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Université Pierre et Marie Curie - Paris 6,
4 place Jussieu, 75252 Paris cedex 05 France

e-mail: bertrand.michel@upmc.fr

Abstract: Distances to compact sets are widely used in the field of Topo-
logical Data Analysis for inferring geometric and topological features from
point clouds. In this context, the distance to a probability measure (DTM)
has been introduced by Chazal et al. (2011b) as a robust alternative to the
distance a compact set. In practice, the DTM can be estimated by its em-
pirical counterpart, that is the distance to the empirical measure (DTEM).
In this paper we give a tight control of the deviation of the DTEM. Our
analysis relies on a local analysis of empirical processes. In particular, we
show that the rate of convergence of the DTEM directly depends on the
regularity at zero of a particular quantile function which contains some lo-
cal information about the geometry of the support. This quantile function
is the relevant quantity to describe precisely how difficult is a geometric in-
ference problem. Several numerical experiments illustrate the convergence
of the DTEM and also confirm that our bounds are tight.

MSC 2010 subject classifications: Primary 62G05; secondary 62G30,
68U05, 62-07, 28A33.

Keywords and phrases: Geometric inference, distance to measure, rates
of convergence.

Received March 2016.

∗The authors were supported by the ANR project TopData ANR-13-BS01-0008.
†Frédéric Chazal and Bertrand Michel are members of the INRIA project team Datashape.
‡Pascal Massart is member of the INRIA project team Select.

2243

http://projecteuclid.org/ejs
http://dx.doi.org/10.1214/16-EJS1161
mailto:frederic.chazal@inria.fr
mailto:pascal.massart@math.u-psud.fr
mailto:bertrand.michel@upmc.fr


2244 F. Chazal et al.

1. Introduction and motivation

The last decades have seen an explosion in the amount of available data in al-
most all domains of science, industry, economy and even everyday life. These
data, often coming as point clouds embedded in Euclidean spaces, usually lie
close to some lower dimensional geometric structures (e.g. manifold, stratified
space, . . . ) reflecting properties of the system from which they have been gener-
ated. Inferring the topological and geometric features of such multivariate data
has recently attracted a lot of interest in both statistical and computational
topology communities.

Considering point cloud data as independent observations of some common
probability distribution P in R

d, many statistical methods have been proposed
to infer the geometric features of the support of P such as principal curves
and surfaces Hastie and Stuetzle (1989), multiscale geometric analysis Arias-
Castro et al. (2006), density-based approaches Genovese et al. (2009) or support
estimation, to name a few. Although they come with statistical guarantees these
methods usually do not provide geometric guarantees on the estimated features.

On another hand, with the emergence of Topological Data Analysis (Carlsson,
2009), purely geometric methods have been proposed to infer the geometry of
compact subsets of R

d. These methods aims at recovering precise geometric
information of a given shape – see, e.g. Chazal and Lieutier (2008); Niyogi
et al. (2008); Chazal et al. (2009a,b). Although these methods come with strong
topological and geometric guarantees they usually rely on sampling assumptions
that do not apply in statistical settings. In particular, these methods can be very
sensitive to outliers. Indeed, they generally rely on the study of the sublevel sets
of distance functions to compact sets. In practice only a sample drawn on,
or close, to a geometric shape is known and thus only a distance to the data
can be computed. The sup norm between the distance to the data and the
distance to the underlying shape being exactly the Hausdorff distance between
the data and the shape, we see that the statistical analysis of standards TDA
methods boils down to the problem of support estimation in Hausdorff metric.
This last problem has been the subject of much study in statistics (see for
instance Devroye and Wise, 1980; Cuevas and Rodŕıguez-Casal, 2004; Singh
et al., 2009). Being strongly dependent of the estimation of the support in
Hausdorff metric, it is now clear why standard TDA methods may be very
sensitive to outliers.

To provide a more robust approach of TDA, a notion of distance function
to a measure (DTM) in R

d has been introduced by Chazal et al. (2011b) as a
robust alternative to the classical distance to compact sets. Given a probability
distribution P in R

d and a real parameter 0 ≤ u ≤ 1, Chazal et al. (2011b)
generalize the notion of distance to the support of P by the function

δP,u : x ∈ R
d �→ inf{t > 0 ; P (B̄(x, t)) ≥ u} (1)

where B̄(x, t) is the closed Euclidean ball of center x and radius t. For u = 0,
this function coincides with the usual distance function to the support of P . For



Robust geometric inference 2245

higher values of u, it is larger than the usual distance function since a portion
of mass u has to be included in the ball centered on x. To avoid issues due to
discontinuities of the map P → δP,u, the distance to measure (DTM) function
with parameter m ∈ [0, 1] and power r ≥ 1 is defined by

dP,m,r(x) : x ∈ R
d �→

(
1

m

∫ m

0

δrP,u(x)du

)1/r

. (2)

It was shown in Chazal et al. (2011b) that the DTM shares many proper-
ties with classical distance functions that make it well-adapted for geometric
inference purposes (see Theorem 4 in Appendix A). First, it is stable with re-
spect to perturbations of P in the Wasserstein metric . This property implies
that the DTM associated to close distributions in the Wasserstein metric have
close sublevel sets. Moreover, when r = 2, the function d2P,m,2 is semiconcave
ensuring strong regularity properties on the geometry of its sublevel sets. Using
these properties, Chazal et al. (2011b) show that, under general assumptions,
if P̃ is a probability distribution approximating P , then the sublevel sets of
dP̃ ,m,2 provide a topologically correct approximation of the support of P . The
introduction of DTM has motivated further works and applications in various
directions such as topological data analysis Buchet et al. (2015a), GPS traces
analysis Chazal et al. (2011a), density estimation Biau et al. (2011), deconvo-
lution Caillerie et al. (2011) or clustering Chazal et al. (2013) just to name a
few. Approximations, generalizations and variants of the DTM have also been
recently considered in Guibas et al. (2013); Buchet et al. (2015b); Phillips et al.
(2014). However no strong statistical analysis of the DTM has not been proposed
so far.

In practice, the measure P is usually only known through a finite set of
observations Xn = {X1, . . . , Xn} sampled from P , raising the question of the
approximation of the DTM. A natural idea to estimate the DTM from Xn is
to plug the empirical measure Pn instead of P in the definition of the DTM.
This “plug-in strategy” corresponds to computing the distance to the empirical
measure (DTEM). It can be applied with other estimators of the measure P , for
instance in Caillerie et al. (2011) it was proposed to plug a deconvolved measure
into the DTM.

For m = k
n , the DTEM satisfies

drPn,k/n,r
(x) :=

1

k

k∑
j=1

‖x− Xn‖r(j) ,

where ‖x − Xn‖(j) denotes the distance between x and its j-th neighbor in
{X1, . . . , Xn}. This quantity can be easily computed in practice since it only
requires the distances between x and the sample points.

Let us introduce

Δn,m,r(x) := drPn,m,r(x)− drP,m,r(x) (3)
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and
Δ̃n,m,r(x) := dPn,m,r(x)− dP,m,r(x).

The aim of this paper is to study the deviations and the rate of convergence of
Δn,m,r(x). The functional convergence of the DTEM has been studied recently
in Chazal et al. (2014a) where it is shown that the parametric convergence rate
in 1/

√
n is achieved under reasonable assumptions. In this paper we address

the question of the convergence in probability and the rate of convergence in
expectation of Δn,m,r(x), both from an asymptotic and non asymptotic point
point of view.

The stability properties of DTM with respect to Wasserstein metrics suggests
that this problem could be addressed using known results about the convergence
of empirical measure Pn to P under Wasserstein metrics. This last problem has
been the subject of many works in the past (Rachev and Rüschendorf, 1998;
del Barrio et al., 1999, 2005) and it is still an active field of research (Fournier
and Guillin, 2013; Dereich et al., 2013). Contrary to the context of TDA with
the standard distance function, where stability result provide optimal rates of
convergence (see Chazal et al. (2015)), we show in the paper that Wasserstein
stability does not lead to optimal results for the DTM. Moreover, such a ba-
sic approach does not provide a correct understanding of the influence of the
parameter m (see Appendix A).

We adopt an alternative approach based on the observation that the DTM
only depends on a push forward measure of P on the real line. Indeed, the DTM
can be rewritten as follows:

drP,m,r(x) =
1

m

∫ m

0

F−1
x,r (u)du, (4)

where F−1
x,r is the quantile function of the push forward probability measure of

P by the function ‖x − ·‖r (see appendix B.1 for a rigorous proof). Then we
have

Δn,m,r(x) :=
1

m

∫ m

0

{
F−1
x,r,n(u)− F−1

x,r (u)
}
du, (5)

where F−1
x,r,n is the empirical quantile function of the observed distances (to the

power r): ‖x−X1‖r, . . . , ‖x−Xn‖r. We study the convergence of Δn,m,r(x) to
zero from both an asymptotic and non asymptotic points of view. An asymptotic
approach means that we take k = kn := mn for some fixed m and we study
the mean rate of convergence to zero of Δn, kn

n ,r(x). A non asymptotic approach

means that n is fixed and then the problem is to get a tight expectation bound on
Δn, kn ,r(x). In particular, we are particularly interested in the situation where
k
n is chosen very close to zero. This situation is of primary interest since it
corresponds to the realistic situation where we use the DTM to clean the support
from a small proportion of outliers.

Our results rely on a local analysis of the empirical process to compute tight
deviation bounds of Δn, kn ,r(x). More precisely, we use a sharp control of a
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supremum defined on the uniform empirical process. Such local analysis has
been successfully applied in the literature about non asymptotic statistics, for
instance Mammen et al. (1999) obtain fast rates of convergence in classification.
For a more general presentation of these ideas in model selection, see Massart
(2007) and in particular Section 1.2 in the Introduction of this monograph.

We show that the rate of convergence of Δn, kn ,r(x) directly depends on the

regularity at zero of F−1
x,r . This quantile function appears to be the relevant

quantity to describe precisely how difficult is a geometric inference problem.
The second contribution of this paper is relating the regularity of the quantile
function F−1

x,r to the geometry of the support, establishing a link between the
complexity of the geometric problem and a purely probabilistic quantity. In
particular, our results apply to the case of a probability measure supported on
a compact manifold of dimension b, when the measure is absolutely continuous
with respect to the Hausdorff measure on the manifold, with a lower bounded
density. In this context our results show that E(|Δn, kn ,2(x)|) � 1√

n
[ kn ]

1/b−1/2.

Our main results, the deviations bounds and the rate of convergence of Δn, kn ,r(x)

derived from the local analysis, are given in Section 2. These results are given
in terms of the regularity of the quantile function F−1

x,r . Generally speaking, it is
not easy to determine what is the regularity of the quantile function F−1

x,r given a

distribution P and an observation point x ∈ Rd. Indeed, it depends on the shape
of the support of P , on the way the measure P is distributed on its support and
on the position of x with regards to the support of P . This is why, in the results
given in Section 2, the assumptions are made directly on the quantile functions
F−1
x . Section 3 is then devoted to the geometric interpretation of these results

and their assumptions. In Section 4, several numerical experiments illustrate
the convergence of the DTEM and also confirm that our bounds are sharp.
Rates of convergence derived from stability results of the DTM are presented
in Appendix A. Proofs and background about empirical processes and quantiles
can be found in the appendices also.

Notation. Let a ∧ b and a ∨ b denotes the minimum and the maximum be-
tween two real numbers a and b. The Euclidean norm on R

d is ‖ · ‖. The open
Euclidean ball of center x and radius t is denoted by B(x, t). For some point
x and a compact set K in R

d, the distance between x and K is defined by
‖K − x‖ := infy∈K ‖y − x ‖. The Hausdorff distance between two compact sets
K and K ′ is denoted by Haus(K,K ′). A probability distribution on R defined
by a distribution function F is denoted by dF . The quantile function F−1 of
dF is defined by

F−1(u) := inf{t ∈ R , F (t) ≥ u}, 0 < u < 1.

By monotonicity, the quantile function F−1 can be extended in 0 and at 1 by
setting F−1(0) = inf{t ∈ R , F (t) > 0}, and F−1(1) = sup{t ∈ R , F (t) < 1}.
Finally, for two positive sequences (an) and (bn), we use the standard notation
an � bn if there exists a positive constant C such that an ≤ Cbn.
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2. Main results

We fix r ≥ 1 and we henceforth write Fx for Fx,r to facilitate the reading. In the

same way we will use the notation F−1
x , Δ̃P,m, dP,m since there is no ambiguity

on the power term r.
Given an observation point x ∈ R

d, we introduce the modulus of continuity
ω̃x of F−1

x (possibly infinite) which is defined for any v ∈ (0, 1] by

ω̃x(v) := sup
(u,u′)∈[0,1]2, ‖u−u′‖≤v

|F−1
x (u)− F−1

x (u′)|.

Note that the fact that ω̃x is finite is equivalent to the fact that the support of
P is bounded. An extensive discussion about the relation between the measure
P and the modulus of continuity of F−1

x is proposed in Section 3. The function
ω̃x being non decreasing and non negative, it has a non negative limit ω̃x(0

+)
at zero. In particular we do not assume here that ω̃x(0

+) = 0. In other terms
we do not assume that F−1

x is continuous. We extend ω̃x at zero by taking
ω̃x(0) = ω̃x(0

+).
In the following, it will be sufficient in our results to consider upper bounds on

the modulus of continuity, that is a non negative function ωx on [0, 1] such that
ωx(v) ≥ ω̃(v) for any v ∈ [0, 1]. A modulus of continuity being a non decreasing
function, we will assume that such an upper bound ωx is non decreasing on
[0, 1]. For technical reasons and without loss of generality, we will also assume
that ωx is a continuous function, which takes its values in [ω(0), ω(1)] ⊂ R̄

+. For
such a function ωx we also introduce its inverse function ω−1

x which is defined
on [ω(0), ω(1)]. We extend this function to R

+ by taking ω−1
x (t) = 0 for any

t ∈ [0, ω(0)] and ω−1
x (t) = 1 for any t ≥ ω(1). In particular, ω−1

x (ωx(u)) = u for
any u ∈ [0, 1].

In this section, we show that the rate of convergence of Δn, kn
(x) is of the

order of
ωx(

k
n )√
k

.

2.1. Local analysis of the distance to the empirical measure in the
bounded case

We first consider the behavior of the distance to the empirical measure when
the observations X1, . . . , Xn are sampled from a distribution P with compact
support in R

d. Let F−1
x be the quantile function of ‖x−X1‖r and let Δn, kn

be

defined by (3).

Theorem 1. Let x be a fixed observation point in R
d. Assume that ωx : [0, 1] →

R
+ is an upper bound on the modulus of continuity of F−1

x . Assume moreover
that ωx is a strictly increasing and continuous function on [0, 1].

1. For any λ > 0, if k < n
2 then

P
(
|Δn, kn

(x)| ≥ λ
)

2
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≤ exp

(
− 1

64

kλ2[
F−1
x

(
k
n

)
− F−1

x (0)
]2
)

+ exp

(
− 3

16

kλ

F−1
x

(
k
n

)
− F−1

x (0)

)

+ exp

⎛⎜⎝−n2

4k

⎧⎨⎩ω−1
x

⎛⎝k1/4

√√√√λ

8
ωx

(
2
√
k

n

)⎞⎠⎫⎬⎭
2
⎞⎟⎠

+ exp

⎛⎝−3n

8
ω−1
x

⎛⎝k1/4

√√√√λ

2
ωx

(
2
√
k

n

)⎞⎠⎞⎠
+ exp

⎛⎝−
√
k

8

λ

ωx

(
2
√
k

n

)
⎞⎠+ exp

⎛⎜⎝−3k3/4

4

√√√√ λ

2ωx

(
2
√
k

n

)
⎞⎟⎠ =: �(λ),

otherwise

P
(
|Δn, kn

(x)| ≥ λ
)

2

≤ exp

⎛⎝−2nλ2

[
k
n

F−1
(
k
n

)
− F−1(0)

]2
⎞⎠

+ exp

⎛⎝−2n

{
ω−1
x

(√
k√
n
ωx

(
1√
n

)
λ

2

)}2
⎞⎠

+ exp

⎛⎝− k
√
nωx

(
1√
n

)λ
⎞⎠ .

Furthermore, in all cases we have P (|Δn, kn
(x)| ≥ λ) = 0 for any λ >

ωx(1).
2. Assume moreover that ωx(u)/u is a non increasing function, then for any

k ∈ {1, . . . , n}:

E

(
|Δn, kn

(x)|
)

≤ C√
k

{[
F−1
x

(
k

n

)
− F−1

x (0)

]
+ ωx

(√
k

n

)}
(6)

≤ 2C√
k
ωx

(
k

n

)
, (7)

where C is an absolute constant.

The proof of the Theorem is based on a particular decomposition of Δn, kn
(x),

see Lemma 5 in Appendix B.1. This decomposition allows us to consider the
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deviations of the empirical process rather than the deviations of the quantile
process. The proof is given in Appendix B.

Let us now comment on the final bound on expectation (7). This bound can
be rewritten as follows:

E

∣∣∣Δn, kn
(x)

∣∣∣ � n

k

1√
n

√
k

n
ωx

(
k

n

)
.

The term n
k comes from the definition of the DTM, it is the renormalization

by the mass proportion k
n . The term 1√

n
corresponds to a classical parametric

rate of convergence. The term
√

k
n is obtained thanks to a local analysis of

the empirical process. More precisely, it derives from a sharp control of the
variance of the supremum over the uniform empirical process. The term ωx(

k
n )

corresponds to the statistical complexity of the problem, expressed in terms of
the regularity of the quantile function F−1

x .
Theorem 1 can be interpreted with either an asymptotic or a non asymptotic

point of view. Taking a non asymptotic approach, we consider n as fixed. A
first result here is that we obtain sharp upper bounds for small values of k

n . In
the most favorable case where ω̃x(u) ∼ u, we see in (7) that an upper bound
of the order of 1

n is reached. This is direct consequence of the local analysis
we use to control the empirical process in the neighborhood of the origin. As
mentioned before, assuming that k

n is very small corresponds to the realistic
situation where we use the DTM to clean the support from a small proportion
of outliers.

Now, taking an asymptotic approach, a second result of Theorem 1 is that
it allows us to consider the asymptotic behavior of Δn, kn

(x) under all possible

regimes, that is for all sequences (kn)n∈N. For instance, with the classical ap-
proach where kn is such that kn/n = m for some fixed value m ∈ (0, 1), we then
obtain the parametric rate of convergence 1/

√
n, as in the asymptotic functional

results given in Chazal et al. (2014a).
Another key fact about Theorem 1 is that the upper bound (6) depends on

the regularity of F−1
x through the function

Ψx : m ∈ (0, 1) �→ ωx(m)√
m

.

Moreover, if ω(0+) = 0, we see that the upper bound (6) depends on the reg-
ularity of F−1

x only at 0 for n large enough. For instance, if kn is such that
kn/n = m for some fixed value m ∈ (0, 1) such that F−1

x (m) > F−1
x (0), coming

back to (6), we find that for n large enough:

ωx

(√
kn
n

)
= ωx

(√
m

n

)
< F−1

x (m)− F−1
x (0).

In this context, the right hand term of Inequality (6) is of the order of
Ψ̃x(

kn
n )√

kn

where

Ψ̃x : m ∈ (0, 1) �→ F−1
x (m)− F−1

x (0)√
m

.
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We now give additional remarks about Theorem 1.

Remark 1. If the quantile function F−1
x is η-Hölder, then ωx(u) = Auη for

some constant A ≥ 0 and thus we have

E

(
|Δn, kn

(x)|
)

� 1√
n

[
k

n

]η−1/2

.

Remember that Hölder functions with power η > 1 are constants, we can thus
assume that η ≤ 1. If P is supported on a compact manifold of dimension b,
and if P is absolutely continuous with respect to the Hausdorff measure on the
manifold with a lower bounded density then E(|Δn, kn

(x)|) � 1√
n
[ kn ]

1/b−1/2. See

Section 3.4 for more details about the implications in the case of (a,b) standard
measures.

Remark 2. Assuming that ωx(u)/u is a non increasing function roughly means
that ωx is a concave function. Our result is thus satisfied if we can find an
concave function which is an upper bound on the modulus of continuity of the
quantile function. We show in Section 3.4 that it is satisfied for a large class of
measures.

Remark 3. For values of k
n not close to zero, the rate is consistent with the

upper bound (13) deduced from the approach based on the stability results (see
Appendix A). However, Theorem 1 is more satisfactory since it describes the
statistical complexity of the problem through the regularity of the quantile func-
tion.

Remark 4. The application u �→ u1/r is 1/r- Hölder on R
+ with Hölder con-

stant 1 since 1/r < 1. It yields:

|Δ̃n, kn ,r(x)| ≤ |Δn, kn ,r(x)|1/r. (8)

where Δ̃n, kn ,r(x) is defined by (1). We deduce an expectation bound on Δ̃n, kn ,r(x)

from Jensen’s Inequality and Inequality (8):

E

(
|Δ̃n, kn ,r(x)|

)
�
[

1√
n

[
k

n

]−1/2

ωx

(
k

n

)]1/r

.

Remark 5. As already mentioned before, to prove Theorem 1, we consider the
deviations of the empirical process rather than the deviations of the quantile
process. Indeed, the more direct approach that consists in directly controlling
the deviations of the quantile process gives slower rates. More precisely, using
Proposition 7 given in Appendix C borrowed from Shorack and Wellner (2009),
it can be shown that

E

(
|Δn, kn

(x)|
)

� ωx

(√
k

n

)
.

For instance, if ωx(u) = Auη, we obtain E(|Δn, kn ,r(x)|) � (
√
k

n )η which is slower

than the rate given in Remark 1.
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To complete the results of Theorem 1, we give below a lower bound using
Le Cam’s lemma (see Lemma 8 in Appendix C). Let ω be a continuous and
strictly increasing function on [0, 1] and let x ∈ Rd. We introduce that class of
probability measures:

Pω,x :=
{
P is a probability measure on R

d such that ω ≥ ω̃x on [0, 1]
}
.

In the previous definition, the function ω̃ is as before the modulus of continuity
of the quantile function of the distribution of the push-forward measure of P by
the function y �→ ‖y − x‖r.
Proposition 1. Assume that there exists P ∈ Pω,x, c > 0 and ū ∈ (0, 1), such
that

c
[
F−1
x (u)− F−1

x (0)
]
≥ ω(u) for any u ∈ (0, ū]. (9)

Then, there exits a constant C which only depends on c, such that for any
k ≤ ūn.

sup
P∈Pω,x

E

(
|Δn, kn ,r(x)|

)
≥ inf

d̂n(x)
sup

P∈Pω,x

E

(∣∣∣d̂rn(x)− drP,m,r(x)
∣∣∣)

≥ C
n

k

1

n
ω

(
k − 1

n

)
,

where the infimum is taken over all the estimator d̂n(x) of dP,m,r(x) defined
from a sample X1, . . . , Xn of distribution P .

The Assumption (9) is not very strong. It means that ω is not a too large up-
per bound on the modulii of continuity of the quantile functions. More precisely,
it says that there exists a distribution P ∈ Pω,x for which ω can be comparable
to the modulus of continuity of the quantile functions F−1

x in the neighborhood
of the origin.

Note that this lower bound matches with the upper bound of Theorem 1
when k is very small since it is of the order of ω( kn ). Providing the correct lower
bound for all values of k is not obvious. As far as we know there is no standard
method in the literature for computing lower bounds for this kind of functional
and we consider that this issue is beyond the scope of this paper.

2.2. Local analysis of the distance to the empirical measure in the
unbounded case

The previous results provide a description of the fluctuations and mean rates of
convergence of the empirical distance to measure. However, when the support
of P is not bounded, the quantile function F−1

x tends to infinity at 1 and the
modulus of continuity of F−1

x is not finite. In such a situation, Theorem 1 can not
be applied. We now propose a second result about the fluctuations of the DTEM,
under weaker assumptions on the regularity of F−1

x . The following result shows
that under a weak moment assumption, the rate of convergence is the same as
for the bounded case, up to a term decreasing exponentially fast to zero.
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Theorem 2. Let m̄ ∈ (0, 1) and some observation point x ∈ R
d. Assume that

ωx,m̄ is an upper bound of the modulus of continuity of F−1
x on (0, m̄]: for any

u, u′ ∈ [0, m̄]2,

|F−1
x (u)− F−1

x (u′)| ≤ ωx,m̄(|u− u′|). (10)

Assume moreover that ωx,m̄ is a strictly increasing and continuous function on
[0, m̄]. Then, for any k < n

(
1
2 ∧ m̄

)
and any λ > 0:

P
(
|Δn, kn

(x)| ≥ λ
)

2

≤ �(λ) + exp

(
−
√
k

8
exp

[
n2

4k

(
m̄− k

n

)2
]
λ

)

+ exp

(
−3

8
exp

[
n2

8k

(
m̄− k

n

)2
]
k

3
8

√
λ

2

)

+

{
2 exp

(
−n2

2k

{
m̄− k

n

}2
)}

∧

⎧⎨⎩
(

n
k−1

)
2

[
1− F

(√
λ

6

k

n

)]n−k+1
⎫⎬⎭

where �(λ) is the upper bound given in Theorem 1, with ωx replaced by ωx,m̄.
Assume moreover that ωx,m̄(u)/u is a non increasing function and that P has
a moment of order r. Then

E

∣∣∣Δn, kn
(x)

∣∣∣ ≤ C√
n

[
k

n

]−1/2
{[

F−1
x

(
k

n

)
− F−1

x (0)

]
+ ωx,m̄

(√
k

n

)}

+ Cx,r,m̄

√
k exp

[
−n2

4k

(
m̄− k

n

)2
]
.

where C is an absolute constant and Cx,r,m̄ only depends on the quantity
E‖X − x‖r and on m̄.

As for the bounded case, if ω(0+) = 0 and if F−1
x (m) > F−1

x (0), then the rate

of convergence is still of the order of Ψ̃x(m)√
n

. Note that this result is interesting

even when the measure P is supported on a compact set. Indeed, assume that
the quantile function F−1

x is not continuous, then ω̃−1
x (0) > 0. However, if F−1

x

is smooth in the neighborhood of zero, for m̄ small enough the assumption
(10) may be satisfied with a function ωx,m̄ which can be very small in the
neighborhood of zero. Theorem 2 may provide better bounds in this context
than those given by Theorem 1. This fact also confirms that the deviations of
the DTEM mainly relies on the local regularity of the quantile function F−1

x at
the origin rather then on its global regularity.
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2.3. Convergence of the distance to the empirical measure for the
sup norm

The previous results address the pointwise fluctuations of the DTEM. We now
consider the same problem for the sup norm metric on a compact domain D
of Rd. Let N(D, t) be the covering number of D, that is the smallest number
of balls B(xi, t) with xi ∈ D, such that

⋃
i B(xi, t) ⊃ D. Since the domain D

is compact, there exists two positive constants c and ν ≤ d such that for any
t > 0:

N(D, t) ≤ ct−ν ∨ 1.

We assume that there exists a function ωD : (0, 1] → R
+ which uniformly upper

bounds the modulus of continuity of the quantile functions (F−1
x )x∈D: for any

u, u′ ∈ (0, 1]2 and for any x ∈ D:

|F−1
x (u)− F−1

x (u′)| ≤ ωD(|u− u′|).
We also assume as before that ωD is a strictly increasing and continuous function
on [0, 1].

Theorem 3. Under the previous assumptions, for any k ≤ n
2 ,

E

(
sup
x∈D

|Δn, kn
(x)|

)

≤ C√
n

[
k

n

]−1/2[
F−1
x

(
k

n

)
− F−1

x (0)

]
log+

⎛⎝[ k[
F−1
x

(
k
n

)
− F−1

x (0)
]2
]ν+5

⎞⎠
+

C√
n

[
k

n

]−1/2

ωD

(√
k

n

)
log+

⎛⎜⎝
⎡⎣ √

k

ωD
(√

k
n

)
⎤⎦ν−1

⎞⎟⎠
≤ C√

n

[
k

n

]−1/2

ωD

(√
k

n

)
log+

⎛⎜⎝ kν+5[
F−1
x

(√
k

n

)
− F−1

x (0)
]2ν+5

∧
[
ωD

(√
k

n

)]ν−1

⎞⎟⎠
where log+(u) = (log u) ∨ 1 for any u ∈ R

+ . The constant C is an absolute
constant if r = 1 otherwise it depends on r and on the Hausdorff distance
between D and the support of P .

This bound is deduced from a deviation bound on supx∈D |Δn, kn
(x)| which

is given in the proof. Up to a logarithm term, the rate is the same as for the
pointwise convergence. As for the pointwise convergence, this result could be
easily extended to the case of non compactly supported measures.

3. The geometric information carried by the quantile function F−1
x

The upper bounds we obtain in the previous section directly depend on the
regularity of F−1

x . We now give some insights about how the geometry of the
support of the measure in R

d impacts the quantile function F−1
x .
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3.1. Compact support and modulus of continuity of the quantile
function

A geometric characterization of the existence of ω̃x on [0, 1] can be given in
terms of the support of the measure P . The following Lemma is borrowed and
adapted from Proposition A.12 in Bobkov and Ledoux (2014):

Lemma 1. Given a measure P in R
d and an observation point x ∈ R

d, the
following properties are equivalent:

1. the modulus of continuity of the quantile function F−1
x satisfies ω̃x(u) < ∞

for any u ≤ 1 ;
2. the push-forward distribution of P by the function ‖x − ·‖r is compactly

supported ;
3. P is compactly supported.

In particular, if P is compactly supported, we can always take as an upper
bound on ω̃x the constant function ωx = Haus ({x},K). Of course this is not a
very relevant choice to describe the rate of convergence of the DTEM.

3.2. Connectedness of the support and modulus of continuity of the
quantile function

While discontinuity of the distribution function corresponds to atoms, discon-
tinuity points of the quantile function corresponds to area with empty mass in
R

d (see the right picture of Figure 1). The fact that ω̃x(0
+) = 0 is directly

related to the connectedness of the support of the distribution dFx. Indeed, it
is equivalent to assuming that the support of dFx is a closed interval in R

+, see
for instance Proposition A.7 in Bobkov and Ledoux (2014).

In the most favorable situations where the support of P is a connected set,
then ω̃x(0

+) = 0 and the faster ω̃x tends to 0 at 0, the better the rate we obtain.
However, for some point x ∈ R

d, it is also possible for the support of dFx to be an
interval even when the support of P is not a connected set of Rd (see the left pic-
ture of Figure 1). In the other case, when the support of dFx is not a connected
set, the term ω̃x(0) roughly corresponds to the maximum distance between two
consecutive intervals of the support of dFx (see the right picture of Figure 1).
Our results can still be applied in these situations but the upper bounds we
obtain in this case are larger because ωx(

k
n ) can not be smaller than ω̃x(0).

3.3. Uniform modulus of continuity of F−1
x,r versus local continuity

of F−1
x,r at the origin

Though stronger than continuity, a natural regularity assumption on F−1
x,r is

assuming that this function is also concave:

Lemma 2. If F−1
x is concave then we can take ωx = F−1

x − F−1
x (0). In partic-

ular, if x is in the support of P then we can take ωx = F−1
x .



2256 F. Chazal et al.

Fig 1. Left: one situation where the support of P is not a connected set whereas the support
of dFx is (for r = 1). The quantile function F−1

x is continuous. Right: one situation where
the support of dFx is is not a connected set ; the quantile function F−1

x is not continuous.

If we take r = 1, in many simple situations we note that the cumulative
distribution function Fx,1 roughly behaves as a power function t�, where � is the
dimension of the support. In this context, the quantile function F−1

x,1 roughly

behaves as a power function in u1/�. We then have that F−1
x,r (u) =

[
F−1
x,1 (u)

]r
behaves as u

r
� . This is for instance the case for (a, b) standard measures, as

shown in the next section. These considerations suggest that if r/� < 1, in
many situations the quantile function is concave and then ωx is of the order of
F−1
x − F−1

x (0). This means that the upper bound on E|ΔP,n, kn
| is of the order

of 1√
n
Ψ̃x(

k
n ).

More generally, as noticed in the comments following Theorem 1, the term
F−1
x ( kn )−F−1

x (0) is the dominating term in the upper bound (6). We may check

with the numerical experiments of Section 4 that the function Ψ̃x yet captures
the correct monotonicity of E|ΔP,n, kn

| as a function of k
n .

3.4. The case of (a, b) standard measures

The intrinsic dimensionality of a given measure in R
d can be quantified by the

so-called (a, b)- standard assumption which assumes that there exists a′ > 0,
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Fig 2. About the modulus of continuity of the quantile function F−1
x in the case of (a, b)-

standard measures in Rd.

ρ0 > 0 and b > 0 such that

∀x ∈ K, ∀r ∈ (0, ρ0), P (B(x, ρ)) ≥ a′ρb, (11)

where K is the support of P . This assumption is popular in the literature about
set estimation (see for instance Cuevas, 2009; Cuevas and Rodŕıguez-Casal,
2004). More recently, it has also been in used in Chazal et al. (2015); Fasy et al.
(2014); Chazal et al. (2014b) for statistical analysis inTopological Data Analysis.

Since K is compact, by reducing the constant a′ to a smaller constant a if
necessary, we easily check that Assumption (11) is equivalent to

∀x ∈ K, P (B(x, ρ)) ≥ 1 ∧ aρb.

We now give control on the two key terms ωx and F−1
x (u) − F−1

x (0) which
are involved in the bounds on expectations of Section 2.

Lemma 3. Let P be a probability measure on R
d which is (a, b) standard on its

support K. Then, for any u ∈ [0, 1],

F−1
x (u)− F−1

x (0) ≤ r
(u
a

)1/b
[(u

a

)1/b

+ ‖K − x‖
]r−1

,

where r is the power parameter in the definition (2) of the DTM. Assume more-
over that K is a connected set of Rd. Then, for any h ∈ (0, 1) we have

ω̃x(h) ≤ r

(
h

a

)1/b

Haus ({x},K)
r−1

.

Proof. We have (see the left picture of Figure 2)

Fx(t) = P
(
B
(
x, t1/r

))
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≥ P

(
B

(
πK(x),

(
t1/r − ‖K − x‖

)+
))

where πK(x) is a point of Rd which satisfies ‖K − x‖ = ‖ πK(x) − x‖. Then
Fx(t) ≥ a[(t1/r − ‖K − x‖)+]b and we find that F−1

x (u) ≤ [(ua )
1/b + ‖K − x‖]r.

Next, we have F−1
x (0) = ‖K−x‖r and the first point derives by upper bounding

the derivatives of v �→ [v + ‖K − x‖]r.
We now assume that K is a connected set. Let (u, h) ∈ (0, 1)2 such that

u+h ≤ 1 and F−1
x (u) > F−1

x (0). We can also assume that F−1
x (u+h) > F−1

x (u).
Let α(h) = [F−1

x (u+h)]1/r − [F−1
x (u)]1/r (see the right picture of Figure 2). By

definition of a quantile, there exists a point
x1 ∈ K ∩ {B(x, [F−1

x (u + h)]1/r) \ B(x, [F−1
x (u)]1/r)}. If F−1

x (u) > 0 then for
the same reason there exists a point x2 ∈ K ∩B(x, [F−1

x (u)]1/r). If F−1
x (u) = 0

then x ∈ K and we take x2 = x. Next, since K is a connected set, there exists
a point x3 ∈ K such that |x − x3| = [F−1

x (u)]1/r + α
2 . For any small δ > 0, it

can be easily checked that

h ≥ P

(
B

(
x3,

α(h)

2
− δ

))
By taking the limit we obtain that h ≥ P (B(x3,

α(h)
2 )). The measure P being

(a, b)-standard, we find that h ≥ a(α(h)2 )b, and then

[F−1
x (u+ h)]1/r − [F−1

x (u)]1/r ≤ 2

a1/b
h1/b.

Thus
F−1
x (u+ h)− F−1

x (u) ≤ ra−1/b
(
F−1
x (u+ h)

)r−1
h1/b,

which proves the Lemma.

4. Numerical experiments

In this section, we illustrate with numerical experiments that the expectation
bounds given on Δn, kn

in Section 2 are sharp. In particular, we check that the

function Ψ̃x has the same monotonicity as the function m �→ E|Δn, kn
(x)| .

We consider four different geometric shapes in R, R2 and R
3, for which a

visualization is possible: see Figures 3 and 4.

• Segment Experiment in R. The shape K is the segment [0, 1] in R.
• 2-d shape Experiment in R2. A closed curve has been drawn at hand

in R
2. It has been next approximated by a polygonal curve with a high

precision. The shape K is the compact set delimited by the polygon curve.
• Fish Experiment: a 2-d surface in R

3. The shape K is the discrete
set defined by a point cloud of 216979 points approximating a 2-d surface
representing a fish. This dataset is provided courtesy of CNR-IMATI by
the AIM@SHAPE-VISIONAIR Shape Repository.

• Tangle Cube Experiment in R
3. The shape K is the tangle cube, that

is the 3-d manifold defined as the set of points (x1, x2, x3) ∈ R
3 such that

x4
1 − 5x2

2 + x4
2 − 5x2

2 + x4
3 − 5x2

3 + 10 ≤ 0.
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Fig 3. Left: samples drawn for each generative model for the Segment Experiment. Right: one
sample drawn from the clutter noise model for the 2-d Shape Experiment. The observation
point is represented by a blue cross.

Fig 4. Left: 3-d plot of the shape for the Fish Experiment. Right: a 3-d plot of a sample drawn
for the uniform measure on the Tangle Cube. The observation point is represented by the blue
point outside of the shape.

For each shape, we consider three generative models. These models are stan-
dard in support estimation and geometric inference, see Genovese et al. (2012)
for instance.

• Noiseless model: X1, . . . Xn are sampled from the uniform probability
distribution Puni on K.

• Clutter noise model: X1, . . . Xn are sampled from the mixture distri-
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bution Pcl = πU + (1− π)P where U is the uniform measure on a box B
which contains K and where π is a proportion parameter.

• Gaussian convolution model: X1, . . . Xn are sampled from the distri-
bution Pg = P � Φ(0, σId) where Φ(0, σ) is the centered isotropic multi-
variate Gaussian distribution on R

d with covariance matrix σId. We take
σ = 0.5 in all the experiments.

We use the same notation P� for any of the probability distributions Puni, Pcl or
Pg. An observation point x is fixed for each experiment. For each experiment and
each generative model, from a very large sample drawn from P� we compute very
accurate estimations of the quantile functions F−1

x,r and of the DTM dP�,m,t(x).
Next, we simulate n-samples from P� and we compute the DTEM for each
sample. We take n = 500 for the two first experiments and n = 2000 for the
two others. The trials are all repeated 100 times and finally we compute some
approximations of the error EΔn, kn ,r(x) with a standard Monte-Carlo procedure,

for all the measures P�. The DTMs and the DTEMs are computed for the
powers r = 1, r = 2 , and also for r = 3 for the Tangle Cube Experiment. We
also compute the function m �→ Ψ̃(m). The simulations have been performed
using R software (R Core Team, 2014) and we have used the packages FNN,
rgl, grImport and sp.

Results

The figures 5 to 8 give the results of the four experiments with the three genera-
tive models. The top graphics of Figures 5 to 8 represent the quantiles functions
F−1
x,r in each case. For the noiseless models, the behavior of F−1

x,r at the origin is
directly related to the power r and to the intrinsic dimension of the shape. For
r = 1, the quantile is linear for the the segment, it is roughly in

√
m for the 2-d

shape and for the Fish Experiment. It is of order of m1/3 for the Tangle Cube.
We observe that F−1

x,r is roughly linear with r = 2 for the 2-d shape and the
Fish shape, and with r = 3 for the Tangle Cube.

The quantile functions of the noise models in the four cases start from zero
since the observation is always taken inside the supports of Pcl and Pg. A regu-
larity break for the quantile function of the clutter noise model can be observed
in the neighborhood of m = P (B(x, ‖K − x‖r)). The quantile functions for the
Gaussian noise is always smoother.

The main point of these experiments is that, in all cases, the function m �→
Ψ̃(m) shows the same monotonicity as the expected error studied in the paper
: m �→ |EΔn,m,r(x)|. These results confirm that the function Ψ̃ provides a correct
description of EΔn,m,r.

We also observe that the function : m �→ E|Δn,m,r(x)| does not have one
typical shape: it can be an increasing curve, a decreasing curve or even an U-
shape curve. Indeed, the monotonicity depend on many factors including the
intrinsic dimension of the shape, its geometry, the presence of noise and the
power coefficient r.
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Fig 5. Quantiles functions F−1
x,r (top), expected error EΔ

n, k
n
,r
(x) (middle) and theoretical

upper bounds Ψ̃ (bottom) with powers r = 1 (left) and r = 2 (right), for the Segment Experi-
ment.
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Fig 6. Quantiles functions F−1
x,r (top), expected error EΔ

n, k
n
,r
(x) (middle) and theoretical

upper bounds Ψ̃ (bottom) with powers r = 1 (left) and r = 2 (right), for the 2-d Shape
Experiment.



Robust geometric inference 2263

Fig 7. Quantiles functions F−1
x,r (top), expected error EΔ

n, k
n
,r
(x) (middle) and theoretical

upper bounds Ψ̃ (bottom) with powers r = 1 (left) and r = 2 (right), for the Fish Experiment.
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Fig 8. Quantiles functions F−1
x,r (top), expected error EΔ

n, k
n
,r
(x) (middle) and theoretical

upper bounds Ψ̃ (bottom) with powers r = 1 (left) and r = 2 (right), for the Tangle Cube
Experiment.

5. Conclusion

When the data is corrupted by noise, the distance to measure is one clue for
performing robust geometric inference. For instance it can be used for support
estimation and for topological data analysis using persistence diagrams, as pro-
posed in Chazal et al. (2014a). In practice, a “plug-in” approach is adopted by
replacing the measure by its empirical counterpart in the definition of the DTM.
The main result of this paper is providing sharp non asymptotic bounds on the
deviations of the DTEM.

The DTM has been recently extended to the context of metric spaces in Buchet
et al. (2015b). For the sake of simplicity, we have assumed that P is a probabil-
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ity measure in R
d. However, all the results of the paper can be easily adapted

to more general metric spaces by considering the push forward distribution of
P by d(x, ·)r where d is the metric in the sampling space.

This paper is a step toward a complete theory about robust geometric in-
ference. Our results give preliminary insights about how tuning the parameter
m in the DTEM, which is a difficult question. The experiments proposed in
Section 4 show that the term EΔn,m,r(x) does not have a typical monotonic
behavior with regard to m and thus classical model selection methods can be
hardly applied to this problem. We intend to study this non standard model
selection problem in future works.

Appendix A: Rates of convergence derived from the DTM stability

The DTM satisfies several stability properties for the Wasserstein metrics. In
this section, rates of convergence of the DTEM are derived from stability results
of the DTM together with known results about the convergence of the empirical
measure under Wasserstein metrics. We check that the results derived in this
way are not as tight as the results given in Section 2.

Let us first remind the definition of the Wasserstein metrics in R
d. For r ≥ 1,

the Wasserstein distance Wr between two probability measures P and P̃ on R
d

is given by

Wr(P, P̃ ) = inf
π∈Π(P,P̃ )

(∫
Rd×Rd

‖x− y‖rπ(dx, dy)
) 1

r

,

where Π(P, P̃ ) is the set of probability measures on R
d × R

d with marginal
distributions P and P̃ , see for instance Rachev and Rüschendorf (1998) or Villani
(2008).

The stability of the DTM with respect to the Wasserstein distance Wr is
given by the following theorem.

Theorem 4 (Chazal et al. (2011b)). Let P and P̃ be two probability measures
on R

d. For any r ≥ 1 and any m ∈ (0, 1) we have

‖dP,m,r − dP̃ ,m,r‖∞ ≤ m− 1
r Wr(P, P̃ ).

Notice that Chazal et al. (2011b) prove this theorem for r = 2, but the proof
for any r ≥ 1 is exactly the same.

We now give the pointwise stability of the DTM with respect to the Kan-
torovich distance W1 between push forward measures on R. This result easily
derives from the expression (4) of the DTM given in Introduction, a rigorous
proof is given in AppendixB.1.

Proposition 2. For some point x in R
d and some real number r ≥ 1, let dFx,r

and dF̃x,r be the push-forward measures by the function y �→ ‖x − y‖r of two

probability measures P and P̃ defined on R
d. Then, for any x ∈ R

d:∣∣∣drP,m,r(x)− dr
P̃ ,m,r

(x)
∣∣∣ ≤ 1

m
W1(dFx,r, dF̃x,r) .
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Convergence results for Δn,m,r can be directly derived from the stability
results given in Theorem 4 and Proposition 2. For instance, it can be easily
checked that, for any x ∈ Rd, W1(dFx,r, dFn,x) tends to zero almost surely (see
for instance the Introduction Section of del Barrio et al., 1999). This together
with Proposition 2 gives the almost surely pointwise convergence to zero of
Δn,m,r(x).

Regarding the convergence in expectation, using Theorem 4 in Rd for d > r/2,
we deduce from Fournier and Guillin (2013) or from Dereich et al. (2013) that

E‖Δn, kn ,r‖∞ ≤
(
k

n

)−1/r

EWr(P, Pn)

≤
(
k

n

)−1/r

[EW r
r (P, Pn)]

1/r

≤ C

(
k

n

)−1/r

n−1/d.

Nevertheless this upper bound is not sharp: assume that kn := mn for some
fixed constant m ∈ (0, 1) then the rate is of the order of n−1/d. We show below
that the parametric rate 1/

√
n can be obtained by considering the alternative

stability result given in Proposition 2. In the one-dimensional case, a direct
application of Fubini’s theorem gives that (see for instance Theorem 3.2 in
Bobkov and Ledoux, 2014)

√
nE [W1(dFx,r, dFx,r,n)] ≤

∫ ∞

0

√
Fx,r(t)(1− Fx,r(t))dt =: J1(dFx,r), (12)

where dFx,r and dFx,r,n are the push forward probability measures of P and Pn

by the function ‖x− ·‖r. Note that Bobkov and Ledoux (2014) have completely
characterized the convergence of EW1(μ, μn) in the one-dimensional case, in
term of J1(μ) for μ a probability measure on the real line and μn its empirical
counterpart. From Proposition 2 and the upper bound (12) we derive that

E

∣∣∣Δn, kn ,r(x)
∣∣∣ ≤ n

k

J1(dFx,r)√
n

. (13)

The integral J1(dFx,r) is finite if E‖X − x‖2r+δ < ∞ for some δ > 0. We
thus obtain a pointwise rate of convergence of 1/

√
n under reasonable moment

conditions, if we take kn := mn for some fixed constant m ∈ (0, 1). However, the
upper bound (13) does not allow us to describe correctly how the rate depends
on the parameter m = k

n . For instance, if
k
n is very small, the bound blows up in

all cases while it should not be the case for instance with discrete measures. The
reason is that the stability results are too global to provide a sharp expectation
bound for small values of k

n .
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Appendix B: Proofs

B.1. Preliminary results for the DTM

Rewritting the DTM in terms of quantile function

Let P a probability distribution in Rd, x ∈ Rd and r ≥ 1. Let Fx,r be the
distribution function of the random variable ‖x −X‖r, where the distribution
of the random variable X is P . The preliminary distance function to P

δP,u : x ∈ R
d �→ inf{t > 0 ; P (B̄(x, t)) ≥ u}

can be rewritten in terms of the quantile function Fx,r:

Lemma 4. For any u ∈ (0, 1), we have δrP,u(x) = F−1
x,r (u). In particular,

δP,u(x) = F−1
x,1 (u).

Proof. Note that for any t ∈ R
+, Fx,r(t) = P (B(x, t1/r)). Next,

{t ≥ 0 ; P (B(x, t1/r)) ≥ �} = {sr ; s ≥ 0 , P (B(x, s)) ≥ �}

and we deduce that

F−1
x,r (�) = inf{sr ; s ≥ 0 , P (B(x, s)) ≥ �}

= δrP,�(x).

where we have used the continuity of s �→ sr for the last equality.

From Lemma 4 we directly derive the expression of the DTM in terms of the
quantile function F−1

x,r , as given by Equation (4) in the Introduction Section:

drP,m,r(x) =
1

m

∫ m

0

F−1
x,r (u)du.

Proof of Proposition 4.

Let F and F̃ be the cdfs of two probability measures dF and dF̃ on R. Recall
that, for any r ≥ 1, and any measure μ and μ̃ in R:

W r
r (dF, dF̃ ) =

∫ 1

0

|F̃−1(u)− F−1(u)|rdu ,

see for instance see for instance Cambanis et al. (1976) or Theorem 2.10 in Bobkov
and Ledoux (2014). Thus∫ m

0

|F̃−1(u)− F−1(u)|du ≤ W r
1 (F, F̃ )

and the proof follows using Equation (4).



2268 F. Chazal et al.

Fig 9. Calculation of Δ
n, k

n
,r
(x) by integrating the grey domain horizontally or vertically.

A decomposition of Δn, kn ,r.

For any x ∈ R
d, any r ≥ 1 we have F−1

x,n,r(0) ≥ F−1
x,r (0) ≥ 0 since Fx,r is the

cdf of the random distance ‖x − X‖r whose support is included in R
+. From

Equation (5) and geometric considerations (see Figure 9) we can rewrite Δn,m,r

as given in the following Lemma.

Lemma 5. The quantity Δn, kn ,r can be rewritten as follows:

Δn, kn ,r(x) :=
n

k

∫ k
n

0

{
F−1
x,n,r(u)− F−1

x,r (u)
}
du

=
n

k

∫ F−1
x,r(

k
n )∨F−1

x,n,r(
k
n )

F−1
x,r(0)

{
Fx,r(t) ∧

k

n
− Fx,n,r(t) ∧

k

n

}
dt.

B.2. Proof of Theorem 1

We recall that we use the notation F for Fx,r and Fn for Fx,n,r in the proof.

Upper bound on the fluctuations of Δn, kn
(x)

We first check that P (|Δn, kn
(x)| ≥ λ) = 0 for λ ≥ ωx(1). Note that ωx(1) < ∞

because the support of P is compact. Let Gn and G
−1
n be the empirical uni-

form distribution function and the empirical uniform quantile function (see Ap-
pendix C). Starting from the definition (5) of the DTM and using Proposition 3
in Appendix C, we obtain that for λ ≥ 0 and k ≤ n:

P
(
|Δn, kn

(x)| ≥ λ
)
≤ P

(
sup

u∈[0, kn ]

∣∣F−1
(
G

−1
n (u)

)
− F−1(u)

∣∣ ≥ λ

)
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≤ P

(
sup

u∈[0, kn ]

ωx

(∣∣G−1
n (u)− u

∣∣) ≥ λ

)

≤ P

(
sup

u∈[0, kn ]

∣∣G−1
n (u)− u

∣∣ ≥ ω−1
x (λ)

)
,

and this probability is obviously zero for any λ ≥ ωx(1).
We now prove the deviation bounds starting from Lemma 5. If F−1( kn ) ≤

F−1
n ( kn ), then

Δn, kn
(x) =

n

k

∫ F−1( k
n )

F−1(0)

{F (t)− Fn(t)} dt+
n

k

∫ F−1
n ( k

n )

F−1( k
n )

{
k

n
− Fn(t)

}
dt

and thus ∣∣∣Δn, kn
(x)

∣∣∣ ≤ n

k

∫ F−1( k
n )

F−1(0)

|F (t)− Fn(t)| dt︸ ︷︷ ︸
A

+
n

k

∫ F−1
n ( k

n )

F−1( k
n )

{
k

n
− Fn(t)

}
dt 1F−1

n ( k
n )≥F−1( k

n )︸ ︷︷ ︸
B

(14)

If F−1( kn ) > F−1
n ( kn ), then

Δn, kn
(x) =

n

k

∫ F−1
n ( k

n )

F−1(0)

{F (t)− Fn(t)} dt+
n

k

∫ F−1( k
n )

F−1
n ( k

n )

{
F (t)− k

n

}
dt

and thus∣∣∣Δn, kn
(x)

∣∣∣ ≤ n

k

∫ F−1
n ( k

n )

F−1(0)

|F (t)− Fn(t)| dt+
n

k

∫ F−1( k
n )

F−1
n ( k

n )

{
k

n
− F (t)

}
dt

≤ n

k

∫ F−1
n ( k

n )

F−1(0)

|F (t)− Fn(t)| dt+
n

k

∫ F−1( k
n )

F−1
n ( k

n )

{Fn(t)− F (t)} dt

≤ n

k

∫ F−1( k
n )

F−1(0)

|F (t)− Fn(t)| dt.

In all cases, Inequality (14) is thus satisfied.

• Local analysis : deviation bound of Δn, kn
(x) for k

n close to zero. We

now prove the deviation bound for k
n < 1

2 . We first upper bound the term A in
(14). According to Proposition 5 in Appendix C, for any u0 ∈ (0, 1

2 ) and any
λ > 0:

P

(
sup

u∈[0,u0]

|Gn(u)− u| ≥ λ

)
≤ 2 exp

(
−nλ2(1− u0)

2

2u0

1

1 + (1−u0)λ
3u0

)
. (15)
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For u0 ≤ 1
2 and λ > 0 it yields

P

(
sup

t∈[F−1(0),F−1(u0))

|Fn(t)− F (t)| ≥ λ

)

≤ P

(
sup

u∈[0,u0)

|Gn(u)− u| ≥ λ

)

≤ 2 exp

(
−nλ2(1− u0)

2

2u0

1

1 + (1−u0)λ
3u0

)

≤ 2 exp

(
−nλ2(1− u0)

2

4u0

)
+ 2 exp

(
−3nλ(1− u0)

4

)
,

where we have used Proposition 3 in Appendix C for the first equality, (15) for
the second inequality, and that for any u, v > 0, exp(−u/(1+v)) ≤ exp(−u/2)+
exp(−u/(2v)). The term A can be upper bounded by controlling the supremum
of |Fn − F | over [F−1(0), F−1( kn )). If

k
n < 1

2 , it yields

P (A ≥ λ) ≤ P

⎛⎝n

k

[
F−1

(
k

n

)
− F−1(0)

]
sup

t∈[F−1(0),F−1( k
n ))

|Fn(t)− F (t)| ≥ λ

⎞⎠
≤ 2 exp

⎛⎝−
nλ2(1− k

n )
2

4 k
n

[
k
n

F−1
(
k
n

)
− F−1(0)

]2
⎞⎠

+ 2 exp

(
−
3nλ(1− k

n )

4

[
k
n

F−1
(
k
n

)
− F−1(0)

])

≤ 2 exp

⎛⎝− n

16

k

n

[
λ

F−1
(
k
n

)
− F−1(0)

]2⎞⎠
+ 2 exp

(
−3n

8

k

n

λ

F−1
(
k
n

)
− F−1(0)

)
(16)

We now upper bound B. We have

B ≤ n

k

[
F−1
n

(
k

n

)
− F−1

(
k

n

)][
k

n
− Fn

(
F−1

(
k

n

))]
1F−1

n ( k
n )≥F−1( k

n )
.

(17)
Thus, according to Proposition 3 in Appendix C,

P (B ≥ λ)

≤ P

(
n

k

{[
F−1

(
G

−1
n

(
k

n

))
− F−1

(
k

n

)]}{[
k

n
−Gn

(
k

n

)]}
1
G

−1
n ( k

n )≥ k
n
≥ λ

)
≤ P (B0 ≥ λ)



Robust geometric inference 2271

where

B0 :=

{√
n

k
ωx

(
G

−1
n

(
k

n

)
− k

n

)} {√
n

k

[
k

n
−Gn

(
k

n

)]}
.

Let θ ∈ (0, 1) to be chosen further. We have

2B0 ≤
{
θ

√
n

k
ωx

(
G

−1
n

(
k

n

)
− k

n

)}2

︸ ︷︷ ︸
B2

1

+

{
1

θ

√
n

k

[
k

n
−Gn

(
k

n

)]}2

︸ ︷︷ ︸
B2

2

Then we can write

P (B ≥ λ) ≤ P
(
B1 ≥

√
λ
)
+ P

(
B2 ≥

√
λ
)

≤ P

(∣∣∣∣G−1
n

(
k

n

)
− k

n

∣∣∣∣ ≥ ω−1
x

(√
λ

θ

√
k

n

))

+ P

(∣∣∣∣Gn

(
k

n

)
− k

n

∣∣∣∣ ≥ θ
√
λ

√
k

n

)
.

Thus,

P (B ≥ λ) ≤ 2 exp

⎛⎜⎜⎜⎝−
n

{
ω−1
x

(√
λ
θ

√
k
n

)}2

4k/n

⎞⎟⎟⎟⎠+ 2 exp

⎛⎜⎜⎝−
3nω−1

x

(√
λ
θ

√
k
n

)
8

⎞⎟⎟⎠
+ 2 exp

(
−
n2θ2

[
k
n

]
λ

4k

)
+ 2 exp

(
−3θn

4

√
k

n

√
λ

)
(18)

where we have used Propositions 4 and 6. According to (14), we have
P (|Δn, kn

(x)| ≥ λ) ≤ P (A ≥ λ
2 ) + P (B ≥ λ

2 ). We then obtain the following

deviation bound from Inequalities (16) and (18) for any k
n < 1

2 and any λ > 0:

P
(
|Δn, kn

(x)| ≥ λ
)

2

≤ exp

(
− n

64
[
F−1

(
k
n

)
− F−1(0)

]2 k

n
λ2

)

+ exp

(
−3n

16

k

n

λ

F−1
(
k
n

)
− F−1(0)

)
+ exp

⎛⎝−n2

4k

{
ω−1
x

(
1

θ

√
λ

8

√
k

n

)}2
⎞⎠

+ exp

(
−3n

8
ω−1
x

(
1

θ

√
λ

2

√
k

n

))
+ exp

(
−nθ2λ

8

)
+ exp

(
−3θn

4

√
λ

2

√
k

n

)
,

(19)

where θ will be chosen further in the proof.
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• Deviation bound of Δn, kn
(x) for k

n ≥ 1
2 . For controlling A, we now use

the DKW Inequality (see Theorem 5), it gives that

P (A ≥ λ) ≤ P

(
n

k

[
F−1

(
k

n

)
− F−1(0)

]
sup

t∈[0,1]

|Fn(t)− F (t)| ≥ λ

)

≤ 2 exp

⎛⎝−2nλ2

[
k
n

F−1
(
k
n

)
− F−1(0)

]2
⎞⎠

We decompose B into B1 and B2 as before. We use DKW again for B1 and B2.
For the quantile term B1, note that{

sup
u∈[0, kn ]

∣∣G−1
n (u)− u

∣∣ > λ

}
⊂
{

sup
u∈[0,1]

∣∣G−1
n (u)− u

∣∣ > λ

}

=

{
sup

t∈[0,1]

|Gn(t)− t| > λ

}
.

We find that for any θ̃ > 0:

P
(
|Δn, kn

(x)| ≥ λ
)

2
≤ exp

⎛⎝−2nλ2

[
k
n

F−1
(
k
n

)
− F−1(0)

]2
⎞⎠

+ exp

⎛⎝−2n

{
ω−1
x

(
1

θ̃

√
λ

2

√
k

n

)}2
⎞⎠+ exp

(
−nθ̃2λ

k

n

)
.

(20)

where θ̃ will be chosen further in the proof.

Upper bound on the expectation of Δn, kn
(x)

• Case k
n ≤ 1

2 . By integrating the probability in (19), we obtain

E

∣∣∣Δn, kn
(x)

∣∣∣
2

≤ 16
√
π

1√
n

(
k

n

)− 1
2
[
F−1

(
k

n

)
− F−1(0)

]
+

16

3n

(
k

n

)−1 [
F−1

(
k

n

)
− F−1(0)

]

+

∫
λ>0

exp

⎛⎝−n2

4k

{
ω−1
x

(
1

θ

√
λ

2

√
k

n

)}2
⎞⎠ dλ

︸ ︷︷ ︸
I1
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+

∫
λ>0

exp

(
−3n

8
ω−1
x

(
1

θ

√
λ

2

√
k

n

))
dλ︸ ︷︷ ︸

I2

+
8

θ2n
+

32

9

1

θ2n2

√
n

k

(21)

Since ωx(u)/u is a non increasing function, we have that ω−1
x (t)/t is a non

decreasing function. Then, for any positive constants λ1 and λ2:

I1 + I2 ≤ λ1 +

∫
λ>λ1

exp

⎛⎝−n2

4k

{
1

λ1
ω−1
x

(
1

θ

√
λ1

2

√
k

n

)}2

λ2

⎞⎠ dλ

+ λ2 +

∫
λ>λ2

exp

(
− 3n

8λ2
ω−1
x

(
1

θ

√
λ2

2

√
k

n

)
λ

)
dλ

=

⎡⎢⎢⎣λ1 +
2
√
k

n

λ1

ω−1
x

(
1
θ

√
λ1

2

√
k
n

)
⎤⎥⎥⎦+

⎡⎢⎢⎣λ2 +
8λ2

3nω−1
x

(
1
θ

√
λ2

2

√
k
n

)
⎤⎥⎥⎦

We then take λ1 = 2
{
θ
√

n
k ωx

(
2
√
k

n

)}2

and λ2 = 2
{
θ
√

n
kωx

(
8
3n

)}2
and we

find that

I1 + I2 ≤ 4

{
θ

√
n

k
ωx

(
2
√
k

n

)}2

+ 4

{
θ

√
n

k
ωx

(
8

3n

)}2

.

We then choose

θ2 =
1

√
nωx

(
2
√
k

n

)√k

n

to balance the terms I1 and 8
θ2n in (21). The deviation bound given in the

theorem corresponds to this choice for θ.

Finally, note that ωx

(√
2k
n

)
≤

√
2ωx

(√
k

n

)
because ωx(u)/u is a non in-

creasing function and we obtain that there exists an absolute constant C such
that

E

∣∣∣Δn, kn
(x)

∣∣∣ ≤ C√
n

[
k

n

]−1/2
{[

F−1

(
k

n

)
− F−1(0)

]
+ ωx

(√
k

n

)}
. (22)

• Case k
n ≥ 1

2 . We integrate the deviations (20) and we obtain that

E

∣∣∣Δn, kn
(x)

∣∣∣ ≤ C

[
1√
n

[
F−1

(
k
n

)
− F−1(0)
k
n

]
+

{
θ̃

√
n

k
ωx

(
1√
n

)}2

+
1

θ̃2n

n

k

]
.

(23)
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We then choose

θ̃2 =
1

√
nωx

(
1√
n

) .
The deviation bound given in the Theorem correspond to this choice for θ̃.
Since

√
n
k ≤

√
2 ≤ 2, we see that the expectation bound (23) for this choice of

θ̃ can be rewritten as the expectation bound (22). This concludes the proof of
Theorem 1.

B.3. Proof of Proposition 1

We first consider the case d = 1. For applying Le Cam’s Lemma (Lemma 8),
we need to find two probabilities P0 and P1 which distances to measure are
sufficiently far from each other. Without loss of generality we can assume that
x = 0. Let P̄ ∈ Pω,x which satisfies (9). We can assume that P̄ is supported on
R

+ since the push forward measure of P̄ by the norm is in Pω,x and also satisfies
(9). Let F̄−1 be the quantile function of P̄ . For some n ≥ 1, let P0 := P̄ and let
P1 := 1

nδ0+ P̄
∣∣
[0,F̄−1(1−1/n)]

, where δ0 is a Dirac distribution at zero and where

P̄
∣∣
[a,b]

is the restriction of the measure P̄ to the set [a, b]. For i = 0, 1, let Pi,r

be the push-forward measure of Pi by the power function t �→ tr on R
+. Let

also Fi,r and F−1
i,r be the distribution function and the quantile function of Pi,r,

see Figure 10 for an illustration. Note that that P1,r = 1
nδ0+ P0,r|[0,F−1

0,r (1−1/n)].

Thus P1 is in Pω,x because

F−1
1,r (u) =

{
F−1
0,r (0) if u ≤ 1

n ,

F−1
0,r (u− 1/n) otherwise.

The probability measures P0 and P1 are absolutely continuous with respect to
the measure μ := δ0 + P̄ . The density of P0 with respect to μ is p0 := 1(0,+∞)

whereas the density of P1 with respect to μ is p1 = 1
n1{0} + 1(0,F̄−1(1−1/n)].

Fig 10. The two quantile functions F−1
0 and F−1

1 .
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Thus,

TV (P0, P1) =

∫
R+

|p1(t)− p0(t)| dμ(t)

=
1

n
+ P̄

((
F̄−1

(
1− 1

n

)
,∞

))
=

2

n
.

The next, [1−TV (P0, P1)]
2n = (1− 2

n )
2n → e−4 as n tends to infinity. Moreover,

∣∣drP0,r(x)− drP1,r(x)
∣∣ = n

k

∫ k
n

0

{
F−1
0,r (u)− F−1

1,r (u)
}
du

≥ n

k

∫ F−1
1,r (

k
n )

F−1
1,r (u−1/n)

{F1,r(t)− F0,r(t)} dt

according to basic geometric calculations. Thus,∣∣drP0,r(x)− drP1,r(x)
∣∣ ≥ n

k

1

n

[
F−1
1,r

(
k

n

)
− F−1

1,r (0)

]
≥ n

k

1

n

[
F−1
0,r

(
k

n

)
− F−1

0,r (0)

]
≥ n

k

c

n
ω

(
k

n

)
.

where we have used Assumption(9) for the last inequality. We conclude using
Le Cam’s Lemma.

We now consider the case d ≥ 2. Let P̄ ∈ Pω,x which satisfies (9). By consid-
ering the push-forward measure of P̄ by the function

R
d −→ R

+ × {0}d−1

y �−→ (‖y‖, 0, . . . , 0) ,

we see that it is aways possible to assume that there exist a probability P̄ sup-
ported on R

+ × {0}d−1 which satisfies (9). Now, it is then possible to define P0

and P1 as in the case d = 1 except that their support is now in R
+×{0}d−1. Fol-

lowing the same construction, the quantities TV (P0, P1) and drP0,r
(x)−drP1,r

(x)
take the same values as in the case d = 1. We thus obtain the same lower bound
as in the case d = 1.

B.4. Proof of Theorem 2

Inequality (14) in the proof of Theorem 2 is still valid. We can also use the
deviation bound (16) on A for the case k

n ≤ 1
2 . Regarding the deviation bound

on B, we restart from Inequality (17) and we note that

n

k

{[
F−1

(
G

−1
n

(
k

n

))
− F−1

(
k

n

)]} {[
k

n
−Gn

(
k

n

)]}
1
G

−1
n ( k

n )≥ k
n
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≤ n

k

{[
F−1

(
G

−1
n

(
k

n

))
− F−1

(
k

n

)]} {[
k

n
−Gn

(
k

n

)]}
1 k

n≤G
−1
n ( k

n )≤m̄

+
n

k

{[
F−1

(
G

−1
n

(
k

n

))
− F−1

(
k

n

)]} {[
k

n
−Gn

(
k

n

)]}
1
G

−1
n ( k

n )>m̄

≤ n

k

{
ω−1
x

(
G

−1
n

(
k

n

)
− k

n

)} {[
k

n
−Gn

(
k

n

)]}
1
G

−1
n ( k

n )≤m̄︸ ︷︷ ︸
B̃

+
n

k

{
F−1

(
G

−1
n

(
k

n

))} {[
k

n
−Gn

(
k

n

)]}
1
G

−1
n ( k

n )>m̄︸ ︷︷ ︸
B3

By definition of B, B̃ and B3, and using Proposition 3 in Appendix C, we obtain
that

P
(
|Δn, kn

(x)| ≥ λ
)
≤ P

(
A ≥ λ

2

)
+ P

(
B ≥ λ

2

)
≤ P

(
A ≥ λ

2

)
+ P

(
B̃ ≥ λ

2

)
+ P

(
B3 ≥ λ

2

)
(24)

where P (A ≥ λ
2 ) + P (B̃ ≥ λ

2 ) has already been upper bounded in the Proof of
Theorem 2. We now upper bound the deviations of B3. For any θ3 ∈ (0, 1) to
be chosen further, we have:

2B3 ≤
{
θ3F

−1

(
G

−1
n

(
k

n

))}2

1
G

−1
n ( k

n )>m̄︸ ︷︷ ︸
B2

4

+

{
1

θ3

n

k

[
k

n
−Gn

(
k

n

)]}2

︸ ︷︷ ︸
B2

5

.

We have P (B3 ≥ λ
2 ) ≤ P

(
B4 ≥

√
λ
2

)
+ P

(
B5 ≥

√
λ
2

)
where

P

(
B5 ≥

√
λ

2

)
≤ 2 exp

(
−kθ23λ

8

)
+ 2 exp

(
−3θ3k

8

√
λ

2

)
. (25)

The probability P

(
B4 ≥

√
λ
4

)
can be upper bounded in two different ways:

one using a concentration argument et one based on the Beta distribution of
G

−1
n . According to Proposition 6, we have

P

(
B4 ≥

√
λ

2

)
≤ P

(
G

−1
n

(
k

n

)
− k

n
≥ F

(√
λ

2

1

θ3

)
∨ m̄− k

n

)

≤ 4 exp

[
−n2

2k

(
m̄− k

n

)2
]
. (26)
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Next, it is well known (see for instance p.97 in Chapter 3 of Shorack and Wellner,
2009) that G−1

n

(
k
n

)
has a Beta(k, n− k + 1) distribution with density on [0, 1]:

t �→ n!

(k − 1)!(n− k)!
tk−1(1− t)n−k.

Thus, for any t ∈ (0, 1), P (G−1
n ( kn ) ≥ 1− t) ≤

(
n

k−1

)
tn−k+1. Thus

P

(
B4 ≥

√
λ

2

)
≤ P

(
B4 >

√
λ

3

)

≤ P

(
G

−1
n

(
k

n

)
> F

(√
λ

3

1

θ3

)
∨ m̄

)

≤
(

n

k − 1

)[
1− F

(√
λ

3

1

θ3

)
∨ m̄

]n−k+1

(27)

where the first inequality allows us to deal with a strict comparaison, which
is necessary to rewrite the probability in terms of the cdf. Note that a similar
bound can be obtained using Bennett’s inequality for B4.

We now upper bound E|Δn, kn
(x)|. We only need to control the deviations of

B3. Since P has a moment of order r, for any t > 0:

t (1− F (t)) = tP (‖x−X‖r > t) ≤ E‖x−X‖r =: Cx,r.

Then for any λ̄ > 0 (and n larger than 3):∫ ∞

0

P

(
B4 ≥

√
λ

2

)
dλ

≤ 4

∫ λ̄

0

exp

[
−n2

2k

(
m̄− k

n

)2
]
dλ+

(
n

k − 1

)∫ ∞

λ̄

[
1− F

(√
λ

3

1

θ3

)]n−k+1

dλ

≤ 4λ̄ exp

[
−n2

2k

(
m̄− k

n

)2
]
+ 2n

[√
3Cx,rθ3

]n−k+1
∫ ∞

λ̄

λ
−n+k−1

2 dλ

≤ 4λ̄ exp

[
−n2

2k

(
m̄− k

n

)2
]
+

8λ̄

n

[
4
√
3Cx,rθ3√

λ̄

]n−k+1

≤ 4λ̄

{
exp

[
−n2

2k

(
m̄− k

n

)2
]
+ exp

[
−(n− k + 1) log

(
4
√
3Cx,rθ3√

λ̄

)]}

We choose λ̄ to balance the two terms inside the brackets:

λ̄ =

{
4
√
3Cx,rθ3 log

[
n2

2k(n− k + 1)

(
m̄− k

n

)2
]}2
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and then∫ ∞

0

P

(
B3 ≥ λ

2

)
dλ ≤

∫ ∞

0

P

(
B4 ≥

√
λ

2

)
dλ+

∫ ∞

0

P

(
B5 ≥

√
λ

2

)
dλ

≤ Cx,r,m̄

{
1

kθ23
+ θ23 exp

[
−n2

2k

(
m̄− k

n

)2
]}

where Cx,r,m̄ only depends on Cx,r and m̄. We thus take θ23 =
exp

[
n2

4k (m̄− k
n )

2
]

√
k

and we obtain that∫ ∞

0

P

(
B3 ≥ λ

2

)
dλ ≤ Cx,r,m̄

√
k exp

[
−n2

4k

(
m̄− k

n

)2
]
.

The deviation bound given in the Theorem derives from (24), (25), (26) and
(27) with this value for θ3.

B.5. Proof of Theorem 3

We first recall the following Lemma from Chazal et al. (2011b).

Lemma 6 (Chazal et al. (2011b)). For any (x, y) ∈ (Rd)2 and any m ∈ (0, 1):

|dP,m,r(x)− dP,m,r(y)| ≤ ‖x− y‖.

Next Lemma directly derives from Lemma 6.

Lemma 7. For r = 1, the function x �→ Δn,m,1(x) is 1- Lipschitz on R
d. For

r > 1, the function x �→ Δn,m,r(x) is CD,r -Lipschitz on the compact domain
D where CD,r depends on r and on the Hausdorff distance between D and the
support of P .

We give the proof of the Theorem for r = 1. The calculations are also valid
r > 1 by replacing λ by λCD,r in the probability bounds. The deviation bound of
the Theorem can be proved with a simple union bound strategy. Up to enlarging
the constant c, we can write

N(D, λ) ≤ cλ−ν for any λ ≤ ωD(1).

Now, for a given λ ≤ ωD(1), there exists an integer N ≤ cλ−ν and N points
(x1, . . . , xN ) laying in D such that

⋃
i=1...N B(xi, λ) ⊇ D. For any point x ∈ D,

there exists a point πλ(x) of {x1, . . . , xN} such that ‖x−πλ(x)‖ ≤ λ
2 . According

to Lemma 7, we have

|Δn, kn ,1(x)−Δn, kn ,1(πλ(x))| ≤
λ

2
. (28)

According to Theorem 1, we have for any k < n
2 and any λ > 0:

P

(
sup

i=1...N
|Δn, kn ,1(xi)| ≥

λ

2

)
≤
{

1 ∧ 2cλ−ν�(λ) if λ ≤ ωD(1),
0 if λ > 2ωD(1),

(29)
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where

�(λ) = exp

(
− 1

64

kλ2[
F−1
x

(
k
n

)
− F−1

x (0)
]2
)

+ exp

(
− 3

16

kλ

F−1
x

(
k
n

)
− F−1

x (0)

)

+ exp

⎛⎜⎝−n2

4k

⎧⎨⎩ω−1
D

⎛⎝k1/4

√√√√λ

8
ωD

(
2

√
k

n

)⎞⎠⎫⎬⎭
2
⎞⎟⎠

+ exp

⎛⎝−3n

8
ω−1
D

⎛⎝k1/4

√√√√λ

2
ωD

(
2
√
k

n

)⎞⎠⎞⎠
+ exp

⎛⎝−
√
k

8

λ

ωD
(

2
√
k

n

)
⎞⎠+ exp

⎛⎜⎝−3k3/4

4

√√√√ λ

2ωD
(

2
√
k

n

)
⎞⎟⎠

=: �1(λ) + �2(λ) + �3(λ) + �4(λ) + �5(λ) + �6(λ).

Using (28) and (29), we find that P (supx∈D |Δn, kn
(x)| ≥ λ) is also upper bound-

ed by the right hand term of (29).
We now integrate each term in λ−ν�(λ). For the first one, let

αk,n =
1

64

k[
F−1
x

(
k
n

)
− F−1

x (0)
]2 ,

then for any λk,n > 0:∫ ∞

0

1 ∧ 2cλ−ν�1(λ)dλ ≤ λk,n + 2cλ−ν
k,n

∫ ∞

λk,n

exp
(
−αk,nλ

2
)
dλ

≤ λk,n + 2c
λ−ν−1
k,n

αk,n
exp(−αk,nλ

2
k,n).

We balance these two terms by taking λn =

√
log+([αk,n]

ν+5)
2αk,n

, it gives:

∫ ∞

0

1 ∧ 2cλ−ν�1(λ)dλ �

√√√√ log+
(
[αk,n]

+5
)

αk,n
. (30)

The upper bound for the second term can be obtained in the same way. For the

third term, let βk,n := k1/4
√

1
8ωD(

2
√
k

n ). Since ω−1
D (t)/t is non decreasing, for

any λk,n > 0:∫ ∞

0

1 ∧ 2cλ−ν�3(λ)dλ

≤ λk,n + 2cλ−ν
k,n

∫ ∞

λk,n

exp

⎛⎜⎝−
n2

{
ω−1
D

(
βk,n

√
λ
)}2

4k

⎞⎟⎠ dλ
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≤ λk,n + 2cλ−ν
k,n

∫ ∞

λk,n

exp

⎛⎝−n2

4k

{
ω−1
D

(
βk,n

√
λk,n

)√
λk,n

}2

λ

⎞⎠ dλ

≤ λk,n + 4c
k

n2

λ−ν
k,n{

ω−1
D

(
βk,n

√
λk,n

)}2 exp

(
−n2

4k

{
ω−1
D

(
βk,n

√
λk,n

)}2
)
.

We balance the two terms in the upper bounds by taking

λk,n =

⎧⎪⎪⎨⎪⎪⎩
1

βk,n
ωD

⎛⎜⎜⎝2
√
k

n

√√√√√√log+

⎛⎜⎝
⎡⎣ βk,n

ωD
(

2
√
k

n

)
⎤⎦2(ν−1)

⎞⎟⎠
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

2

.

Indeed, we then obtain that:∫ ∞

0

1 ∧ 2cλ−ν�3(λ)dλ

� λk,n +
λk,n

log+

([
βk,n

ωD
(

2
√

k
n

) ]2(ν−1)
)

×

⎧⎪⎪⎨⎪⎪⎩
1

βk,n
ωD

⎛⎜⎜⎝2
√
k

n

√√√√√√log+

⎛⎜⎝
⎡⎣ βk,n

ωD
(

2
√
k

n

)
⎤⎦2(ν−1)

⎞⎟⎠
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

−2(ν−1)

×

⎡⎣ωD
(

2
√
k

n

)
βk,n

⎤⎦2(ν−1)

� λk,n + λk,n

⎧⎪⎪⎨⎪⎪⎩ωD

⎛⎜⎜⎝2
√
k

n

√√√√√√log+

⎛⎜⎝
⎡⎣ βk,n

ωD
(

2
√
k

n

)
⎤⎦2(ν−1)

⎞⎟⎠
⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

−2(ν−1)

×

⎡⎢⎢⎣ωD

⎛⎜⎜⎝2
√
k

n

√√√√√√log+

⎛⎜⎝
⎡⎣ βk,n

ωD
(

2
√
k

n

)
⎤⎦2(ν−1)

⎞⎟⎠
⎞⎟⎟⎠
⎤⎥⎥⎦
2(ν−1)

� λk,n

where we have used log+ ≥ 1 and the fact that ωD(u) is non decreasing for the
second inequality. Since ωD(u)/u is non increasing and log+ ≥ 1, we find that

λk,n � k−1/2

[
ωD

(√
k

n

)]−1

⎧⎪⎪⎨⎪⎪⎩ωD

(√
k

n

)√√√√√√log+

⎛⎜⎝
⎡⎣ √

k

ωD
(√

k
n

)
⎤⎦ν−1

⎞⎟⎠
⎫⎪⎪⎬⎪⎪⎭

2
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�
ωD

(√
k

n

)
√
k

log+

⎛⎜⎝
⎡⎣ √

k

ωD
(√

k
n

)
⎤⎦ν−1

⎞⎟⎠ . (31)

We proceed in the same way to show that the upper bound (31) is also valid
for �5 for �6. The bound in expectation given in the Theorem is of the order
of the sum of the upper bounds (30) and (31).

Appendix C: Uniform empirical and quantile processes

This section brings together known exponential inequalities for the uniform
empirical process and of the uniform quantile process. These results can be
found for instance in Chapter 11 of Shorack and Wellner (2009).

Let ξ1, . . . , ξn be n i.i.id. uniform random variables. The uniform empirical
distribution function is defined by

Gn(t) =
1

n

n∑
i=1

1ξi≤t for 0 ≤ t ≤ 1.

The inverse uniform empirical distribution function is the function

G
−1
n (u) = inf{t |Gn(t) > u} for 0 ≤ u ≤ 1.

Proposition 3. For any x ∈ R
d and any n ∈ N

∗:

Fx,n − Fx
D
= Gn (Fx)− Fx

and
F−1
x,n − F−1

x
D
= F−1

x

(
G

−1
n

)
− F−1

x ,

where Fx and Fx,n are defined in the Introduction Section.

C.1. Exponential inequalities for the uniform empirical process

Let the function Φ defined on R by

Φ(λ) :=

{
2(λ+1)[log(1+λ)−1]

λ2 if λ > −1,
+∞ otherwise.

Next result is a point-wise exponential inequality for the deviations of the uni-
form empirical process (

√
n [Gn(t)− t])t≥0.

Proposition 4 (Inequality 1 and Proposition 1 in Shorack and Wellner (2009)).
For any 0 ≤ t ≤ t0 ≤ 1

2 and any λ > 0, we have

P
(√

n |Gn(t)− t| ≥ λ
)
≤ 2 exp

{
−λ2

2t
Φ

(
λ

t
√
n

)}
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≤ 2 exp

{
− λ2

2t0
Φ

(
λ

t0
√
n

)}
≤ 2 exp

(
− λ2

2t0

1

1 + λ
3t0

√
n

)
.

The first Inequality comes from Bennett’s Inequality and from the fact that
nGn(t) follows a Binomial(n, t) distribution. The second Inequality derives from
the fact that λ �→ λΦ(λ) is a non decreasing function, see Point (9) of Propo-
sition 1 p.441 in Shorack and Wellner (2009). The last inequality is Bernstein’s
Inequality, it can be derived by upper bounding Bennett’s Inequality with the
following result, see Point (10) of Proposition 1 p.441 in Shorack and Wellner
(2009):

Φ(λ) ≥ 1

1 + λ
3

for any λ ∈ R. (32)

The famous DKW inequality Dvoretzky et al. (1956) gives an universal expo-
nential inequality for empirical processes. The tight constant comes from Mas-
sart (1990):

Theorem 5. For any λ > 0:

P

(
sup

t∈[0,1]

√
n |Gn(t)− t| ≥ λ

)
≤ 2 exp

(
−2λ2

)
.

However, in the neighborhood of the origin, a tighter uniform exponential
inequality can be given.

Proposition 5 (Inequality 2 p. 444 in Shorack and Wellner (2009)). Let t0 ∈
(0, 1

2 ). Then, for any λ > 0,

P

(
sup

t∈[0,t0]

√
n

∣∣∣∣Gn(t)− t

1− t

∣∣∣∣ ≥ λ

1− t0

)
≤ 2 exp

{
− λ2

2t0
Φ

(
λ

t0
√
n

)}

≤ 2 exp

(
− λ2

2t0

1

1 + λ
3t0

√
n

)
.

This local result directly derives from the fact that
(

Gn(t)−t
1−t

)
0≤t<1

is a mar-

tingale (Proposition 1 p.133 in Shorack and Wellner (2009)). The second in-
equality directly derives from the previous one together with Inequality (32).

C.2. Exponential inequalities for the uniform quantile process

The general strategy followed in Shorack and Wellner (2009) to prove exponen-
tial inequalities for the uniform quantile process consists in rewriting inequalities
on G

−1
n into inequalities on Gn. For more details see for instance the proof of
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Inequality 2 p.415, or Lemma 1 p. 457 in Shorack and Wellner (2009). We in-
troduce the function Φ̃ defined on R by

Φ̃(λ) :=
1

1 + λ
Φ

(
− λ

1 + λ

)
.

We give below a point-wise exponential bound for the uniform quantile process.

Proposition 6 (Inequality 1 p. 453 in Shorack and Wellner (2009)). For all
λ > 0 and all 0 < u ≤ u0 < 1, we have

P
(√

n
∣∣G−1

n (u)− u
∣∣ ≥ λ

)
≤ 2 exp

{
−λ2

2u
Φ̃

(
λ

u
√
n

)}
≤ 2 exp

{
− λ2

2u0
Φ̃

(
λ

u0
√
n

)}
≤ 2 exp

(
− λ2

2u0

1

1 + 2λ
3u0

√
n

)

The second Inequality derives from the property that λ �→ λΦ̃(λ) is a nonde-
creasing function, see point (10) of Proposition 1 p.455 in Shorack and Wellner
(2009). The last inequality comes from the following lower bound, see Point (12)
of Proposition 1 in Shorack and Wellner (2009):

Φ̃(λ) ≥ 1

1 + 2λ
3

for any λ ∈ R
+. (33)

The following result is an uniform exponential inequality for the quantile
process in the neighborhood of the origin.

Proposition 7 (Inequality 2 p. 457 in Shorack and Wellner (2009)). Let u0 ∈
(0, 1

2 ) and n ≥ 1. Then, for any λ > 0 such that

λ ≤
√
n

(
1

2
− u0

)
,

we have

P

(
sup

t∈[0,u0]

√
n
∣∣G−1

n (u)− u
∣∣

1− u
≥ λ

1− u0

)
≤ 2 exp

{
− λ2

2u0
Φ̃

(
λ

u0
√
n

)}

≤ 2 exp

(
− λ2

2u0

1

1 + 2λ
3u0

√
n

)
.

This first Inequality comes from Proposition 5, the second Inequality is de-
duced from the first one using (33).
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C.3. Le Cam’s Lemma

The version of Le Cam’s Lemma given below is from Yu (1997). Recall that
the total variation distance between two distributions P0 and P1 on a measured
space (X ,B) is defined by

TV(P0, P1) = sup
B∈B

|P0(B)− P1(B)|.

Moreover, if P0 and P1 have densities p0 and p1 with respect to the same measure
λ on X , then

TV(P0, P1) =
1

2
�1(p0, p1) :=

∫
X
|p0 − p1|dλ.

Lemma 8. Let P be a set of distributions. For P ∈ P, let θ(P ) take values
in a metric space (X, ρ). Let P0 and P1 in P be any pair of distributions. Let

X1, . . . , Xn be drawn i.i.d. from some P ∈ P. Let θ̂ = θ̂(X1, . . . , Xn) be any
estimator of θ(P ), then

sup
P∈P

EPnρ(θ, θ̂) ≥ 1

8
ρ (θ(P0), θ(P1)) [1− TV(P0, P1)]

2n
.
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