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1. Introduction

Following a suggestion of Bai and Saranadasa [1] to investigate classical statisti-
cal procedures in high-dimensional settings, Wang and Cui [27] re-examine the
usual F-test in the linear regression model under a “large p, large n” asymptotic
framework. They derive the asymptotic power in a fairly general, non-Gaussian
setting, highlighting the dependence of the local power function on the dimen-
sionality of the problem, i.e., on the limit p = lim p/n € (0, 1), where n is sample
size, and p is the number of regressors in the model. In particular, they find that
the rejection probability of the F-test for Hy : R8 = 19, where R = [0, ;] and
p/n — p, qg/n — p, satisfies

P(Fn > fé}n_l/;_l) - & <_Cl—u + \/ﬁAgw / 12—pp> — 0. (1.1)

Here F;, is the usual F-statistic, f;i:’;_l is the appropriate F-quantile, ® is the

cdf of the standard normal distribution, ¢;—, = ® (1 — v) and Ag = (RS —
r0) (RETIR')"Y(RB — ry)/0? is the scaled distance from the null hypothesis.
From this approximation we see that the local asymptotic power of the F-test
depends monotonically on the value of p and inflates to the nominal significance
level v as p increases to one. The result of Wang and Cui [27] is consistent with
the derivations of the local asymptotic power in the case of Gaussian errors,
as obtained by Zhong and Chen [29]. Both of these studies consider only the
overall F'-test for the null hypothesis that all, or almost all (cf. Condition (C3)
in Wang and Cui [27]) of the p slope coefficients are equal to zero. Also, they do
not consider hypotheses involving the intercept parameter. Here, we extend this
analysis and study the problem of testing ¢ general linear hypotheses (including
also hypotheses on the intercept term), without the restriction that (p—g¢)/n —
0. In this sense, we examine the effect of the dimension of the null hypothesis
(i.e., the number of linear restrictions being tested) on the local asymptotic
rejection probability of the F-test. We find that when testing the null hypothesis
Hy : Ryy = 79, for some ¢ x (p+ 1) matrix Rg of rank ¢ < p + 1, such that
p/n — p1 and g/n — pa < p1, the rejection probability of the F-test satisfies

P(Fn>f§?n‘”;1>@(cl_,,me (1‘p1>(1"’1+p2)) S 0. (12)

2p2

Now the asymptotic rejection probability depends also on the mean p € RP
of the random design through A, = (Roy — 70) (RoS™'R)) " (Roy — 10)/0?,
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where v = («, 8')’ is the vector of regression coefficients including an intercept
parameter o € R and

1 74 ]
S = .
Lt XA+ pp

This limiting expression coincides with that in (1.1) if p; = ps and Ry = [0, R].
But (1.2) refines the statement in (1.1) and shows the impact of both the relative
number of regressors p; and the relative number of hypotheses py. These quan-
tities affect the asymptotic rejection probability monotonically, which is consis-
tent with small sample analyses in the Gaussian error case [cf. 12]. However, in
contrast to the complicated nature of the cdf of the non-central F-distribution
as a function in p, ¢ and the non-centrality parameter, our asymptotic approx-
imation to the rejection probability depends on the quantities pi, p2 and A,
only through elementary operations and the Gaussian cdf, and it is valid for a
large class of error distributions. In particular, we see that even if p; is close
to 1, the F-test still has power if py is sufficiently small. In a second step, and
under slightly more restrictive assumptions on the data generating process, we
also investigate the case where only a very small relative number of hypotheses
g/n is tested, i.e., ¢ is bounded as n — oo and py = 0, and the result in (1.2)
no longer holds.

Our work heavily builds on the ideas of Wang and Cui [27] (hereafter abbre-
viated as WC). The first part of the present work is concerned with reproducing
their results under substantially more general assumptions. First of all, here we
do not require independence between the random design and the error terms,
but we assume only the usual first and second order specification of conditional
moments of the errors given the design. This extension requires a slight modi-
fication of the result of Bhansali, Giraitis and Kokoszka [5] on the asymptotic
normality of certain quadratic forms as applied by WC (cf. Lemma 6.1). Further-
more, we do not assume that the n x p design matrix X, after standardization,
consists of 1.i.d. components, as is needed for the application of the famous Bai-
Yin Theorem [2] used by WC in order to control extreme eigenvalues of large
sample covariance matrices. Instead, we apply a recent result of Srivastava and
Vershynin [23] which essentially requires only certain moment restrictions on
the i.i.d. rows of X. For our extensions, we also develop a novel result on the
diagonal entries of a fairly general random projection matrix that might be of
interest on its own (see Lemma 6.3). It has the statistical interpretation that
in a moderately high-dimensional regression the leverage values h;, i.e., the di-
agonal entries of the projection matrix U(U'U)~1U’, where U = [1, X] is the
design matrix including an intercept column, typically behave like p/n. Finally,
we point out that since we also consider tests on the intercept parameter, the
distribution of the F-statistic, in general, also depends on the mean p of the
random design vectors xq,...,T,. This causes certain technical complications
due to non-centrality issues which are often avoided in the literature on random
design regression by restricting to the case yu = 0. Here, we present a detailed
treatment of the general case.
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The paper is organized as follows. Section 2 introduces the setup and notation
and presents our main results in Theorem 2.1 and Corollary 2.2, which provide
a precise formulation of the statement in (1.2). In Section 3, we specifically
consider the situation where q is fixed and also provide a unifying result that does
not distinguish between large or small q. Next, in Section 4 we provide a detailed
discussion of our technical assumptions and explain the main differences to those
imposed by WC. The results of an extensive numerical study are reported in
Section 5. Finally, Section 6 provides the basic steps in the proof of our main
results. Some of the more technical arguments are deferred to the appendices.

2. Model formulation and main results

We consider a random array {(yin,%in) : 1 <i<n,n > 1} where, for each n €
N, the pairs (yi n, i) ; are ii.d. observations of a real valued response variable
y1,» and p,-dimensional random regressors x;, with p, < n — 1, satisfying
Ely1 nlz1n]) = an + BLw1, and Var[ys ,|z1,] = 02 € (0,00). Equivalently,
writing €; n = Yi.n — E[Ys n|Tin], the observations can be represented as

Yion = an"‘ﬁ;xi,n""{fi,nv 1= 17"‘7”7 (21)

where the (g;,,), are i.i.d., satisfying Ele; ,|®;n] = 0 and Varle; ,|z; ] =
o2. Note that €1,n does not need to be independent of z; ,. For identifiability,
we also assume that ¥, := Var[zy,] is positive definite and we define p,, =

E[z1 ). Furthermore, we adopt the matrix notation Y, = (y1,n,---,Yn,n), Xn =
[Z1ns - Znnl's €0 = (E1ns -+ Enn)s Yn = (o, By,) and Uy, = [y, X,], where
tn = (1,1,...,1)" € R™. For notational convenience we will drop the subscript n

whenever there is no risk of confusion, i.e., we write Y =Y,,, X = X,,, a = a,,
B = B, etc., keeping in mind that, unless noted otherwise, all quantities to
follow depend on sample size n. With this, the model equations in (2.1) become

Y = Uy + e (2.2)
We want to test a general linear hypothesis on the coefficients -, i.e.,
Hy:Ryy=r1r9 vs. Hj:Ryy#ro, (2.3)

where Ry is a ¢ X (p+ 1) matrix with rank Ry = ¢ < p+1 and rg € R?. Without
restriction we may assume that Ry has orthonormal rows (premultiply (2.3) by
(RoR})~'/2). We test Hy by use of the F-statistic F}, defined as

_ (Rod —r0) (Ro(U'U) ™ Ro) ™ (Ron — r0) /4
S S 1 12 Y R (2.4)

provided that all the appearing quantities are well defined, and F,, = 0, other-

wise. The F-statistic is then compared to the 1 — v quantile of an F-distribution
with ¢ and n — p — 1 degrees of freedom, which we denote by f;}n__”;_l.
An = (G, B,) is the OLS estimate in the unrestricted model. We also define

Here,
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the usual estimator of the error variance 62 = ||Y — U4,|?/(n — p — 1), that
appears in the denominator of the F-statistic.

In Section 6 we prove the following results, involving the scaled distance from
the null hypothesis

A, = (Roy = 10) (RoS™"Rp) " (Roy — 10) /0,

where

S = E Ef,uu’] =E [(xll) (1 z’l)} =E[U'U/n].

A list of further technical conditions is given below in Section 2.1.

Theorem 2.1. Consider the linear, homoskedastic model (2.1) and set s, =

9 (qL + n,pl 71) and bn — \/(1_(pn'f‘l)/n)(zlq_(/I;n"!‘l)/n'f'QH/n) i MOT’@O’U@T, suppose

that limsup,, p,/n < 1, g, = 00 and A, = o(gn/n) as n — oco. If either one of
the following three cases applies then the F-statistic satisfies

STV (F, — 1) — VA, b, % N(0,1). (2.5)

(i) The assumptions (Al1).(a,b,c,d) and (A2) on the random design and on
the error distribution, are satisfied, and either Ry = I, +1 for alln € N,
or Ry =[0,1,,] for alln € N. (In this case, either ¢, = pp or ¢, = pn+1,
and thus (pn — qn)/m — 0 holds.)

(i) The assumptions (A1).(a,b,c,d,e) and (A2) on the random design and
on the error distribution, are satisfied, (pn, — qn)/n — 0, and (Roy —
r0) RoSR{(Roy — 10) /0% = O(\/qn/n) holds.*

(i1i) Assumption (A2) on the error distribution is satisfied and the design vec-
tors 1y, ..., T,y are i.i.d. Gaussian with mean [, € RP* and positive
definite covariance matriz ¥,,.>

By a simple argument involving Polya’s theorem this translates into the fol-
lowing corollary on the rejection probability of the F-test.

Corollary 2.2. Iflimsup,, p,/n <1 and g, — 00, as n — o0, and the conclu-
sion of Theorem 2.1 holds, then the rejection probability of the F-test satisfies

. TRy
]PJ(Fn > fzgj,,n—)pn—l)_q) _Cl—l/ + \/HA’Y\/ 2q /n — 0.

Here, (1, = ®71(1—v) is the 1 —v quantile of the standard normal distribution
and v € (0,1) does not depend on n.

I1Notice that this additional requirement implies and strengthens the assumption that
Ay = o(gn/n). Simply observe that, by block matrix inversion, RgS™'R) = (RoSR{ —
RoSR}(R1SR})"TR1SR})~1, where Ry is a (pn +1—gn) X (pn + 1) matrix with orthonormal
rows which are also orthogonal to the rows of Ro. Therefore, Ay < (Roy —r0)’ RoSR{(Roy —
ro) /o = O(y/r /).

It is easy to see that the normality assumption implies Assumption (A1).
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Proof. Tt is easy to see, using Polay’s theorem and Lemma C.8, that fn =
sﬁl/Q(féi;Lyjpn71 — 1) satisfies f,, — (3—,. Now use the conclusion of Theo-
rem 2.1, Polya’s theorem and the Lipschitz continuity of ® to obtain

P(F > £ 1) = B(=Cioy + 1))

= [P(s,/2(F — 1) > fu) = ®(—C1— +n2))|
= [P(s; 2 (Fy — 1) =02 < fu = 12) — ®(Ciw — 12)]
S UP)(S';UQ(FH - 1) - 7772L S fn - 77721) - ‘I)(fn - 7]721)|

+2(fr —n3) — ©(C1m — n2)|
<sup |[P(s;, /2 (F, — 1) —n2 < t) — ®(t)| + o(1) —— 0,
teR

- n—oo

where n2 1= \/nA,b,. O

If (pp, — ¢n)/n — 0 and 0 < liminf, ¢,/n < limsup,, p,/n < 1, then Corol-
lary 2.2 recovers the result of WC under weaker assumptions on the joint dis-
tribution of the design and the errors, and for a null hypothesis that possibly
restricts also the intercept parameter « (cf. the assumptions of Theorem 2.1(i)
and (ii)). In this case the factor b,, above asymptotically reduces to

nt1 nt1 n nt1
n 2(]n/n 2% )

as in (1.1). It highlights the dependence of the power function on the relative
number of regressors p,/n. However, since (p, — ¢,)/n — 0, the individual
roles of p, and ¢, can not be discerned. This shortcoming is removed here,
but it comes at the price of a stronger design condition (cf. Theorem 2.1(iii)).
It is tempting, however, to conjecture that Assumptions (Al) and (A2) are
actually sufficient also for the general case. Corollary 2.2 nicely shows the effect
of both the dimension of the parameter space as well as the dimension of the
null hypothesis, on the asymptotic power function. In particular, we see that
even in a case where the relative number of regressors p,, /n is large, the classical
F-test still has power, as long as we are interested in testing only a relatively
small number of hypotheses. However, we should make a cautionary remark at
this point. In Theorem 2.1 and Corollary 2.2 we have assumed that ¢, — oo.
If the number of hypotheses g being tested is too small, then the asymptotic
approximation presented above will not be very accurate, in the same way the
xg distribution is not very accurately approximated by the normal if ¢ is small.
Therefore, in the next section we specifically study the case where ¢, is bounded.

In Theorem 2.1, we treat the special cases of Ry = I,4+1 and Ry = [0, I,]
separately, because here it is considerably much easier to deal with the non-
centrality term in the decomposition of the F-statistic (see Section 6.4.1). In
particular, in this case we do not need to impose further restrictions on the
distance from the null A, other than that it is of order o(g,/n) as n — oo and
we can also work with weaker design conditions (cf. Theorem 2.1(i)).
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Remark 2.3 (On the detection boundary of the F-test). In the classical setting,
where ¢ and p are fixed, while n goes to infinity, it is well known that the
detection boundary of the F-test is n~'/2. This means that a violation of the
null hypothesis Hy : Ryy = 1o that is of the order ||Roy — 7oll2 < n=1/2 leads
to non-trivial asymptotic power, while a slower order yields asymptotic power
equal to the size of the test and a larger order yields asymptotic power equal
to one. However, in general, when ¢ = ¢, and p = p,, are allowed to grow with
sample size n, the detection boundary of the F-test is no longer n~'/2 but rather
q},/ 4 / n'/2. To see this, first we ignore the influence of the nuisance parameters
and set u =0, ¥ = I, and 0? = 1, so that S = I,41 and A, = ||[Roy — r0|3.
From Corollary 2.2, we see that in order to obtain non-trivial asymptotic power,
i.e., asymptotic power in the open interval (v, 1), the non-centrality term

2
nt/? 1 +1 w41

Vnlab, = (1—/4|R07—7”0||2> \/— (l—pn ) <1_p_+q_n>7
an 2 n n n

has to stay away from 0 and oo. If we exclude the pathological case
limsup,, p,/n = 1, then this requirement is met if the violation of the null
1/2

hypothesis is of the order ||Roy — 7ol|2 < q}/4/n

Remark 2.4 (Gaussian errors and fixed design). In the classical case where the
error € follows a spherical normal distribution which is independent of the design,
the F-statistic (2.4) follows a non-central F-distribution with ¢, and n —p, —1
degrees of freedom and non-centrality parameter 2 = nV,,, conditional on X,
where V,, = (Roy — 70) (Ro(U'U/n) " RY) "1 (Roy — 19)/0? [cf. 22, page 41].
Nevertheless, even in this traditional case, only basic monotonicity results are
available for the power function P(F,, > féi;;/—)pn
n—p,—1 and ¢ [e.g., 12, 26]. In Section 6.4 we investigate V,, as n — oo, such
that lim sup,, p,/n < 1. Our results provide approximations for the average (or

unconditional) rejection probability, i.e., for E[P(F, > féi;ll?p7L71|X )], which
are given by the Gaussian cdf applied to an elementary function in p,/n, g,/n
and A, = (Roy — o)/ (RoS™'R})) "' (Roy — 10)/0? and which are therefore easy

to interpret (cf. Corollary 2.2).

_1|X) as a function of gy,

Remark 2.5 (On omitted variable misspecification). One major motivation
for us to extend the result of WC to scenarios where there is some depen-
dence between the design and the errors, and also among the components of
the standardized design vectors themselves (see Section 4 for details), was to
treat simple sub-models of high-dimensional linear models. These sub-models
typically exhibit misspecification due to omitted regressor variables. Consider
an i.i.d. sample (y;, z;)"; from the high-dimensional linear model

yi = 0’z + w,

where the z; are random d-vectors with d > n that are independent of the wu,,
which satisfy E[u;] = 0 and E[u?] € (0, 00). Moreover, assume that the marginal
distribution of the regressors z; can be represented as z; = 0/ 2%, where 0Y/2 g
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symmetric and positive definite and Z; has a Lebesgue density f; which is such
that the components of z; are independent with zero means, unit variances and
bounded 8-th moments, so that in particular Cov[z;] = Q.

Now suppose we want to use only a small number p of the d available regres-
sors, with p < m, so that classical regression methods are feasible within this
subset regression problem. These working regressors can be described as

!
XT; :MZZ',

where M is a d x p matrix of full rank p < d. For instance, M could be a selection
matrix so that x; consists of a certain choice of p components of z;. In such a
situation, the sample (y;, ;)" ; need not follow a linear homoskedastic model
as in (2.1), because, in general, the conditional expectation E[y;|z;] is not linear
in z; and the conditional variance Var[y;|z;] is not constant if the pair (y;,x;)
is not jointly Gaussian. However, one can always write

yi = Bz + &,

where 3 = argmin, E[(y; — V'x;)?] and & = y; — B'x;. Here, the parameter 3
corresponds to the best linear predictor of y; given z;, and it may be of interest
to test whether Hy : 8 = 0, i.e., whether the selected regressors x; = M’z; have
any value for linearly predicting the response variables ;.

Clearly, in the present setting the errors &; are not independent of the design
vectors x; and, in general, E[¢;|z;] # 0 and Var[¢;|z;] # Var[¢;]. Now consider
the unobservable corrected sample (v}, x;)},, where

~ ar|(g;

= Bt |G (6~ Elglad),

The corrected sample clearly follows a linear homoskedastic model as in (2.1),
because E[y*|z;] = f'z; and Var[y?|z;] = Var|¢;]. Moreover, the corrected sam-
ple satisfies Assumption (A1) in view of Lemma A.2 applied with ' = M’Q'/2,
g = 0 and m, = d, and because the design matrix X = [z1,...,z,] has a
Lebesgue density on R™*P. Of course, in general, the actual sample (y;,x;)™
may be very different from the corrected sample (y¥,z;)" ;, but the results
of Steinberger and Leeb [24] suggest that if d > p, then E[{;]z;] ~ 0 and
Var[¢;|z;] = Var[;], at least for a large collection of selection matrices M. There-
fore, the observed sample and the corrected sample should be very similar if d
is large relative to p, and one might expect that also for a sufficiently regular
statistic T, we have T'((y;, z;)"_1) =~ T((y}, z;),). We suspect that the results
of Steinberger and Leeb [24] can also be used to establish the validity of As-
sumption (A2) for the corrected sample, with e;,, := +/Var[;]/ Var[¢;|z;] and
Eim = & — E[&]x;]. Thus, we expect the F-test for Hy : B = 0 based on the
sample (y;,z;)"_; to be asymptotically valid and even possess similar power as
the F-test in a correctly specified model, for most choices of M, provided that
d = d, and p = p, tend to infinity along with n, such that d,, > p,,. The details
of this line of reasoning will be further developed elsewhere.
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2.1. Technical conditions

Throughout this paper, the reader will encounter several different norms. For
vectors v € RF we write |[v| = (Zle v?)Y/2 for the usual Euclidean norm,
whereas for matrices M € R**’ we distinguish between the spectral norm
|M|ls = (Amax(M’M))*/? and the Frobenius norm || M|z = (trace(M'M))'/2.
We write Pj; for the matrix of orthogonal projection onto the column span of
M. If M satisfies rank M = ¢ < k, then Py = M(M'M)~*M’. We also make
use of the stochastic Landau notation. For a sequence of real random variables
Zn, we say that z, = Op(1) if the sequence is bounded in probability, i.e., if
sup,en P(Jzn| > 0) — 0 as § — oo, and we say that z, = op(1) if 2, — 0 in
probability. For a non-stochastic real sequence a,, # 0 we write z, = Op(a,) if
Zn/an = Op(1) and z, = op(a,) if zn/a, = op(1).

The following is a list of technical assumptions needed in the proof of Theo-
rem 2.1.

(A1) (a) The design vectors z; , are linearly generated as follows:
Tin = MUn + FnZi,'ru

where T, is a p,, X m,, matrix with m,, > p,, such that T',I",, = %,,.
The random my,-vectors 21 n, ..., 2n, are i.i.d. and satisfy E[z,] =
0, E[Zl,nzi,n] =In,.

(b) The (n —1) x (pp, + 1) matrix U, 1 = [0,1,-1]U, has rank p, + 1
with probability one. (In particular, P(det(U;,U,) = 0) = 0.)

(c) For every n € N, the random m,,-vector 21 ,, from Assumption (Al).(a)
also has the following property. There exist universal positive con-
stants ¢ and C, not depending on n, such that for every orthog-
onal projection P in R™» and for every ¢ > C'rank P, we have
P(|P21n|* > t) < Ct=1e.

(d) Let 2, be the random m,,-vector from Assumption (Al).(a). For
Lin = supHvH:l(IE|U’,2'17,L|’“)1/’C we have L4, = O(1) as n — oo. For
every symmetric matrix M, € R™»*"™» we have Var[z] , My21,,] =
O(trace(M?)) + (trace(M,))?o(1), as n — oo.

(e) In addition to (Al).(d), we also have Lg,, = O(1) as n — oo and for
any projection matrix P, in R™, (E[(2] , Pnz1,0)*])"* = O(||P.|3)

as n — oo.
(A2) The error terms ¢;,, can be written as &;.,, = €; n&; n, Where e;, is X; -
measurable and such that max;—1 . ,e€;, = Op(l), and the &, have

the following properties. There exists a universal constant x > 0, not
depending on n, such that E[(E[|g1,,/00|*21.,])1 "] = O(1) as n — oo,
and max; E[(&,/00m)*|in] = 0p(y/n)-

This set of assumptions is weaker than the analogous conditions imposed by

WC to treat the case (p, — ¢n)/n — 0. A detailed discussion and comparison of
the differences between our treatment and the one of WC is deferred to Section 4.
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3. Testing only a small number of hypotheses

In Theorem 2.1 above, we needed the assumption that ¢, — co as n — oo in
order to achieve asymptotic normality of the F-statistic. Since the asymptotic
distribution of the F-statistic is well understood in the Gaussian error and fixed
design case (cf. Remark 2.4 and Lemma C.8), we expect the asymptotic distri-
bution of the F-statistic to be x§ rather than Gaussian if ¢, = ¢ is fixed. The
following result establishes this asymptotic x? distribution for the F-statistic
when the error distribution of the model 2.1 is arbitrary up to bounded fourth
moments. For this result we need somewhat stronger assumptions than those of
Theorem 2.1. The proof is deferred to Section 6.

Theorem 3.1. Consider the linear, homoskedastic model (2.1) and assume that
the design vectors xi p,...,%nn are i.i.d. Gaussian with mean p, € RP* and
positive definite covariance matriz ¥, and that the design X,, = [x1,..., 2]
is independent of the errors e, = (€1,n,y.--,Enn) which satisfy E[(e1.n/0n)] =
O(1). Moreover, suppose that limsup, p,/n < 1, Ay, = o(qn/n) and that the
null hypothesis does not involve a restriction on the intercept parameter (i.e.,
the first column of Ry is equal to zero). If ¢, = q € N does not depend on n,
then

351/2(Fn - 1) - \/ﬁAvbn # (2(1)_1/2963 - Q/Q, (31)

where s, and b,, are as in Theorem 2.1.

Together with the asymptotic normality of the F-statistic in the case ¢, — oo
(cf. Theorem 2.1), we can establish a non-central F' approximation for the F-
statistic for any number of tested hypotheses q,,.

Corollary 3.2. Consider the linear, homoskedastic model (2.1) and assume that
the design vectors xi n,...,ZTnn are i.i.d. Gaussian with mean p, € RP* and
positive definite covariance matrix ¥, and that the design X, = [x1,...,x,]
is independent of the errors en, = (€1,ny .-+ ,En,n)’ which satisfy E[(e1.n/0n)?] =
O(1). Moreover, suppose that limsup, p,/n < 1, A, = o(gn/n) and that the
null hypothesis does not involve a restriction on the intercept parameter (i.e.,
the first column of Ry is equal to zero). Then,

sup [P(Fp < 1) = P(Fyn—p,—1(An) <) —— 0,

teR n—o00

where Fy n—p.—1(An) denotes a random variable following the non-central F
distribution with q, and n — p, — 1 degrees of freedom and non-centrality pa-
rameter A, = Ay(n —pn — 14 qn).

Proof. Suppose the claim does not hold. Then there exists a subsequence n/,
such that the supremum converges to a positive number along n’. Then, by com-
pactness of the closed unit interval and the extended real line, we can extract a
further subsequence n”, such that p,~/n"” — p1 € [0,1), gn /0" — p2 € [0, p1],
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and g,» — ¢q € [1,00], as n” — o0. If ¢ = 00, then we are in the setting of The-
orem 2.1(iii) and we obtain asymptotic normality of snt/? (Fn, — 1) — /nA,by,.
Since the limiting distribution function is continuous, we get uniform conver-
gence of the corresponding distribution functions, in view of Polya’s theorem.
Since by Lemma C.8, sﬁl/z(qun_pn_l()\n) — 1) — /nA,b, is also asymptot-
ically standard normally distributed, we get a contradiction in that case. If
q < o0, then g,» = ¢ for all large n”, because ¢, is integer valued. Thus The-
orem 3.1 applies and shows that s, 1/2 (Fn — 1) — \/nAyb, converges weakly to
(2¢)~1/2x2 — \/q/2. Since the limiting distribution function is again continuous,

and since Lemma C.8 shows that sﬁl/Q(qun,pn,l()\n) —1) — v/nA, by, has the
same asymptotic distribution, we also get a contradiction in this case, upon
using the same argument as before, involving Polya’s theorem. O

Corollary 3.2 provides a unified treatment of the asymptotic behavior of
the F-statistic without distinguishing between the cases ¢, = ¢ and ¢, —
o0o. However, this does not immediately lead to a neat formula for the local
asymptotic power function of the F-test because of the complicated nature of
the cdf of the non-central F-distribution.

Remark 3.3 (Fixed vs. random design). It is instructive to compare the non-
central F approximation of Corollary 3.2 to the distribution of the F-statistic in
the Gaussian error and fixed design case (cf. Remark 2.4). In the former case the
non-centrality parameter is given by nA, (n—p, —1+gy)/n, while in the latter
case it is nV,,. Now if the design X is random with i.i.d. rows and S = E[U'U/n],
U = [1, X], it turns out that A, := (Roy — 70) (RoS™ R}~ (Roy — 10) /02 is
not a good approximation for V,, := (Roy — o) (Ro(U'U/n) 1 Ry) =1 (Roy —
r0)/0? if p,/n is not close to g,/n, even if n is very large. In fact, we need a
correction factor of E[x3_,, 14, /1] = (n—pn —14gn)/n in order to account
for the additional randomness coming from the design X (cf. Lemma C.5). This
correction factor, however, is close to one if g,/n =~ p,/n. If the number ¢,
of hypotheses to be tested is much smaller than the number of parameters p,,
this correction is quite significant. Thus, the limiting distribution of the F-
statistic under random design with E[U'U/n] = S is, in general, not equal to
the distribution of the F-statistic under Gaussian errors and fixed design X
satisfying U'U/n = S. This distinction only occurs for ¢, < p,. In particular,
this issue disappears completely if p,, /n =~ 0.

Remark 3.4 (On confidence sets for Ryy). Corollary 3.2 can immediately be
used to construct asymptotically valid confidence sets for Ry7y. Simply define

cl, = {7" €R: (RoYn — 1)/ (Ro(U'U) ' Ry) ™ (RoAn — 1) < f;,ly:g—ﬁiQ} ;
and note that

P(Roy ¢ CL) = P(F, > f7) 1) = P(Fyu_p1(0) > £ ) = v,

n—p—1 qg,n—p—1

where F,, is the F-statistic under the null hypothesis rg = Rp7y.
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4. Discussion of the technical assumptions

We pause for a moment to discuss the meaning of our Assumptions (A1) and
(A2), as well as the other conditions used in Theorem 2.1, and we comment on
the main differences to the conditions imposed in WC.

First of all, Assumption (Al).(a) of linear generation of the design from pos-
sibly much higher dimensional random vectors also appears in WC who take
it as a modification from Bai and Saranadasa [1]. We point out that this is a
straight forward generalization of the case m = p, where moment restrictions
have to be imposed directly on the design vectors x; (note that the compo-
nents of 1 may not be independent, even after standardization, whereas x; can
still be linearly generated from a vector z; whose components are independent).
Moreover, this assumption also allows for the interpretation that there is actu-
ally a much higher dimensional set of explanatory variables z; available whose
dimensionality m (possibly m >> n) has already been reduced to p < n. See also
Remark 2.5.

Together with (Al).(a), our Conditions (A1l).(d,e) replace and considerably
relax Assumption (C1) in WC, which reads as follows.

(C1) z; is linearly generated by a m-variate random vector z; = (21, ..., Zim)’ SO
that x; = I'z;+u, where I is a pxm matrix for some m > p such that I'T” =
¥, each z; has finite 8-th moment, E[z;] = 0, Var[z;] = I, E[z}] =3+ A
and for any 30,65 < 8, Eloy 2, oo 21f)) = Elo JEl213,) Bl
where A is some finite constant.?
In fact, in addition to (C1), WC also need the 8-th moments of z; to be
uniformly bounded so that none of them goes off to infinity as n (and m =
my,) increases. The factorization requirement of the 8-th mixed moments in
(C1) is a straight forward relaxation of an independence assumption. How-
ever, just like the independence assumption, it rules out many spherical dis-
tributions (cf. Lemma A.1(i)). Therefore, moment conditions like (Al).(d,e)
are much more natural to accommodate both product and spherical distribu-
tions. In fact, Condition (C1), together with uniform boundedness of E[z5],
is strictly stronger than our Assumptions (Al).(a,d,e) (cf. Lemma A.1(iii) and
Lemma A.2(ii)).

Our Assumption (Al).(b) is important to guarantee that the F-statistic is
equal to the expression on the right-hand-side of (2.4), at least with asymptotic
probability one, which is used in WC implicitly. The reason that we not only
require almost sure invertibility of U’U but also of the design matrix based on
n — 1 observations is only of a technical nature and plays an important role
in the proof of Lemma 6.3 (cf. the end of Subsection 6.2), which is based on
leave-one-out ideas. This lemma replaces the strong assumption of WC that
there exists a global constant ¢; > 0, such that the smallest eigenvalue of the

3Note that this formulation, as it stands, is self-contradictory. Clearly, one has to assume
that the indices 41,...,i4 are distinct, or otherwise (C1) implies 1 = E[22,] = E[z1,2},] =
E[z11]E[z11] = 0.
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sample covariance matrix satisfies /\min(f( X /n) > ¢, almost surely, where
X = (X — /)22 is the design matrix based on the standardized regressors
(cf. page 147 in WC).*

Finally, Assumption (Al).(c) is taken directly from Srivastava and Vershynin
[23] to control the extreme eigenvalues of large sample covariance matrices, and
different sets of sufficient conditions for (Al).(c) can be found in that reference.
In WC, control of extreme eigenvalues is accomplished by use of the celebrated
Bai-Yin Theorem of Bai and Yin [2] (cf. Lemma 2 in WC). However, this comes
at the price of the implicit assumption that the standardized design vector
»~Y2(z; — p) has independent components.”

Altogether, our design condition (A1) includes linear functions of both, prod-
uct distributions with uniformly bounded 8-th marginal moments and a large
class of spherically symmetric distributions (cf. Lemma A.1 and Lemma A.2 in
Appendix A).

The Assumption (A2) on the error distribution extends the fourth moment
condition (C2) in WC, which simply states that E[(e1,,/0,)] = O(1), as n —
00.5 If the errors are independent of the design and ¢, — oo (as is the case in
WC), then (C2) and (A2) are equivalent. However, Condition (A2) is suited to
also allow for some amount of dependence between the errors and the design.
This dependence is ruled out in WC, because they use results of asymptotic
normality of quadratic forms from Bhansali, Giraitis and Kokoszka [5] that
apply only in the independence case (see Lemma 6.1 and the discussion at the
beginning of Subsection 6.2). We note that an (8 + x)-th moment condition like,
e.g., sup,, E[(£1/0,)3""] < K, together with max;e; = Op(1), is sufficient for
(A2), provided that liminf,, g,/n > 0.

The additional requirement of Theorem 2.1, that limsup,, p,/n < 1 and
qn — 00, simply describes the regime of the relative number of parameters and
hypotheses we are interested in. The corresponding assumption (C3) in WC and
also parts (i) and (ii) of Theorem 2.1 additionally require that (p,, —¢n)/n — 0.
This is a more serious restriction which is convenient in the present strategy
of proof to show that the non-centrality term in the F-statistic under the local
alternative degenerates to the correct value (cf. Section 6.4.2). This, however,
means that asymptotically we are only dealing with hypotheses where almost
all of the p parameters are restricted, since ¢, /p, — 1 in this regime. It is
therefore important to extend the analysis of the rejection probability of the F-
test also to the regime where ¢,, < p,, in order to asses the different contributions
of the overall dimensionality and the multiplicity of hypothesis testing to the
asymptotic rejection probability. This is what we do in Theorem 2.1(iii) and
in Section 3 in the Gaussian design setting. The requirement that ¢, — oo as

4Notice that this assumption rules out, for example, Gaussian design [see, e.g., 11, Theorem
2.1].

5This is particularly inconvenient if one is interested in the case where the random
vectors z1,...,2zn in (C1l) (and (Al).(a)) have independent components. If both z; and
$=12(gy — p) = (ITY)~1/2Tz; have independent components and at least two rows of
(I'TY)~1/2I have only non-zero entries (this can be relaxed even further), then, by the Darmois-
Skitovich Theorem [cf. 7, Theorem 5.3.1.], z1 must already be Gaussian.

6In WC it is implicitly assumed that lim inf,, 0',21 > 0.
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n — oo is essential in Theorem 2.1 in order to obtain a Gaussian limit. This
assumption is dropped in Theorem 3.1 and Corollary 3.2.

Finally, the assumption in Theorem 2.1 that A, = 0(g,/n), is rather natural
in the case where liminf, ¢,/n > 0, where it simply reduces to A, = o(1). In
this case, it says that we study the asymptotic rejection probability only in a
shrinking neighborhood of the null hypothesis. If liminf,, ¢, /n > 0, we also do
not need to specify a rate at which A, approaches zero. Note, however, that
part (ii) of Theorem 2.1 actually does require a specific rate of contraction which
is, again, only needed for technical reasons in establishing the asymptotic be-
havior of the non-centrality term (cf. Section 6.4). The corresponding Assump-
tion (C4) in WC is rather dubious and seems to arise from a miscalculation when
dealing with said non-centrality term. In fact, they also need the O(n~'/2) rate
of (Ryy—r10) RoSR)(Roy—10)/02 imposed by our Theorem 2.1(ii) and nothing
more.”

In the case where liminf,, ¢,/n = 0, we need the rate A, = 0(g,/n) in order
to ensure that the mixed term in the expansion of the F-statistic is asymp-
totically negligible (cf. the discussion following display (6.7)). Note that in the
extreme case where g, = ¢ is fixed, the assumption A, = o(g,/n) appears to be
somewhat restrictive because it rules out nA, =< 1, as required for non-trivial
local asymptotic power (cf. Remark 2.3). In the classical case where g, = ¢ (and
pn = p) is fixed, the classical approach based on the asymptotic normality of
the OLS estimator 4, allows for a much wider range of local alternatives than
our present strategy. Of course, the asymptotic normality of the whole vector
An breaks down if the dimensions p, and g, are too large relative to sample
size n (see, e.g., Portnoy [20, 21]), which is why we here use a different strat-
egy involving the assumption A, = o(g,/n). Judging from the simulations of
Section 5 below, it seems as if some bound on A, that is proportional to g,
is essential for the validity of the normal approximation to the power function,
because this approximation turns out to be accurate for a larger range of A, if
q gets larger.

5. Numerical results

In order to better understand the quality of the theoretical approximations
to the power function of the F-test derived above, we conducted an extensive
simulation study. We roughly follow the simulation setup of WC but our focus
is more on the role of the number of tested hypotheses ¢. The linear model we
considered was

yi = Bz + &,
where the e; were i.i.d. with mean zero and variance one, independent of the

design. We tried different error distributions but found little effect on the power
function so we report only the results for N(0,1) errors and for ¢(5)/4/5/3

7See the first display on page 146 in WC, where also the matrix X2X2T needs to be
standardized. Also, there is a scaling factor of \/n missing in that argument, which is necessary
to bring the non-centrality term to the same scale as the noise term.
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errors.® The p-dimensional design vectors z; were generated as i.i.d. realizations
of a moving average process

T
Tiyj = E At Zi(j4+t—1)>
t=1

where z; = (2i1,..., Zi(p+7—-1))" Was either a (p + T — 1)-dimensional standard
normal vector or generated with i.i.d. I'(1,1) — 1 entries? and 7' = 10. The
coefficients a; were generated as i.i.d. uniform from (0,1) only once and then
held fixed across all the simulations to follow.

We tested only null hypotheses of the form

Hy:B1=---=3,=0,

at level v = 0.05, so that the distribution of the F-statistic does neither depend
on the mean of the design vectors nor on the intercept parameter, and hence it is
no loss of generality that we have omitted both. The signal 8 was generated such
that half of the tested coefficients where equal to one and all the other coefficients
were equal to zero. The signal was then scaled appropriately to produce a range
of alternatives at which the power function was evaluated numerically.

Since WC have already extensively studied the effect of the dimensionality
p on the power of the F-test, we here focus more on the effect of the num-
ber of tested restrictions ¢. For our first set of Montecarlo experiments we fixed
n = 100 and p = 60 and looked at the cases ¢ = 4 and ¢ = 50. Figure 1 shows the
simulated power of the F-test (solid lines) as a function of the scaled distance
from the null hypothesis A, where for each value of A, 10.000 Montecarlo
samples were generated. The left column shows the results for t(5)/+/5/3 dis-
tributed errors and a design that was generated from a moving average process
with I'(1, 1) — 1 innovations. The right column was generated with i.i.d. standard
Gaussian errors and a Gaussian moving average design. As a first observation
we note that the influence of non-Gaussianity on the simulated power (solid
lines) is almost negligible at the present sample size of n = 100. Now Figure 1
should be inspected from top to bottom. In the first row we clearly see the gain
of power as the number of hypotheses g decreases from g = 50 to ¢ = 4. We also
compare the simulated power to the Gaussian approximation from our asymp-
totic result of Theorem 2.1 (dotted lines). The picture is qualitatively the same
as in WC, who considered ¢ = p — 2 and who concluded “that there is a good
conformity between the empirical power and the theoretical power of the [...]
F-test [...]” [27, p. 142]. Tt seems hard to evaluate the quality of approximation
directly from this picture in absolute terms. Moreover, the Gaussian approxima-
tion does not seem to become much more accurate when ¢ increases, contrary

80f course, one can always completely change the picture by, e.g., taking an error distribu-
tion that does not have a finite variance. In that case none of our theoretical approximations
is of much use.

9The T'(1, 1)-distribution is just the standard exponential distribution, but we keep the I'
notation in the plots to facilitate comparability with WC.
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Fic 1. Simulated power functions of the F-test (Montecarlo) at level v = 0.05, compared to
the Gaussian approzimation of Corollary 2.2 (Gauss) and the non-central F approzimation
of Corollary 3.2 (NCF).

to what was suggested by Theorem 2.1. In fact, however, Theorem 2.1 says that
we should look at the Gaussian approximation only locally, for values of A,
that are of a smaller order than ¢/n. Indeed, if we look at the power function in
a smaller neighborhood around the null (cf. the second row of Figure 1) we see
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Fic 2. Simulated power functions of the F-test (Montecarlo) at level v = 0.05,Gaussian
approzimation (Gauss) and the non-central F approximation (NCF') for sample size n = 30
and p = 20 regressor variables.

a much better agreement between the simulated true power and the Gaussian
approximation. We also see that when ¢/n is larger, the approximation is accu-
rate on a larger interval around the null, as predicted by the theory. However,
a global Gaussian approximation to the power of the F-test seems to be too
much to ask for. Finally, the last row of Figure 1 is identical to the first row,
except that we have added the theoretical approximation based on the non-
central F-distribution as in Corollary 3.2 (NCF). Compared to the Gaussian
approximation, the non-central F' approximation is remarkably accurate over
the entire range of alternatives considered, not just locally, and for both large
and small values of gq.

To investigate also the quality of our approximations in small samples, we
have repeated the simulations above with n = 30 and p = 20. We present
only one instance of this second round of simulations in Figure 2 to discuss the
main differences to the case where n = 100. We still find that the non-central F'
approximation is much better than the Gaussian approximation, but clearly also
the quality of the former deteriorates considerably compared to the case n = 100.
However, the local behavior of the power function is still picked up quite well
even in the small sample scenario. Moreover, it is remarkable how similar the
picture with ¢(5)-errors is to the picture with normal errors already for n = 30.
This suggests that the dominant reason for the imperfect approximation by
the non-central F-distribution is the randomness of the design rather than the
non-Gaussianity of the errors (cf. Remark 3.3).

Finally, as in WC, we also investigate the distribution of the F-statistic under
the null hypothesis Hy : 51 = --- = 84 = 0. For different choices of n, p and ¢, we
have generated 10.000 Montecarlo samples of s;, 1 %(F,, — 1) as before, but with
vanishing true signal 5 = 0, and for ¢(5)/ \/%—errors and regressors generated
from I'(1, 1)—1. To investigate also the impact of a non-symmetric error distribu-
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tion we have repeated all the simulations also with the distribution of the errors
and the design interchanged.' The plots in Figure 3 were generated by apply-
ing the R-function ‘density’ [25] to the samples of standardized F-statistics with
default settings. As before, the dashed lines correspond to the (appropriately
scaled and centered) asymptotic non-central F-approximation of Corollary 3.2
and the black dotted line is the standard normal density. The overall picture is
the same as for the power function. The non-central F’ approximation is remark-
ably accurate even for moderate sample sizes like n = 50. As predicted by the
theory, for large n and large ¢ the null distribution is well approximated by the
normal, whereas for small ¢ the normal approximation fails. We also note that,
again, the approximation accuracy appears to be rather insensitive to changes
of the error and design distributions.

6. Proofs of main results

In this section we give a high-level description of the proofs of both Theorem 2.1
and Theorem 3.1. The more technical parts of the argument are collected in
the appendices. The following outline section pertains to both proofs and uses
only assumptions that are invoked by both theorems. Note that because of
compactness and, in particular, limsup,, p,,/n < 1, it is no restriction to assume
that p,/n and g, /n are convergent sequences with limits p; € [0,1) and ps €
[0, p1], respectively.

6.1. Outline

In addition to the general model assumptions of Section 2, the present outline
section 6.1 only uses the conditions A, = o(g,/n), P(det(U'U) = 0) = 0 and
Vn(62 /02 —1) = Op(1). All of these are satisfied under the assumptions of any
part of Theorem 2.1 as well as under the assumptions of Theorem 3.1, in view
of Lemma C.1.

The first part of Section 6.1 closely follows the classical approach for the
decomposition of the F-statistic as described, e.g., in Rao and Toutenburg [22,
Chapter 3.7]. These arguments are kept to a minimum but are included nonethe-
less to make the notation more intelligible.

Recall the F-statistc F,, as defined in (2.4). For the following preliminary
consideration, we work only on the event C,, = {w : 62(w) > 0,det(U'U(w)) #
0}, where 62 = ||Y — U4, ||*/(n —p — 1). On this event, F), is given by

P o= (BoYn = 10) (Ro(U'U) " Ro) " (Ron — 10) /4 0 (6.1)

2 =2
Un Jn

Setting 6, = (Roy — 70)/0n, we have
(RoAn — 10)/0n = (Ro(U'U)U'Y —14) /o, = Ro(U'U) U (e/0) + 65,

10We do not report any results for Gaussian errors here because in that case the F-statistic
follows exactly a central Fy n_p_1-distribution under the null hypothesis, irrespective of the
design (cf. Remark 2.4).
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Fic 3. Kernel density estimates of simulated standardized F'-statistics under the null hypoth-
esis (solid lines), appropriately standardized non-central F-approzimation of Corrolary 3.2
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p and q, and different design and error distributions.
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and thus, the first fraction in (6.1) reads
(/o) UU'U) ™ Ry(Ro(U'U) " Ry) ' Ro(U'U) U (/o) [a
+ 2(e/00) UU'U) T Ry(Ro(U'U) ™' Rg) 0, /g
+ 8 (Ro(U'U) " Rp) 76, /a.
Next, if ¢ < p + 1, choose a (p + 1 — ¢) X p matrix Ry, whose rows form an
orthonormal basis for the orthogonal complement of the rows of Ry. Recall that
Ry was chosen such that RoRj = I,. Hence, T := [Ry, R} isa (p+1) x (p+1)
orthogonal matrix. Partitioning UT" = [Up, U;|, where Uy = UR, and Uy =
URY, and using block matrix inversion, we see that
Ro(U'U)™" Ry = [, 0)T(U'U) T [, 0]
= [I,, 0((TU'UT') |1, 0]
= (Ug(In = Pu,)Up) ™"
Similarly, we get
Ro(U'U) U = [1,,0]T(U'U) 'T'"TU’
= (Ug(In — Po,)Uo) "' Ug(In — Po,).

Now, by writing W = (I,, — Py, )Uy, on C,,, we can simplify the F-statistic to
read

(62 /02)Fu = (/02) Pur (e)0) 4 + 2(/0) W3, g + 8, W'WS, /q.

The above representation remains correct also in the case where ¢ = p + 1
provided that the matrix U; is removed wherever it appears, i.e., W = Uy in
this case. The correct centering and scaling of Fj, is sj 1/Q(Fn —1), for s, =
2(1/¢+1/(n—p—1)) (cf. Lemma C.8). After noting that Py = Py — Py, and
abbreviating M,, = (Py — Py,)/q— (In — Py)/(n —p — 1), we obtain

3N

g

sy (R, — 1) = 5;1/2(5/07,,)’1\4"(5/0")&2 (6.2)

’I’L

on the event C),. Now, to get rid of the restriction to C,, define G,, by

G = 57 /2(e/00) Ma(e/02) + 25,/ 2(e/0,) W, Jq + 5,128, W'W6, /g,
(6.4)

and note that this is well defined everywhere. It is now elementary to verify that
we can study the abymptotlc behavior of G,, instead of st/ 2(Fn —1). Simply
note that if G,, — n2 converges weakly to some limiting distribution £, for an
appropriate centering sequence 72 with n2 = o(/n), then, on C,,,

s 2 (Fy = 1) = = (Go =)0 /60) + (00 /67 —1) —— L, (6.5)

n—oo
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and P(C,) — 1 as n — oo, because P(det(U'U) = 0) = 0, /n(62/0%2 — 1) =
Op(1) and P(62 = 0) < P(|62 /02 — 1] > 1/2) — 0, as claimed at the beginning
of this section.

In what follows, we will establish that the first term on the right of the equal
sign in (6.4), which we denote by @, := 551/26’Mn6/0i, satisfies Q, — L,
weakly, for an appropriate limit distribution £. The last summand in (6.4)
can be abbreviated to 5;1/2nvn/q, where V,, = J&WWi,/n =
8! (Ro(U'U/n)"'R) "6, (as in Remark 2.4). It will play the role of a non-
centrality term and it will be shown to be asymptotically non-random. Note
that if we can also show sﬁlmnvn/q = op(,/q), then the mixed term in (6.4)

satisfies sﬁl/z(a/an)’W&//q = op(1). Indeed, the conditional mean of the latter
expression given X is equal to zero, and its conditional variance is equal to
s nV,/q? = (SEI/QnVn/q)/(\/ﬁM) = op(1), provided that s,"/*nV,/q =
O]p(\/a).

Suppose, for now, that we have already established both, the weak conver-
gence

Qn % L, (6.6)
and also the fact that
sTV20V,0 Jq — AL by % 0, (6.7)

where b,, is as in Theorem 2.1. Then, because A, = o(g/n), we have n2 :=
Vb, = o(y/q) = o(y/n), as required for the argument in (6.5). It also follows
that sﬁl/QnVn/q = o(\/q) + op(1) = op(1/q), so we have asymptotic negligi-
bility of the mixed term in (6.4) by the argument in the previous paragraph.
Altogether, we arrive at

Gn_ni = Qn"’oﬂ”(l) # L:

which establishes the conclusion of Theorem 2.1 and Theorem 3.1, for an ap-
propriate choice of £, provided that (6.6) and (6.7) hold.

For Theorem 2.1, we will prove the weak convergence (6.6) with £ = A (0,1),
under the general Assumptions (Al).(a,b,c,d) and (A2) in Section 6.2, and the
convergence in (6.7) under each of the sets of assumptions of Theorem 2.1(i),
2.1(ii) and 2.1(iii), respectively (cf. Section 6.4).

For Theorem 3.1, we will prove the convergence (6.6) with £ = (2¢)
v/q/2 in Section 6.3, and the convergence in (6.7) is established by the same
argument as in the case of Theorem 2.1(iii) in Section 6.4, which does not require
@n — 00 nor Assumption (A2), so that it goes through also in the setting of
Theorem 3.1.

—1/2.,2 _
q

6.2. Asymptotic normality of the noise term

This section establishes the weak convergence in (6.6) with £ = N (0, 1). For this
claim we only use the Assumptions (Al).(a,b,c,d), (A2), as well as p,,/n — p; €
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[0,1), gn/n — p2 € [0, p1] and g, — oo. The following lemma is a variation of
Theorem 2.1 in Bhansali, Giraitis and Kokoszka [5] on the asymptotic normality
of quadratic forms for the case where the matrix and the enclosing vectors
may exhibit a certain dependence between each other. Its proof is deferred to
Appendix B.

Lemma 6.1. Let (2, F,P) be the common probability space on which all the
random quantities below are defined. For every n € N, let G, C F be a sub-
sigma algebra, let A, = (aij,n)?,jzl be a real random symmetric n X n matrizc
that is G, measurable and such that A,(w) # 0, Yw € Q. Let Zy n, ..., Znn be
real random variables that are conditionally independent, given G, and such that
Jor i <n, almost surely, B[Z; ,1G,] = 0, E[Z},|Gn] = 1 and E[|Z; »|*|G,] < oco.
Moreover, assume that, as n — oo,
©.p.

1AL 4

max; (A2);; (

2 .
max E[Z;n|gn]> 2, 0,

[4all% \u= n—o0
" a? E[Z%,Gn] ;
and 9.0 o L 0.
L e
Then, for Z, = (Z1ny- -, Znn), we have
Z' A Z, —E[Z' A, Z,.1G,, w

V2| Aullr e

Remark 6.2. The proof of Lemma 6.1 essentially follows the rationale of
Bhansali, Giraitis and Kokoszka [5] with the obvious modification that all the
moments of Z; , have to be replaced by conditional moments. Note that if the
Ziny -+, Znn are the first n elements of a sequence of i.i.d. random variables
and A, is non-random, as in Bhansali, Giraitis and Kokoszka [5], then the as-
sumptions of Lemma 6.1 reduce to those imposed by Theorem 2.1(iii) in that
reference, except for the additional requirement that E[Z}{] < oo, as needed here.
By the method of Bhansali, Giraitis and Kokoszka [5] we can not get rid of this
additional requirement because their truncation argument does not apply in the
case of dependence between A,, and Z,.

With Lemma 6.1 at hand, we can proof the asymptotic normality of
Qn = 3;1/2(5/071)1Mn(5/0n)-

Under the linear model (2.1), the components €1, ...,&, of € are conditionally
independent given the design X, with Elg;/0,|X] = 0, E[(g;/0,)?|X] = 1 and
E[(g:/0n)* X] < 0o, almost surely, in view of Assumption (A2). Moreover, the
random matrix M, = (Py — Py,)/q— (I, — Pu)/(n—p—1) is 0(X)-measurable
and satisfies trace(M,,) = 0 and

|My||% = trace(M7) = trace([(Py — Pv,)/q” + (In — Pv)/(n —p — 1)%])
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=1/g+1/(n—p—1),
with probability one, in view of (A1).(b). Also, || M,||% > 1/(n—p—1) > 1/n, ev-
erywhere, because trace(Py) < p+1. With this and in view of E[e' M| X] /o2 =
trace(M,,) = 0, almost surely, we see that
_1/28 Mne _ (e/0n)' Mn(e/om) — El(e/0n) Mn(e/0n) | X]
QTL = Sn 2 = b
On \/§||M7L||F
at least on a set of probability one, and it remains to verify the convergence
conditions of Lemma 6.1. For the first one, note that ||M,|% < (1/¢+1/(n —
p —1))? and hence, almost surely,
1Mo % 1 q max;—1,....n B[(g;/0n)!| X
El(e,;/o,)41X] < (1 oo .
A i e G e .
But clearly max; E[(¢;/0.)"|X]/q < Op(1) max; E[(£;/0,)"[2;]/q = op(q™'/?)
under Assumption (A2). Therefore, the upper bound in the previous display
converges to zero in probability. For the second condition, since the diagonal

entries of a projection matrix are between 0 and 1, we see that (M?2),; < 1/¢*+
1/(n —p—1)2, and thus
2 2
R (max Bile;/0,)"1])
Lo g/ mp 1P (s B o))
T l4g/n—p-1) i q ’
which converges to zero in probability under Assumption (A2) and ¢, — oc.

Establishing the validity of the last condition is slightly more involved. Since
| M,,||% is of order 1/q, we have to show that

03 w2 El(e /o) |X] < (maxer)'e Y mE(E /)1 X] = op (1),
j=1 j=1

where M,, = (m;;);_;. By Assumption (A2), (max; e;)* = Op(1). Now, take
expectation and use Holder’s inequality with a,b > 1 such that 1/a +1/b=1
to obtain

E (q> m2E[E /o) |X]

< (E[El(Er /o) ea)")" 0 Y (Elm3)" (6.5)

Now choose b = 1+, and invoke Assumption (A2) to show that the b-th moment
of the conditional expectation in (6.8) is O(1). To establish that

n .
) (EmHDYe = 0, (6.9)
j=1

we distinguish between the cases ps > 0 and py = 0.
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If po > 0, we write the diagonal elements of M, = (Py — Py,)/q — (I, —
Py)/(n—p—1) as

(Pu)js — (Puy)jj 1= (Pu)jj
q n—p—1
(Pv)js — B + P52 — (Puy)yg L Bolsi = B

mjj =
n
q n—p-—1

and note that (Py);; — (p+1)/n € [-1,1] and (Py,);; — (p+1—¢)/n € [-1,1],
in order to get the bound

(]E[mZa])l/a

Jj

-5 ({2 (3ormm) -
<p+iq - (PUl)jj) Z}?a )1/a
O N A
() e[

where we have used the inequality (c + d)?* < 22971(¢2® + d%9) for ¢,d € R.
Hence, if we can show that the (Py);;, for j = 1,...,n, and also the (Py,);;,
for j =1,...,n, are identically distributed, then

)

IN

_|_

nZ(E[mmz])l/a < 2(20,71)/11()(1)><

Jj

< (E [I(Po)n = (4 1)/n*] +E [|(Po)u = 0+ 1= 9)/nf]) ",

because n/q — 1/p2. Since a = (1 + k)/k is fixed, it then remains to show that
|(Pu)ii—(+1)/n| — 0and |(Py,)11 — (p+1—¢q)/n| — 0, in probability. The
desired properties of the diagonal entries of Py and Py, are now established by
the following lemma, which applies under the Assumptions (Al).(a,b,d), and
whose proof is deferred to Appendix B.

Lemma 6.3. For every n € N, let £1,...,%n,n be i.i.d. random p,-vectors
that satisfy Assumptions (A1).(a,b) with u, € RP~ and positive definite covari-
ance matriz ¥,,. Moreover, suppose that the random vector z1 , from Assump-
tion (A1).(a) also satisfies Var[z] ,, Myz1.n] = O(trace(M?2))+(trace(M,))*o(1),
as n — oo, for every symmetric my X m, matric M,. Let R, be a non-
random (pn + 1) X ky, matriz such that rank R, = k, < p, + 1 and define
Xn = [T1n, -y Tnn) and Wy, = 1, Xp)Ry, where v = (1,...,1) € R™. Fur-
thermore, let hy p, ..., hy n denote the diagonal entries of the projection matriz
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Py, . Then, the (hjn)j—, are exchangeable random variables and

|hin — kn/n| —— 0,

n—oo
in probability.
Remark 6.4. Note that for R, = I, 11, the hq,...,hy, in Lemma 6.3 are the

leverage values of the regression with design matrix U = [¢, X].

Altogether, we see that in the case pa > 0, (6.9) holds and the weak conver-

gence
/
90 Mpe

Qn = s, ?=—— —= N(0,1),
(o4 n—oo
follows, as required in (6.6).
To treat the case pa = 0, we recall from Section 6.1 that Py — Py, =

Py =UU'U)" RY(Ro(U'U)LRy) L Ro(U'U)~tU’, almost surely, by Assump-
tion (A1).(b), and write the diagonal elements of M,, = Py /q— (I, — Py)/(n—
p — 1) as before as

(Pw)is = (Pu)ij = ne

mjj =

q n—p—1
Note that the (Pw);; = (1,x;)(U’U)*lR{,(RO(U’U)*IR{))*IRO(U’U)*I(1,ac;.)’,
for j =1,...,n, are exchangeable random variables, because x1, ..., z, areii.d.
and U'U = 377 (1,2%)(1,2%) is a function in @1, ..., x, that is invariant under

permutations of its arguments. Therefore,

1/a
n P . q 2a
_qZ]E(KW)]J iy 1 )
i=1 i=1 1 n-p-l

N r——E

By boundedness of the diagonal entries of a projection matrix, it remains to
show that H,, := /n/q((Pw)11 — ¢/n) — 0, in probability, as n — oco. By
exchangeability, and Assumption (Al).(b), it follows that ¢ = trace(Pw) =
E[trace(Pw )] = Z?:l E[(Pw);;] = nE[(Pw)11), almost surely, and thus E[H,,] =
0. Moreover, H, > —+/q/n, and for ¢ > 0, 0 = E[H,] > E[H,1{p,>] —/q/n,
which implies that for n large (such that \/q/n < ¢), eP(|H,| > ¢) < eP(H, >
e)+eP(H, < —¢) <E[Hn1¢p,>3]+0 < \/q/n. This establishes the asymptotic
normality required in (6.6) also in the case pa = 0.

n

g (E[m3)"/

A\

6.3. Asymptotic x?-distribution of the noise term

In this section we show that under the assumptions of Theorem 3.1, (6.6) holds
with £ = (2¢)~'/2x2 — \/q/2. First note that

! ! A2

_ 1pf Mgy pePwe 0,
Qn = Sp P} = Sp 2 —Sn 2"
Un Unq On
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By Lemma C.1, we have s, JL2 62 /a2 — \/q/2, in probability. Since we do not
test the intercept parameter «, we can write Ry = [0, Tp], for some ¢ X p matrix
Ty, and

1 0---0

Ry = : T

0
for some (p — ¢) X p matrix Ty, such that T := [T}, T{]’ is p x p orthogonal.
If ¢ = p, then Ty = I, and R; = (1,0,...,0). With this notation, we get
U=[,X], Uy =UR)y = XT} and U; = UR} = [, XT{]. From this we see
that the distribution of W = (I, — Py, )Uo = (In — P (1, —p)x1)) X T4 does
not depend on p, and without loss of generality we may assume that y = 0.
Moreover, by standard properties of orthogonal projections,

Py = Py — Py, = Px+ Pu1,-pry) — (PXT{ + P(In—PXTI/)L)
= Pxp — Px7; + P, —px) — P(I,,_*PXTII)L

= P, —pyrpxry + Plr—px) = Pr—Pygy e

Now, abbreviate A = (I, — Px7;)XTy and B = P;, _py). — P1, - Py ). and
1
note that P4 is uniformly distributed on the Grassmann manifold of n x n

projection matrices of rank ¢, because for an n x n orthogonal matrix O we
have OX = (OXS~ Y222 ~ X, OP40O' = OA(A'O'OA)tA’O', and

OA = (I, - OXT{(h' X'O'OXT)) 'T. X'O"OXT}
~ (I, — XT{(Ty X'XT)'Ty X")XT}, = A.

Moreover, trace(B) = 0, almost surely, and thus E[¢’Be/02|X] = 0 and by
standard calculations using independence (cf. the proof of Lemma C.1) and the
fact that Py = Pxq = Pixt; x1))5

Var[e’ Be /o2 | X| = 2trace(B?) + i(E[(si/Jn)ﬂ —3)B2
< (24 E[(e1/0,)"])trace(B?)
. _ L/(In—Px)(I —PXT/)LL/(I _PXT’)(I’H,_PX)L
- ouf: Uy~ Px)u (T — Py )

- ow (iR

In view of Lemma C.7 with = 0 and using the first two moments of the x?2
distribution, we see that the expressions ¢'(I, — Px7/)t/n and (I, — Px1y)t/n
both converge to 1 — pp, in probability, and thus the whole expression on the
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last line of the previous display converges to zero in probability. Altogether, we
see that

'P
Qn = (sng®) V=355 = Va2 + (1

Because P4 is uniformly distributed on the Grassmann manifold, it can be
stochastically represented as Py ~ CC’, where C is a random n X ¢ matrix that
is uniformly distributed on the Stiefel manifold of order n x g, i.e., V' has or-
thonormal columns and its distribution is both left and right invariant under the
action of the appropriate orthogonal group. Since C' and € are independent, the
so called Diaconis-Freedman effect as described in Diimbgen and Conte-Zerial
[9, Theorem 2.1] entails that the conditional distribution of C’¢/c,, given C,
converges weakly in probability to a ¢-dimensional standard normal distribu-
tion because ||e/0,||?/n — 1 in probability and &’z/(no2) — 0 in probability,
where £ is an independent copy of €. Weak convergence in probability implies
convergence of the conditional characteristic functions of C’¢/o,, given C, in
probability, which, by boundedness, implies convergence of the unconditional
characteristic functions. Consequently, we obtain the weak convergence

Qn ~ (SnQ) 1/2|C/E/Jn|‘2 Va/2+ op(1 #) (29)~ 1/2X3 q/2.

This establishes (6.6) with £ as claimed.

6.4. Asymptotic behavior of the non-centrality term

Finally, we have to establish the convergence in (6.7) in the three cases of
Theorem 2.1(i), 2.1(ii) and 2.1(iii) as well as under the assumptions of The-
orem 3.1. We begin by a representation of sgl/2nvn/q that pertains to all of
these cases. In this preliminary consideration we only use Assumpitons (A1).(a)
and (b) which are assumed to hold in each of the cases under investigation.
Recall the conventions and definitions of Section 6.1, in particular, U = [¢, X],
T = Ry, R, Uy =URy, Uy =UR}, W = (I, — Py,)Uy, 6, = (Roy — 10)/0n,
A’y = 5;(R(]S 1RO) 1677 and Vn = (5;W/W(5,Y/TL = (5;(R0(U’U/n)_1R6)_157.
Write ji, = S0, ;/n = X't/n and %, = X'X/n — fi,ji, = X' (I, — P,)X/n
and partition the (p + 1) X (p + 1) orthogonal matrix T as

_(Ro\ _ (to To
r=(m)=(2 7).

where to € R? and T, € R?7*P. Since

1 ~
_ 1 il L+ i, 5, T Ve
/ 1 _ . n — n n Hn ‘'n=n
(LU/m) _<ﬂn En+ﬂnﬂ;> ( =3 i )
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almost surely, by (Al).(b), we have

\/g(an)_lﬂx/ﬁ%(lféUo/n)% ifg=p+1,
3;1/2nvn/q = \/g(an)il/z\/ﬁafyU(l)(In 7PU1)U05’y/n> lfq Spa
\/g(an)‘l/Q\/ﬁd’v(TOingé)—léw if to = 0.
(6.10)

Notice that the last two cases are not mutually exclusive, but the case ty) = 0 is
a sub-case of the case ¢ < p. The representation of V,, in the case t;5 = 0 will
come in handy. With the notation

O— {Qoo Q01} _ {ROSRB RoSR}

Qo Q| |RiSR, RiSR,

S = (i Efuu') =E [(;) (1 :17’1)] = E[U'U/n],

under (A1).(a), and by the simple block matrix inversion argument RgS~!R{, =
[1,,0(TST") " [1,,0]" = (Qoo — Q01027;'Q10) ™, involving the orthogonality of
T, we analogously get

} =TS8T', where

(S,IYQO()(S,),, ifg=p+1,
A»y = 5;(900 - 90191_11910)57, if q S P, (611)
5;(T0271Té)7157, if to = 0.

6.4.1. The case of Theorem 2.1(i)

Under the assumptions of Theorem 2.1(i), choose b,, as in the theorem, which can
be written as b, = /(1—(p+1)/n)(1-(p+1)/n+q/n)/(2q/n) =

n/q(8,q)"/?(n — p — 1+ q)/n. To establish the conw/ergence in (6.7) in the
~1/2

case of ¢ = p + 1, first note that now b, = v/n/q(s,9) , and consider

5.2V /g — Vb, = bu/ndl (UsUo/n — Qo) b, (6.12)
which has mean zero. For the variance, we observe that Var[y/nd’, (UsUo/n)d,] =
n~t 37 Var(d) Ro(1, ) (1, ) Rod, | < E[|0) Ro(1,24)'|*] = O(1d} Q000 [*) =
O(A?), in view of Lemma C.3(i) and Assumption (A1).(d), and b,A, =
O(1)\/n/qA, = o(1), by assumption. This clearly covers also the case Ry =
Ipt1. If Ry = [0,1)], then ¢ty = 0, Ty = Ip,, ¢ = p and the difference in (6.7) reads

_ n _ ~ n—1
sn1/2nvn/q —VnlAyb, = \/g(an) 1/2\/55; (En -3 - > 0ry.

The mean of this expression is, again, equal to zero. For its variance we find that
Var[/nd!, 3,0,] = O(|8}, 24, |?), in view of Lemma C.3(ii) together with Assump-

tion (A1).(d), and v/n/q(snq)~'/28,%6, = O(1)y/n/qA, — 0, by assumption.
This finishes the proof of Theorem 2.1(i).
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6.4.2. The case of Theorem 2.1(ii)

For part (ii) we only need to consider the case where ¢ < p, as the case ¢ = p+1
has already been treated above (simply restrict to the subsequence n’ such that
¢n < pnr). We establish the convergence in (6.7) for b, = v/n/q(s,q)~'/? rather
than b,, as in the Theorem. It should be clear, however, that this is no restriction.
[Indeed, if (6.7) holds with b, = \/n/q(s,q)""/? and b, = by(n —p — 1+ ¢q)/n
is as in the theorem, then /A, b, — /1A, b, = (b, —b,)v/nA, = (p+1)/n—
q/n)bp/nO(\/q/n), by the additional assumption of Theorem 2.1(ii). Since in
the present case (p — q)/n — 0, the previous expression converges to zero as
n — o00.] Now, since ¢ < p, the quantity of interest reads

s, 20V /g — Vb, = bu/ndl, (UUs/n — Qo) Oy

Uity (UUL T UL,
+ byv/nd, ((2019;11910— Onl< 1nl> L 0)57. (6.13)

n

The first term on the right-hand-side has already been studied in (6.12), and
the same argument applies, except that now (5’790067 # A,, in general. But
bnd’, Q000 = O(1)/n/qd, RoSRy6, = O(n=/?) = 0 by the additional assump-
tion of Theorem 2.1(ii). For the remaining term in (6.13), as in WC, we begin
by approximating U;U; /n by Q17. This can only be successful because here we
are dealing with a sample covariance matrix of dimension p+ 1 — ¢, based on n
independent observations and we assume that (p+1—¢)/n — 0. We abbreviate

Uy = Uoanl/ *and U = Ulell/ * and consider the absolute difference

Uiy, (ULUN\ T UUy  UUL . ULU,
- Qn Oy

n

n n n

n

-~ —1
U{Ul

S —I,q_
( n p+l—q

Now, Lemma C.3(iii) with &k, = p + 1 — ¢ shows that ||(~]{Ul/n —Lti-4lls —
0 in probability, since k,/n — 0, and it also establishes the boundedness
in probability of ||U U} /n||s||UiUs/nls. The assumptions of this lemma are
clearly satisfied under (Al).(a,c,d). Now the convergence in spectral norm im-
plies the convergence of the extreme eigenvalues of U{Ul /m to 1, and thus,
also the extreme eigenvalues of the inverse converge to 1, which means that
[(U{U1/n) =" = Iy41-4]ls — 0, in probability. Since b,\/nd,Qoody = O(1), by
the additional assumption of Theorem 2.1(ii), the upper bound in (6.14) con-
verges to zero in probability. Thus, we have shown that we can replace U{U; /n
in (6.13) by Q11, without changing the limit.

oo o\ -1 -
DU U U0
= \/5599(1)(/)2 (;11 (1—1> —Ipt1-4 1709(1)(/)257

0,0

IN

V1l Qo0 - (6.14)
S

0406
n

S

S
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To finish part (ii) it remains to show that b, B,, converges to zero in proba-
bility, where

UUy .1 UU, _
By, :=/ndl, [ 31 05 2 — 06105 o Oy
To evaluate its expectation, write
1 . / A / r—1 AV / / —1
By=— > Vbl [Ro(1, ) (1, 25) RiQy Ry (1,25) (1, 2) Ry — Qo1 Q7 Qo) 5.

ij=1
Since E[Ry(1,2}) (1,x)Ri] = RoSR}] = Qo1, all summands in E[B,,] with dis-

tinct indices ¢ # j disappear. Using parts (i) and (iv) of Lemma C.3, which
apply in view of Assumptions (Al).(a,d), we arrive at

1 -
BBl = |~ VA8, E[Ro(1, 24) (L2} Ry Q) R (L, 21) (1,2 Rglo,

1
— ~ /8 Q01! o,

<02 JE(8 Ro (L, 24 Y B (L, 24) Ry Qi Ra (L 24 ) )

+ 0726 Q0197 Q106
=112, [O(18, RoS Ry, [)O((p + 1 = 0)?) + 128, 020105 Q106
= O(Vnd, Qo0 (p+ 1 — q)/n) +n~ /26, Q0197 Q6.

After multiplying by b,,, the upper bound still converges to zero, because, first,
bny/nd.Qoody = O(1) and (p + 1 — q)/n — 0, by the additional assumptions
of Theorem 2.1(ii), and because bnn’l/QényOlellQloéy < bnn’l/Qéngoév =
O(n~1), where the inequality holds in view of the second case in (6.11).

In order to show that the distribution of B, also concentrates around its
mean, we make use of the Efron-Stein inequality.!! We use the abbreviations
D = 6/, Q01077 Q1065, Li = &, Ro(1,2})', Qij = (1, z})RiQy1' R1(1,2) and de-
fine the functions g : RP*" — R and g5 : RP*(»~1) 5 R, for k = 1,...,n, by
g(x1,. .. x,) =n"3/? szzl L;Qi;L; —/nD = B,, and

n
(1, ey T 1y Thg 1y ey ) =12 Z L;Q;;Lj —\/nD.
=
il Ak

By the Efron-Stein inequality [18, Theorem 9],

Var[B,] <3 El(g(x1, .., 2n) = ge(@1, -, Tk 1, Ths1, -, 20))?). (6.15)
k=1

1 An explicit argument for the concentration aspect of By, is missing in WC.
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Now, for k € {1,...,n}, g(z1,...,2,) can be expressed as

N LiQuLy + Y LiQikLi + Y IkQuiLi + LiQuiLy | —v/nD.
i,j=1 i=1 i=1
i;élg,j;ék 1#£k i#k
Using the fact that Q;; = ;j = Qji, the differences g — g5 in (6.15), are equal
to

n
n=3/? QZLiQikLk 4+ LpQrrLly| . (6.16)
=
We need to bound the expectation of the squared expression. To this end, we
calculate the expectation of L;Q;rLiL;Q 1L for arbitrary indices 1,7, k, as
well as in the special case where i # k, j # k and i # j. Observe that
Qi is the inner product of Qfll/QRl(l,xg)' and Q;ll/le(Lx;C)’ and there-
fore, by Cauchy-Schwarz inequalities in both Euclidean and L, space, satisfies
E[|Qu Y] < B[ 2 Ra (L, 20) |95, R (1, 24)|[1] < BJ|94; > Ra (1, 24)|¥] =
E[Q%,]. Moreover, parts (i) and (v) of Lemma C.3, whose assumptions are im-
plied by the conditions (A1).(a,d,e), establish the facts E[L}] = O(]d/, Q000 ?),
E[L}] = O(|6,Q006,]*) and E[Q},] = O(|p + 1 — ¢|*), provided that at least
one of the assumptions (a) or (b) of Lemma C.3(v) holds. But this follows from
Lemma C.4, because if tg = 0, then from the representations of V,, and A, in
(6.10) and (6.11), we see that the distribution of the quantity of interest does
not depend on p and we may restrict to u = 0, whereas, if ty # 0, Lemma C.4
shows that T has full rank.'? With this, in general, we obtain

[EL:Qir L LiQir i)l = |BIL:L; LEQuQsn]| < \/EILZLZLAIE[Q,Q3]
< (B[ (B[QA) Y (BIQ4)* < (BILY)Y2(E[QY)
= 0(|8/,Q006,*) O(lp + 1 — q*) = O(qlp + 1 — ¢|*/n?).

Ifi#k, j # k and i # j, using the abbreviations v = R4, and M = R}Q;;' Ry,
we get the smaller bound

E[LiQir L L;QjrLi]| = [E[E[LiQir|wr, 25]1L;Qjx Li]]
= [E[v'SM (1, 2},)E[L; Qjx|xx] L7]| = [E[(v'SM (1, 27)")* LF]|
< Bl SM (L) E[LE] = O/ SMSMS2)0(1, 2000, )
= 0(8, 90191, ©106,)O0(8, Q006,) < O(|8., Q000+ |%) = O(q/n?),

121t should be noted that the case tg = 0 corresponds to a null-hypothesis that does not
involve a restriction on the intercept parameter «, i.e., Hy : Roy = 79 can be expressed as
Ho : To8 = 7o, in this case.
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where we have used Lemma C.3 and 5990191_11910% < 6/ Qpod, again. It is
now easy to bound the expectations in (6.15). When squaring the expression in
(6.16) we first note the leading factor n~3. Next, we expand the square of the
bracket term in (6.16) and take expectation. From the previous considerations
we see that those summands in the resulting sum involving L;Qyx Ly, are of order
O(qlp + 1 — ¢q|?/n?), and there are O(n) of them. Together with the leading
factor n=3 and the summation in (6.15) we arrive at a total contribution of
O(qlp+1—q|?/n?) from all those summands involving Ly QL. This expression
has to be multiplied by b2 = O(n/q) to yield O(|p + 1 — ¢|*/n?) = o(1). The
remaining terms are of the form |E[L;Q;r Ly L;Q;rLi]| with i # k and j # k.
Of those, there are a number of O(n) summands where ¢ = j, but they are
again of order O(g|p + 1 — q|?/n?) and therefore, as in the case before, their
total contribution to (6.15) is asymptotically negligible, even after multiplying
by b2. Finally, there is a number of O(n?) remaining summands as above, but
with i # k, j # k and i # j. Therefore, by the refined bound above, they are of
order O(q/n?), so that their total contribution to the variance bound in (6.15)
is O(q/n?). Together with the factor b2 we arrive at an additional term of order
O(1/n) = o(1). Hence, we see that the variance of b, B,, goes to zero as n — o0
and the proof of Theorem 2.1(ii) is finished.

6.4.3. The cases of Theorem 2.1(iii) and Theorem 3.1

In this section we establish (6.7) under the assumptions that the design vectors
Z1,y...,Tn are Gaussian, p,/n — p1 € [0,1), ¢./n — pa € [0,p1] (cf. the
beginning of Section 6) and A, = o(g,/n).

We restrict to ¢ < p, because this is assumed in Theorem 3.1 and the case
g =p+ 1 of Theorem 2.1(iii) has already been treated above in Section 6.4.1,
in much higher generality. We use different arguments for the two cases tg = 0
and tg # 0. If ¢g = 0, then, by (6.10) and (6.11), we see that the quantity of
interest is given by

S;ann/q —V/nlA,b,

= \/g(an)‘”Q\/ﬁ ((s;(Toingg)-la7 8 (T, et D e +q) .

n

By Lemma C.5, this expression has mean zero and variance equal to

n _ _ 2m—(p+1)+¢ n
L gy DD Bazon) - o)

For the case ty # 0 we recall T = (R, R})" and introduce the matrix X7 by

N v (0 0\, (ToST, ToST)\ (S0 Sor
ET_V”[T(L“)]_TQ E)T _(leT(; et ) \2w o)

and note that by Lemma C.4 the sub matrix ¥1; = Var[R;(1,2])’] of order
(p+1—q) is regular. In the present case the difference in (6.7) is given by

571V, /q — VA, b,
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- (an)‘m\/gx (6.17)

U1, — Py,)U, B n—(p+1)+
Vnd,, <—O( - )0 —(900—9019111910)—(pn ) q) Oy

The distribution of this quantity is slightly more complicated than that of
the corresponding object in the case ty = 0, because now we have to deal
with non-centrality issues due to p # 0. We take a closer look at the ran-
dom part. The joint distribution of the first row of Uy and the first row of
Uy is T(1,z}) ~ N(T(,u),2r). Therefore, the conditional distribution of
Ro(1,27)" given Ry(1,x}) is given by N (i + Zo1X;1 Ri(1,2)), Xoo.1), where
[1, = Ro(l, ,U,/)/ - EOlEilRl(L M/)/ and 200.1 = EOO - 2012;11210. Hence, condi-
tional on Uy, the rows of Uy.; := Uy — Ulz;llzm are i.i.d. N'(fi,3g0.1) and since
this distribution is free of Uy, this also means that U; and Uy.; are indepen-
dent. Also, we clearly have U}(I,, — Py, )Uo = Ul1(In — Py,)Up1. So if V is a
random n x g matrix independent of U, whose rows are i.i.d. N (0, Xo.1), then
U} (I, — Py, )Up has the same distribution as (V + ¢i’)' (I, — Py,)(V + i) =
V'(I,, — Py,)V + @/ (I, — Py, )V +V'(I, — Py, 't + ' (I, — Py, )e. For the
Schur complement of 217 in € we use the representation given by Lemma C.6.
Plugging this back into (6.17) and removing the leading (s,¢)~*/? term that
converges to a positive constant, it remains to study the limiting behavior of

"I, — P, - 1
"I, — P,
+2ﬁ59ﬁw (6.19)
Y 2 / _ —
L 00) ¢E(ML1 Puyl4v)  m _l>n (+1)+q
1+v n n—(p+1)+gq n
(6.20)

multiplied by \/n/q, where v = (1,/)R} S Ri(1, 1) is defined as in Lem-
ma C.6. From that lemma we also see that & oo.10, + (8,)*/(1 + v) =
8, Q00.16y = A, = o(g/n). Since Xgg.1 is the Schur complement of the posi-
tive definite matrix ¥1; within the positive semidefinite matrix X7, it follows
that ¥gp.1 is itself positive semidefinite (consider the minimizer of the quadratic
form u — (v/,u/) S (v’ ') in those variables u € RPT1~ corresponding to the
block ¥11). Consequently, 07 ¥00.10, > 0 and both d7,¥g0.16, and (5;/1)2/(1 +v)
are bounded by &’ €Q9.10, = A, = o(g/n). Now, we first show that the quantity
in (6.20) converges to zero in probability. By Lemma C.7 with A\, = nv and
k=p+1—q, we have

(I, — Py, )e(1+v) n B
ﬁ( n n—(p+1)+q 1>

_ (8=t +q
=i (g 1)
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Vvn(E/(n—(p+1)+q9-1)+vnl-(+0/(n(1+v)))
€+ 0/ (n(1+v)) ’
2

n—(p+1)+¢ ndependent of ¢ ~ Xpy1_q(nv). The term in the denom-
inator has mean (n+nv)/(n(1+v)) = 1 and variance 2(n+2nv)/(n?(1+v)?) =
O(1/n), by independence, and thus, converges to 1 in probability. From the form
of these moments we also conclude that the term /n (1 — (£ +¢)/(n(1+v)))
is Op(1). Moreover, it is easy to see that also vn (§/(n—(p+1)+q)—1) is
Op(1), which entails that the entire expression in the previous display is of or-
der Op(1), and hence, the expression in (6.20) converges to zero in probability
even after multiplying by 1/n/q. Next, the mixed term in (6.19) is easily seen to
have conditional distribution N(0, 4., ¥00.10,¢' (I, — Py, )e(0, )% /n) given Uy.
By the previous considerations, the conditional variance is equal to

where & ~ x

. (I — Py (14 v
A8, So0.46,1/ (I, — Pu @i = o(a2) S ZL0MIEY g n2)

n

which converges to zero in probability, even after multiplying by n/q, and this
implies convergence to zero of the scaled mixed term itself. Finally, for the ex-
pression in (6.18), we note that conditional on Uy, V'(I,, — Py, )V has a Wishart
distribution with scale matrix ¥go.1 and n—(p+1)+¢q degrees of freedom. There-
fore, (6.18) has mean zero and 02, V' (I,,— Py, )V, ~ 6;200.157xi7(p+1)+q [cf. 19,
Theorem 3.4.2], which entails that the variance of (6.18), multiplied by n/q, is
(n/q)(8.,%0010,)*2(n— (p+1) +q) /n = o(q/n), since &/, X010, < Ay = o(q/n).
This finishes the proofs of Theorem 2.1 and Theorem 3.1. O

Appendix A: Auxiliary results of Section 4

Lemma A.1. Form € N, let Z = (Z1,...,Zm)" be a spherically symmetric
random vector in R™ such that E[ZZ'] = Iy, let V ~ N(0,1,,) and let zq, . .., 2y,
be i.1.d. copies of Z. For p < m, let ' be a pxm matriz of full rank p, let yp € RP
and define x; = Tz; + p.

(i) Fixr € N. If E[|| Z]|*"] < oo and for every choice of non-negative integers
C; with 3750, 05 < 2r, we have E[[]}L, ij] =15, E[ij], then E[Z21] =
E[VZ] and E[|| Z||*] = E[||V||*] for every Il =1,...,r.13

(i) If 2 < p < n—2 and Z also satisfies P(||Z]] = 0) = 0, then the ran-
dom vectors x1, ..., T, satisfy Assumptions (A1).(a,b). Moreover, if also
E[|1Z]"] < oo, BlIZI/EIVI] — 1 and ENZIF)/ENVIE] = O(1), as
m — oo, then also Assumptions (A1).(d,e) hold.

(iii) If Z follows the uniform distribution on the ball (of appropriate radius
vVm+2, to ensure E[ZZ'] = I;,) and 2 < p < n — 2, then the x;, for
i=1,...,n, satisfy the full Assumption (A1), but not Assumption (C1).

13Due to symmetry, we always have E[Z!] = 0 = E[V}] if | is odd and the former moment
exists.
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Proof. We make use of the well known fact that any spherical distribution can be
represented as Z = b||Z||, where b and || Z|| are independent, and b is uniformly
distributed on the unit m-sphere S™~1 [cf. §].

For part (i), set £ = Z;nzl £; and let e; € R™ denote the i-th element of the
standard basis in R™ and note that

E\[]z7| =E|[](;2)%| =E|12]° T (¢;b)"
j=1 j=1 j=1
=E[|1Z|']E [[](e)b)"

j=1

Of course, the same argument can be carried through for the spherical vector
V ~ N(0,1,,), so that we have

E[[I 2] E[)21]
s[mmve] BV

(A.1)

provided that all the ¢; are even, so that E[[]/" Vi

i=1V;’] # 0. Now choose the
£; to be either equal to 2 or 0, such that ¢ is any even number from 2 to 2r.
Therefore, since E[Z?] = 1 = E[V?] and by our factorization assumption, the
left-hand-side of (A.1) is equal to one, so that we have established the equality
of even moments of || Z|| and ||V||. To see that also the even moments of Z; and
V1 coincide, simply choose ¢; = ¢ = 21, for some | € {1,...,k} and ¢; = 0, if
JAL
For part (ii), to establish Assumption (Al).(b), first note that the column
span of U_1 = [, [22,...,2,)' T + t’] does not depend on p € RP, where ¢ =
(1,...,1) € R*"1. So we may assume without restriction that x4 = 0. Moreover,
[, [22, .., 2,)'T'] and

1 0
O

also have the same column span, such that it suffices to determine the rank of
[t,[Zo, ..., &,]'], where Z; = (I'T)~1/2T2; is spherically symmetric with P(||;]| =
0) = 0. Next, we claim that the matrix My, = [Z2,...,Zx+1]" has full rank p,
almost surely, provided that k > p. To see this, simply write My = D1D5 1A,
almost surely, where D; is k x k diagonal with entries ||Z2,..., |Zx+1ll, D2
is k x k diagonal with i.i.d. x, entries and A is k x p and has i.i.d. N(0,1)
entries. Now it is easy to see that D; Dy 1'is almost surely of full rank, and
thus, P(rank(My) = p) = P(det(A’A) # 0) = 1, where the last equality follows
from the well known fact that the zero-set of a non-constant polynomial is a
Lebesgue null-set. It remains to show that the event A = {¢ € span(M,,—1)}
has probability zero. Define B = {rank(M,) = p}, 1, = (1,...,1)’ € R* and the
function v : RP*P — R? by v(M) = M 14, if det(M) # 0, and v(M) = 0, else.
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Note that P(B) = 1 and v is Borel measurable. Since p + 2 < n, we see that
AN B is a subset of the event where both v, = Myv(M,) and 1 = 7, yv(M,),
the probability of which is clearly bounded by

P(1= i;sz(Mp)) =P (Hip+2||_l = (j;;+2/”9~cp+2”)v(Mp)» [Zptall # 0)
=E [P (|Zp12ll7" = @ppo/1Zpr2l)o(Mp), [ Epsall # 0| My, [|Zp12]l)] -

But the conditional probability in the previous display is equal to zero, al-
most surely, because v(Mp), Tpt2/||Zp+2|l and ||Zp42| are independent and
Zp+2/||Zp+2| is uniformly distributed on the unit sphere in R?, and therefore its
inner product with any fixed vector has a Lebesgue density on R provided that
p > 2. For Assumptions (A1).(d,e), recall the moments of the y2-distribution
with m-degrees of freedom E[||V||?*] = H;:é (m+2j) [cf. 15]. The same reason-
ing as in part (i) yields

E[||Z]°]

Elle' 2P = Bl EIZ1) = Frps)

E[lVV[F] = 0(1),

uniformly in v € S™~!. Similarly, for a symmetric matrix M € R™*™

E[l|lZ]"]
E[[V4]

and one easily calculates E[(V/MV)?] = (trace(M))? + 2trace(M?). Therefore,

E[(Z'M2)*) = E[(b Mb)*|E[| Z||*] = E[(V'MV)?],

4 4
Var[Z'M Z] = (trace(M))? (EH:?HA — 1) + QEH:‘Z/HA trace(M?).

Finally, for a projection matrix P € R™*™ V'PV follows a y>2-distribution
with rank P = || P||% degrees of freedom, and thus

g1 1/4
(ElzP2y)" = (o ) 0Py

1/4

81\ 1/4 3
- (E”‘Z/|I|I8D 1TaPI% + 24) =O(|P||%).
j=0

To establish part (iii), we first verify the conditions of part (ii). The finiteness
of the 8-th moment of the radial component and P(|| Z|| = 0) = 0 are immediate.
It is also elementary to calculate the higher non-central moments E[||Z||?*] =
(m~+2)k¥m/(m+2k). [Use, for example, the formula for the volume of the m-ball
of radius » > 0 to obtain P(||Z]| < z) = (z/v/m +2)™, for € [0,v/m + 2].]
Comparing this to the moments of the x?, distribution E[||V[|?¥] = Hf;é (m+2j)
for k = 2,4, we see that for m — oo the moment ratios behave as desired.
Therefore, Assumptions (A1).(a,b,d,e) hold in this case. Finally, the validity of
Assumption (Al).(c) follows from Srivastava and Vershynin [23, Section 1.4].
But Condition (C1) can not be satisfied in view of part (i) (with r = 4) and the
fact that E[|| Z||] # E[||[V]|4]. O
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Lemma A.2. Let Z = (Zy,...,Zy)" be a random m-vector with E[Z] = 0 and
E[ZZ') = I, and let z1,. .., 2, be i.i.d. copies of Z. Forp <m, letT be a pxm
matrix of full rank p, let p € RP and define x; = I'z; + p.

(i) If Z has independent components, whose 8-th moments are uniformly
bounded, then the x; satisfy Assumptions (A1).(a,c,d,e).

(i) If z1,...,2, are as in Condition (C1) and, in addition, the components
of Z have 8-th moments that are uniformly bounded, then the x; satisfy
Assumptions (A1).(a,d,e).

Proof. To establish part (i), we use the results of Whittle [28]. Theorem 2 in
that reference shows that for a unit vector v = (vy,...,vy,) € R™,

4

E[lo'z]) < C Zv EIZ )| < CmaxE[|Z]*),
J

for some numerical constant C' > 0, and thus, Lg = O(1) as m — oo, in view
of uniform boundedness of E[|Z;|®]. Next, for a symmetric matrix M € R™*™,
the same theorem yields

Var[Z'MZ] < C Y M3\ [E[|Z;|1E[| Z|*] < C max E[| Z;|*]trace(M?),
J
Jik

and, for a projection matrix P € R™*™

|(EI(2'P2))"/* ~ B2’ PZ)| < (EI(2'PZ — E[2'PZ))")) /"
1/2

< Z E(|Z,[*E(|Z4 )

1/4
< (ijaxE[ZﬂS]) 1P| F,

where the first inequality is the reverse triangle inequality for the L*-norm. Now
the previous chain of inequalities implies that

(E[(Z'PZ)'))/* <E[Z'PZ]+ D|P|r < | P|% + D|P|F = O(IP|3),

since E[Z'PZ] = trace(P) = trace(P?) = || P||3 = rank P is integer, and where
D > 0 is an appropriate constant, not depending on m. The validity of As-
sumption (Al).(c) follows from the arguments in Section 1.4 in Srivastava and
Vershynin [23].

For part (ii), simply note that under the factorization assumption in (C1) all
the moments occurring in Conditions (A1).(d,e) are identical to those calculated
under independence of the components of Z. Therefore, the result follows from
part (i). O
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Appendix B: Proofs of auxiliary results of Section 6.2

Proof of Lemma 6.1. For ease of notation we drop the subscript n that indexes
the position of the matrix A,, in the array, i.e., we write A = A,, and denote by
a;j the ij-th entry of that matrix. Similarly, we write Z = (Z1,...,Z,)’, where
Z; = Zin. Now, expand

Z'AZ - E[Z'AZ|G,] = ZZZ aij +Zan (Z3-1)
1#]
MDY SLTIERD SN
j=1 i=1 j=1
= T, + 1Tz,

where we adopt the convention that empty sums are equal to zero. We show

that T,/ (V2| Allr) = N(0,1) and T/ /(V2|| Al r) Ly 0, as n — oo.
The desired convergence of T, follows from the straight forward calculation

< T, )2 a3, B[(Z] — 1)%|Gn]
V2| A F

Z JJj
2||A[l%
_Z JJ Z |Gl — 1)
2IIAII2

1 (- @ E[Z}16.]
52:: 1A%

and by assumption.

To see the weak convergence of T}, for j = 1,...,n, define
j—1
Vo = V27Z;) Ziay/|Allr,
i=1
Fno=Gn and F, ; = 0(Gn, Z; : i < j), by which we mean the smallest sigma
algebra for which Z,...,Z; are measurable and which also contains G,,. Note
that for each n,j € N, F,, ;-1 € Fn; C F, ||Anllr = /trace(A2) is Fnp

measurable and V,, ; is F,, ; measurable. Moreover, we have

7l Al Z "
Now, by the central limit theorem for dependent random variables [see 10, 13,
and notice the discussion in Helland [13] following eq. (2.7)], it remains to verify
that

n

> EVilFn-1] ﬁ 0, (B.1)
j=1
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n .
> Var[V,, | F 1] =21, and (B.2)
E[V 1|VnJ|>5|‘7:nJ 1] —) 0 for all 6 > 0, (B3)
j=1

as in equations (2.5)—(2.7) in Helland [13]. The convergence in (B.1) is trivial,
since E[V,, j|Fn j—1] = 0, in view of the conditional independence of the Z; given
Gn.

For (B.2), abbreviate T,, = Z?:1 Var[V,, ;| Fni-1] = Z?Zl E[V,,?’j|]:n)j_1]
and use conditional independence again to obtain

j—1
E[V;? ;| Fni—1] = 2| Al 7 (Z Ziaij>
=1

Expanding the squared sum gives

2

2

Jj—1 Jj—1 Jj— Jj—1

2 2
E Ziaij = E ZiZkaijakj = E Zz ag; +2 E Z; Zka”ak],
i=1 ik i=1 i<k

and therefore, the absolute difference |T;, — 1| can be bounded as

n Jj— Jj—1
ZQ (Z Z,?GZZJ +2ZZ Zkazjakj> - HAH%‘

i=1 i<k

T, = 1] = [1A]|F?

n n j—1 n
< ||A||7 (2 SN2 -V)a | +4Y Y ZiZvasjars| + | Y al >
i<j j=1li<k Jj=1

To establish the convergence in (B.2), it remains to show convergence to zero
in probability of the terms in absolute values on the last line of the preceding
display multiplied by HAH; .

First, note that ||A||z* S2"_, a2, converges to zero in probability by assump-

i=1%jj
tion and because of E[Z}|G,] > 1. Now, write T,,1 = Y.I . (Z7 — 1)aZ; and

Tho= \/_ZJ 1 ZKk Z;Zya;jar; and observe that

E[T;41G.) = Y Y ElZ2 —1)(Z, —1)IGula,;,ai,,

11<J1 12<J2

1<j

n  JiAjz2—1

_ 4

- Z Z E[Z;1Gn] - 1) @iy Uz
Ji.J2 =1

n  jiAjaz—1
4
< ( max E[Z; |gn> Z Z am 1]27

J_
Ji,j2 =1
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and

n  Ji—1 j2—1
2
E[Tnﬂ‘gn] =2 Z Z Z E[thlﬁ Zizzkz|gn]ai1j1ak1j1ai2j2akzj2
Ji,J2 i1<ky ia<kz
n JiNj2—1

- E :2 E : Qijy Ajy Qigy Akjy

J1,J2 i<k
n  JjiAjz2—1

< <J IrllaX E[Z; |Qn> Z Z Qijy gy Qigo Ak -

Ji,J2  i#k

Therefore, if we define the triangular truncation operator A of the symmetric
matrix Aby A= _, esasiey, where e; € R™ is the s-th element of the standard
basis in R™, we see that

2 n n 2
A’ A U U
trace((A A) > = trace E E €1, U, €y, Cosy syt

s1>11 sa>12

n s—1 2
!
= trace E g €, Qsty Ust,

s=1ty,te=1
n s1—1 so—1
/
g trace E etlasltlaémetg E €uy Asyus Bsgug €y
81782:1 tl,tz—l u17u2:1

n s1Asa—1

= E E As1t1AsytaAsaty Asoty s (B4)

81,52=1 t1,t2=1
and, in turn, that

[Ty 1|Gn] + E[T} 5/Gn]
n  jiAjz—1

j=
Ji.J2 Gk

( max E[Z4|gn]>trace(<ﬁ'f‘~‘)2)'

Jj=

Now, convergence to zero of ||A||5%(|Thn.1| + |Ty.2|) in probability follows from
the above considerations and Lemma 2.1 in Bhansali, Giraitis and Kokoszka [5],
which yields the inequality

JAIZ* (Tl + T 2)?|Gn] <2 (jzr{lg;;nE[Z;|gn}> A4 A A)%

§202< max E[Z4|gn]) ||A”§,
j=1 Al
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where C' > 0 is a global constant, not depending on n. Thus, by assumption,
the bound on the far right-hand-side of the preceding display converges to zero,
in probability, which establishes the convergence in (B.2).

Finally, for (B.3) we abbreviate m, = max; E[Z}|G,] and use the upper
bound V;2 1y, 15 < 67 2V,! ;. Now,

4

n

B S EWVE G| = 41415 S ELZ1G,]E (ZZ%)

j=1 j=1

= 4| Allz* Y ElZ](Gn] Z a2 ja m+ZE (2}|G )t

j=1 11712
n J*
< dmp(mp +3)AN Y D aial,
j=141,i2=1
and furthermore

n

||A||F4Z Z allj 12] = ||AHF4Z (Zafj>
j=111,i2=1
|AHF (maxia?g> Z Qg

i,j=1

\ N

max; (A?);;
Al

Together with m,, > 1 and our assumption, this implies that the upper bound
on the second-to-last display converges to zero in probability. O

Proof of Lemma 6.3. For convenience, we drop the subscript n that indexes the
position in the array whenever there is no risk of confusion. Let w; = (1,2})R

denote the i-th row of the matrix W and define w; = le/Qw,, W = Wy, 1/2
and 8y = W'W — i), = S0, g, = Q) *R'U" ,U_1RQ;;M?, where

’ |1 W
Qw =Elwiw]] =R [N > +MM'} R
is positive definite and U_; is defined as in Assumption (A1).(b). This assump-
tion also entails that W/W, W'W and S, are invertible with probability one,
where we denote the corresponding null set by N. For convenience, we redefine
these quantities in an arbitrary invertible and measurable way on N. Moreover,
we must also have p, +2 <n under (A1).(b).

Since h; = hj, = W) (W’W) w; on N¢, permuting the hq, ..., h, is equiv-
alent to a permutatlon of wy,...,wn, Wthh are i.i.d., and therefore their joint
distribution is invariant under permutation. Hence, the h; are exchangeable
random variables. In particular, the h; are identically distributed and therefore
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the fact that 3 7| h; = trace(Pw) = kn, on N, entails that E[h] = kn/n.
We also note for later use that Var[hi] = E[h?] — E[h]? < E[hy] — E[h1]? =
(1 = kn/n)ky,/n, since 0 < h; < 1. It only remains to show that the variance
actually converges to zero.

As a preliminary consideration, we study hj in the case where t,, := k,,/n —
t € [0,1]. The general case of possibly non-converging ¢, then follows from a
standard subsequence argument (see the end of the proof). The case t € {0,1} is
immediate, because here Var[h;] — 0 as n — oo, and thus, hy — t in probability,
by the arguments in the previous paragraph. Assume now that ¢ € (0,1). Note
that Py = Py, and use the Sherman-Morrison formula to obtain

~ a—1 ~
~ ~ ~yn—1 - wy S w1

hy = wy (S1 + W))Wy = %7

14+ w)S] W

at least on N°. For o > 0, set J, = (S1+ (n—1)ady, ) ! and define the random
function

@i

RN

U, («)

which satisfies ¥,,(0) = hy, almost surely. Since y — y/(1 +y) is non-decreasing
on [0,00), and M +— M~1! is non-increasing on invertible hermitian matrices
[cf. 6, p. 114], the function ¥, is non-increasing on [0,00). We establish the
convergence in probability of ¥,,(0) by first analyzing the limiting behavior of
U, (a) as n — oo, for every a > 0. To this end, we consider the conditional
mean and variance of ] J,w; given Sj.

Since w; and S; are independent and E[wiw]] = I, , one easily calculates
E[w) Jow1|S1] = trace(J,). The conditional variance is slightly more involved.

Abbreviate Xy = Var[wq], i = E[w;] = Q;Vl/QR’(Lp’)’ and use Assump-

tion (Al).(a) to write
i = i+ Q) R <8 g) (fl) .

Also notice that Yy = Quw — R'(1,')'(1, /)R, and hence Q;Vl/zXJWQ;Vl/Q =
Iy, — . Since QI;,I / ZEWQ;VI /2 s positive semidefinite, this also implies that
IlIZ|| < 1. Now, decompose the quantity of interest

~1 ~ _ —1 — —/ —1/2 1 0 0 0
W Jo1 = pJaft + 20 JaQy TR (0 F) <Z1>

(0 0 —1/2 -1/2,, (0 0 0
+(0,27) (0 F’> RO Iy R (0 F) (Z1> (B.6)

Conditional on Si, the variance of i’J,ji is zero, the variance of half of the
mixed term is

i o 20wy P da = i1 T2 — (0 o)
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and the variance of the last term in (B.6) is

Var[(0, 21 )M (0, 21)'|S1] = Var[z] Maz21|51]
= O(trace(M3,)) + (trace(Maz))?o(1)
< O(trace(M?)) + (trace(M))?o(1),

by assumption, and where we have abbreviated the symmetric positive semidef-
inite matrix in between the vectors (0,2}) and (0, 21)" in (B.6) by M and used
the notation Mss to denote its bottom right sub matrix of order m x m. Now,

trace(M) = trace(JaQ;Vl/QEWQ;Vl/Q) = trace(J,) — [i' Jofi and trace(M?) =
trace (J,XQ;VI/QZWQ;{}/QJQQ;[}NZWQ;ﬂ) = trace(Jo%) =2 T2+ (i Joji)?.
For a > 0, || Jalls < [a(n —1)]7! and ||fi]|?> < 1. Therefore, i’ J,ji and i’ J2ji
converge to zero, almost surely, for every o > 0. Thus, in order to show that
Var[w] J,w1|S1] converges to zero, almost surely, for every « > 0, it suffices to
show that trace (JO%) — 0 as n — oo, almost surely, and that trace(.J,) is almost
surely convergent. Moreover, if we can even show that trace(J,) — 9, € [0, 00),
almost surely, for every a > 0, then we also have @] J,w1 — 14, in probability
(since E[w] Jo01]51] = trace(J,)), and thus ¥, (a) = ¥(a) := /(1 + 14), in
probability, for every a > 0.
Therefore, we need to study the limiting behavior of

k
k 1 & 1
trace((Sy + (n — 1)ady, )" :4"_2 -
((1 ( ) k) ) (n_l)ekanI()\j+a)é

- ’“)e / Tty tdrS/e), (B.7)

(n—1
for £ =1,2, where 0 < Ay < --. < \j are the ordered eigenvalues of S;/(n—1) =
> g Wi /(n—1) and F%1/(n=1) denotes the corresponding empirical spectral
distribution function. Now one easily verifies the assumptions of Theorem 1.1 in
Bai and Zhou [3]. First note that the @, are i.i.d. and E[@w]] = I, . Second,
by the same argument following (B.6) and for an arbitrary non-random k,, X k,,
matrix B with bounded spectral norm, we have

K[|} By — trace(B)|?] = Var[w}(B/2 + B’ /2)i]
= O(trace((B/2 + B'/2)?)) + (trace(B) + O(1))%0(1) + O(1)
= O(ka|| B[13) + k7|1 B|g0(1) + O(1) = o(n?).

Recall also that for now ¢, = k,/n — t € (0,1). Therefore, F'S*/("=1) con-
verges weakly, almost surely to the Marcenko-Pastur distribution with Lebesgue
density fMP(y) = \/(y —a)(b—y)/(27ty) on [a,b], where a = (1 — /)% and
b = (14 v/t)%. Now we see that we can not use the same strategy to estab-
lish the convergence of (B.7) in the case where a = 0, because the function
ha(y) = (y + a)~! is not bounded on (0, 0) in that case. However, for a > 0,
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he is bounded and continuous on [0,00) and therefore the integral in (B.7)
converges almost surely,

e’} b
/0 e (y) dFS/ =1 () 22 /hf;(y)fMP(y)dyE (0,0).

Since k:n/(n 1) -t € (0,1) and k,,/(n—1)? — 0, this means that trace(J,) —

Vo 1= tf ha(y) fMEP (y) dy and trace(]ﬁ) — 0, almost surely, for every a > 0.
As discussed at the end of the previous paragraph, this entails that ¥, (a) —
U(a), in probability, for every a > 0, where the function ¥ is given by

_ tfh () M (y) dy
Ut [ ha(y) P (y) dy

Now it is easy to see (e.g., by the dominated convergence theorem) that the
function ¥ is continuous and non-increasing on [0,00) (recall that here ¢ < 1
and a > 0). Moreover, the limiting integral for & = 0 can be evaluated as
f ho(y) fMP (y)dy = 1/(1 — t) [cf. 14, Lemma B.1] resulting in ¥(0) =

Let us briefly recapitulate what we have found so far. First of all, we have
seen that hy = hy, — t in probability, as n — oo, if ¢, — t € {0,1}. For
t, — t € (0,1), we know that E[hy,] = kn/n — ¢t and 0 < U, (o) < T,,(0) =
hi <1 almost surely. Moreover, ¥,,(a) — ¥(«a) in probability, for every a > 0,
and ¥(a) — ¥(0) =t as @ — 0. Thus, Lemma C.2 applies and we obtain that
hi., — t in probability, also in the case ¢ € (0,1).

Finally, consider A,, := |hy —k, /n| with arbitrary ¢, = k,/n € [0, 1]. Suppose
that ¢ := limsupE[A,] > 0. Then there exists a subsequence n’, such that
E[A,/] = ¢, as n’ — co. By compactness, there exists a further subsequence n”,
such that t,,» — ¢ € [0,1], as n”” — oo. But in this case, our previous arguments
have shown that A,» — 0 in probability, which also entails that E[A,~] — 0,
by boundedness, contradicting the assertion that E[A,/] — ¢ > 0. O

Appendix C: Other technical results

Lemma C.1. Under the model (2.1), suppose that + 37" E[(e;/0y)*|x;] =
Op(1) and rank(U) = p,+1, almost surely, for alln € N. Iflimsup,,_, . pn/n <
1, then \/n|62 /o2 —1| = Op(1). In particular, we have P(62 = 0) — 0 asn — oo.

Remark. The assumption that £ 3" E[(e;/0,,)*|z;] = Op(1) is clearly weaker
than a uniform bound on E[(g;/0,,)?] or a uniform bound on E[e]] together with
liminf, 2 > 0. Clearly, also Assumption (A2) implies + 31" | E[(e; /o )*|z;] =
Op(1).

Proof of Lemma C.1. Recall that 62 = & Me, almost surely, where M :=
M(X) := (I, — Py)/(n —p —1) is a function of the design matrix X. Note
that yi1,...,y, are conditionally independent given X, and hence, also ¢; =
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yi — Ely;|x;], for i = 1,..., n, are conditionally independent given X. Therefore,
one easily obtains the almost sure identities

E[62 /02| X] = trace(M) and
Var[62 /02| X] = 2trace(M2) + Z(E[(Ei/on)ﬂxi] —3)M2.
i=1

By our assumption on U, with probability one, trace(M) = 1 and trace (M 2) =
1/(n—p—1), whereas M% < 1/(n—p—1)? holds everywhere, since the diagonal
entries of the projection matrix I, — Py are always between 0 and 1. Taken
together, we see that E[62 /02| X] = 1 and Var[62/02|X] < 2/(n—p—1) +
S El(ei/on)|zi]/(n—p—1)2. Now, the conditional Markov inequality yields

P(Vn|é} /oy — 1] > §) = E[P(Vn|é, /on — 1] > 6|X) A 1]
<E K:—Q Var[&n/aﬂX]) A 1}

< P(nVar[62 /02| X] > §) + (% A 1> )

Since n Var[62 /02| X] = Op(1), in view of the previous considerations and the
assumptions limsup,, . pn/n < 1 and 137" E[(e;/0,)*2;] = Op(1), this

finishes the proof of the first claim. The second assertion follows immediately,
because of P(62 = 0) < P(|62/02 — 1| > 1/2). O

Lemma C.2. Forn € N and a > 0, let hy, and V,,(a) be real random variables
such that 0 < U, («) < hy, <1 almost surely, and, fort € [0,1], let ¥ : [0, 00) —
[0,1] be such that ¥(a) — t as a — 0. If for every a > 0, U, (a) — ¥(a) in
probability, and E[h,] — t as n — oo, then hy, — t in probability, as n — oo.

Remark. Lemma C.2 is an asymptotic version of the well known fact that a
random variable h that satisfies h > ¢t € R and E[h] = ¢ must be equal to ¢,
almost surely.

Proof of Lemma C.2. Fix § > 0, choose o« = «(d) > 0 such that |¥(a)—t| < §/2
and do the following standard bound,

P(hy < E[hn] —6) < P(|[Un(a) — E[hy]| > 6)
+ P(hy < Elhn] — 6, [W,(a) — E[h,]] < 6).

But |¥,(a) — E[h,]| < |P,(a) — ¥(a)] + [¥(a) —t| + |t — E[h,]| < 5/2+ op(1),
whereas |V, (a) — E[h,]| < 4§ and h,, < E[h,] — ¢ together imply that ¥, (a) >
E[hn]—& > hy,, which, by assumption, happens only on a set of probability zero.
Therefore, the upper bound in the previous display converges to zero. Now, by
boundedness of h,, we have

E[|hy, — Elhy]]] E[|hn, — E[h,] +6|] + 0

E[(hn — (E[hn] = 6))1n, >Efh,-s5}]

IAIA
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FP(hy < Efhn] — 6) + 6
< E[hnl{hnZE[hn]fé}] - ]E[hn]P(hn > ]E[hn] - 6)
+26 4+ o(1),

and we also see that both E[h,1¢p, >E[n,]-s}] and E[h,]P(h, > E[h,] — J) con-
verge to t. Since 6 > 0 was arbitrary, we must have limsup E[|h,, — E[h,]]] =0
and thus, convergence in probability of h,, to t. O

Lemma C.3. For every n € N, let 1 n,...,%nn be i.i.d. random p,-vectors
satisfying x; n = pn + nzipn as in Assumption (A1).(a) with positive semidef-
inite covariance matriz X, = T,I'. Set X,, = [z1,n, ..., Tnnl, Tn = X, (I, —

P)X,/n and

s ()0 - )= 6 £)+ ()0 s

Moreover, let R, be a ky, X (pn, + 1) matriz such that R, R, = I, (i.e., k, <
pn+1) and set Q, = R, S, R),.

(i) Let u, € RP 1 If sup), =y E[jw'z1,,|] = O(1) as n — oo, for some fized
¢ € N, not depending on n, then E[|u, (1,2} ,,)'|*] = O(|u},Spun|*?) as
n — oo.
(i) Let vp1,vn2 € RP".If sup, =1 E[lw'z1,,*] = O(1) as n — oo, then
Var[\/ﬁvgjlifnvmg] = O(v}, 1 205,10}, 9X0n 2).
(ii) If %, is positive definite, 21, satisfies (A1).(c) and Sup)j,| =1 E[Jw'z1 .| =
O(1), then the design matriz of the transformed data Wy, = [, X|R], sat-

isfies
H971/2(W/W /n)Qfl/2 _Ik _ O]P’(l)7 kan/n — 07
n non " "lls Op(1), if k, =0O(n).
(iv) If S, is positive definite and Var[z] ,Mz,] = O(trace(M?)) +

(trace(M))?0(1), as n — oo, for every symmetric matriz M € R™»X"n
then we have E[|(1, 2}, )R, Q' Ry (1,2 ,,)'|?] = O(K2).

(v) Suppose that ¥, is positive definite and that sup|,= E[jw’'z1 ,[%] = O(1)
and (E[|z1 ,,Pz1,n N4 = O(||P||%), as n — oo, for every projection ma-
triv P in R™~ and partition R, = [t1,T)] with t; € Rk, If for ev-
ery n € N either one of (a) pn = 0, or (b) rankTy = k, holds, then
E[|(1, 2} ) R, Q0 R (L, 21 ,)' Y] = O(ky).

Proof. For ease of notation we will drop the subscript n whenever there is no risk
of confusion. A simple calculation involving the elementary inequality |a + b|* <
2=1(|al + |b|*) and the notation u, = u = (ug,u’;)’, with u_; € RP», yields
Ello(1,21)"*] = ElJu/ (1, 1) + /(0,24 T")'|]
< 27 [Ju/ (1, 1Y | + Jul_ T2 ]
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= 201 (uf (L) (L 2 4 i S|P [ ]1])

where w = TMu_q/||[T"u_q]], if |[IVu_1]] > 0 and w = 0, else. In the sum
o' (L") (1, )u + v 1Xu_1 = u'S,u both summands are non-negative and
thus both summands are bounded by u’S,u. Therefore, the upper bound in the
previous display is itself bounded by a constant multiple of |u/S,u|/2. This was
the claim of part (i).

For part (ii), first note that because the distribution of 3,, does not depend on
1, we may assume that p = 0, without loss of generality. By the same argument
as above but with u = 0, up = 0 and u_; is either v, ; or v, 2, we see that
Eflv}, s1]*] = O(|v}, ;Svns*), s = 1,2. Now

Var[\/ﬁvihlflnvn,g] = nVar[v;l71X’Xv,L72/n — U;L,lX/LL/X’Un,Q/HQ]

1 & 1 -
<2n|— ZVM[%J%U;,Q%] + —; Var Z v;)lxivgyzxj
[ n ij=1
2 n
< 2\/Ellvy s [TEfvy s [T+ = DT Bl @i, 0] vl ]
i,k l=1

2
= O(vy, 1 X0n,10;, 5 X5 2) + EEHU;,lxl‘QW;,lem

4
+ 3 Z Elv,, 1250y, o2 |Elvy, 1 250), 5]
i#£j

2
+ n3 Z E[|U;,1xi|Q]EHU;,2%‘ |2]7
i#]

: : l ! / 21 — o/
which is of order O(v;, ;Xvp 1v;, %0y 2) because El|v;, ;21]°] = v;, ;Yv, s and

E[v},1210], p21] < \/]EHU;LJxl PIE[|vp, 221 ]?]-

For parts (iii), (iv) and (v) we make the following preliminary considerations.
First, note that in all three of these statements Y is assumed to be positive
definite and thus (2 is regular. Abbreviate i’ := (1, /)R'Q~1/2 and

(0 0\
Sw = R (0 z) R.
Since Yy = Q — R(1, /)’ (1, /)R’ we have

5112
QPR Q2 =1, — i = A <1 (|)|“” Ik0_1> A (C.1)

for some orthogonal matrix A whose first column is g/|| g if ||@]| > 0, and
A = I, if p = 0. Here, quantities of dimension k,, — 1 have to be removed
in case k, = 1. The matrix Q~1/2%,,Q~1/2 in the previous display is positive
semidefinite, which means that 0 < ||| < 1. For later use, we partition the
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matrix B := Q124 as B = [b;, By] where b; € RF» and note that B satisfies

1—||al|? 0
B'SwB = ( (!“” I 1), (C.2)

and I, = B'QB = B'SwB+ B'R(1,1') (1, /)R’ B, which entails that
—12
sy ors = (17 0. (©3)

This finishes the preliminary considerations.
Now, for the proof of part (iii), write the quantity of interest as

|o 2w wme -, | = |l 2w wme A - a4l

AT
= || B (W'W/n)B — I, || < ‘BE B- (1 |17l 0)

0 I, 1/ || g

=112

+3RQWWLWWB<M” 0)
0 0 s

Blzwbl BiEWBl — I, s
BR(L ) (1L, /)R IMQb’(ﬂ”@ﬂmBﬁ
+ / A~ ~ . C5
( BUR(L Y (L i) Ry ROLE)Y(LARB, )|, (€

where
& 0 0 , N
EWR(O Z,)R and o= X"t/n.

For a partitioned matrix as above we have
2

2

/

11 Cio C11W1 + C12W_1
21 Ca2)llg  juw=t || \C21w1 + Coow_y

< (lext] + [lexz)? + (llean ]| + | Cazlls).
Therefore, it suffices to show that the norms of the respective blocks are Op(1),
if k,, = O(n), and converge to zero in probability, if &, /n — 0.
We begin with the terms involving /i in (C.5). First,

E[byR(1, i)' (1, /)R ba] — || al|?

in view of E[af'] = X/n+ pp’, (C.2) and (C.3). Moreover, the variance satisfies

Var [(bgR(Lg’)')?] - —Var Z W R(1,2) b, R(1,2)’

1,0=1
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1 n
= — Var | > 0 R[(1 ) (1,25) — (1, 1') (1, 1) Rby
i#j

+ S BRI (1,2) — SR,
=1

IN

2 S SRR ) (1) — (1Y (0, WO R
i#j r#s
ViR[(1, ) (1,2%) — (1, 1)) (1, 1) R'b1]

n
+ZE[(biR(l,x;Y(l,xé)R’m) :
i=1
To work out the combinatorics of the quadruple sum above, abbreviate F;; =
biR[(L, ;) (1,25) — (1, /) (1, ¢')]R'b1 and mnote that E[F;;] = 0 if i # j and
E[F;;F.s] = 0 if all four indices are distinct. Moreover, there are only O(n?)
summands in which not all four indices are distinct, i.e., there are only O(n?)

non-zero summands. Moreover, the non-zero summands can always be bounded
by

|E[F,;Fy]| < \/EIFZEIF2] = E[F2] = VarlFy;] = Varlth R(L,2})' (1, ) R'by]
< E[((L ) Rb1)*(L, 25 R'1)%) = (E[(1,25)R'5:)2)2,

if i # j and r # s. Since E[(b)R(1,2})")?] = BiRSR'b; = b|Qby = 1, by
definition of B, we see that the quadruple sum in the second-to-last display is
of order O(n?). The remaining sum in the same display is of order O(n), since
E[(b} R(1,2})")*] = O(1), by part (i) and the assumption sup,,-; E[|w'z ] =
O(1). Thus, we have shown that b} R(1, i/)' (1, i/ )R'by —||a||* — 0, in probability.

Next, consider ||b)R(1, ') (1, /)R’ B1||* < |\ R(1, /) |?||BiR(1, /)'||?. The
first factor in the upper bound was just shown to be Op(1). For the second factor
note that E[||B;R(1, ') ||?] = trace((B;XwB1/n + B{R(1, /) (1,/)R'By)) =
(kn—1)/n, by (C.2) and (C.3). Since || By R(L, i)' (1, i )R B1||s = || By R(1, i')']|?,
we see that the spectral norm in (C.5) is Op(1) if k, = O(n), and converges to
zero in probability, if k,/n — 0.

For the spectral norm in (C.4), we may restrict to u = 0. First, write
R = [t;, T1] with ¢; € R*» and use (C.2) to see that E[b} Syby] — (1 7A||ﬂ||2) =
B Swbi(n — 1)/n — (1— |#2) = (1 — al?)/n — 0, whereas Va[t| Sybi] =
Var[0i 113, T1b1] — 0, in view of the result in part (ii) with v, = v, 1 = vp2 =
T{by /n'/*, which satisfies v/, Yv, = b\ Swbi//n = (1 — |al|?)/v/n — 0. For
the off-diagonal block B}Sy by, note that it has mean zero in view of (C.2).
Therefore, E[| B{Swbi||?] = Y51 P E[(e}BiSwbi)?] = Yk Varle! B Swbi),
where ej,...,e;, 1 is the standard basis in R*»~!. Now, Var[e;vBiinl] =
Var[e;-B{TlﬁlnTl’bl], and part (ii) applies with v, ; = T{Bye;/n'/* and v, » =
T{by/n'/*, which satisfy v/, ; Svy,,1 = eiB1XwBiej/y/n = 1/y/nand vy, ;30,2 =
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bll%”i?l/\/ﬁ = (1 —||@)|?)/+/n, in view of (C.2). Therefore, E[||B{f)ufb1||2] =
221 O(1/n) = O(kn/n). Hence, the only remaining term is ||B{Xw B —
[kn_lHS S ||7_11 Z:‘L:l BiTl.TZSC;T{Bl — Ikn—lHS + ||B1T1ﬂﬂ/T1/Bl||S For the sec-
ond term in the upper bound, one easily finds its expected value to be (k,, —1)/n,
as in the previous paragraph. For the spectral norm of the remaining covariance
term we verify the strong regularity (SR) condition of Srivastava and Vershynin
[23, Theorem 1.1] for the random (k, — 1)-vectors Z; = Bi{Tiz; = B{Ti'z;.
First, note that the Z; are independent and isotropic, since p = 0 and E[Z,;Z}] =
B'TyXT|{B, = B,YwB; = I, 1. Fix a projection matrix P in R¥»~1 and
note that I'T{ByPB{T T is a projection matrix in R™» of the same rank as
P. Since the z; satisfy Assumption (Al).(c) and ||P#:||?> = |PB{Tilz||*> =
A1U'T{B1PB{T\Tz; = |I'T{B1PB,T1T'z|?, we see that the (SR) condition
holds for Z; and with the same constants ¢, C' as in (A1).(c). Therefore, Corol-
lary 1.4 of Srivastava and Vershynin [23] shows that |1 Y" | B{Ty2;a/T{ By —
I, —1lls is Op(1) if k,, = O(n), and converges to zero, in probability, if k,, /n — 0.
This finishes part (iii).

For the proof of parts (iv) and (v), take £ € N and consider the elementary
bound

E[|(1,2) Q™ R(1,24) '] = E[|(1, /) R'Q " R(1, ')’
(1, /Y R'QR(0, 21T + (0, 21T ) R'Q L R(0, zgr')ﬂ

<2t (e + 2 {oe | | (C.6)

+E [|(o7 ATR'QLR(0, z;r’)'ﬂ }) .

’Ellls)fl/QR(O7 Zil—w/)/

Partition R = [t;,T1] as above and abbreviate M = I"T/Q7 74T, so that
the expectation on the last line of the previous display can be written as
E[|z} Mz |*]. Now, if £ = 2, this can be evaluated as E[|2] M 2, |?] = Var[z] M z;]+
(E[2{ M z])? = Oftrace(M?)) + (trace(M))?o(1) + (trace(M))? under the as-
sumption of part (iv). Since trace(M) = trace(Q~1/2Sy Q~1/2) = k,,— | a||* and
trace(M?) = k,—1+(1—||z[|?), by (C.1), we see that E[|2{ Mz |*] = O(k2). Fur-
thermore, E[[i//2R(0, 4T")P] = Q25w = a2 — al* < 1/4,
which finishes part (iv).

For part (v) we begin with the expectation in (C.6) with £ = 4, which can be
written as

E[|7'Q 2Tl '] < |FQ7 P00 sup Effw'z[]
|

lwll=1

= 0| PEw ™ V2) = O(1).

For E[|z} M 21]%], we begin with case (a) u = 0. Then

o () 2w (r(l ) w(y o]

EllzyMz "] =E
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and we denote the matrix corresponding to the quadratic form in the vector
(0,21)" on the right-hand-side of this display by P. Clearly, P is a projection

matrix which we partition as
P= P11 Db
pa1 Paa)’

with p11 € [0,1]. Exploiting the idempotency and symmetry of P, one can
show that the generalized Schur complement of py; in P, i.e, the matrix Poy —
po1pl phy, is again a projection matrix [cf. 4, Corollary 2.1], where pl, = p7;\,
if p11 # 0, and pL = 0, else.* Moreover, since |||Pa2lls — ||p21p11p’21||5| <
1Po2 = parpl phulls < 1 and | Pasl|s < [|[Pls = 1, we see that [|paa(p};)!/2]? =
|p21p! 1 phy|ls < 2 and that the Frobenius norm of the generalized Schur comple-
ment satisfies ||Pay — poipl,phy ||% = trace((P22 fp21p11p§1)> < trace(Pag) <
trace(P) = k,,. Therefore, using our assumptions, we calculate

E|y M2 |"] = E[|2] Pooz1|*]
< 2* (Ell24 (Po2 — parp} 1) 1 '] + EllzAporp] pi 1Y)

< 2* (O(k2) +Ell(0]) 2Py 1 ]) = Ok,

Finally, in the case (b), where rank T} = k,,, the matrix 71 X7} in the represen-
tation Q@ = RSR' = T'XT{+ R(1, /)’ (1, /) R’, is regular and thus we can invert
Q by the Sherman-Morrison formula to get

M=1'T/Q"'T\T

T (ST Y R(L, 1) (1, 1Y R(TYXT)) YTy T

=D'T{(T'2T)) ' IhT —
(TXTY) T 14+ (1, W )R(ThETY) R(L, p')

Therefore, we make use of the abbreviations P = I"T{(T13T]) !4 T and v =
T (TyXT))"tR(1,u')’ to bound the fourth moment of the quadratic form

21 Mz by
v 21|? 4
1+ [Jof?

<9 <0<||P||%> n (&) s E[|w'z1|81> |

I+ HUHQ Jw||=1

E[|2} Mz |1 < 23 (Enzgpzlﬂ +E

Since ||P||% = (trace(P))* = k?, the upper bound is of order O(k?), which
finishes the proof of part (v). O

14Baksalary, Baksalary and Szulc [4] actually prove a more general result. The special case
we are interested in here can also be easily derived by direct calculation.
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Lemma C.4. Let 1 < g < p be positive integers. If T is a (p+ 1) x (p+ 1)
orthogonal matrix that is partitioned as

_|to Tp
= %)

where tg € RY, t; € RPH1=9, Ty € RI*P and Ty € RPHI=D%P then ||to| > 0 if
and only if, rankT, =p+1—q.

Proof. By orthogonality,

IP—H =TT = |:t0t6 + T()Té t()tll + T()Tl/:| 7

t1t6 + T1T6 tltll + TlTll
and [[to]| + [[t1]]2 = 1. Hence,
T = Ipt1-q — 1)

has eigenvalues 1, with multiplicity p — ¢, and a single eigenvalue 1 — ||t1]|?> =

lto||?, which is strictly positive if and only if, rank Ty = p + 1 — q. |

Lemma C.5. If the n X p random matriz X has i.i.d. rows following the
N(0, X)-distribution with positive definite 3, v € RP, v # 0 and T € RI*P
has orthonormal rows, then v'(TX,'T")" v ~ o'(TS'T) " ox2 ,_(,/n,

where 3, = X' (I, — P)X/n is the sample covariance matriz.

Proof. Tt is well known that n,, ~ W,(X,n—1) has a Wishart distribution with
scale matrix ¥ and n—1 degrees of freedom [e.g., 19, Theorem 3.4.4.(c)]. If ¢ = p,
then 7' is orthogonal and nv/(TS;1T") "0 = /TS, T'v ~ VTET v 2 | =
V(TS o x?_, [cf. 19, Theorem 3.4.2]. So assume that ¢ < p. Let S €
R(P=9*P bhe such that R = [S’,7"]’ is an orthogonal matrix. Then, by block
matrix inversion of

RS R — (siny SinT') 1

- - o~ SR on—1
s 5 re.) "~ 5 Ve EER 1),

we see that the matrix (TS, '7")~' = ([0, I,}(RE,R) Y0, 1,)) ' = TS, T —
TXAJnS’(SXAJnS’)_lSinT’ is the Schur complement of $3,5" in RS, R’, which
follows the W, (Q22.1,n — 1 — (p — q))-distribution divided by n, where Q22.1 =
TST — TXS'(SES")71SYT’  [ef. 19, Theorem 3.4.6.(a)]. Therefore,

nv’(Tﬁ];lT’)flv ~ U/QQQ.17J X'?L—l—(p—q)’ and Q991 = (TEflT’)*l. O

Lemma C.6. Let p € RP and X be a symmetric, positive definite p X p matriz.
Let T = [R), R})" be a (p+1) x (p+1) orthogonal matriz such that Ry € R?*(P+1)
and set

o 1 ,u’ o ’ R()S}% R()SR/I . Qoo QOI
§= </,(, ¥+ MM’) ’ Q=T8T = <R1»S’R6 RlsR/l o QIO Qll ’

_ (0 0\ _ (Ro / /oy _ (200 Yot
Sr _T<O 2) T = (R1> [0,1,)'S[0, 1] (Ry RY) = (210 211).
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If 11 := R1[0, I,)’X[0, I,| R} is regular, then the Schur complement of Q11 in
Q is related to the Schur complement of 11 in S by Qoo — Qle_llQlo =
Yoo — L0127 S0 + @i’ /(1 + v), where i = (Ry — L0131 R)(1, 1) and v =
(LNI)R/IZIIIRl(lvﬂ/)/'

Proof. First note that Q;; = X;; + R;(1, 1) (1, ' )R;, for i, j € {0,1}. Abbrevi-
ate ji; = R;(1,p/)’, for i = 0,1 and v = i} ¥7;'fi; and use the Sherman-Morrison
formula to write

Qoo — Q01927 Q10 = Zoo + fofih — (Sor + fiofin)(S11 + finjiy) ™ (S1o + firfig)

o o _ Z_1~ ~12—1 o
= Xgo + MOH() — (Zo1 + Uoﬂll) <2111 - %) (B10 + Mlﬂf))
= Y00 — L0127 Z10
+ fofty — it E11 S1o — Sor 11 Anfip — fofiy B17' i flg
271~ ~/ 271 o 271~ ~/ 271 Zfl'v ~/ 271 o
11 H1H1 2411 S0 + ;=11 PR 2 S0 + Sor 11 M1H12411 il

pM
+ 201 T+0 Hotty 1+o T+u H1fg
o 271~ ~/271~ _
+ fiofiy 1L ff; LL iy fig
S0 — So1 S0+ fio(l — vl + fi I
= — — UV
00 014411 410 Ho Ho M01+VH0
- v -1 —1~ v ~r
+ fio <1+V - 1> P12y Yo + XXy (1 T 1) Ho
271~ ~/271
NI A B M1y 29 Y10

14+v
= Y00 — L0127 Z10
+ (fofiy — fofiy 217 B0 — Xor1 X1 finfig + o177 iy 11 Xo) /(1 +v)

~ oy

- A
=Y — 21 2T
00 012411 10+1+1/’

where ,[L = [IJO - 20121_11[14. |

Lemma C.7. Let k, n be positive integers such that k < n — 1. If X is a
random n x k matriz whose rows are i.i.d. distributed according to N (u, %),
where p € RF and X is positive definite, then

&
E+¢

where & and ¢ are independent and distributed according to £ ~ kak and ¢ ~
X3 (An), with non-centrality parameter X, = nu'S =1 .

(In —Px)b ~

!
—
n

Remark. Lemma C.7 is a slight variation of Lemma A.2 in Leeb [17].

Proof. Note that Px = Pg, where X = XY ~1/2 has i.i.d. rows following the
N(X~Y2u, 1) distribution. Writing ji, = X’t/n and ¥,, = X'(I,, — P,)X /n =



Dimensionality and multiplicity of hypotheses in the F'-test 2637

X'X /n— [injil,, for the sample mean and sample covariance matrix of the trans-
formed data, we have, at least on an event of probability one,

1 EYRES S AN IS
(I = Px) = 1= jip,(Sy + fnjiy,) 'in
I PR <ﬁ’ni;1ﬁn>2
1+ i, Z
1

1+ il S i

Since nin has a standard Wishart distribution with n—1 degrees of freedom and
is independent of fi,,, we get from Mardia Kent and Bibby [19, Theorem 3.4.7]

that, conditional on ji,,, the quantity ji,5 fin = nl|fin||? (ﬁn/HﬁnH)’( S) 1 x
(Nn/”NnH) has the same distribution as nl|fi,||?/€, where £ ~ x2_, is indepen-
dent of ji,,. The proof is finished upon noting that ¢ := nl|ji,||?> = || X"t/v/n||* ~

Xi(np'S7 ) and that 1/(1+¢/€) =¢/(6+ (). U

Lemma C.8. Let q, < p, + 1 < n be positive integer sequences such that
lim sup,, pn/n < 1, and let A, be a non-negative real sequence of order o(qn/n).
Moreover, let s, and b,, be as in Theorem 2.1. Then a non-central F'-distributed
random variable Fy, n—p, —1(An) with ¢, and n—p, — 1 degrees of freedom and
non-centrality parameter A, = A, (n — p, — 1+ qy,) satisfies

5;1/2(Fqnn po—1(An) = 1) — Vb,

w N(0,1), if gn — 00,

nooe | (20)7Y2xG —Va/2, fan=q, YneN
Remark. This result is elementary and follows from basic properties of the
non-central x? distribution [cf. 16, Chapter 29.5]. For the convenience of the
reader we include a proof nonetheless. The proof also nicely resembles the main
steps of the much more involved argument needed to treat the non-Gaussian
cases of Theorem 2.1 and Theorem 3.1.

Proof. Let Yi,...,Y, , X1,..., Xn_p,—1 be ii.d. standard normal and let p =
(H1s. -, hg,) € R% such that p'u = A,. Then F,, ,—p,—1(A\n) can be repre-
sented as

Fponpo-1(hn)  ~ 21 (Vi + 14)°/ 4
e ST X (== 1)

Therefore,

ST_Ll/Q (thun pn_l( ) ) \/_A b

1 dn YQ _ n— pn 2 Y H j
—-1/2 gn =1 "1 n— Pn*l Z + dn iHi + dn \/—A b
Sn n— pnfl UZAvA
Z X3

~

n— pnfl
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n—pn—1

Z X2 (1 + Op((n — pn)*1/2)>

_pn

1 n
_ —1/2 2
=3 — Y.

o (o) 2 S
An
Gn/Sn

For the mixed term

+

(1+ Oel(n = pu)™7%) = Vidub.

2 an v, : :
e > it Yiu; we note that it has mean zero and variance

equal to 4(¢2s,) " An = 4(qnsn) AL (n/qn)(n — pr — 1+ q,)/n = o(1), since
A, = o(gn/n), by assumption, and ¢,$, = 2(1 + ¢,/(n —p, — 1)) > 2. So
the mixed term converges to zero in probability. For the non-centrality term
qn\/s—”( + Op((n — pp)~?)) — /nA,b, we first note that

nAn n_pn_]-"’_QTL o An

nAnbn = )
vn PRV —

so that

(1+Op((n—pn)_1/2)> — VnAnb, = an\/"%On»((n—pn)‘”Q)

n M(Qn n) 1/2 O]P’( Qn/(n_p”)) = OP(l)’

qn n
because g,/(n —pn) < n/(n —p,) = (1 — p,/n)~! is bounded in view of our

assumption that limsup,, p,/n < 1. The same assumption also guarantees that

n — pp, — 00 as n — 00, S0 it remains to establish the appropriate convergence
of

n—pn—1

71/2 Zy2 Z X2

an n—pn—1

_ 1 1
= S7L1/2 — Z(Y;Q - 1) - —

et n=pn

dn
— Pn —
f— C.?
e RN ©)

an n—pp,—1
_ . C.8
sy ﬁ — Z (C.8)
First, we consider the case where ¢, — 00. Define the vectors

Ly 2 JEE
Ly = ( 2q Zn pn—l(XQ _ 1)> and v, = n_p";Hq"
V2 (n— Pn*l - \/ n—pn—1+qn
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By independence and the CLT, Z,, converges weakly to a bivariate standard
normal distribution as n — oo and ||v,|l2 = 1. Thus, v/, Z, — N(0,1), weakly,
as n — 0o, by compactness of the unit circle. If ¢, = ¢ € N does not depend
on n, then the expression in (C.8) converges to zero in probability and the

expression in (C.7) is distributed as (1 + o(1))[(2¢)~*/?x2 — \/q/2]. O
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