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Abstract: In this paper, we consider the problem of testing the mean
vector in the high-dimensional settings. We proposed a new robust scalar
transform invariant test based on spatial sign. The proposed test statistic
is asymptotically normal under elliptical distributions. Simulation studies
show that our test is very robust and efficient in a wide range of distribu-
tions.
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1. Introduction

AssumeX1, · · · ,Xn is an independent sample from p-variate distribution F (x−
θ) located at p = pn variate center θ = θn. We consider the following one sample
testing problem

H0 : θn = 0 versus H1 : θn �= 0.

One typical test statistic is Hotelling’s T 2. However, it can not be applied when
pn > n−1 because of the singularity of the sample covariance matrix. Recently,
many efforts have been devoted to solve the problem, such as [1], [19], [18], [2],
[13], [4] and [5]. They established the asymptotic normality of their test statistics
under the assumption of diverging factor model [1]. Even this data structure
generates a rich collection of X, it is not easily met in practice. Moreover,
multivariate t distribution or mixtures of multivariate normal distributions does
not satisfy the diverging factor model. This motivates us to construct a robust
test procedure.

Multivariate sign or rank is often used to construct robust test statistics in
the multivariate setting [16, 9, 11, 17, 10, 7, 8]. Especially, multivariate sign tests
enjoy many desirable properties. First, those test statistics are distribution-free
under mild assumptions, or asymptotically so. Second, they do not require strin-
gent parametric assumptions, nor any moment conditions. Third, they have high
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asymptotic relative efficiency with respect to the classic Hotelling’s T 2 test, espe-
cially under the heavy-tailed distributions. However, the classic spatial-sign test
also can not work in the high-dimensional settings because the scatter matrix
[12] is unable to be estimated. Recently, without estimating the scatter matrix,
[20] and [14] proposed a high-dimensional nonparametric test based on the di-
rection of Xi, i.e. Xi/||Xi||. Even it is workable and robust in high-dimensional
settings, it loses all the information of the scalar of different variables and then
is not scalar-invariant. In practice, different components may have completely
different physical or biological readings and thus certainly their scales would
not be identical. [18] and [13] proposed two scalar-invariant tests under dif-
ferent assumption of correlation matrix. As shown above, they are not robust
for the heavy-tailed distributions. In this paper, we proposed a new robust test
based on spatial sign. We show that it is scalar invariant and asymptotic normal
under some mild conditions. The asymptotic relative efficiency of our test with
respect to [13]’s test is the same as the classic spatial-sign test with respect to the
Hotelling’s T 2 test. Simulation comparisons show that our procedure has good
size and power for a wide range of dimensions, sample sizes and distributions.
All the proofs are given in the appendix.

2. Robust high-dimensional test

2.1. The proposed test statistic

The spatial sign function is defined as U(x) = ||x||−1xI(x �= 0). In traditional
fixed p circumstance, the following so-called “inner centering and inner stan-
dardization” sign-based procedure is usually used (cf., Chapter 6 of [12])

Q2
n = npŪ

T
Ū , (2.1)

where Ū = 1
n

∑n
i=1 Û i, Û i = U(S−1/2Xij), S

−1/2 are Tyler’s scatter matrix
(cf., Section 6.1.3 of [12]). Q2

n is affine-invariant and can be regarded as a non-
parametric counterpart of Hotelling’s T 2 test statistic by using the spatial-signs
instead of the original observations Xij ’s. However, when p > n, Q2

n is not
defined as the matrix S−1/2 is not available in high-dimensional settings.

Motivated by [10], we suggest to find a pair of diagonal matrix D and vector
θ for each sample that simultaneously satisfy

1

n

n∑
i=1

U(εi) = 0 and
pn
n
diag

{
n∑

i=1

U(εi)U(εi)
T

}
= Ipn , (2.2)

where εi = D−1/2(Xi − θ). (D,θ) can be viewed as a simplified version of
Hettmansperger-Randles (HR) estimator without considering the off-diagonal
elements of S. We can adapt the recursive algorithm of [10] to solve (2.2). That
is, repeat the following three steps until convergence:

(i) εi ← D−1/2(Xi − θ), j = 1, · · · , ni;
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(ii) θ ← θ +
D1/2 ∑n

j=1 U(εi)∑n
j=1 ||εi||−1 ;

(iii) D ← pnD
1/2diag{n−1

∑n
j=1 U(εi)U(εi)

T }D1/2.

The resulting estimators of location and diagonal matrix are denoted as θ̂ and
D̂. We may use the sample mean and sample variances as the initial estima-
tors. Unfortunately, there is no proof so far for the convergence of the above
algorithm, even for the low-dimensional cases, although it always seems to work
in practice. There is no proof for the existence or uniqueness of the above HR
estimate either. Some further research are deserved for this topic.

Then, we define the following test statistic

Tn =
2

n(n− 1)

∑∑
i<j

U
(
D̂

−1/2
ij Xi

)T

U
(
D̂

−1/2
ij Xj

)

where D̂ij are the corresponding diagonal matrix estimator using leave-two-

out sample {Xk}nk �=i,j . The leave-two-out estimates D̂ij is independent of Xi

and Xj and then there is no bias term of Tn if p = O(n2). Otherwise, if we

use D̂ in Tn, there is a non-negligible bias term of Tn if p has the same order
as n2. See more information in [4]. The tests statistics proposed by [1, 2, 14,
20] are invariant under orthogonal transformations, Xi → PXi where P is
an orthogonal matrix. In contrast, Tn is not invariant under the orthogonal
transformations, but it is invariant under scalar transformations Xi → BXi

where B = diag{b21, · · · , b2pn
} and b1, · · · , bpn are non-zero constants.

2.2. Asymptotic results

First, we state the assumption of the distribution of X:

(A1) Variables {X1, . . . ,Xn} in the n-th row are independently and identically
distributed (i.i.d.) from p = pn-variate elliptical distribution with density
functions det(Σ)−1/2gn(||Σ−1/2(x−θ)||) where θ = θn’s are the symmetry
centers and Σ = Σn’s are the positive definite symmetric pn × pn scatter
matrices.

We also need the following conditions for asymptotic analysis:

(C1) tr(R4
n) = o(tr2(R2

n)), where Rn = Dn
−1/2ΣnDn

−1/2;
(C2) n−2p2n/tr(R

2
n) = O(1) and log pn = o(n);

(C3) (tr(R2
n)− pn) = o(n−1p2n).

To appreciate these conditions, define the pn eigenvalues of Rn are λn,1, · · · ,
λn,pn and νn,k =

∑pn

i=1 λ
k
n,i, k = 2, 4. Then, the above three conditions become

(C1
′
) νn,4 = o(ν2n,2);

(C2
′
) n−2p2n/νn,2 = O(1) and log pn = o(n);

(C3
′
) (νn,2 − pn) = o(n−1p2n).
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If λn,1, · · · , λn,pn are all bounded, νn,4 = O(pn) and νn,2 = O(pn). So Condition
(C1) holds. Moreover, in this case, Condition (C2) and (C3) become pn = O(n2)
and pn/n → ∞. Thus, we could allow the dimension being the square of the
sample size. To get the consistency of the diagonal matrix, the dimension must
diverging faster than the sample sizes.

The following theorem establishes the asymptotic null distribution of Tn.

Theorem 1. Under Assumption (A1), Conditions (C1)–(C3) and H0, as

min(pn, n) → ∞, Tn/σn
d→N(0, 1), where σ2

n = 2
n(n−1)p2

n
tr(R2

n).

We propose the following estimator to estimate the trace term in σ2
n

̂tr(R2
n) =

p2n
n(n− 1)

n∑
i=1

n∑
j �=i

(
U(D̂

−1/2
ij (Xi − θ̂ij))

TU(D̂
−1/2
ij (Xj − θ̂ij))

)2

where (θ̂ij , D̂ij) are the corresponding spatial median and diagonal matrix esti-
mators using leave-two-out sample {Xk}nk �=i,j . By Proposition 2 in [3],

̂tr(R2
n)/tr(R

2
n)

p→ 1 as pn, n → ∞. Consequently, a ratio-consistent estimator

of σ2
n under H0 is σ̂2

n = 2
n(n−1)p2

n

̂tr(R2
n). And then we reject the null hypothesis

with α level of significance if Tn/σ̂n > zα, where zα is the upper α quantile of
N(0, 1).

Next, we consider the asymptotic distribution of Rn under the alternative
hypothesis

(C4) θT
nDn

−1θn = O(c−2
0 σn) and θT

nDn
−1ΣnDn

−1θn = o(c−2
0 npnσ

2
n) where

c0 = E(||Dn
−1/2(Xi − θn)||−1).

Suppose λn,1, · · · , λn,pn are all bounded, Condition (C4) becomes θT
nDn

−1θn =

O(n−1p
1/2
n ) and θT

nDn
−1ΣnDn

−1θn = O(n−1p3n), i.e. ||θn||2 = O(n−1p
1/2
n ).

If θn = (θn,1, · · · , θn,pn), θn,i = δn, i = 1, · · · , pn, we require that δn =

O(n−1/2p
−1/4
n ), which can be viewed as a high-dimensional version of the lo-

cal alternative hypotheses.

Theorem 2. Under Assumption (A1) and Conditions (C1)–(C4), as
min(n, pn) → ∞,

Tn − c20θ
T
nD

−1
n θn

σn

d→N(0, 1)

Theorem 1 and 2 allow us to compare the proposed test with some existing
work in terms of limiting efficiency. The asymptotic power of our proposed test
(abbreviated as SS) under the local alternative is

βSS(θn) = Φ

(
−zα +

c20npθ
T
nD

−1
n θn√

2tr(R2
n)

)
.
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Table 1

ARE(Rn, PA) with different ν.

ν = 3 ν = 4 ν = 5 ν = 6 ν = ∞
ARE 2.54 1.76 1.51 1.38 1.00

In comparison, [13] showed that the asymptotic power of their proposed test
(abbreviated as PA hereafter) is

βPA(θn) = Φ

⎛
⎝−zα +

nθT
n D̃

−1
n θn√

2tr(R̃2
n)

⎞
⎠ .

where D̃n and R̃n are the variance and correlation matrix of Xi, respectively.
Note that Park and Ayyala (2013) needed the diverging factor model for their
asymptotic results. Direct power comparison for these two tests maybe not ap-
propriate. So we reproof their results under assumption (A1) in the supplemental
material. Consequently, the asymptotic relative efficiency (ARE) of Tn with PA
test is

ARE(Tn,PA) =
c20pnθ

T
nD

−1
n θn

θT
n D̃

−1
n θn

√
tr(R̃2

n)

tr(R2
n)

=c20E(||ε||2).

where the last equality is followed by tr(R̃2
n)= tr(R2

n) and D̃n = p−1
n E(||ε||2)Dn.

Similar to the proof of Theorem 2, we can show that c0 = E(||ε||−1)(1 + o(1))
by Condition (C3). Thus,

ARE(Tn,PA) =E2(||ε||−1)E(||ε||2).

If Xi are generated from multivariate t-distribution with ν degrees of freedom
(ν > 2),

ARE(Tn,PA) =
2

ν − 2

(
Γ((ν + 1)/2)

Γ(ν/2)

)2

.

Table 1 reports the ARE with different ν. Under the multivariate normal distri-
bution (ν = ∞), our SS test is the same powerful as PA test. However, our SS
test is much more powerful than PA test under the heavy-tailed distributions.

In contrast, [20] showed that the power of their test (abbreviated as WPL)
is

βWPL(θn) = Φ

(
−zα +

nθT
nA

2θn√
2tr(B2)

)

where A = E(||εi||−1(Ipn − U(εi)U(εi)
T )), B = E(U(εi)U(εi)

T ) and εi =
Xi−θn. First, if all the diagonal elements of Σn are equal, i.e. Dn = (δ, · · · , δ),
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we can show that A = c0Ipn(1 + o(1)) and tr(B2) = p−2
n δ2tr(R2

n) by Condition
(C3). Then,

βWPL(θn) = Φ

(
−zα +

c20npθ
T
nD

−1
n θn√

2tr(R2
n)

)
.

Thus, our SS test has the same power as WPL test in this case. However, their
test is not scalar-invariant. To appreciate the effect of scalar-invariance, we
consider the following representative cases. Let Σn be a diagonal matrix. The
first half diagonal elements ofΣn are all τ21 and the rest diagonal elements are all
τ22 . The mean only shift on the first half components, i.e. μi = ζ, i = 1, · · · , pn/2
and the others are zeros. Thus,

βSS(θn) = Φ

(
−zα +

nE2(||ε||−1)ζ2

2
√
2pnτ21

)
.

However, it is difficult to calculate the explicit form of βWPL for arbitrary τ21 , τ
2
2 .

We only consider two special cases. If τ21 � τ22 ,

βWPL(θn) ≈ Φ

(
−zα +

nE2(||ε||−1)ζ2

2
√
pnτ21

)
.

Thus, ARE(Tn,WPL) has a positive lower bound of 1/
√
2. However, if τ22 � τ21 ,

βWPL(θn) ≈ Φ

(
−zα +

nE2(||ε||−1)ζ2

2
√
pnτ22

)
.

Then, ARE(Tn,WPL)=τ22 /(
√
2τ21 ) could be very large. This property shows the

necessity of a test with the scale-invariance property.

3. Simulation

Here we report a simulation study designed to evaluate the performance of the
proposed SS test. All the simulation results are based on 2,500 replications. The
number of variety of multivariate distributions and parameters are too large to
allow a comprehensive, all-encompassing comparison. We choose certain repre-
sentative examples for illustration. The following scenarios are firstly considered.

(I) Multivariate normal distribution. Xi ∼ N(θ,Rn).
(II) Multivariate normal distribution with different component variances.Xi ∼

N(θ,Σn), where Σn = D
1/2
n RnD

1/2
n and Dn = diag{d21, · · · , d2pn

}, d2j = 3,

j ≤ pn/2 and d2j = 1, j > pn/2.
(III) Multivariate t-distribution tpn,4. Xi’s are generated from tpn,4 with Σn =

Rn.
(IV) Multivariate t-distribution with different component variances. Xi’s are

generated from tpn,4 with Σn = D
1/2
n RnD

1/2
n and d2j ’s are generated from

χ2
4.



2426 L. Feng and F. Sun

Table 2

Empirical sizes and power (%) comparison at 5% significance under Scenarios (I)-(V)

Size Dense Sparse
n pn SS PA WPL SD SS PA WPL SD SS PA WPL SD

Scenario I
50 200 5.4 6.2 5.2 5.2 29 31 29 28 31 33 31 29
50 400 6.5 7.3 6.6 6.8 29 33 30 29 31 34 31 32
50 1000 4.7 6.9 5.7 8.9 25 33 29 38 25 32 29 38
100 200 6.2 6.5 6.3 5.4 61 63 61 60 66 68 66 64
100 400 5.9 6.2 5.1 5.1 63 64 63 60 67 68 68 65
100 1000 5.3 6.2 5.3 4.8 63 65 64 62 66 67 67 64

Scenario II
50 200 5.6 6.3 5.7 5.1 63 66 25 63 70 72 29 70
50 400 6.5 7.3 5.4 6.7 69 72 28 70 69 72 30 70
50 1000 4.6 6.9 6.1 8.7 67 74 28 79 66 73 28 79
100 200 5.9 6.3 5.0 5.4 95 96 62 95 98 97 70 97
100 400 5.9 6.1 6.2 5.2 97 97 66 96 98 98 71 98
100 1000 5.3 6.2 6.3 4.9 98 98 67 98 98 99 68 99

Scenario III
50 200 5.3 4.3 5.2 2.4 51 36 51 12 58 40 58 12
50 400 6.4 6.9 6.6 1.1 54 39 55 10 57 41 58 10
50 1000 4.4 7.1 5.7 0.9 51 37 56 5.3 51 39 57 4.8
100 200 6.0 7.8 6.3 2.3 89 69 89 42 93 72 93 45
100 400 5.9 6.6 5.1 1.2 91 66 91 27 93 71 93 29
100 1000 5.4 6.1 5.3 1.0 93 69 93 7.5 94 70 95 7.7

Scenario IV
50 200 5.3 4.3 6.5 2.4 87 67 50 32 92 74 58 41
50 400 6.4 6.9 5.9 1.1 89 74 56 21 97 88 60 42
50 1000 4.4 7.1 6.1 0.8 99 88 57 12 99 92 58 17
100 200 6.0 7.8 6.0 2.2 100 94 90 80 100 93 94 77
100 400 5.9 6.6 6.2 1.3 100 94 92 67 100 95 94 67
100 1000 5.4 6.1 5.9 0.9 100 99 94 51 100 97 96 42

Scenario V
50 200 5.5 6.0 5.2 1.2 44 34 44 10 51 38 50 8.9
50 400 6.5 6.8 6.6 0.5 49 39 50 5.8 50 40 52 6.8
50 1000 4.6 7.1 5.7 0.8 44 40 50 4.5 45 39 50 5.2
100 200 6.2 6.6 6.3 1.6 84 67 84 38 89 70 89 44
100 400 5.9 5.1 5.1 1.1 87 66 87 19 89 71 90 21
100 1000 5.3 5.8 5.3 0.9 89 68 89 5.2 90 71 91 6.3

(V) Multivariate mixture normal distribution MNpn,γ,9. Xi’s are generated
from γfpn(θ,Rn)+(1−γ)fpn(θ, 9Rn), denoted by MNpn,γ,9, where fpn(·; ·)
is the density function of pn-variate multivariate normal distribution. γ is
chosen to be 0.9.

Here we consider the correlation matrix Rn = (0.5|i−j|)1≤i,j≤pn . Two sample
sizes n = 50, 100 and three dimensions pn = 200, 400, 1000 are considered. For
power comparison, under H1, we consider two patterns of allocation for θn. One
is dense case, i.e. the first 50% components of θn are zeros. The other is sparse
case, i.e. the first 95% components of θn are zeros. To make the power com-
parable among the configurations of H1, we set η =: ||θn||2/

√
tr2(Σn) = 0.03

throughout the simulation. And the nonzeros components of θn are all equal.
Table 2 reports the empirical sizes and power of SS, PA, WPL and [18]’s test
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(abbreviated as SD hereafter) for multivariate normal (Scenario I and II) and
non-normal (Scenario III, IV and V) distributions, respectively. From Table 2,
we observe that our SS test can control the empirical sizes very well in all cases.
WPL test can also maintain the significant level very well. However, the empir-
ical sizes of the PA tests are a little larger than the nominal level in many cases,
especially for the non-normal distributions. And the empirical sizes of the SD
tests are smaller than the nominal lever for the non-normal distributions. Under
Scenario I and II, PA and SD test has some advantages over SS as we would
expert because the underlying distribution is multivariate normal. However, un-
der the non-normal distributions, our SS test performs significantly better than
PA and SD test. It is consistent with the theoretical results in Section 2. When
the component variances are same (Scenario I, III and V), the power of our SS
test is similar to WPL test. Even we need to estimate the scalar matrix, we do
not lose much efficiency in these cases. However, when the component variances
are not equal (Scenarios (II) and (IV)), our SS test, even PA test, are much
more powerful than WPL test, which further shows that a scalar-invariant test
is necessary. All these results show that our SS test is very powerful and robust
in a wide range of distributions.

Appendix

Because Theorem 1 is a special case of Theorem 2 with θn = 0, we only need
to proof Theorem 2. First, we restate the Lemma 4 in [21] here.

Lemma 1. Suppose u are independent identically distributed uniform on the
unit p sphere. For any p× p symmetric matrix M, we have

E(uTMu)2 ={tr2(M) + 2tr(M2)}/(p2 + 2p),

E(uTMu)4 ={3tr2(M2) + 6tr(M4)}/{p(p+ 2)(p+ 4)(p+ 6)}.

A.1. Proof of Theorem 2

Define U i = U(D
−1/2
n (Xi − θn)), ri = ||D−1/2

n (Xi − θn)|| and ui =

U(Σ−1/2
n (Xi − θn)). By the definition of U(D̂

−1/2
ij Xi),

U(D̂
−1/2
ij Xi)

= (D−1/2
n (Xi − θn) +D−1/2

n θn + (D̂
−1/2
ij −D−1/2

n )Xi)

× ||D−1/2
n (Xi − θn) +D−1/2

n θn + (D̂
−1/2
ij −D−1/2

n )Xi||−1

= (U i + r−1
i D−1/2

n θn + (D̂
−1/2
ij D1/2

n − Ipn)U i)

× (1 + 2r−1
i UT

i (D̂
−1/2
ij −D−1/2

n )Xi + r−2
i ||(D̂−1/2

ij −D−1/2
n )Xi||2

+ 2r−1
i D−1/2

n θn + r−2
i θT

nD
−1
n θn)

−1/2.
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And

2

n(n− 1)

∑∑
i<j

U(D̂
−1/2
ij Xi)

TU(D̂
−1/2
ij Xj)

=
2

n(n− 1)

∑∑
i<j

(U i + r−1
i D−1/2

n θn + (D̂
−1/2
ij D1/2

n − Ipn)U i)
T

× (U j + r−1
j D−1/2

n θn + (D̂
−1/2
ij D1/2

n − Ipn)U j)(1 + αij)
−1/2(1 + αji)

−1/2

=
2

n(n− 1)

∑∑
i<j

UT
i U j +

2

n(n− 1)

∑∑
i<j

r−1
i r−1

j θT
nD

−1
n θn

+
2

n(n− 1)

∑∑
i<j

UT
i U j [(1 + αij)

−1/2(1 + αji)
−1/2 − 1]

+
4

n(n− 1)

∑∑
i<j

UT
i (D̂

−1/2
ij D1/2

n − Ipn)U j(1 + αij)
−1/2(1 + αji)

−1/2

+
2

n(n− 1)

∑∑
i<j

UT
i (D̂

−1/2
ij D1/2

n − Ipn)
2U j(1 + αij)

−1/2(1 + αji)
−1/2

+
2

n(n− 1)

∑∑
i<j

r−1
i r−1

j θT
nD

−1
n θn[(1 + αij)

−1/2(1 + αji)
−1/2 − 1]

+
4

n(n− 1)

∑∑
i<j

r−1
j UT

i D
−1/2
n θn(1 + αij)

−1/2(1 + αji)
−1/2

+
2

n(n− 1)

∑∑
i<j

UT
i (D̂

−1/2
ij D1/2

n − Ipn)D
−1/2
n θn(1 + αij)

−1/2(1 + αji)
−1/2

.
=

2

n(n− 1)

∑∑
i<j

UT
i U j +

2

n(n− 1)

∑∑
i<j

r−1
i r−1

j θT
nD

−1
n θn

+An1 +An2 +An3 +An4 +An5 +An6

where αij = 2r−1
i UT

i (D̂
−1/2
ij − D

−1/2
n )Xi + r−2

i ||(D̂−1/2
ij − D

−1/2
n )Xi||2 +

2r−1
i D

−1/2
n θn + r−2

i θT
nD

−1
n θn)

−1/2. Note that r−1
i UT

i (D̂
−1/2
ij − D

−1/2
n )Xi =

UT
i (D̂

−1/2
ij D

1/2
n − Ipn)U i + r−1

i UT
i (D̂

−1/2
ij −D

−1/2
n )θn = Op(n

−1/2(log pn)
1/2)

and r−2
i ||(D̂−1/2

ij −D
−1/2
n )Xi||2 = Op(n

−1 log pn) by Lemma 2 in [3]. By Con-

dition (C2) and (C4), r−1
i D

−1/2
n θn = Op(σ

1/2
n ) = Op(n

−1) and r−2
i θT

nD
−1
n θn =

Op(σn) = Op(n
−2) where σ2

n = 2
n(n−1)pn

2 tr(R
2
n). So αij = Op(n

−1/2(log pn)
1/2).

First, we will show that An1 = op(σn). By the Cauchy inequality,

E(A2
n1) = O(n−4)

∑∑
i<j

E{UT
i U j [(1 + αij)

−1/2(1 + αji)
−1/2 − 1]}2

≤ O(n−2)E(UT
i U j)

2E[(1 + αij)
−1/2(1 + αji)

−1/2 − 1]2

= O(n−3p−2
n log pntr(R

2
n)) = o(σ2

n).
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where E(UT
i U j)

2 = O(p−2
n tr(R2

n)) follows from the upcoming statements. And

An2

=
4

n(n− 1)

∑∑
i<j

UT
i (D̂

−1/2
ij D1/2

n − Ipn)U j

+
4

n(n− 1)

∑∑
i<j

UT
i (D̂

−1/2
ij D1/2

n − Ipn)U j [(1 + αij)
−1/2(1 + αji)

−1/2 − 1]

.
= Gn1 +Gn2.

Next we will show that E(G2
n1) = o(σ2

n).

E
(
G2

n1

)
= O(n−4)

∑∑
i<j

E

((
UT

i (D̂
−1/2
ij D1/2

n − Ipn)U j

)2
)

= O(n−4)
∑∑

i<j

E

⎛
⎜⎝
(
uT
i Σn

1/2D
−1/2
n (D̂

−1/2
ij D

1/2
n − Ipn)D

−1/2
n Σn

1/2uj

)2

(1 + uT
i (Rn − Ipn)ui)(1 + uT

j (Rn − Ipn)uj)

⎞
⎟⎠

≤ O(n−4)
∑∑

i<j

{
E
(
uT
i Σn

1/2D−1/2
n (D̂

−1/2
ij D1/2

n − Ipn)D
−1/2
n Σn

1/2uj

)2

+ CE

((
uT
i Σn

1/2D−1/2
n (D̂

−1/2
ij D1/2

n − Ipn)D
−1/2
n Σn

1/2uj

)2

× uT
i (Rn − Ipn)ui

)}
,

where the last inequality follows by the Taylor expansion and C is a constant.

Define H = Σn
1/2D

−1/2
n (D̂

−1/2
ij D

1/2
n − Ipn)D

−1/2
n Σn

1/2 and then according

to Lemma 2 in [3], tr(E(H2)) = o(tr(R2
n)) and tr(E(H4)) = o(tr(R4

n)) =
o(tr2(R2

n)) by Condition (C1). By the Cauchy inequality, we have

E
(
uT
i Σn

1/2D−1/2
n (D̂

−1/2
ij D1/2

n − Ipn)D
−1/2
n Σn

1/2uj

)2
= pn

−2E(tr(H2)) = o(pn
−2tr(R2

n)),

E((uT
i Huj)

2uT
i (Rn − Ipn)ui) ≤ (E(uT

i Huj)
4E((uT

i (Rn − Ipn)ui)
2)1/2

≤ (pn
−4tr(E(H4))pn

−2(tr(Rn − Ipn)
2))1/2

= o(pn
−2tr(R2

n)),

E((uT
i Huj)

2uT
j (Rn − Ipn)uj) ≤ (E(uT

i Huj)
4E((uT

j (Rn − Ipn)uj)
2)1/2

≤ (pn
−4tr(E(H4))pn

−2(tr(Rn − Ipn)
2))1/2

= o(pn
−2tr(R2

n)).

So we obtain that Gn1 = op(σn). Similar to An1, we can show that Gn2 = op(σn)
and then An2 = op(σn). Taking the same procedure as An2, we can also obtain
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An3 = op(σn). Moreover, by taking the same procedure to uT
i (Rn − Ipn)ui as

Gn1,

2

n(n− 1)

∑∑
i<j

UT
i U j

=
2

n(n− 1)

∑∑
i<j

uT
i Σn

1/2D−1
n Σn

1/2uj√
1 + uT

i (Rn − Ipn)ui

√
1 + uT

j (Rn − Ipn)uj

=
2

n(n− 1)

∑∑
i<j

uT
i Σn

1/2D−1
n Σn

1/2uj + op(σn).

Next, we will show that√
n(n− 1)p2n
2tr(R2

n)

2

n(n− 1)

∑∑
i<j

uT
i Σ

1/2
n D−1

n Σ1/2
n uj

d→N(0, 1)

Define Wnk =
∑k

i=2 Zni where Zni =
∑i−1

j=1
2

n(n−1)u
T
i Σ

1/2
n D−1

n Σ1/2
n uj . Let

Fn,i = σ{u1, · · · ,ui} be the σ-field generated by {uj , j ≤ i}. Obviously,
E(Zni|Fn,i−1) = 0 and it follows that {Wnk,Fn,k; 2 ≤ k ≤ n} is a zero mean
martingale. The central limit theorem [6] will hold if we can show∑n

j=2 E[Z2
nj |Fn,j−1]

σ2
n

p→ 1. (A.1)

and for any ε > 0,

σ−2
n

n∑
j=2

E[Z2
njI(|Znj | > εσn|)|Fn,j−1]

p→ 0. (A.2)

It can be shown that

n∑
j=2

E(Z2
nj |Fn,j−1)

=
4

n2(n− 1)2

n∑
j=2

j−1∑
i=1

uT
i Σ

1/2
n D−1

n ΣnD
−1
n Σ1/2

n ui

+
4

n2(n− 1)2

n∑
j=2

j−1∑ j−1∑
i1<i2

uT
i1Σ

1/2
n D−1

n ΣnD
−1
n Σ1/2

n ui2

.
= Cn1 + Cn2.

Simple algebras lead to

E(Cn1) = σ2
n,
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var(Cn1) =
16

n4(n− 1)4

n−1∑
j=1

j2[E{(uT
j Σ

1/2
n D−1

n ΣnD
−1
n Σ1/2

n uj)
2}− pn

−2tr2(R2
n)].

By Lemma 1, E((uT
j Σ

1/2
n D−1

n ΣnD
−1
n Σ1/2

n uj)
2) = O(p−2

n tr2(R2
n)). Thus,

var(Cn2) = o(σ4
n). Then, Cn1/σ

2
n

p→ 1. Similarly, E(Cn2) = 0 and

var(Cn2)

σ2
n

=
32

n4(n− 1)4

n∑
i=3

i(n− i+ 1)(i− 1)

2

tr(R4
n)

tr2(R2
n)

p→ 0

implies Cn2 = op(σ
2
n). Thus, (A.1) holds. It remains to show (A.2). Note that

σ−2
n

n∑
j=2

E[Z2
njI(|Znj | > εσn|)|Fn,j−1] ≤ σ−4

n ε−2
n∑

j=2

E[Z4
nj |Fn,j−1].

Accordingly, the assertion of this lemma is true if we can show

E

⎧⎨
⎩

n∑
j=2

E[Z4
nj |Fn,j−1]

⎫⎬
⎭ = o(σ4

n).

Note that

E

⎧⎨
⎩

n∑
j=2

E[Z4
nj |Fn,j−1]

⎫⎬
⎭ =

n∑
j=2

E(Z4
nj)

= O(n−8)

n∑
j=2

E

(
j−1∑
i=1

uT
j Σ

1/2
n D−1

n Σ1/2
n ui

)4

.

which can be decomposed as 3Q+ P where

Q =O(n−8)

n∑
j=2

j−1∑ j−1∑
s<t

E(uT
j Σ

1/2
n D−1

n Σ1/2
n usu

T
s Σ

1/2
n D−1

n Σ1/2
n uj

× uT
j Σ

1/2
n D−1

n Σ1/2
n utu

T
t Σ

1/2
n D−1

n Σ1/2
n uj)

P =O(n−8)

n∑
j=2

j−1∑
i=1

E((uT
j Σ

1/2
n D−1

n Σ1/2
n ui)

4)

SoQ = O(n−5pn
−2E((uT

j Σ
1/2
n D−1

n ΣnD
−1
n Σ1/2

n uj)
2)) = O(n−5pn

−4tr2(R2
n))=

o(σ4
n). Define Σ1/2

n D−1
n Σ1/2

n = (vij)1≤i,j≤pn .

E(uT
s A3ut)

4 = E

⎛
⎝ pn∑

i=1

pn∑
j=1

vijusiutj

⎞
⎠

4
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=

pn∑
i1,...,i4=1

pn∑
j1,...,j4=1

vi1j1vi2j2vi3j3vi4j4E(usi1usi2usi3usi4)E(utj1utj2utj3utj4)

= O(pn
−4)

pn∑
i1,...,i4=1

pn∑
j1,...,j4=1

vi1j1vi2j2vi3j3vi4j4 .

By the Cauchy inequality, we have

pn∑
i1,i2,i3,i4=1

pn∑
j1,j2,j3,j4=1

vi1j1vi2j2vi3j3vi4j4

≤ 1

4

pn∑
i1,i2,i3,i4=1

pn∑
j1,j2,j3,j4=1

(v2i1j1 + v2i2j2)(v
2
i3j3 + v2i4j4)

=

pn∑
i1,i2,j1,j2=1

v2i1j1v
2
i2j2 =

⎛
⎝∑

i1,j1

v2i1j1

⎞
⎠

2

= tr2(R2
n).

Thus, P = O(n−6pn
−4tr(R2

n)) = o(σ4
n). So, we obtain that

2

n(n− 1)

∑∑
i<j

UT
i U j

d→N(0, σ2
n).

Obviously,

2

n(n− 1)

∑∑
i<j

r−1
i r−1

j θT
nD

−1
n θn = c20θ

T
nD

−1
n θn + op(σn),

and An4 = op(σn) by the same arguments as An1. Similarly,

An5 = Op((c
2
0n

−1p−1
n θT

nD
−1
n ΣnD

−1
n θn)

1/2) = op(σn),

An6 = Op((c
2
0n

−3/2p−1
n log pnθ

T
nD

−1
n ΣnD

−1
n θn)

1/2) = op(σn).

So

Tn − c20θ
T
nD

−1
n θn

σn

d→N(0, 1).

Here we complete the proof. �
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