×1 Z

]
. (2.6)

Therefore, from (2.6) and (2.5), the Fisher information matrix given in Equa-
tion (A.2) and its inverse can be rewritten as i(θ) = X̃�W̃ X̃ and i(θ)−1 =
[X̃�W̃ X̃]−1, respectively; see details of the matrix i(θ)−1 in Appendix A.2.
By using the Fisher scoring iterative procedure, the corresponding estimation
algorithm for θ = [β�,α�]� is given by

θ(m+1) = θ(m) +
[
i(θ)(m)

]−1
�̇(θ)(m)

= θ(m) + [X̃�W̃ (m)X̃]−1
[

X�A(m)(y� − μ�)(m)

Z�B(m)(y� − δ�)(m)

]
,

= [X̃�W̃ (m)X̃]−1W̃ (m)ỹ�(m), (2.7)

where

ỹ�(m) = X̃θ(m) + [W̃ (m)]−1
[

A(m) 0p×1
0q×1 B(m)

] [
(y� − μ�)(m)

(y� − δ�)(m)

]
.

Note that θ(m+1) given in (2.7) has the form of a reweighted least square (LS)
estimate, where ỹ� is the modified response variable. We propose to use the
Cole-Green algorithm to conduct with the iterative procedure defined in (2.7).
This algorithm can be better for distributions with highly correlated parameter
estimators and equivalent to the Fisher scoring algorithm, when we are in the
fully parametric case; see details about the Cole-Green algorithm in [41].

2.4. Inference

Under usual regularity conditions [see 4], the ML estimators of θ and i(θ), θ̂
and i(θ̂) say, respectively, are consistent. Suppose that j(θ) = limn→∞[1/n]i(θ)
exists and is non-singular. Then, as n → ∞,

√
n[θ̂ − θ] D→ Np+q(0[p+q]×1, j(θ)−1), (2.8)

where D→ denotes convergence in distribution to. Thus, if θk denotes the kth

element of θ, [θ̂k − θk]/{ikk}1/2 D→ N(0, 1), where ikk is kth diagonal element of
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the matrix i(θ)−1, for k = 1, . . . , p+ q. Note that an asymptotic 100× [1− γ]%
confidence region for θ is [θ̂− θ]�i(θ̂)−1[θ̂− θ] ≤ χ2

1−γ(p+ q), where θ ∈ R
p+q

and χ2
1−γ(p + q) is the [1 − γ]th quantile of the chi-squared distribution with

p + q degrees of freedom. From the previous asymptotic distributional result
given in (2.8), we have that

√
n[β̂ − β] D→ Np(0p×1, j(β)−1),

√
n[α̂−α] D→ Nq(0q×1, j(α)−1).

Then, asymptotic 100[1 − γ]% confidence intervals for β̂j and α̂r are β̂j ±
ξ1−γ/2/{ijj}1/2 and α̂r ± ξ1−γ/2/{irr}1/2, respectively, with j = 1, . . . , p, r =
1, . . . , q and ξγ being the γth N(0,1) quantile. We can obtain 100× [1−γ]% con-
fidence bands for the linear predictor μ(x pred) = g−1(x�

predβ), where xpred ∈ R
p

is an arbitrary vector. Then, an asymptotic 100× [1−γ]% confidence region for
μ(xpred) is obtained as[
g−1
(
x�

predβ̂ −
√

χ2
1−γ(p)

{
x�

predi(β̂)xpred

} 1
2
)
,

g−1
(
x�

pred β̂ +
√

χ2
1−γ(p)

{
x�

pred i(β̂)xpred

} 1
2
)]

,

where i(β̂) = [X�Ŵ3X]−1, with Ŵ3 = V̂ − ŜZ[Z�ÛZ]−1Z�Ŝ. Analogously,
an asymptotic 100 × [1 − γ]% confidence region for δ(zpred) = h−1(z�

predα) is
given by[
h−1
(
z�

pred α̂−
√
χ2

1−γ(q)
{
z�

pred i(α̂)zpred

} 1
2
)
,

h−1
(
z�

pred α̂ +
√

χ2
1−γ(q)

{
z�

pred i(α̂)zpred

} 1
2
)]

,

where zpred ∈ R
q and i(α̂) = [Z�Ŵ4Z]−1, with Ŵ4 = Û−ŜX[X�V̂ X]−1X�Ŝ.

2.5. Hypothesis testing

We want to test if the model precision is constant, that is, our hypotheses
are H0: α0 ∈ Ω0 versus HA: α0 /∈ Ω0, where Ω0 = {θ: αi = 0, i = 2, . . . , q},
Ω = Ω0∪Ωc

0 and α0 = [α2, . . . , αq]�. For large n, under H0 and usual regularity
conditions, the GR, LR, SC and WA statistics follow the χ2

q−1 distribution.
Thus, the above hypotheses can be tested with critical values based on this
distribution.

We use θ̃ for denoting the ML estimator of θ evaluated at H0 (restricted
case), or for any function or element of this vector, and θ̂ for the ML estimator
of θ under HA (unrestricted case).

2.5.1. The GR test

Its statistic to test H0 versus HA is given by

GR = [y� − δ̃�]�B̃Z0α̂0, (2.9)
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where Z0 is composed by the elements of the q−1 last columns of Z and y�, δ̃�

are defined in Appendix A.1.

2.5.2. The LR test

Its statistics to test H0 versus HA is defined as

LR = 2
[

sup
θ∈Ω

�(θ) − sup
θ∈Ω0

�(θ)
]

= 2[�(θ̂) − �(θ̃)] = 2
n∑

i=1
Λi, (2.10)

where

Λi = δ̂i−δ̃i
2 +log

(
μ̃i

μ̂i

)
+log

(
δ̂iyi+yi+δ̂iμ̂i

δ̃iyi+yi+δ̃iμ̃i

)
+ yi

4

[
δ̃i+1
μ̃i

− δ̂i+1
μ̂i

]
+ 1

4yi

[
δ̃iμ̃i

δ̃i+1 − δ̂iμ̃i

δ̂i+1

]
.

2.5.3. The SC test

Its statistic to test H0 versus HA can be expressed as

SC = �̇(α̃0)�Ṽar(α̃0)�̇(α̃0) = [y� − δ̃�]�B̃Z0

[
Z�

0 W̃4Z0

]−1
Z�

0 B̃[y� − δ̃�].
(2.11)

2.5.4. The WA test

Its statistic to test H0 versus HA is obtained as

WA = α̂�
0 V̂ar(α̂0)−1α̂0 = α̂�

0 Z
�
0 Ŵ4Z0α̂0. (2.12)

3. Diagnostic analysis

3.1. Residuals

We introduce residuals for the model with link function defined in (2.3) based
on the standardized Pearson, score and quantile residuals given respectively by

rp
i = φ̂

1/2
i [yi − μ̂i]/[�(μ̂i)]1/2, rs

i = [y�i − μ̂�
i ]/ν̂

1/2
i , rq

i = Φ−1(FY (yi; μ̂i, δ̂i)),

where �(μi) = μ2
i and φi = [δi + 1]2/[2δi + 5], with μ̂i = g−1(η̂i) and δ̂i =

h−1(τ̂i) being the ML estimates of μi and δi, respectively. In addition,
ν̂i = δ̂i/[2μ̂2

i ] + δ̂i
2
/[δ̂i + 1]2I(μ̂, δ̂), with I(μ̂, δ̂) =

∫∞
0 [y + {μ̂δ̂}/{δ̂ + 1}]−2 ·

fY (y; μ̂, δ̂) dy. Furthermore, FY is the RBS CDF; see details about the quan-
tile residual in Dunn and Smyth [6]. For the score residual, see details in Ap-
pendix A.3. Moreover, we propose a deviance component type residual, assuming
that the precision parameter has a structure of regression known, by
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rd
i = sign(yi − μ̂i)

√
2
[
log(2) − δ̂i

2 + {δ̂i + 1}yi
4μ̂i

+ δ̂2
i μ̂i

4{δ̂i + 1}yi

+1
2 log

(
δ̂i{δ̂i + 1}yi μ̂i

{δ̂i yi + yi + δ̂iμ̂i}2

)]1/2
,

where the sign function is defined as sign(x) = {−1, 0, 1}, for x < 0, x = 0 and
x > 0, respectively. Residual are used to verify model adequacy, to test non-
linearity and to detect outliers, autocorrelation and heteroscedasticity, plotting
them versus covariates individually, or versus μ̂i or η̂i.

3.2. Generalized leverage

GL of an estimator is defined in regression as a measure of the importance of in-
dividual cases, evaluating the influence of the observed response on its own esti-
mated value. GL can be obtained in a general form as ∂ŷ/∂y =
D(θ)[−�̈(θ)]−1�̈(θy)|

θ=θ̂
, where D(θ) = ∂μ/∂θ and �̈(θy) = ∂2�(θ)/∂θ∂y�;

see details of the matrix �̈(θ)−1 in Appendix A.2. In the RBS regression model
with varying precision, the GL matrix is given by

GL(θ̂) = ÂX[−�̈(β̂)]X�ÂÊ + ÂX[−�̈(β̂α̂)]Z�B̂L̂, (3.1)

where �̈(β) and �̈(βα) are detailed in Appendix A.2, E = [d(i)
yμ δnij ] and L =

[d(i)
yδ δ

n
ij ], with

d(i)
yμ = δi + 1

4μ2
i

+ δ2
i

4 y2
i [δi + 1] −

δi [δi + 1]
[δi yi + yi + δi μi]2

,

d
(i)
yδ = μi δi [δi + 2]

4 y2
i [δi + 1]2 − 1

4μi
− μi

[δi yi + yi + δi μi]2
. (3.2)

Considering the results presented in (3.1), the GL given in (3.2) can be rewrit-
ten as GL(θ̂) = GL(β̂)[[ÂÊ]−1M̂Z[Z�ŴZ]−1Z�B̂L̂ − In], where GL(β̂) =
ÂX[X�Ŵ1X]−1X�ÂÊ is the GL considering only the vector β and In is the
n× n identity matrix.

3.3. Local influence

For the RBS model given in (2.3), let �(θ|ω) be log-likelihood function corre-
sponding to this model perturbed by ω. The perturbation vector ω belongs
to a subset of R

n and ω0 is an n × 1 non-perturbation vector, such that
�(θ|ω0) = �(θ), for all θ. The likelihood displacement (LD) defined as LD(ω) =
2[�(θ̂) − �(θ̂ω)], where θ̂ω denotes the ML estimate of θ upon the perturbed
RBS model, can be used to assess the influence of the perturbation on the ML
estimate. The normal curvature for θ in the direction vector l, with ||l|| = 1,
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is expressed as Cl(θ) = 2|l�Δ��̈(θ)−1Δ l|, where Δ is a [p + q] × n matrix
of perturbations with elements Δji = ∂2�(θ|ω)/∂θj∂ωi and �̈(θ) is detailed in
(A.1) of Appendix B. Note that Δ must be evaluated at θ = θ̂ and ω = ω0, for
j = 1, . . . , p + 1 and i = 1, . . . , n. An LI diagnostic is generally based on index
plots. For instance, the index graph of the eigenvector lmax corresponding to
the maximum eigenvalue of

F (θ) = Δ��̈(θ)−1Δ, (3.3)

Clmax(θ) say, evaluated at θ = θ̂, can detect those cases that under small pertur-
bations exercise a great influence on LD(ω). In addition to the direction vector
of maximum normal curvature, lmax say, another direction of interest is li = ein,
which corresponds to the direction of the case i, where ein is an n × 1 vector
of zeros with a value equal to one at the ith position, that is, {ein, 1 ≤ i ≤ n}
is the canonical basis of R

n. In this case, the normal curvature is given by
Ci(θ) = 2|fii|, where fii is the ith diagonal element of F (θ) defined in (3.3),
for i = 1, . . . , n, evaluated at θ = θ̂. Those cases when Ci(θ̂) > 2C(θ̂), where
C(θ̂) =

∑n
i=1 Ci(θ̂)/n, are considered as potentially influential. This procedure

is called the total LI of the case i. For the indicated scheme, Table 2 presents
the respective perturbation matrix given in general by

Δ =
[
Δ(β)
Δ(α)

]
, (3.4)

which must be evaluated at the non-perturbation vector ω0 and at θ̂.

Table 2

Matrices of perturbations for the indicated scheme in the RBS model with varying precision.
Scheme Form Matrices

Case-weight
∑n

i=1
ωi�i(θ) Δ(β) = X� ai d(i)

μ δnij
Δ(α) = Z� bi d

(i)
δ

δnij

Response Yi + ωiSYi

Δ(β) = X� ai d
(i)
yμ SYi

δnij
Δ(α) = Z� bi d

(i)
yδ

SYi
δnij

Covariate
xl + ωSXl

Δ(β) = βl SXl
X� ciδ

n
ij + SXl

1
(k)�
n×p

d(i)
μ ai δ

n
ij

Δ(α) = βl SXl
Z� mi δ

n
ij

zk + ωSZk

Δ(β) = αk SZk
X� mi δ

n
ij

Δ(α) = αkSZk
Z�wiδ

n
ij + SXl

1
(l)�
n×q

d
(i)
δ

biδ
n
ij

Joint covariate τi(ω) Δ(β) = SXl
[X�{βlciδ

n
ij + αkmiδ

n
ij} + 1

(k)�
n×p

aid
(i)
μ δnij ]

Δ(α) = SXl
[Z�{αkwiδ

n
ij + βlmiδ

n
ij} + 1

(l)�
n×q

bid
(i)
δ

δnij ]
where τi(ω) = α1 + · · · + αk[xil + ωiSXl

] + · · · + αqziq, 1
(k)
n×p

and 1
(l)
n×q

are n × p and n × q

matrices, respectively, of zeros except for the kth and lth columns, which only contains ones.

4. Simulation studies

4.1. Hypothesis testing

We report MC simulations of size 5000 to compare the performance of the GR,
LR, SC and WA statistics given in (2.9), (2.10), (2.11) and (2.12), respectively,
by four R functions. We estimate the coefficients of the RBS regression model
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with varying precision defined in (2.3) using the gamlss function, contained in
the R package of the same name. We implement the RBS distribution inside
the distributions of this R package; see Stasinopoulos and Rigby [41]. To use the
gamlss function, we introduce the RBS distribution defined in (2.1) in the same
structure of the distributions defined in the gamlss.dist library. Based on the
proposed methodology, we develop a set of computational routines in R, which
form part of the rbs package; see Santos-Neto et al. [33]. To install this package,
the code devtools::install github(‘‘santosneto/RBS’’)must be used. We
consider λ = max δi/min δi, for i = 1, . . . , n, to measure the heterogeneity degree
of the data. Note that if λ = 1, the precision is constant obtaining the model
proposed by Leiva et al. [16]. The simulations are based on the link functions
log(μi) = β0 + β1xi1 and log(δi) = α0 + α1zi1, for i = 1, . . . , n. The values
of the covariates xi1 and zi1 are generated from the U(0, 1) distribution and,
for fixed n, those values are kept constant throughout the MC experiment.
To perform the simulations, we implement an R routine that calculates the
rejection rates of each test (varying the values of δ) and its empirical power,
considering n ∈ {30, 50, 100}, whereas the values of β coefficients are β0 = 2.0
and β1 = −1.7. First, we obtain the empirical sizes of the test and compare them
with the nominal sizes γ ∈ {0.01, 0.05, 0.10}. The null hypothesis is H0: α1 = 0,
which is tested against a two-sided alternative. Considering α0 ∈ {1.5, 2.0, 3.0},
we have δ ∈ {4.5, 7.4, 20.1}. The results of this study are shown in Table 3, from
where it is possible to note that the GR, LR and WA tests are markedly liberal,
whereas the SC test is, in general, conservative. Note that, when δ = 20.1,
n = 100 and γ = 0.01, the rejection rates are 0.96% (SC), 1.26% (GR), 1.38%
(LR) and 1.76% (WA). As expected and for all the tests, these rates converge to
the assumed levels as n increases. Note that the GR and SC tests present the best
performances. Figure 2 displays empirical quantiles versus theoretical quantiles
(QQ) plots of these statistics compared to the χ2

q−1 distribution. From this
figure, observe that the empirical distributions of the four studied test statistics
agree very well with their asymptotic distributions. Second, we compute the
rejection rates under the alternative hypotheses α1 ∈ {−3.0,−2.0,−1.0} against
α0 = 1.5, which implies values of λ ≈ {2.6, 6.8, 18.4}. Table 4 presents the
empirical power of the tests for different n and λ. Note that the GR and SC tests
present smaller power values in relation to the LR and WA tests. For instance,
when λ = 18.4, n = 50 and γ = 0.05, these powers are 99.20 (GR), 99.20 (LR),
98.62 (SC) and 99.44 (WA). As expected, the powers of the four tests increase
with λ. For small to moderate n, the best performance is detected for the GR and
SC tests, which are more powerful than the LR and WA tests. Hence, GR and
SC tests may be recommended to test hypotheses on the precision parameter in
RBS regression models. The GR test has a slight advantage over the SC test,
because the GR statistic is simpler to calculate.

4.2. Residuals

Now, we report the results of MC simulations of size 5000 to study the empirical
distributions of the residuals rp

i , rs
i, rd

i and rq
i for the RBS regression model with
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Table 3

Rejection rate of the indicated n, statistic, δ and level.

n Statistic δ = 4.5 δ = 7.4 δ = 20.1
1% 5% 10% 1% 5% 10% 1% 5% 10%

30

GR 1.24 6.12 11.74 1.22 6.08 11.70 1.20 6.22 11.82
LR 1.52 6.62 12.34 1.42 6.60 12.34 1.44 6.58 12.46
SC 0.72 4.38 9.60 0.72 4.40 9.74 0.72 4.34 9.82
WA 2.76 8.72 15.34 2.76 8.60 15.38 2.76 8.58 15.24

50

GR 1.10 5.70 10.40 1.12 5.66 10.40 1.14 5.70 10.40
LR 1.28 5.90 10.64 1.30 5.80 10.72 1.26 5.80 10.76
SC 0.78 4.64 9.38 0.78 4.66 9.46 0.76 4.70 9.48
WA 1.90 7.06 12.40 1.88 7.02 12.38 1.86 6.96 12.42

100

GR 1.26 5.38 10.62 1.28 5.40 10.58 1.26 5.38 10.62
LR 1.36 5.54 10.80 1.36 5.54 10.72 1.38 5.64 10.72
SC 0.92 4.96 9.62 0.94 5.02 9.76 0.96 5.02 9.78
WA 1.80 6.34 11.62 1.84 6.36 11.78 1.76 6.30 11.60

Table 4

Power of the indicated n, statistic, λ and level.

n Statistic λ = 2.6 λ = 6.8 λ = 18.4
1% 5% 10% 1% 5% 10% 1% 5% 10%

30

GR 7.30 20.46 31.84 37.48 62.38 74.72 75.72 91.40 95.42
LR 7.40 20.82 32.26 38.20 63.38 75.00 76.68 91.78 95.48
SC 5.80 19.66 30.24 30.24 57.70 70.96 61.82 86.32 92.34
WA 7.36 20.78 31.92 36.50 63.80 75.60 77.44 92.82 96.20

50

GR 13.48 31.88 45.60 65.94 85.12 92.00 96.34 99.20 99.70
LR 13.24 32.36 45.46 65.56 85.24 92.00 96.22 99.20 99.68
SC 11.92 31.66 43.80 60.00 82.38 89.92 92.22 98.62 99.34
WA 14.20 32.72 45.58 68.06 86.18 92.50 97.40 99.44 99.80

100

GR 28.12 54.80 68.50 92.82 98.20 99.16 99.94 100.00 100.00
LR 28.38 54.86 68.58 92.90 98.18 99.18 99.94 100.00 100.00
SC 29.72 54.14 67.00 91.58 97.56 98.98 99.80 100.00 100.00
WA 27.36 54.78 68.80 93.20 98.44 99.30 100.00 100.00 100.00

Fig 2. QQ-plots for the indicated test statistic with δ = 4.5 (left), δ = 7.4 (center) and
δ = 20.1 (right) when n = 50.

varying precision. The link functions adopted are log(μi) = β0+β1xi and h(δi) =
α0 + α1zi, for i = 1, . . . , 20. The simulations are performed considering: [Case
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I] h(u) = log(u), and [Case II] h(u) =
√
u, where the vectors x = [x1, . . . , x20]�

and z = [z1, . . . , z20]� are obtained from the U(30, 60) distribution, with β =
[2.14, 0.10]� and α = [3.30,−0.01]� as the true values of the model coefficients.
We compute the mean (r̄), standard deviation (SD) and coefficients of skewness
(CS) and kurtosis (CK), whose results are presented in Tables 5 and 6. Note
that all of the residuals have mean approximately equal to zero and SD close to
one. Observe also that the empirical distribution of rp

i has positive asymmetry.
Also, notice that rs

i, rd
i and rq

i present a CS close to zero. The residuals rp
i

and rs
i presents, generally, CK closer to three for both cases. Observe that rd

i

and rq
i display in general a similar behavior. Figure 3 presents the QQ-plots

with simulated envelopes of empirical quantiles versus theoretical quantiles of
rp
i , rs

i, rd
i and rq

i , based on 5000 residuals. From this figure, note that rs
i, rd

i

and rq
i are more distant from the diagonal line. However, rd

i presents a behavior
approximately linear.

Table 5

Descriptive summary of the indicated residual for Case I.
r
(·)
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r̄
r
p
i

0.01 0.01 -0.00 -0.02 0.02 -0.00 0.00 -0.01 -0.00 -0.00 0.02 -0.00 -0.01 0.00 0.00 -0.01 0.02 0.00 -0.02 0.00
rs
i

0.01 0.03 0.02 0.00 0.00 0.00 -0.01 0.01 -0.02 0.02 0.02 -0.00 -0.02 -0.01 -0.00 -0.02 -0.00 -0.01 -0.01 0.00
rd
i

0.00 0.02 0.01 -0.01 -0.01 -0.01 -0.02 -0.00 -0.03 0.01 0.01 -0.01 -0.03 -0.02 -0.01 -0.03 -0.01 -0.02 -0.02 -0.01
r
q
i

0.01 0.03 0.02 0.00 0.00 0.00 -0.01 0.01 -0.02 0.02 0.02 -0.00 -0.02 -0.01 -0.01 -0.02 -0.00 -0.01 -0.01 0.00

SD
r
p
i

0.98 0.92 0.91 0.93 1.05 0.96 1.05 0.93 1.06 0.91 0.97 0.98 1.00 1.04 1.02 1.01 1.06 1.03 0.96 1.01
rs
i

1.00 0.94 0.93 0.94 1.05 0.98 1.03 0.95 1.03 0.93 0.98 1.00 1.03 1.02 1.03 1.04 1.05 1.03 0.97 1.01
rd
i

0.99 0.92 0.92 0.93 1.03 0.97 1.04 0.93 1.05 0.92 0.97 0.98 1.01 1.04 1.01 1.01 1.04 1.03 0.96 0.99
r
q
i

1.00 0.93 0.93 0.94 1.05 0.98 1.05 0.95 1.06 0.93 0.98 0.99 1.02 1.05 1.02 1.03 1.05 1.04 0.97 1.01

CS
r
p
i

0.59 0.60 0.50 0.55 0.86 0.56 0.73 0.61 0.85 0.60 0.57 0.70 0.67 0.75 0.76 0.73 0.84 0.81 0.62 0.76
rs
i

-0.03 -0.01 -0.05 -0.00 0.06 0.01 0.00 0.01 0.04 -0.01 -0.03 0.05 -0.05 0.03 0.04 -0.04 0.05 0.01 0.04 0.08
rd
i

-0.01 0.02 -0.02 0.02 0.08 0.04 0.02 0.05 0.07 0.02 0.00 0.07 -0.01 0.05 0.06 -0.01 0.06 0.04 0.06 0.10
r
q
i

-0.03 -0.02 -0.05 -0.00 0.05 0.01 0.00 0.01 0.04 -0.02 -0.03 0.04 -0.04 0.03 0.04 -0.03 0.04 0.02 0.04 0.07

CK
r
p
i

2.90 2.87 2.72 2.82 3.75 2.73 3.33 2.80 3.70 2.83 2.84 3.06 3.13 3.31 3.30 3.36 3.75 3.62 2.92 3.26
rs
i

2.52 2.48 2.44 2.44 2.85 2.38 2.73 2.41 2.87 2.45 2.53 2.53 2.67 2.75 2.67 2.80 2.84 2.89 2.48 2.62
rd
i

2.40 2.35 2.34 2.34 2.66 2.29 2.58 2.29 2.69 2.32 2.42 2.40 2.51 2.60 2.52 2.62 2.65 2.68 2.39 2.48
r
q
i

2.40 2.35 2.34 2.34 2.66 2.28 2.57 2.29 2.68 2.32 2.42 2.40 2.51 2.60 2.51 2.62 2.64 2.68 2.38 2.48

Table 6

Descriptive summary of the indicated residual for Case II.
r
(·)
i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

r̄
r
p
i

0.00 0.01 -0.01 -0.02 0.02 0.00 0.01 -0.01 0.00 0.00 0.01 0.00 -0.02 0.00 0.00 -0.01 0.02 0.01 -0.02 0.00
rs
i

0.01 0.04 0.03 0.01 0.00 0.01 -0.02 0.02 -0.03 0.04 0.02 0.00 -0.03 -0.02 -0.01 -0.03 -0.01 -0.02 -0.01 0.00
rd
i

-0.01 0.02 0.01 -0.01 -0.02 -0.01 -0.03 0.00 -0.04 0.01 0.00 -0.02 -0.05 -0.04 -0.03 -0.04 -0.03 -0.03 -0.03 -0.02
r
q
i

0.01 0.04 0.03 0.01 -0.01 0.01 -0.02 0.02 -0.03 0.03 0.02 0.00 -0.03 -0.02 -0.01 -0.03 -0.01 -0.02 -0.01 0.00

SD
r
p
i

0.96 0.90 0.88 0.90 1.07 0.94 1.04 0.91 1.06 0.88 0.95 0.98 0.99 1.04 1.02 1.01 1.07 1.04 0.93 1.00
rs
i

0.97 0.89 0.89 0.90 1.06 0.94 1.06 0.91 1.07 0.88 0.96 0.98 1.02 1.05 1.02 1.03 1.07 1.05 0.94 1.00
rd
i

0.96 0.90 0.89 0.90 1.03 0.94 1.03 0.91 1.04 0.88 0.95 0.97 1.00 1.03 1.00 1.01 1.04 1.02 0.93 0.98
r
q
i

0.99 0.92 0.91 0.93 1.06 0.97 1.06 0.94 1.07 0.91 0.98 1.00 1.03 1.06 1.03 1.04 1.07 1.05 0.96 1.01

CS
r
p
i

0.87 0.84 0.76 0.82 1.20 0.82 1.04 0.84 1.18 0.82 0.83 0.96 0.96 1.05 1.05 1.04 1.17 1.14 0.89 1.03
rs
i

-0.03 0.01 -0.04 0.01 0.08 0.03 0.00 0.03 0.05 0.01 -0.03 0.05 -0.06 0.03 0.05 -0.05 0.07 0.02 0.05 0.08
rd
i

0.02 0.06 0.01 0.05 0.11 0.07 0.05 0.09 0.09 0.07 0.02 0.09 0.01 0.08 0.09 0.02 0.09 0.07 0.09 0.12
r
q
i

-0.03 -0.01 -0.05 0.00 0.06 0.02 0.01 0.02 0.05 0.00 -0.03 0.04 -0.04 0.04 0.04 -0.03 0.05 0.02 0.04 0.07

CK
r
p
i

3.46 3.33 3.20 3.33 4.71 3.24 4.07 3.22 4.68 3.24 3.34 3.63 3.80 3.97 3.99 4.10 4.67 4.49 3.48 3.87
rs
i

2.68 2.61 2.60 2.60 3.07 2.52 2.91 2.51 3.09 2.56 2.68 2.67 2.84 2.90 2.84 3.00 3.05 3.12 2.63 2.77
rd
i

2.42 2.36 2.38 2.38 2.66 2.31 2.58 2.30 2.68 2.32 2.45 2.40 2.51 2.59 2.52 2.62 2.65 2.67 2.41 2.48
r
q
i

2.42 2.35 2.37 2.37 2.64 2.30 2.56 2.28 2.66 2.31 2.44 2.39 2.50 2.57 2.51 2.61 2.63 2.66 2.39 2.46
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Fig 3. QQ-plots with simulated envelopes for the residuals rp
i , r

s
i, r

d
i and rq

i (from left to right)
in Case I (first panel) and Case II (second panel).

5. Illustrative examples with two real-world data sets

5.1. Data set I

5.1.1. Case-study description

Alfalfa is a high protein crop and appropriate feed for dairy cows. Then, rent for
land planted with alfalfa in relation to rent for other agricultural uses should be
higher in zones with a high density of dairy cows. However, these rents should
be lower in zones where a fertilizer is required, due to further expenses. In this
line, Weisberg [48, Problem 9.10, p. 208] reported a study on the variation in
rent paid for agricultural land planted with alfalfa in Minnesota. One of the
objectives of that study was to investigate how the rent for land planted with
alfalfa crops in relation to rent for other agricultural uses is affected by the
density of dairy cows and by the proportion of farmland used as pasture, when
land requires a fertilizer to increase the productivity of alfalfa or not.

5.1.2. Previous studies on these data

To evaluate the objective of the case-study described in Subsection 5.1, data were
collected for 67 counties of Minnesota in 1977; see Weisberg [48, Problem 9.10, p.
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208]. These data are available from an R package named alr3 by the command
data(landrent). Landrent data were analyzed by Taylor and Verbyla [42], Lin
et al. [21] and Wu et al. [49]. Non-constant variance in a linear regression model
can be diagnosed by residual plots. Taylor and Verbyla [42] discussed the joint
modeling of location and dispersion parameters and derived a methodology to
detect heteroscedasticity, when the response is Student-t distributed. Lin et al.
[21] considered tests for heteroscedasticity in Student-t linear regression models.
All of these studies and also Wu et al. [49] showed evidence of heteroscedasticity
in landrent data, but this last recent work showed the convenience of modeling
simultaneously the mean and dispersion of the lognormal distribution, which is
an asymmetrical distribution, such as the RBS distribution is.

5.1.3. Variables to be modeled

The considered variables are: (i) the ratio between the average rent per acre
planted with alfalfa and the corresponding average rent for other agricultural
uses (‘ratio’); (ii) the density of dairy cows in number per square mile (‘den-
sity’); (iii) the proportion of farmland used as pasture (‘proportion’); and (iv)
if the fertilizer ‘liming’ is required to increase the productivity of alfalfa or not.
We discard the covariate ‘proportion’ due to it is correlated with the covariate
‘density’ and concentrate on the group ‘liming’. Note that the response variable
‘ratio’ is strongly correlated with ‘density’ indicating a linear relation between
these two variables; see Figure 4 (1st panel left). Then, our study is concen-
trated on the response variable ‘ratio’ (Y ) and the covariate ‘density’ for the
group ‘liming’ (X).

5.1.4. Estimation and model cheking

First, we consider the RBS model with fixed precision Yi ∼ RBS(μi, δ) and
link function μi = β0 + β1 x, for i = 1, . . . , 33; see Figure 4 (1st panel left).
The ML estimates of its parameters, with estimated asymptotic standard errors
(SE) in parenthesis, are β̂0 = 0.67810(0.0363), β̂1 = 0.0166(0.0031) and δ̂ =
82.3752(20.2798). From Figure 4 (1st panel center), observe that the assumption
of the RBS distribution seems to be reasonable. From Figure 4 (1st panel right),
note that the residual plot shows a pattern that indicates an evidence of a
non-constant precision. Observing at Figure 4 (2nd panel left), note that the
precision depends on the value x of the covariate. Then, based on this last figure,
we propose the RBS model with varying precision Yi ∼ RBS(μi, δi), where μi =
β0+β1 x and

√
δi = α0+α1 x, with i = 1, . . . , 33. For the precision parameter, we

choice the square root link function based on usual selection model criteria (AIC,
BIC) and the tests for varying precision proposed in Subsection 2.5. For the RBS
model with varying precision, the ML estimates of its parameters and estimated
asymptotic SEs in parenthesis are shown in Table 7. Model assumptions are
verified using a residual analysis based on landrent data provided in Figure 4
(2nd panel center), because unusual features are not observed. In addition, the
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independence assumption also is verified by the QQ-plot with simulated envelope
and by the plot of residuals displayed in Figure 4 (2nd panel right), from which
an outlying case (#33) is detected.

Fig 4. Scatter-plot of X vs. Y (1st panel left), QQ-plots with simulated envelope of rd
i for fixed

precision (1st panel center) and varying precision (2nd panel center), plots of fitted values
vs. rd

i for fixed precision (1st panel right) and varying precision (2nd panel right) and X vs.
rd
i for fixed precision (1st panel right) based on landrent data and the RBS regression model.

Table 7

ML estimates, estimated SE, t-and-p-values for the coefficients of the model with landrent
data.

Coefficient Estimate SE t-value p-value
β0 0.7426 0.0426 17.4496 < 0.001
β1 0.0121 0.0019 6.4517 < 0.001
α0 4.3483 2.0545 2.1165 0.043
α1 0.5712 0.2398 2.3825 0.024

5.1.5. Influence local

Diagnostics for the RBS regression model with varying precision are in Figure
5. Specifically, this figure displays index plots of Ci, from where cases #26 and
#33 are detected as potentially influential. We investigate their impact on the
model inference when they are removed. Then, we again estimate the model after
removing cases #26 and #33. To evaluate the impact of the removed cases, we
define the relative change (RC) by RCθj(i) = |[{θ̂j−θ̂j(i)}/θ̂j ]|×100%, where θ̂j(i)
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denote the ML estimate of θj obtained after removing the case i, for j = 1, 2, 3
and i = 1, . . . , 33. The corresponding RCs are in Table 8. Inferential changes
are not detected when the cases are removed. The case #26 is a county with a
higher average rent per acre planted with alfalfa, even not being the density of
dairy cows the largest one. The case #33 is a county with small average rent per
acre planted with alfalfa, despite possessing a density of dairy cows larger than
25% of the counties. We have that the mean of the ratio between the average
rent per acre planted with alfalfa and the corresponding average rent for other
agricultural uses can be described by μ̂(x) = 0.7426 + 0.0121x. In this model,
0.7547 is the estimated mean ratio when the dairy cow density per square mile
is zero, whereas the estimated mean ratio increases in 0.0121 if we increase in
one unit the dairy cow density per square mile.

Table 8

RC for the indicated removed case(s) with landrent data.

Removed subset β̂0 β̂1 α̂0 α̂1
{26} 6.4069 30.8475 1.7622 8.9307
{33} 0.4237 0.2543 54.5430 12.6125

{26,33} 4.4108 25.9012 58.0622 5.0616

Fig 5. Index plots of Ci for θ under case-weight (a), response (b), covariate-X (c) and
covariate-Z (d) perturbations in the RBS regression model with varying precision based on
landrent data.
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5.2. Data set II

5.2.1. Case-study description

Four different light snacks (named B, C, D and E) were compared across 20
weeks with a traditional snack (named A) in an experiment developed in the
School of Public Health of the University of São Paulo, Brazil. For the light
snacks, the hydrogenated vegetable fat (HVF) was replaced by canola oil under
different proportions: B (0% HVF, 22% canola oil), C (17% HVF, 5% canola
oil), D (11% HVF, 11% canola oil), E (5% HVF, 17% canola oil), and A (22%
HVF, 0% canola oil). A random sample of 15 units of each snack type was
analyzed in a laboratory and various variables were measured. Then, a total of
75 units were considered during ten weeks, making 750 units in total during the
experiment; see Paula [26]. One of the objectives of that study was to determine
the ideal storing time.

5.2.2. Previous studies on these data

These data are available from an R package named ssym by the command
data(Snacks). Snack data were analyzed by Paula [26], who discussed diag-
nostic methods in double generalized linear models. The author modeled si-
multaneously the mean and precision of the gamma distribution, which is an
asymmetrical distribution, such as the RBS distribution is.

5.2.3. Variables to be modeled

The considered variables are: texture (Y ), snack type (S) and quantity of weeks
(W ). The variable texture is compared across time among the five snack types.
Paula [26] observed that the means and CVs seem to be different among the
snacks, changing across weeks, with indication of quadratic tendencies for the
means.

5.2.4. Estimation and model cheking

Based on the descriptive analysis carried out by Paula [26], we consider the
RBS regression model with varying precision. Here, Yijk denotes the texture
corresponding to the unit k of the snack type i in the jth week, with i =
1(A), 2(B), 3(C), 4(D), 5(E), j = 2, 4, . . . , 18, 20, and k = 1, 2, . . . , 15. We fit-
ted 54 different models (named Models 1, . . . , 54) with identity, logarithm and
square root link functions for g and h. Table 9 presents the AIC and BIC val-
ues for each fitted model. The tests for varying precision are significative for
all these models. Note that three models present the smallest AIC and BIC
values (Models 22, 28 and 34). We select Model 28, because it considers a link
function different from the used in the first application. For the RBS regression
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model with varying precision, the ML estimates of its parameters and estimated
asymptotic SEs in parenthesis are shown in Table 10. Model assumptions are
verified using residuals in Figure 6 (right), because unusual features are not de-
tected. In addition, the independence assumption also is verified by the QQ-plot
with simulated envelope and by the residual plot displayed in Figure 6, from
which the case #91 (type A snack) is detected as atypical.

Table 9

Summary of the RBS models with varying precision fitted to snack data.
Model g Predictor h Predictor AIC BIC

1

Identity Identity

S 5967.835 6018.655
2 S + W S + W 5963.295 6018.736
3 S + W + W 2 5964.303 6024.363
4 S 5930.878 5986.319
5 S + W + W 2 S + W 5932.753 5992.814
6 S + W + W 2 5934.666 5999.347
7

Identity Logarithm

S 5967.835 6018.655
8 S + W S + W 5961.163 6016.604
9 S + W + W 2 5962.058 6022.119
10 S 5930.878 5986.319
11 S + W + W 2 S + W 5932.833 5992.894
12 S + W + S2 5934.689 5999.370
13

Identity Square root

S 5967.835 6018.655
14 S + W S + W 5962.112 6017.553
15 S + W + W 2 5962.950 6023.011
16 S 5930.878 5986.319
17 S + W + W 2 S + W 5932.801 5992.862
18 S + W + W 2 5934.696 5999.377
19

Logarithm Identity

S 5977.846 6028.666
20 S + W S + W 5972.214 6027.655
21 S + W + W 2 5972.678 6032.739
22 S 5923.985 5979.425
23 S + W + W 2 S + W 5925.954 5986.014
24 S + W + W 2 5927.877 5992.558
25

Logarithm Logarithm

S 5977.846 6028.666
26 S + W S + W 5971.337 6026.777
27 S + W + W 2 5972.023 6032.084
28 S 5923.985 5979.425
29 S + W + W 2 S + W 5925.984 5986.045
30 S + W + W 2 5927.823 5992.504
31

Logarithm Square root

S 5977.846 6028.666
32 S + W S + W 5971.567 6027.008
33 S + W + W 2 5971.987 6032.048
34 S 5923.985 5979.425
35 S + W + W 2 S + W 5925.980 5986.041
36 S + W + W 2 5927.873 5992.554
37

Square root Identity

S 5972.507 6023.328
38 S + W S + W 5967.308 6022.749
39 S + W + W 2 5968.048 6028.109
40 S 5927.194 5982.635
41 S + W + W 2 S + W 5929.116 5989.177
42 S + W + W 2 5931.038 5995.719
43

Square root Logarithm

S 5972.507 6023.328
44 S + W S + W 5965.698 6021.139
45 S + W + W 2 5966.457 6026.518
46 S 5927.194 5982.635
47 S + W + W 2 S + W 5929.184 5989.245
48 S + W + W 2 5931.036 5995.717
49

Square root Square root

S 5972.507 6023.328
50 S + W S + W 5966.337 6021.778
51 S + W + W 2 5966.950 6027.011
52 S 5927.194 5982.635
53 S + W + W 2 S + W 5929.160 5989.221
54 S + W + W 2 5931.059 5995.740
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Table 10

ML estimates, estimated SE, t-and-p-values for the coefficients of the model with
snack data.

Coefficient Estimate SE t-value p-value
(Intercept) 3.842 0.037 103.734 < 0.001

Type B -0.182 0.031 -5.921 < 0.001
Type C -0.078 0.034 -2.295 0.022
Type D -0.265 0.029 -9.184 < 0.001
Type E -0.282 0.029 -9.839 < 0.001
Week 0.061 0.006 10.300 < 0.001
Week2 -0.002 0.000 -8.105 < 0.001

(Intercept) 3.104 0.116 26.728 < 0.001
Type B 0.585 0.164 3.575 < 0.001
Type C 0.123 0.164 0.750 0.453
Type D 1.008 0.164 6.154 < 0.001
Type E 1.043 0.166 6.297 < 0.001

Fig 6. QQ-plot with simulated envelope for rd
i (left) and fitted values vs. rd

i (right) based on
snack data and RBS regression model with varying precision.

5.2.5. Influence local

Diagnostics for the RBS regression model with varying precision for snack data
are presented in Figure 7. This Figure displays Ci versus weeks for θ under case-
weight, response and covariate-X perturbation, from where cases #76 (type A),
#91 (type A), #136 (type A), #346 (type C), #465 (type D) and #750 (type E)
are detected as potentially influential. We investigate the impact on the model
inference when they are removed, but their elimination does not change the
inference for the mean nor for the precision. Figure 8 presents the predicted
mean and precision values for the texture across weeks, for each snack type.
From Figure 8 (left), note that the types A and C snacks have the largest mean
values across weeks. From Figure 8 (right), note that the types D and E snacks
have the largest precision for the texture. An objective of the case-study is to
determine the ideal storing time, and looking at Figure 8 (left), it seems to be
about 14 weeks.
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Fig 7. Plots of Ci vs. weeks for θ under case-weight (left), response (center), covariate-X
(right) perturbations in the RBS regression model with varying precision based on snack data.

Fig 8. Predicted mean value of texture (left) and predicted precision of texture (right) for
each snack type across weeks.

6. Concluding remarks

In this paper, we have developed a methodology based on a reparameterized
Birnbaum-Saunders regression model with varying precision, generalizing the
existing works in the literature on the topic. We have dealt with the issues of
estimating the model parameters and of performing hypothesis testing on the
corresponding precision parameter. We have considered three classic statistics,
such as likelihood ratio, score and Wald, and one recently proposed called gra-
dient, to test varying precision in our model. In addition, we have conducted
Monte Carlo simulations to study the finite-sample performance of these tests.
The simulation results have indicated that the gradient and score tests are pre-
ferred, but the former one has an advantage because it is simpler to calculate.
Also, we have presented fours types of residuals when the mean and precision
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are modeled simultaneously. Again using Monte Carlo simulations, we have eval-
uated their performances and determined their distributions empirically, which
have resulted to follow a normal distribution reasonably. Furthermore, we have
developed diagnostic tools for this new class of regression models based on gen-
eralized leverage and local influence methods, considering case-weight, covariate
and response perturbations. These tools have shown to be useful for detecting in-
fluential cases. Moreover, we have carried out applications with two real-world
case-studies, which have shown the potential of using the new methodology
based on a reparameterized Birnbaum-Saunders regression model with varying
precision.

Appendix A: Inference

A.1. Score vector

The elements of the score vector, obtained by differentiation of the log-likelihood
function expressed in (2.4) with respect to θ, are given, for j = 1, . . . , p and
r = 1, . . . , q, as

�̇(βj) = ∂�(θ)
∂βj

=
n∑

i=1
[y�i − μ�

i ] ai xij , �̇(αr) = ∂�(θ)
∂αr

=
n∑

i=1
[y�i − δ�i ] bi zir,

where

y�i = δi
δiyi+yi+δiμi

+ yi[δi+1]
4μi

2 − δ2
i

4yi[δi+1] , μ
�
i = 1

2μi
, ai = dμi

dηi
= 1

dg(μi)/dμi
,

y�i = yi+μi

δiyi+yi+δiμi
− yi

4μi
− δi[δi+2]μi

4[δi+1]2yi
, δ�i = − δi

2[δi+1] , bi = dδi
dτi = 1

dh(δi)/dδi .

Therefore, we can write the [p+q]×1 score vector �̇(θ) in the form [�̇(β)��̇(α)�]�,
with �̇(β) = X�A[y� − μ�] and �̇(α) = Z�B[y� − δ�], where A = [aiδnij ] and
B = [biδnij ], with δnij being the Kronecker delta. Thus, A and B are two n× n
diagonal matrices.

A.2. Hessian matrix

The corresponding Hessian matrix is given by

�̈(θ) =
[

�̈(β) �̈(βα)
�̈(αβ) �̈(α)

]
=

⎡⎣ ∂2�(θ)
∂β∂β�

∂2�(θ)
∂β∂α�

∂2�(θ)
∂α∂β�

∂2�(θ)
∂α∂α�

⎤⎦ =
[

X�CX X�MZ
Z�MX Z�WZ

]
.

(A.1)
The elements of the first block of the matrix �̈(θ), �̈(β) say, are obtained from
the derivative ∂2�(θ)/∂βj∂βk =

∑n
i=1 ci xij xik, which may be written in matrix

form as �̈(β) = X�CX, where C = ci δ
n
ij and ci = d

(i)
μ2 (ai)2 + d

(i)
μ a

′

i ai, with

d(i)
μ = ∂�(θ)

∂μi
=

y�
i︷ ︸︸ ︷

δi
δiyi+yi+δiμi

+ yi[δi+1]
4μi

2 − δ2
i

4yi[δi+1] −

μ�
i︷︸︸︷
1

2μi
= y�i − μ�

i ,
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d
(i)
μ2 = ∂2�(θ)

∂μ2
i

= 1
2μ2

i
− δ2

i

[δiyi+yi+δiμi]2 − yi[δi+1]
2μi

3 , a
′

i = − d2g(μi)/dμ2
i

[dg(μi)/dμi]2 .

The elements of the second block of the matrix �̈(θ), �̈(βα) say, are obtained
from the derivative ∂�(θ)/∂βj∂αr =

∑n
i=1 mi xij zir, where mi = d

(i)
μδ ai bi, with

d
(i)
μδ = ∂2�(θ)

∂μi∂δi
= yi

[δiyi + yi + δiμi]2
+ yi

4μ2
i

− δi[δi + 2]
4[δi + 1]2yi

.

In matrix form, we have �̈(βα) = X�MZ, with M = mi δ
n
ij . Consequently, we

obtain the third block of the matrix �̈(θ), �̈(αβ) say, since this is the transpose of
the matrix �̈(βα). The elements of the last block of �̈(θ), �̈(α) say, are obtained
from the derivative ∂2�(θ)/∂αl∂αs =

∑n
i=1 wizilzis, where wi = d

(i)
δ2 (bi)2 +

d
(i)
δ b

′

i bi, with

d
(i)
δ = ∂�(θ)

∂δi
=

y�
i︷ ︸︸ ︷

yi+μi

δiyi+yi+δiμi
− yi

4μi
− δi[δi+2]μi

4[δi+1]2yi
+

−δ�i︷ ︸︸ ︷
δi

2[δi+1] = y�i − δ�i ,

d
(i)
δ2 = ∂2�(θ)

∂δ2
i

= 1
2[δi+1]2 − [yi+μi]2

[δiyi+yi+δiμi]2 − μi

2[δi+1]3yi
, b

′

i = − d2h(δi)/dδ2
i

[dh(δi)/dδi]2 ,

whereas its matrix form can be expressed as �̈(α) = Z�WZ, with W = wi δ
n
ij .

The inverse Hessian matrix is given by

�̈(θ)−1 =
[

�̈(β)−1 �̈(βα)−1

�̈(αβ)−1 �̈(α)−1

]
,

where �̈(β)−1 = [X�W1X]−1, �̈(βα)−1 = −[X�W1X]−1X�MZ[Z�WZ]−1,
�̈(αβ)−1 = −[[X�W1X]−1X�MZ[Z�WZ]−1]�, and �̈(α)−1 = [Z�W2Z]−1,
with W1 = C−MZ[Z�WZ]−1Z�M and W2 = W−MX[X�CX]−1X�M .
The corresponding Fisher information matrix is given by

i(θ) =
[
i(β) i(βα)
i(αβ) i(α)

]
=
[

X�V X X�SZ
Z�SX Z�UZ

]
, (A.2)

where V = diag{Ec1 , . . . , Ecn}, S = diag{Em1 , . . . , Emn}, U = diag{Ew1 , . . . ,
Ewn}, with

Eci =
[

δi
2μ2

i

+ δ2
i

{δi + 1}2 I(θ)
]
a2
i , Emi =

[
1

2μi{δi + 1} + δiμi

{δi + 1}3 I(θ)
]
ai bi,

Ewi =
[
δ2
i + 3δi + 1

2δ2
i {δi + 1}2 + μ2

i

{δi + 1}4 I(θ)
]
b2i ,

and

I(θ) =
∫ ∞

0

√
δi+1 exp(δi/2)
4√πμiy

3/2
i

[
yi + δiμi

δi+1

]−1
exp
(
− δi

4

[
{δi+1}yi

δiμi
+ δiμi

{δi+1}yi

])
dyi.

(A.3)
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Integral defined in (A.3) can be calculated numerically using the integrate
function of the R software. The corresponding inverse expected Fisher informa-
tion matrix is given by

i−1(θ) =
[

[X�W3X]−1 −[X�W3X]−1X�SZ[Z�UZ]−1

−[[X�W3X]−1X�SZ[Z�UZ]−1]� [Z�W4Z]−1

]
,

where W3 = V − SZ[Z�UZ]−1Z�S and W4 = U − SX[X�V X]−1X�S.

A.3. Score residual

Considering a known regression structure for the precision parameter, we obtain
the Fisher scoring iterative procedure for β by

β(m+1) = β(m) + [X�V (m)X]−1X�A(m)[y� − μ�(m)],

rewritten as a weighted LS estimate by β(m+1) = [X�V (m)X]−1X�V (m)z
�(m)
1 ,

where z
�(m)
1 = η(m) + [V (m)]−1A(m)[y� − μ�(m)]. With the convergence of the

iterative procedure, we have β̂ = [X�V̂ X]−1X�V̂ ẑ�
1 , for ẑ�

1 = η̂+V̂ −1Â[y�−
μ̂�], which can be interpreted as the LS solution of the linear regression of ẑ�

1
on X with weight matrix V̂ . By using this result, we propose a residual based
on the solution of weighted LS of ẑ�

1 against X, which we call score residual
and define as r = V̂ 1/2[ẑ�

1 − η̂] = V̂ −1/2Â[y� − μ̂�].

Appendix B: Perturbation matrices

B.1. Case-weight perturbation

Under this scheme, which is the most used to evaluate LI in a model, we wish
to determine if the contributions of the cases with different weights impact
the ML estimate of θ. Here, the perturbed log-likelihood function is �(θ|ω) =∑n

i=1 �i(θ|ωi) =
∑n

i=1 ωi�i(θ). Then, considering its derivative with respect
to ω�, we obtain Δ as in (3.4), where the elements of Δ(β) and Δ(α) are
respectively given by Δ(β)ji = d

(i)
μ ai xij and Δ(α)ri = d

(i)
δ bi zir, for i =

1, . . . , n, j = 1, . . . , p and r = 1, . . . , q, which must be evaluated at θ = θ̂. In
matrix form, we have to Δ(β) = X� ai d

(i)
μ δnij and Δ(α) = Z� bi d

(i)
δ δnij .

B.2. Response perturbation

We additively perturb the response in the RBS model as Yiω = Yi + ωiSYi ,
where SYi can be the SD of Y . Here, the perturbed log-likelihood function
is �(θ|ω) =

∑n
i=1 �i(θ|ωi), with ω0 = 0n×1. Then, we obtain Δ as in (3.4),

where Δ(β)ji = d
(i)
yμ ai xij SYi and Δ(α)ri = d

(i)
yδ bi zir SYi , for i = 1, . . . , n,

j = 1, . . . , p and r = 1, . . . , q, which must be evaluated at θ = θ̂. In matrix
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form, Δ(β) = X� ai d
(i)
yμ SYi δ

n
ij and Δ(α) = Z� bi d

(i)
yδ SYi δ

n
ij . Relating GL and

LI under this scheme, which allows us to compare them, with Σ̂y = Ŝyi δ
n
ij , we

have that (3.3) can be expressed as

F (θ) = Σ̂y[L̂B̂Z[[Z�Ŵ2Z]−1Z�B̂L̂

− [Z�ŴZ]−1Z�M̂Â−1ĜL(β)] − Ê ĜL(θ)]Σ̂y.

B.3. Covariate perturbation

Here, we additively perturb a continuous covariate-X replacing xl by xl +ωSXl
,

where SXl
is the SD of Xl. Here, the linear predictor component i is ηi(ω) =

β1 + · · · + βl[xil + ωiSXl
] + · · · + βpxip and ω0 = 0n×1, so that now �(θ|ω) =∑n

i=1 �i(μi(ωi), δi). Then, we obtain Δ as in (3.4) whose elements are Δ(α)ri =
βl mi zir SXl

and

Δ(β)ji =
{

βl ci xij SXl
, for j 
= l;

βl ci xil SXl
+ d

(i)
μ ai SXl

, for j = l;
for i = 1, . . . , n, j = 1, . . . , p and r = 1, . . . , q, which must be evaluated
at θ = θ̂. In matrix form, Δ(β) = βl SXl

X� ciδ
n
ij + SXl

1
(k)�
n×p d

(i)
μ ai δ

n
ij and

Δ(α) = βl SXl
Z� mi δ

n
ij . Now, we additively perturb a continuous covariate-

Z substituting zk by zk + ωSZk
, where SZk

is the SD of Zk. Here, the linear
predictor component i is τi(ω) = α1 + · · · + αk[zik + ωiSZk

] + · · · + αqziq and
ω0 = 0n×1, so that now �(θ|ω) =

∑n
i=1 �i(μi, δi(ωi)), Δ(β)ji = αk mi xij SZk

and
Δ(α)ri =

{
αk wi zir SZk

, for r 
= k;
αk wi zik SZk

+ d
(i)
δ bi SZk

, for r = k;

which must be evaluated at θ = θ̂. In matrix form, Δ(α) = αkSZk
Z�wiδ

n
ij +

SXl
1

(l)�
n×q d

(i)
δ biδ

n
ij and Δ(β) = αk SZk

X� mi δ
n
ij .

B.4. Joint covariate perturbation

A further perturbation scheme that we consider is when some perturbed co-
variate in X is also present in Z. For example, xil = zik. Then, τi(ω) =
α1 + · · · + αk[xil + ωiSXl

] + · · · + αqziq and ω0 = 0n×1. Thus, now �(θ|ω) =∑n
i=1 �i(μi(ωi), δi(ωi)) and Δ in (3.4) has elements

Δ(β)ji =
{

βl ci xij SXl
+ αk mi xij SXl

, for j 
= l;
βl ci xil SXl

+ αk mi xil SXl
+ d

(i)
μ ai SXl

, for j = l;

Δ(α)ri =
{

αk wi zir SXl
+ βl mi zir SXl

, for r 
= k;
αk wi xil SXl

+ βl mi xil SXl
+ d

(i)
δ bi SXl

, for r = k.

In matrix form, Δ(β) = SXl
[X�{βlciδ

n
ij + αkmiδ

n
ij} + 1

(k)�
n×p ai d

(i)
μ δnij ] and

Δ(α) = SXl
[Z�{αkwiδ

n
ij+βlmiδ

n
ij}+1

(l)�
n×qbid

(i)
δ δnij ]. As mentioned, the matrices

Δ(β) and Δ(α) must be evaluated at θ = θ̂.
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