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the so-called “Minkowski content”-based estimator reveals its benefits in
applications in the non-stationary cases. We introduce here a multivari-
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means of large and moderate deviation results. In particular we prove that
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random closed set in m ≥ 1 distinct points x1, . . . , xm ∈ R
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1. Introduction

A random closed set Θn of locally finite n-dimensional Hausdorff measure Hn

induces a random measure μΘn(A) := Hn(Θn ∩ A), A ∈ BRd , and the corre-
sponding expected measure is defined as E[μΘn ](A) := E[Hn(Θn∩A)], A ∈ BRd ,
where BRd is the Borel σ-algebra of Rd. (For a discussion of the measurability of
the random variables μΘn(A), we refer to [5, 27].) Whenever the measure E[μΘn ]
is absolutely continuous with respect to the d-dimensional Hausdorff measure
Hd, its density (i.e. its Radon-Nikodym derivative) with respect to Hd is called
mean density of Θn, and denoted by λΘn .

Examples of random closed sets with integer Hausdorff dimension n less than
d are fiber processes, boundaries of germ-grain models, n-facets of random tes-
sellations, and surfaces of full dimensional random sets. The problem of the
evaluation and estimation of the mean density λΘn has been of great interest in
many different scientific and technological fields over the last decades. Recent
areas of interest include pattern recognition and image analysis [23, 18], com-
puter vision [24], medicine [1, 12, 13, 14], material science [11], etc. (see [8] for
additional references).

The estimation of the mean density of non-stationary random sets turns
out to be much more difficult both from the theoretical and the applied point
of view. With regard to this, an explicit formula for λΘn(x) (see Eq. (2)) and
different kinds of estimators have been proposed in recent literature (see [26,
8, 9] and references therein). One of these, named “Minkowski content”-based

estimator and denoted by λ̂μ,N
Θn

(x) (see Eq. (4)), turns out to be asymptotically
unbiased and weakly consistent, and it reveals its benefits in applications in the
non-stationary cases. Indeed, the evaluation of the “Minkowski content”-based
estimator in a generic point x ∈ R

d does not require any particular calculation,
except for counting how many elements of the random sample of Θn have no
void intersection with the ball centered at x. Whenever a random sample for the
involved random closed set Θn is available, the feasibility of such an estimator
is now apparent: in fact its computation reduces to check whether any pixel
corresponding to the ball belongs to the sample of Θn or not in its digital
image. This is the reason why such an estimator deserves to be studied in great
detail.
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In this paper we consider a multivariate version of the estimator in [8, 10],
and we study its rate of convergence to the theoretical mean density in the
fashion of the large deviations theory. We remind that such a theory gives an
asymptotic computation of small probabilities on an exponential scale (see e.g.
[17] as a reference on this topic); here, among the references in the literature,
we remind that some large deviation results for the empirical volume fraction
for stationary Poisson grain models can be found in [19].

We consider multivariate estimators, i.e. estimators of the density in m points
x1, . . . , xm, and this allows to have a richer asymptotic analysis for the estima-
tion of the density. In fact finite sets of points can be used to estimate the entire
density function λΘn(x). To better explain this one could try to adapt some
large deviation techniques (see for instance Dawson Gärtner Theorem, i.e. The-
orem 4.6.1 in [17]) which allow to lift a collection of large deviation principles
in “small” spaces into a large deviation principle on a “large” space.

We remark that in [10] the authors proved the weak consistency of the “Min-
kowski content”-based estimator in the univariate case. In this paper we prove
the strong consistency and the asymptotic Normality for the multivariate esti-
mator. These two issues will be a consequence of some standard arguments in
large deviations: see Remark 2 for the strong convergence of sequences of ran-
dom variables which satisfy the large deviation principle, and Remark 11 which
illustrates how the proof of a moderate deviation result can be adapted to prove
the weak convergence to a centered Normal distribution.

More specifically we will consider the multivariate “Minkowski content”-based
estimator

λ̂μ,N := (λ̂μ,N
Θn

(x1), . . . , λ̂
μ,N
Θn

(xm)),

of the mean density λΘn := (λΘn(x1), . . . , λΘn(xm)) in m ≥ 1 distinct points

x1, . . . xm of Rd. We remark that, given an i.i.d. random sample Θ
(1)
n , . . . ,Θ

(N)
n

for Θn, the estimator λ̂μ,N
Θn

(x) in [8, 10] is of the type 1
wN

∑N
i=1 Yi,N where

Yi,N = 1
Θ

(i)
n ∩BrN (x) �=∅, BrN (x) is the ball centered in x with radius rN , and

wN is a suitable normalization which depends on the bandwidth rN . Thus, as
far as the multivariate estimator is concerned, in general two distinct random
variables 1

Θ
(i)
n ∩BrN (xj)

�=∅ and 1
Θ

(i)
n ∩BrN (xk) �=∅ (with j �= k) are not independent,

and therefore we have a m-dimensional estimator with (possibly) dependent
components. We point out that even in the simpler case m = 1, results on
the strong consistency and the convergence in law of the “Minkowski content”-
based estimator are not still available in literature. Here we directly deal with
the general multivariate vector of dimension m in order to derive also confidence
regions for the whole vector (see Section 4.2); of course the univariate casem = 1
will be seen as a particular case.

In Section 3 we present the asymptotic results for SN :=
∑N

i=1 Yi,N where

Yi,N
iid∼ YN := (Y

(1)
N , . . . , Y

(m)
N )

and YN is a random vector with (possibly) dependent Bernoulli distributed com-
ponents. Then, for some arbitrary deterministic quantity wN such that wN → ∞
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as N → ∞, we present a condition (see Eq. (10)) on the bivariate joint distribu-
tions of pairs of components of YN which allows us to prove large and moderate
deviations for SN/wN (as N → ∞). As a byproduct we get an asymptotic
Normality result (Theorem 10).

In Section 4 the results are applied to the multivariate estimator λ̂μ,N under
quite general sufficient conditions on Θn (obviously in these applications wN

is chosen in terms of the bandwidth rN as we said above). In particular we

shall see that the sequence {λ̂μ,N : N ≥ 1} satisfies a large deviation principle,
from which it is possible to gain information on its convergence rate and then
to deduce a strong consistency result for λ̂μ,N (see Corollary 15). In Section
4.2 we also find a confidence region for λΘn ; this will be done by considering

the asymptotical distribution of λ̂μ,N when an optimal bandwidth rN is chosen.
This result will play a pivotal role to get confidence regions for λΘn .

2. Preliminaries

In this section we recall some preliminaries on large deviations and on stochastic
geometry, useful for the sequel. We shall refer to literature and previous works
for a more exhaustive treatment.

2.1. Large deviations

We start with some basic definitions and we refer to [17] for additional details.
Let Z be a topological space. Then a sequence of Z-valued random variables
{ZN : N ≥ 1} satisfies the large deviation principle (LDP for short) with speed
vN and rate function I if limN→∞ vN = ∞, I : Z → [0,∞] is a lower semi-
continuous function,

lim inf
N→∞

1

vN
logP (ZN ∈ O) ≥ − inf

z∈O
I(z)

for all open sets O, and

lim sup
N→∞

1

vN
logP (ZN ∈ C) ≤ − inf

z∈C
I(z)

for all closed sets C. A rate function I is said to be good if all its level sets
{{z ∈ Z : I(z) ≤ η} : η ≥ 0} are compact.

The main large deviation tool used in the proofs of this paper is the Gärtner
Ellis Theorem (see e.g. Theorem 2.3.6 in [17]). In this theorem we have Z =
R

m for some m ≥ 1; thus, from now on, we set a · b :=
∑m

j=1 ajbj for two
generic vectors a = (a1, . . . , am) and b = (b1, . . . , bm) of Rm. Before recalling
its statement we remind that a convex function f : R

m → (−∞,∞] is said
to be essentially smooth (see e.g. Definition 2.3.5 in [17]) if the interior D◦

f of
Df := {γ ∈ R

m : f(γ) < ∞} is non-empty, f is differentiable throughout D◦
Λ,

and f is steep, i.e. limh→∞ ‖∇ f(γh)‖ = ∞ whenever {γh : h ≥ 1} is a sequence
in D◦

f converging to some boundary point of D◦
f .
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Theorem 1 (Gärtner Ellis Theorem). Let {ZN : N ≥ 1} be a sequence of Rm-
valued random variables such that there exists the function Λ : Rm → [−∞,∞]
defined by

Λ(γ) := lim
N→∞

1

vN
logE

[
evNγ·ZN

]
for all γ := (γ1, . . . , γm) ∈ R

m.

Assume that the origin 0 = (0, . . . , 0) ∈ R
m belongs to the interior of DΛ :=

{γ ∈ R
m : Λ(γ) < ∞}. Then, if Λ is essentially smooth and lower semi-

continuous, then {ZN : N ≥ 1} satisfies the LDP with speed vN and good rate
function Λ∗ defined by Λ∗(y) := supγ∈Rm{γ · y − Λ(γ)}.

In our applications we always have DΛ = R
m, and therefore the steepness al-

ways holds vacuously. In the following remark we briefly discuss the convergence
of {ZN : N ≥ 1} in Theorem 1.

Remark 2. One can check that, when we can apply the Gärtner Ellis Theorem,
the rate function Λ∗(y) uniquely vanishes at y = y0, where y0 := ∇Λ(0). Then,
if we consider the notation

Bδ(y0) := {y ∈ R
m : ‖y − y0‖ < δ} for δ > 0,

we have Λ∗(Bc
δ(y0)) := infy∈Bc

δ(y0) Λ
∗(y) > 0 and, for all η such that 0 < η <

Λ∗(Bc
δ(y0)), there exists N0 such that

P (‖ZN − y0‖ ≥ δ) ≤ exp (−vN (Λ∗(Bc
δ(y0))− η)) for all N ≥ N0

(this is a consequence of the large deviation upper bound for the closed set C =
Bc

δ(y0)). Thus we can say that ZN converges in probability to y0 as N → ∞;
moreover the convergence is almost sure if

∑
N≥1 exp (−vN (Λ∗(Bc

δ(y0))− η)) <
∞ by a standard application of the Borel Cantelli lemma.

2.2. Random closed sets

To lighten the presentation we shall use similar notation to previous works
[8, 25, 26]; in particular, for the reader’s convenience, we refer to [26, Section 2]
(and references therein) for the mathematical background and more details on
the Minkowski content notion and marked point process theory.

We remind here that, given a probability space (Ω,F,P), a random closed set
Θ in R

d is a measurable map

Θ : (Ω,F,P) −→ (F, σF),

where F denotes the class of the closed subsets in R
d, and σF is the σ-algebra

generated by the so called Fell topology, or hit-or-miss topology, that is the
topology generated by the set system

{FG : G ∈ G} ∪ {FC : C ∈ C}



Asymptotic results in stochastic geometry 2071

where G and C are the system of the open and compact subsets of Rd, respec-
tively, while FG := {F ∈ F : F ∩ G �= ∅} and FC := {F ∈ F : F ∩ C = ∅}
(e.g., see [22]).

By means of marked point processes, every random closed set Θ in R
d can

be represented as a germ-grain model as follows

Θ(ω) =
⋃

(xi,si)∈Ψ(ω)

xi + Z(si), ω ∈ Ω, (1)

where Ψ = {(ξi, Si)}i∈N is marked point processes in R
d with marks in a suitable

mark space K so that Zi = Z(Si), i ∈ N, is a random set containing the origin
(i.e., Z : K → F).

Throughout the paper we assume that Ψ has intensity measure Λ(d(x, s)) =
f(x, s)dxQ(ds), where Q is a probability measure on K, and with second fac-
torial moment measure ν[2](d(x, s, y, t)) = g(x, s, y, t)dxdyQ[2](d(s, t)), where
Q[2] is a probability measure on K2 (see [16, 21, 15] for general theory of point
processes).

To set the notation, we denote by Θn any random closed set in R
d with Haus-

dorff dimension n, by discf the set of the discontinuity points of any function f ,
by bn the volume of the unit ball in R

n. We also recall that the parallel set (or,
equivalently, the Minkowski enlargement) of A ⊂ R

d at distance r > 0 is the set
defined as A⊕r := {x ∈ R

d : dist(x,A) ≤ r}. Moreover, we remind that a com-
pact set A ⊂ R

d is called countably Hn-rectifiable if there exist countably many
n-dimensional Lipschitz graphs Γi ⊂ R

d such that A\∪iΓi is Hn-negligible (e.g.,
see [3] and references therein for a more exhaustive treatment).

As mentioned in the Introduction, whenever the measure E[Hn(Θn ∩ · )] on
R

d is absolutely continuous with respect to Hd, we denote by λΘn its density,
and we call it the mean density of Θn. It has been proved [26, Proposition 5]
that any random closed set Θn in R

d with Hausdorff dimension n < d as in (1)
has mean density λΘn given in terms of the intensity measure Λ of its associated
marked point process Ψ as follows:

λΘn(x) =

∫
K

∫
x−Z(s)

f(y, s)Hn(dy)Q(ds), (2)

for Hd-a.e x ∈ R
d, where −Z(s) is the reflection of Z(s) at the origin.

In the sequel we will assume that an i.i.d. random sample Θ
(1)
n , . . . ,Θ

(N)
n is

available for the random closed set Θn. An approximation of the mean density
based on the Hd-measure of the Minkowski enlargement of the random set in
question has been provided in [2, 26] under quite general regularity conditions
on the grains of Θn and on the functions f and g introduced above:

Theorem 3 ([26, Theorem 7]). Let Θn be as in (1) such that the following
assumptions are satisfied:

(A1) for any (y, s) ∈ R
d×K, y+Z(s) is a countably Hn-rectifiable and compact

subset of Rd, such that there exists a closed set Ξ(s) ⊇ Z(s) such that
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K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z(s), ∀r ∈ (0, 1)

for some γ > 0 independent of y and s;
(A2) for any s ∈ K, Hn(disc(f(·, s))) = 0 and f(·, s) is locally bounded such

that for any compact K ⊂ R
d

sup
x∈K⊕diam(Z(s))

f(x, s) ≤ ξ̃K(s)

for some ξ̃K(s) with
∫
K
Hn(Ξ(s))ξ̃K(s)Q(ds) < ∞;

(A3) for any (s, y, t) ∈ K×R
d ×K, Hn(disc(g(·, s, y, t))) = 0 and g(·, s, y, t) is

locally bounded such that for any compact K ⊂ R
d and a ∈ R

d,

1(a−Z(t))⊕1
(y) sup

x∈K⊕diam(Z(s))

g(x, s, y, t) ≤ ξa,K(s, y, t)

for some ξa,K(s, y, t) with∫
Rd×K2

Hn(Ξ(s))ξa,K(s, y, t)dyQ[2](ds, dt) < ∞.

Then

λΘn(x) = lim
r↓0

P(x ∈ Θn⊕r)

bd−nrd−n
, Hd-a.e. x ∈ R

d. (3)

Remark 4. The measure Hn(Ξ(s) ∩ ·) in (A1) plays the same role as the
measure ν of Theorem 2.104 in [3]; indeed (A1) might be seen as its stochastic

version, and it is often fulfilled with Ξ(s) = ∂Z(s) or Ξ(s) = ∂Z(s)∪Ã for some

sufficiently regular random closed set Ã (see also [25, Remark 3.6], and [26, Ex-
ample 1]). Roughly speaking, such an assumption tells us that each possible grain
associated to any point of the underling point process {ξi,K}i∈N is sufficiently
regular, so that it admits n-dimensional Minkowski content; this explains also
why requiring the existence of a constant γ as in (A1) independent on y and
s is not too restrictive. Note that the condition

∫
K
Hn(Ξ(s))Q(ds) < ∞ means

that the Hn-measure of the grains is finite in mean.
The role of Assumptions (A2) and (A3) is more technical, in order to guaran-

tee an application of the dominated convergence theorem in the proof of the theo-
rem. We may also notice that if Z(s) has a bounded diameter (i.e., diam(Z(s)) ≤
C ∈ R for Q-a.e. s ∈ K), or if f and g are bounded, then Assumptions (A2)
and (A3) simplify (see also Remark 9 in [26]).

The above assumptions imply then Eq. (3), which is obtained by a stochastic
local version of the n-dimensional Minkowski-content of Θn. For the interested
reader we refer to [26] for a more detailed discussion on this.

As a byproduct, given an i.i.d. random sample {Θ(i)
n }i∈N of Θn, the following

“Minkowski content”-based estimator of λΘn(x) has been proposed:

λ̂μ,N
Θn

(x) :=

∑N
i=1 1Θ

(i)
n ∩BrN (x) �=∅

Nbd−nr
d−n
N

, (4)
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where rN is the bandwidth, which depends on sample size N . It is easily checked
that λ̂μ,N

Θn
(x) is asymptotically unbiased and weakly consistent, for Hd-a.e. x ∈

R
d, if rN is such that

lim
N→∞

rN = 0 and lim
N→∞

Nrd−n
N = ∞. (5)

3. General results for Bernoulli variables

We consider a triangular array {Yi,N : 1 ≤ i ≤ N} of random variables defined
on some probability space (Ω,F,P) and taking values in (Rm,B(Rm)), with
m ≥ 1. We assume that each random vector Yi,N consists of m components,

namely Yi,N = (Y
(1)
i,N , . . . , Y

(m)
i,N ), and that

Yi,N
iid∼ YN (for i ∈ {1, . . . , N}) (6)

where the components of YN := (Y
(1)
N , . . . , Y

(m)
N ) are (possibly) dependent Ber-

noulli distributed random variables; more precisely we mean Y
(j)
N ∼ Bern(p

(j)
N ),

i.e.
P (Y

(j)
N = 1) = 1− P (Y

(j)
N = 0) = p

(j)
N (for j ∈ {1, . . . ,m}).

The aim is to prove asymptotic results for the sequence{
1

wN

N∑
i=1

Yi,N : N ≥ 1

}
(7)

where {wN : N ≥ 1} is a sequence of positive numbers such that:

lim
N→∞

wN = ∞ and lim
N→∞

wN

N
= 0; (8)

lim
N→∞

Np
(j)
N

wN
= λj for some λj ∈ (0,∞), for all j ∈ {1, . . . ,m}; (9)

lim
N→∞

NP(Y
(j)
N = 1, Y

(k)
N = 1)

wN
= 0 ∀ j, k ∈ {1, . . . ,m} such that j �= k. (10)

Remark 5. (i) If m = 1, Eq. (10) can be neglected and some parts of proofs
presented below are simplified.

(ii) If YN has independent components, for j, k ∈ {1, . . . ,m} with j �= k we
have

NP(Y
(j)
N = 1, Y

(k)
N = 1)

wN
=

Np
(j)
N p

(k)
N

wN
= p

(k)
N

Np
(j)
N

wN
;

thus condition (10) is clearly satisfied by taking into account condition (9) and

that limn→∞ p
(k)
N = 0 (this limit is a consequence of condition (9) and the second

limit in (8)).
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In view of the following results we introduce some further notation: SN :=∑N
i=1 Yi,N , and therefore {SN/wN : N ≥ 1} coincides with the sequence in (7);

I(y;λ) :=
{

y log y
λ − y + λ if y ≥ 0

∞ otherwise,
for λ > 0. (11)

We start with the large deviation principle for the sequence in (7).

Theorem 6. Let {Yi,N : 1 ≤ i ≤ N} be a triangular array of random vectors
as above (thus (6), (8), (9) and (10) hold). Then {SN/wN : N ≥ 1} satisfies
the LDP with speed function vN = wN and good rate function Im(·;λ) defined
by Im(y;λ) :=

∑m
j=1 I(yj ;λj), where I(yj ;λj) is as in (11).

Proof. We want to apply Gärtner Ellis Theorem and we have to prove that

lim
N→∞

1

wN
logE

[
eγ·SN

]
=

m∑
j=1

λj(e
γj − 1) for all γ := (γ1, . . . , γm) ∈ R

m. (12)

In fact (12) yields the desired LDP with good rate function Jm defined by

Jm(y) := sup
γ∈Rm

⎧⎨⎩γ · y −
m∑
j=1

λj(e
γj − 1)

⎫⎬⎭
and, as we see, this function coincides with Im(·;λ) in the statement of the
proposition: for m = 1 we can easily check that J1(y1) = I(y1;λ1); for m ≥ 2
we have

Jm(y) = sup
γ∈Rm

⎧⎨⎩
m∑
j=1

γjyj −
m∑
j=1

λj(e
γj − 1)

⎫⎬⎭
≤

m∑
j=1

sup
γj∈R

{γjyj − λj(e
γj − 1)} =

m∑
i=1

I(yj ;λj)

and, since we can take m sequences {γ(h)
j : h ≥ 1} such that limh→∞{γ(h)

j yj −
λj(e

γ
(h)
j −1)} = I(yj ;λj) (for j ∈ {1, . . . ,m}), we also have the inverse inequality

Jm(y) ≥
∑m

i=1 I(yj ;λj) noting that

Jm(y) ≥
m∑
j=1

γ
(h)
j yj −

m∑
j=1

λj(e
γ
(h)
j − 1)

and by letting h → ∞.

In the remaining part of the proof we show the validity of (12). By (6) we
have

E
[
eγ·SN

]
= (MYN

(γ))N , (13)
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where MYN
is the moment generating function of YN ; moreover, if we set

Aj,N := {Y (j)
N = 0} (for N ≥ 1 and j ∈ {1, . . . ,m}), we have

MYN
(γ) = P

( m⋂
j=1

Aj,N

)
+

m∑
j=1

eγjP

(
Ac

j,N ∩
⋂
k �=j

Ak,N

)
+
∑
j1<j2

eγj1+γj2P

(
Ac

j1,N ∩Ac
j2,N ∩

⋂
k �=j1,j2

Ak,N

)
+ · · ·+ eγ1+···+γmP

( m⋂
j=1

Ac
j,N

)
.

(14)

We remark that limN→∞ MYN
(γ) = 1; in fact

lim
N→∞

P

( m⋂
j=1

Aj,N

)
≥ lim

N→∞

(
1−

m∑
j=1

P(Ac
j,N )

)
= 1− lim

N→∞

m∑
j=1

p
(j)
N = 1

and, for all � ≥ 1, the terms of the type

P

(
Ac

j1,N ∩ · · · ∩Ac
j�,N

∩
⋂

k �=j1,...,j�

Ak,N

)
converge to zero as N → ∞ because

P

(
Ac

j1,N ∩ · · · ∩Ac
j�,N

∩
⋂

k �=j1,...,j�

Ak,N

)
≤ P(Ac

j1,N ) = p
(j1)
N −→ 0.

Therefore we may claim that

1

wN
logE

[
eγ·SN

] (13)
=

N logMYN
(γ)

wN
=

MYN
(γ)− 1 + o(MYN

(γ)− 1)

wN/N
. (15)

Let us observe now that, for � ≥ 2,

lim
N→∞

P

(
Ac

j1,N
∩ · · · ∩Ac

j�,N
∩
⋂

k �=j1,...,j�
Ak,N

)
wN/N

≤ lim
N→∞

P(Ac
j1,N

∩Ac
j2,N

)

wN/N

(10)
= 0;

(16)

moreover

1− P

( m⋂
j=1

Aj,N

)
= P(Ac

1,N ∪ · · · ∪Ac
m,N )

=

m∑
j=1

P(Ac
j,N )−

∑
j1<j2

P(Ac
j1,N ∩Ac

j2,N )+ · · ·+(−1)m+1
P(Ac

1,N ∩ · · · ∩Ac
m,N )
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by the inclusion–exclusion formula (see [7, pg. 24]), and therefore

lim
N→∞

1− P

(⋂m
j=1 Aj,N

)
wN/N

(16)
= lim

N→∞

∑m
j=1 P (Ac

j,N )

wN/N

(9)
=

m∑
j=1

λj . (17)

Note that, with some slight changes, one can also prove that

lim
N→∞

1− P

(⋂
k �=j Ak,N

)
wN/N

=
∑
k �=j

λk for all j ∈ {1, . . . ,m}. (18)

Finally, by substituting in (15) the expression of MYN
in (14), and by taking

into account (16), we have

lim
N→∞

1

wN
logE

[
eγ·SN

]
= lim

N→∞

P

(⋂m
j=1 Aj,N

)
− 1

wN/N

+ lim
N→∞

∑m
j=1 e

γjP

(
Ac

j,N ∩
⋂

k �=j Ak,N

)
wN/N

,

where

lim
N→∞

P

(⋂m
j=1 Aj,N

)
− 1

wN/N
= −

m∑
j=1

λj

by (17), and∑m
j=1 e

γjP

(
Ac

j,N ∩
⋂

k �=j Ak,N

)
wN/N

=

∑m
j=1 e

γjP

(⋂
k �=j Ak,N

)
−
∑m

j=1 e
γjP

(⋂m
k=1 Ak,N

)
wN/N

=

∑m
j=1 e

γj

(
P

(⋂
k �=j Ak,N

)
− 1

)
−
∑m

j=1 e
γj

(
P

(⋂m
k=1 Ak,N

)
− 1

)
wN/N

→
m∑
j=1

eγj

⎛⎝−
∑
k �=j

λk +

m∑
k=1

λk

⎞⎠ =

m∑
j=1

eγjλj (as N → ∞)

by (18) and (17).

Remark 7. Assume that m = 1 for simplicity, and let us denote the Poisson

distribution with mean λ by P(λ). It is well-known that, if limN→∞ Np
(1)
N = λ1

for some λ1 ∈ (0,∞), then S
(1)
N =

∑N
i=1 Y

(1)
i,N converges weakly to P(λ1) (as

N → ∞). Then Theorem 6 (for m = 1) describes what happens if we divide

both Np
(1)
N (in the limit above) and the sums {S(1)

N : N ≥ 1} by wN ; in fact
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S
(1)
N /wN converges to λ1 (as N → ∞) in probability (see Remark 2) and, for

the rate function I1(·;λ1) in Theorem 6, we can say that I1(y1;λ1) is the relative
entropy of P(y1) with respect to P(λ1) (when y1 ≥ 0).

Now we prove the moderate deviation result for the sequence in (7); a brief
explanation of this terminology is given in Remark 11.

Theorem 8. Consider the same assumptions of Theorem 6. Then, for any
sequence of positive numbers {aN : N ≥ 1} such that limN→∞ aN = 0 and

limN→∞ wNaN = ∞,

{
SN−E[SN ]√

wN/aN

: N ≥ 1

}
satisfies the LDP with speed func-

tion vN = 1/aN and good rate function Ĩm(·;λ) defined by Ĩm(y;λ) :=
∑m

j=1

y2
j

2λj
.

Proof. We want to apply Gärtner Ellis Theorem and we have to prove that

lim
N→∞

aN logE

[
e
γ·SN−E[SN ]√

wNaN

]
=

m∑
j=1

λj

γ2
j

2
for all γ := (γ1, . . . , γm) ∈ R

m. (19)

In fact (19) yields the desired LDP with good rate function J̃m defined by

J̃m(y) := sup
γ∈Rm

⎧⎨⎩γ · y −
m∑
j=1

λj

γ2
j

2

⎫⎬⎭
and, as we see, this function coincides with Ĩm(·;λ) in the statement of the

proposition: for m = 1 we can easily check that J̃1(y1) =
y2
1

2λ1
; for m ≥ 2 we

have

J̃m(y) = sup
γ∈Rm

⎧⎨⎩
m∑
j=1

γjyj −
m∑
j=1

λj

γ2
j

2

⎫⎬⎭ ≤
m∑
j=1

sup
γj∈R

{
γjyj − λj

γ2
j

2

}
=

m∑
i=1

y2j
2λj

and, since we can take m sequences {γ(h)
j : h ≥ 1} such that limh→∞{γ(h)

j yj −

λj
(γ

(h)
j )2

2 } =
y2
j

2λj
(for j ∈ {1, . . . ,m}), we also have the inverse inequality

J̃m(y) ≥
∑m

i=1

y2
j

2λj
noting that

J̃m(y) ≥
m∑
j=1

γ
(h)
j yj −

m∑
j=1

λj

(γ
(h)
j )2

2

and by letting h → ∞.
In the remaining part of the proof we show that (19) holds. In what follows

we consider some notation already introduced in the proof of Theorem 6, i.e.

MYN
is the moment generating function of YN and we set Aj,N := {Y (j)

N = 0}
(for N ≥ 1 and j ∈ {1, . . . ,m}). By (6) and after some computations we get

logE

[
e
γ·SN−E[SN ]√

wNaN

]
= N

(
logMYN

(γ/
√
wNaN )− γ · pN√

wNaN

)
,
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where pN = (p
(1)
N , . . . , p

(m)
N ); thus

aN logE

[
e
γ·SN−E[SN ]√

wNaN

]

= aNN

⎛⎝logE

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦−
m∑
j=1

γjp
(j)
N√

wNaN

⎞⎠ ,

(20)

where

E

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦ = E

⎡⎣ m∏
j=1

exp

(
1√

wNaN
γj11Ac

j,N

)⎤⎦
= E

⎡⎣ m∏
j=1

(
11Ac

j,N
(eγj/

√
wNaN − 1) + 1

)⎤⎦ .

The product inside the expected value in the above equation may be rewritten
as (

11Ac
1,N

(eγ1/
√
wNaN − 1) + 1

)
· · ·
(
11Ac

m,N
(eγm/

√
wNaN − 1) + 1

)
= 1 +

m∑
j=1

11Ac
j,N

(eγj/
√
wNaN − 1) +

∑
j1<j2

11Ac
j1,N

11Ac
j2,N

2∏
i=1

(eγji
/
√
wNaN − 1)

+
∑

j1<j2<j3

11Ac
j1,N

11Ac
j2,N

11Ac
j3,N

3∏
i=1

(eγji
/
√
wNaN − 1)

+ · · ·+
m∏
j=1

11Ac
j,N

(eγj/
√
wNaN − 1).

Now, by taking the expectation of the previous expression and by substituting
eγji

/
√
wNaN − 1 with its asymptotic expansion, we get

E

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦
= 1 +

m∑
j=1

P(Ac
j,N )

(
γj√
wNaN

+
1

2

γ2
j

wNaN
+ o

(
1

wNaN

))

+
∑
j1<j2

P(Ac
j1,N ∩Ac

j2,N )

2∏
i=1

(
γji√
wNaN

+
1

2

γ2
ji

wNaN
+ o

(
1

wNaN

))
+

· · ·+ P(Ac
1,N ∩ · · · ∩Ac

m,N )

m∏
j=1

(
γj√
wNaN

+
1

2

γ2
j

wNaN
+ o

(
1

wNaN

))
.

(21)



Asymptotic results in stochastic geometry 2079

Then we may claim that

lim
N→∞

E

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦ = 1

because, as N → ∞, we have

P(Ac
j1,N ∩ · · · ∩Ac

j�,N
) ≤ P(Ac

j1,N ) = p
(j1)
N → 0

for � ≥ 1, and wNaN → ∞.
Now, returning to consider the expression in (20), and by considering a first

order Taylor expansion of log
(
1 +

(
E

[
exp

(
1√

wNaN

∑m
j=1 γjY

(j)
N

)]
− 1

))
, we

obtain

aN logE

[
e
γ·SN−E[SN ]√

wNaN

]

= aNN

⎛⎝E

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦− 1 +RN −
m∑
j=1

γjp
(j)
N√

wNaN

⎞⎠
where

RN = o

⎛⎝E

⎡⎣exp
⎛⎝ 1√

wNaN

m∑
j=1

γjY
(j)
N

⎞⎠⎤⎦− 1

⎞⎠ .

By replacing now the expression given in (21) it follows

aN logE

[
e
γ·SN−E[SN ]√

wNaN

]
= aNN

⎛⎝ m∑
j=1

P(Ac
j,N )

(
1

2

γ2
j

wNaN
+ o

(
1

wNaN

))

+
∑
j1<j2

P(Ac
j1,N ∩Ac

j2,N )

2∏
i=1

(
γji√
wNaN

+
1

2

γ2
ji

wNaN
+ o

(
1

wNaN

))
+ · · ·

· · ·+ P(Ac
1,N ∩ · · · ∩Ac

m,N )

m∏
j=1

(
γj√
wNaN

+
1

2

γ2
j

wNaN
+ o

(
1

wNaN

))
+RN

⎞⎠ .

Now we remark that the first terms discarded for RN , which concern(
E

[
exp

(
1√

wNaN

∑m
j=1 γjY

(j)
N

)]
− 1

)2
, are

P(Ac
j1,N

)P(Ac
j2,N

)

wNaN
γj1γj2 =

Np
(j1)
N p

(j2)
N

wNaNN
γj1γj2 ∼ λj1p

(j2)
N

aNN
γj1γj2 = o

(
1

aNN

)
,

as N → ∞, for all j1, j2 ∈ {1, . . . ,m}; therefore RN = o
(

1
aNN

)
. Moreover, by

(10), for all � ≥ 2 we have

P(Ac
j1,N ∩ · · · ∩Ac

j�,N
) ≤ P(Ac

j1,N ∩Ac
j2,N ) = o

(wN

N

)
,
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and then o
(
wN

N

)
1

wNaN
= o

(
1

aNN

)
. In conclusion we obtain

aN logE

[
e
γ·SN−E[SN ]√

wNaN

]

= aNN

⎛⎝ m∑
j=1

P(Ac
j,N )

(
1

2

γ2
j

wNaN
+ o

(
1

wNaN

))
+ o

(
1

aNN

)⎞⎠
=

m∑
j=1

Np
(j)
N

wN
·
γ2
j

2
+

m∑
j=1

Np
(j)
N

wN
· wNaN · o

(
1

wNaN

)

+ aNN · o
(

1

aNN

)
→

m∑
j=1

λj

γ2
j

2

as N → ∞, by (9).

Remark 9. The hypothesis aN → 0 is required to have vN → ∞ as N → ∞.
On the other hand this condition is not needed to prove the limit (19); in fact, as
it happens in the proof of Theorem 10 below, the limit (19) holds even if aN = 1
for all N ≥ 1.

We conclude with an asymptotic Normality result. In view of this we use the
symbol Nm(0,Σ) for the centeredm-variate Normal distribution with covariance
matrix Σ, where Σ is the diagonal matrix with entries λ1, . . . , λm, i.e.

Σ :=

⎛⎜⎜⎜⎜⎜⎝
λ1 0 0 · · · 0
0 λ2 0 · · · 0
...

...
. . .

...
...

0 . . . 0 λm−1 0
0 . . . 0 0 λm

⎞⎟⎟⎟⎟⎟⎠ . (22)

Theorem 10. Consider the same assumptions of Theorem 6. Then{
(SN−E[SN ])√

wN
: N ≥ 1

}
converges weakly (as N → ∞) to Nm(0,Σ).

Proof. The proof is a consequence of the following limit

lim
N→∞

logE

[
e
γ·SN−E[SN ]√

wN

]
=

m∑
j=1

λ2
j

γ2
j

2
for all γ := (γ1, . . . , γm) ∈ R

m,

i.e. (19) with aN = 1 for allN ≥ 1. This limit holds because all the computations
(to get (19) in the proof of Theorem 8) still work well even if aN = 1 for all
N ≥ 1.

Remark 11. Typically moderate deviations fill the gap between a convergence
to zero (or the null vector) of centered random variables, and a weak convergence
to a (possibly multivariate) centered Normal distribution. This is what happens

in Theorem 8 for

{
(SN−E[SN ])√

wN/aN

: N ≥ 1

}
: we mean the convergence to the null
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vector of Rm when aN = 1/wN for all N ≥ 1 (thus aN → 0 holds, but aNwN →
∞ fails), which is yielded by Theorem 6, and the weak convergence to Nm(0,Σ)
when aN = 1 for all N ≥ 1 (thus aNwN → ∞ holds, but aN → 0 fails) in
Theorem 10.

4. Applications in Stochastic Geometry

In this section we apply the general results showed in the previous one to a
multivariate version of the “Minkowski content”-based estimator defined in (4),

say λ̂μ,N . Namely, in Section 4.1 we first provide a sufficient condition to guar-
antee Eq. (10); then a series of results on λ̂μ,N will follow as corollaries of the

theorems above, among them the strong consistency of λ̂μ,N . In Section 4.2
we study the asymptotical distribution of λ̂μ,N to get confidence regions for
the m-dimensional vector (λΘn(x1), . . . , λΘn(xm)) of mean densities of Θn in
(x1, . . . , xm) ∈ (Rd)m. It will emerge the importance of choosing a suitable op-
timal bandwidth rN satisfying condition (5), the same for any component of the
vector (λΘn(x1), . . . , λΘn(xm)).

4.1. Statistical properties of the “Minkowski content”-based
estimator

Let Θn be a random closed set with integer Hausdorff dimension n < d in R
d,

satisfying the assumptions of Theorem 3, and let Θ
(1)
n , . . . ,Θ

(N)
n be an i.i.d.

random sample for Θn. We consider the “Minkowski content”-based estimator
λ̂μ,N
Θn

(x) for the mean density of Θn at a point x ∈ R
d, defined in (4), with

bandwidth rN satisfying condition (5). Givenm distinct points x1, . . . , xm ∈ R
d,

we can define the multivariate “Minkowski content”-based estimator

λ̂μ,N := (λ̂μ,N
Θn

(x1), . . . , λ̂
μ,N
Θn

(xm)). (23)

Since λ̂μ,N
Θn

(xj) is asymptotically unbiased and weakly consistent for λΘn(xj),

as j ∈ {1, . . . ,m}, we have that λ̂μ,N is a good estimator for

λΘn := (λΘn(x1), . . . , λΘn(xm)).

Moreover, observe that λ̂μ,N can be rewritten in the following way

λ̂μ,N =
1

wN

N∑
i=1

Yi,N ,

where we set
wN = Nbd−nr

d−n
N

and
Yi,N = (11

Θ
(i)
n⊕rN

(x1), . . . , 11Θ(i)
n⊕rN

(xm)).
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Therefore the multivariate “Minkowski content”-based estimator λ̂μ,N is of type
(7).

In particular Yi,N
iid∼ YN = (11Θn⊕rN

(x1), . . . , 11Θn⊕rN
(xm)) with

11Θn⊕rN
(xj) ∼ Bern(p

(j)
N ), and p

(j)
N := P(xj ∈ Θn⊕rN

). Observe that condi-

tion (8) immediately follows by (5), whereas (9) is fulfilled for a.e. xj ∈ R
d by

replacing x with xj in Eq. (3). Then, in order to apply the results proved in

Section 3 with the aim to infer on λ̂μ,N , it remains to show that also assumption
(10) is satisfied.

The next lemma provides a sufficient condition on the random closed set Θn

for the validity of (10). Note that the condition (24) in the statement is satisfied
if the points xi, . . . , xm and Q-almost every realization Z(s) of the grains of Θ
are such the (xi − Z(s)) ∩ (xj − Z(s)) has null Hn-measure. For instance, in
R

2 with n = 1, if x1 = (0, 0), x2 = (1, 0) such a condition is not satisfied if
Z(s) = ∂[0, 1]2, but it is if Z(s) is the boundary of any ball. By taking into
account that usually Q is assumed to be continuous in applications, it is quite
intuitive that the condition (24) is generally fulfilled for any fixed m-tuple of
points (x1, . . . , xm) ∈ (Rd)m.

Lemma 12. Let Θn be a random closed set as above. If for a m-tuple of points
(x1, . . . , xm) ∈ (Rd)m

Hn((xi − Z(s)) ∩ (xj − Z(s))) = 0 ∀i �= j, for Q-almost all s ∈ K (24)

then (10) is satisfied.

Proof. Define the set Aj := {xj �∈ Θn⊕r} for every j = 1, . . . ,m; then we have
to prove that

lim
r→0

P(Ac
j ∩Ac

k)

bd−nrd−n
= 0 for any j �= k. (25)

We introduce the random variables W
(j)
r counting the number of enlarged grains

which cover the point xj , namely

W (j)
r :=

∑
(yi,si)∈Ψ

11(yi+Z(si))⊕r
(xj).

To lighten the notation, without loss of generalization, we will prove (25) with
j = 1 and k = 2. To do this, let us observe that

P(Ac
1 ∩Ac

2) = P(x1 ∈ Θn⊕r , x2 ∈ Θn⊕r ) = P(W (1)
r > 0,W (2)

r > 0)

= P(W (1)
r W (2)

r > 0) =
∑
i≥1

P(W (1)
r W (2)

r = i) ≤ E[W (1)
r W (2)

r ]. (26)

Since the marginal process of Φ is simple (i.e., every point yi has multiplicity
one), the expectation on the right hand side of (26) can be written as follows:

E[W (1)
r W (2)

r ] = E

[ ∑
(yi,si),(yj ,sj)∈Φ

11(yi+Z(si))⊕r
(x1)11(yj+Z(sj))⊕r

(x2)
]



Asymptotic results in stochastic geometry 2083

= E

[ ∑
(yi,si)∈Φ

11(yi+Z(si))⊕r
(x1)11(yi+Z(si))⊕r

(x2)
]

︸ ︷︷ ︸
=:E1

+ E

[ ∑
(yi, si), (yj , sj) ∈ Φ,

yi �= yj

11(yi+Z(si))⊕r
(x1)11(yj+Z(sj))⊕r

(x2)
]

︸ ︷︷ ︸
=:E2

. (27)

A direct application of Campbell’s theorem (e.g., see [4, p. 28]) implies

E1 =

∫
K

∫
Rd

11(y+Z(s))⊕r
(x1)11(y+Z(s))⊕r

(x2)f(y, s)dyQ(ds)

=

∫
K

∫
Rd

11(x1−Z(s))⊕r∩(x2−Z(s))⊕r
(y)f(y, s)dyQ(ds)

=

∫
K

∫
Rd

{
11(x1−Z(s))⊕r

(y) + 11(x2−Z(s))⊕r
(y)

− 11(x1−Z(s))⊕r∪(x2−Z(s))⊕r
(y)
}
f(y, s)dyQ(ds)

=
2∑

j=1

∫
K

∫
(xj−Z(s))⊕r

f(y, s)dyQ(ds)

−
∫
K

∫
[(x1−Z(s))∪(x2−Z(s))]⊕r

f(y, s)dyQ(ds).

Theorem 3.5 in [25] applies to both (xj − Z(s))⊕r and [(x1 − Z(s)) ∪ (x2 −
Z(s))]⊕r; moreover Assumptions (A1) and (A2) (see Theorem 3), together with
the dominated convergence theorem, allow us to claim that

lim
r→0

E1
bd−nrd−n

=

2∑
j=1

∫
K

∫
(xj−Z(s))

f(y, s)Hn(dy)Q(ds)

−
∫
K

∫
[(x1−Z(s))∪(x2−Z(s))]

f(y, s)Hn(dy)Q(ds) = 0,

because the assumption Hn((x1 − Z(s)) ∩ (x2 − Z(s))) = 0 for Q-almost all
s ∈ K implies that∫

K

∫
[(x1−Z(s))∪(x2−Z(s))]

f(y, s)Hn(dy)Q(ds)

=

2∑
j=1

∫
K

∫
(xj−Z(s))

f(y, s)Hn(dy)Q(ds).

We argue similarly for the term E2 in (27). By the definition of second factorial
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moment measure (e.g., see [15]) we have

E2
bd−nrd−n

=
1

bd−nrd−n

∫
K2

∫
R2d

11(y1+Z(s1))⊕r
(x1)11(y2+Z(s2))⊕r

(x2)

× g(y1, s1, y2, s2)dy1dy2Q[2](ds1, ds2)

=

∫
K2

∫
Rd

11(x2−Z(s2))⊕r
(y2)

bd−nrd−n

∫
Rd

11(x1−Z(s1))⊕r
(y1)

× g(y1, s1, y2, s2)dy1dy2Q[2](ds1, ds2)

Let us observe that

lim
r→0

11(x2−Z(s2))⊕r
(y2) = 0 for any (y2, s2) ∈ R

d ×K

because Z(s) is a lower dimensional set for any s ∈ K by (A1); besides,
thanks to assumptions (A1) and (A3), Theorem 3.5 in [25] applies now with
μ = g(·, s, y, t)Hd, so that

lim
r→0

1

bd−nrd−n

∫
Rd

11(x1−Z(s1))⊕r
(y1)g(y1, s1, y2, s2)dy1

=

∫
(x1−Z(s1))

g(y1, s1, y2, s2)Hn(dy1)

for all (s1, s2, y2) ∈ K2 ×R
d. Such a limit is finite being g locally bounded and

Hn(Z(s)) < ∞ for any s ∈ K by (A1). Therefore, for all (y2, s1, s2) ∈ R
d×K2,

lim
r→0

11(x2−Z(s2))⊕r
(y2)

bd−nrd−n

∫
Rd

11(x1−Z(s1))⊕r
(y1)g(y1, s1, y2, s2)dy1 = 0

while, for all (y2, s1, s2) ∈ R
d and r ≤ 1,

11(x2−Z(s2))⊕r
(y2)

bd−nrd−n

∫
Rd

11(x1−Z(s1))⊕r
(y1)g(y1, s1, y2, s2)dy1

≤
11(x2−Z(s2))⊕1

(y2)

bd−nrd−n
sup

y1∈(x1−Z(s1))⊕r

g(y1, s1, y2, s2)Hd((x1 − Z(s1))⊕1)

≤ 11(x2−Z(s2))⊕1
(y2) sup

y1∈(B1(x1))⊕diam(Z(s1))

g(y1, s1, y2, s2)
Hd((x1 − Z(s1))⊕1)

bd−nrd−n

≤ 11(x2−Z(s2))⊕1
(y2)ξx1,B1(x1)(s1, y2, s2)Hn(Ξ(s1))

2n4dbd
γbd−n

. (28)

The last inequality follows by Remark 4 in [26] which guarantees that

Hd(Z(s)⊕R) ≤ Hn(Ξ(s))γ−12n4dbdR
d−n if R < 2.

Since the dominating function in (28) has finite integral in K2 × R
d by (A3),

the dominated convergence theorem can be applied to conclude that:

lim
r→0

E2
bd−nrd−n

= 0.

Then the assertion follows.
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By combining now Lemma 12 and the results in Section 3, we easily get some
asymptotic results for the multivariate “Minkowski content”-based estimator.

To lighten the notation, we shall write λΘn = (λ1, . . . , λm) instead of λΘn :=
(λΘn(x1), . . . , λΘn(xm)).

Corollary 13 (LDP). Let Θn be a random closed set with integer Hausdorff
dimension n < d in R

d as above, satisfying (24) for some (x1, . . . , xm) ∈ (Rd)m,

and let λ̂μ,N be the multivariate “Minkowski content”-based estimator defined
in (23).

Then the sequence {λ̂μ,N : N ≥ 1} satisfies the LDP with speed function
vN = Nbd−nr

d−n
N and good rate function Im( · ;λΘn) defined by Im(y;λΘn) :=∑m

j=1 I(yj ;λj), where I(yj ;λj) is as in (11).

Proof. The assertion directly follows by Lemma 12 and Theorem 6.

An estimate of the rate of convergence of λ̂μ,N to λΘn follows now as a direct
consequence of the above corollary and of Remark 2.

Corollary 14 (Convergence rate). Let Θn be as in the assumptions of Corollary
13, and Im(Bc

δ(λΘn);λΘn) := infy∈Bc
δ(λΘn ) Im(y;λΘn). Then, for any 0 < η <

Im(Bc
δ(λΘn);λΘn) there exists N0 such that

P
(∥∥∥λ̂μ,N − λΘn

∥∥∥ ≥ δ
)
≤ exp

(
−Nbd−nr

d−n
N (Im(Bc

δ(λΘn);λΘn)− η)
)

for all N ≥ N0 .

Let us now denote by H the quantity, independent on N ,

H := bd−n(Im(Bc
δ(λΘn);λΘn)− η),

and let us observe that
∑

N≥1 exp
(
−Nrd−n

N H
)
< ∞ if Nrd−n

N ∼ Nα for some
α > 0. From this and Remark 2 we can state the following

Corollary 15 (Strong consistency). Let Θn be as in the assumptions of Corol-
lary 13, with rN → 0 such that Nrd−n

N /Nα → C and for some C,α > 0 as

N → ∞. Then the multivariate estimator λ̂μ,N of λΘn is strongly consistent,
i.e.

λ̂μ,N a.s.→ λΘn , as N → ∞.

Finally, by remembering that in this section wN = Nbd−nr
d−n
N , pN = (P(x1 ∈

Θn⊕rN
), . . . ,P(xm ∈ Θn⊕rN

)) and Σ is the diagonal covariance matrix defined in
(22), the result on moderate deviations and on asymptotic Normality proved in
Theorem 8 and in Theorem 10, respectively, may be stated for the multivariate
“Minkowski content”-based estimator as follows.

Corollary 16 (Moderate deviations). Let Θn be as in the assumptions of Corol-
lary 13. Then, for any sequence of positive numbers {aN : N ≥ 1} such that

limN→∞ aN = 0 and limN→∞ wNaN = ∞, the sequence

{
(wN λ̂μ,N−NpN )√

wN/aN

:N≥1

}
satisfies the LDP with speed function vN = 1/aN and good rate function Ĩm(·;
λΘn) defined by Ĩm(y;λΘn) :=

∑m
j=1

y2
j

2λj
.
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Corollary 17 (Asymptotic Normality). Let Θn be as in the assumptions of

Corollary 13. Then the sequence
{

1√
wN

(wN λ̂μ,N −NpN ) : N ≥ 1
}

converges

weakly (as N → ∞) to the centered m-variate Normal distribution Nm(0,Σ).

4.2. Confidence regions for the mean density

We mentioned that the evaluation and the estimation of the mean density of a
random closed set is a problem of great interest in Stochastic Geometry. After
having showed that λ̂μ,N is asymptotically unbiased and consistent for λΘn ,
a natural problem is now to find confidence regions for λΘn at certain fixed

level α, given an i.i.d. random sample Θ
(1)
n , . . . ,Θ

(N)
n for Θn. The asymptotic

Normality result derived in the previous section will help us in finding out
a suitable statistics (see Theorem 21 below). It is worth noticing that it will

be crucial to choose a suitable bandwidth rN for λ̂μ,N . In the univariate case
(m = 1) such a bandwidth turns out to be the optimal bandwidth ro,AMSE

N (x)
defined in [10] as the value which minimizes the asymptotic mean square error

(AMSE) of λ̂μ,N
Θn

(x):

ro,AMSE
N (x) := argmin

rN

AMSE(λ̂μ,N
Θn

(x)). (29)

This is the reason why, in order to propose confidence regions for its mean
density, we shall introduce further regularity assumptions on the random set
Θn and a common optimal bandwith (see (30)) associated to the multivariate

estimator λ̂μ,N . For the sake of completeness we recall some basic results on
ro,AMSE
N (x) proved in [10], and we refer there for further details. For the reader’s
convenience, we shall use the same notation of [10].

The mean square error MSE(λ̂μ,N
Θn

(x)) of λ̂μ,N
Θn

(x) is defined, as usual, by

MSE(λ̂μ,N
Θn

(x)) := E[(λ̂μ,N
Θn

(x)− λΘn(x))
2] = Bias(λ̂μ,N

Θn
(x))2 + V ar(λ̂μ,N

Θn
(x)).

A Taylor series expansion for the bias and the variance of λ̂μ,N
Θn

(x) provides an
asymptotic approximation of the mean square error, and then, by the definition
given in (29), an explicit formula for ro,AMSE

N (x) is obtained (see Theorem 19
below). To fix the notation, in the sequel α := (α1, . . . , αd) will be a multi-index
of Nd

0; we denote
|α| := α1 + · · ·+ αd

α! := α1! · · ·αd!
yα := yα1

1 · · · yαd

d

Dα
y f(y, s) :=

∂|α|f(y, s)

∂yα1
1 · · · ∂yαd

d

Note that Dα
y f(y, s) = f if |α| = 0. Moreover, we denote by reach(A) the reach

of a compact set A ⊂ R
d, and by Φi(A · ), i = 0, . . . , n its curvature measures

(we refer to [10, Appendix] and references therein for basic definitions and results
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on sets with positive reach and on curvature measures). An optimal bandwidth

ro,AMSE
N (x) has been obtained for random sets as in (1) satisfying the following
assumptions:

(R) For any s ∈ K, reach(Z(s)) > R, for some R > 0, such that there exists a
closed set Ξ(s) ⊇ Z(s) such that

∫
K
Hn(Ξ(s))Q(ds) < ∞ and

Hn(Ξ(s) ∩Br(x)) ≥ γrn ∀x ∈ Z(s), ∀r ∈ (0, 1)

for some γ > 0 independent of s;
(M2) For any s ∈ K, f(·, s) is of class C1 and, for any α with |α| ∈ {0, 1},

Dα
xf(·, s) is locally bounded such that for any compact K ⊂ R

d

sup
x∈K⊕diam(Z(s))

|Dα
xf(x, s)| ≤ ξ̃

(α)
K (s)

for some ξ̃
(α)
K (s) with∫

K

|Φi|(Ξ(s))ξ̃(α)K (s)Q(ds) < ∞ ∀i = 0, ..., n.

(A3) For any (s, t) ∈ K2, the function g(·, s, ·, t) is continuous and locally
bounded such that for any compact sets K,K ⊂ R

d:

sup
y∈K⊕diamZ(t)

sup
x∈K⊕diamZ(s)

g(x, s, y, t) ≤ ξK,K(s, t)

for some ξK,K(s, t) with∫
K2

Hn(Ξ(s))Hn(Ξ(t))ξK,K(s, t)Q[2](d(s, t)) < +∞.

(M4) Ψ has third factorial moment measure

ν[3](d(y1, s1, y2, s2, y3, s3))

= h(y1, s1, y2, s2, y3, s3)dy1dy2dy3Q[3](d(s1, s2, s3))

such that for any (y1,s1, s2, s3) ∈ R
d×K3, the function h(y1, s1, ·, s2, ·, s3)

is continuous and locally bounded such that for any compact sets K,K ⊂
R

d and a ∈ R
d:

1(a−Z(s1))⊕1
(y1) sup

y2∈K⊕diam(Z(s2))

sup
y3∈K⊕diam(Z(s3))

h(y1, s1, y2, s2, y3, s3)

≤ ξa,K,K(s1, y1, s2, s3)

for some ξa,K,K(s1, y1, s2, s3) with∫
Rd×K3

Hn(Ξ(s2))Hn(Ξ(s3))

× ξa,K,K(s1, y1, s2, s3)dy1Q[3](d(s1, s2, s3)) < +∞.
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Remark 18. The above assumption (R) plays here the role of assumption (A1)
of Theorem 3; namely, it is known that a lower dimensional set with posi-
tive reach is locally the graph of a function of class C1 (e.g., see [6, p. 204]),
and so the rectifiability condition in (A1) is fulfilled. Moreover, the condition
reach(Z(s)) > R plays a central role in the proof of the theorem below, where a
Steiner type formula is applied. Referring to [10] for a more detailed discussion
of the above assumptions, we point out here that (M2) implies (A2), while (A3)
together with (A1) imply (A3).

Theorem 19. [10] Denote by

A1(x) :=
bd−n+1

bd−n

∫
K

∫
Z(s)

f(x− y, s)Φn−1(Z(s); dy)Q(ds)

A2(x) :=
d− n

d− n+ 1

∑
|α|=1

∫
K

∫
N(Z(s))

Dα
xf(x− y, s)uαμn(Z(s); d(y, u))Q(ds)

A3(x) :=

∫
K2

∫
(x−Z(s1))

∫
(x−Z(s2))

g(y1, s1, y2, s2)

Hd−1(dy2)Hd−1(dy1)Q[2](d(s1, s2)).

• Let Θn be as in (1) with 0 < n < d − 1, satisfying the assumptions
(R), (M2) and (A3); then

ro,AMSE
N (x) =

( (d− n)λΘn(x)

2Nbd−n(A1(x)−A2(x))2

) 1
d−n+2

.

• Let Θn be as in (1) with 0 < n = d − 1, satisfying the assumptions
(R), (M2), (A3) and (M4); then

ro,AMSE
N (x) =

( λΘd−1
(x)

4N
(
A1(x)−A3(x)

)2) 1
3

.

We point out that, in the definition of λ̂μ,N given in (23), the bandwidth rN
is the same for each component of the vector. Therefore it emerges the need of
defining a suitable common optimal bandwidth ro,cN . A possible solution might be
to take the value which minimizes the usual asymptotic integrated mean square
error; actually, since the m points x1, . . . , xm ∈ R

d are fixed, a more feasible
solution is to define as common optimal bandwidth the following quantity:

ro,cN = ro,cN (x1, . . . , xm) := argmin
rN

m∑
j=1

AMSE(λ̂μ,N
Θn

(xj)). (30)

By recalling that (see [10])

AMSE(λ̂μ,N
Θn

(xj)) = a2jr
2
N +

λj

wN
,
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where we set

aj :=

{
A1(xj)−A2(xj) if (d− n) > 1
A1(xj)−A3(xj) if (d− n) = 1

,

it follows that

m∑
j=1

AMSE(λ̂μ,N
Θn

(xj)) = A2r2N +
Λ

Nbd−nr
d−n
N

,

with

A2 :=

m∑
j=1

a2j and Λ :=

m∑
j=1

λj .

Therefore we immediately obtain that

ro,cN

(30)
=

(
(d− n)Λ

2Nbd−nA2

)1/(d−n+2)

. (31)

Remark 20. The optimal bandwidth of the multivariate “Minkowski content”-
based estimator defined above satisfies the assumptions of Corollary 15, and so
λ̂μ,N with rN = ro,cN is a strongly consistent estimator for λΘn .

Theorem 21. Let Θn be a random closed set with integer Hausdorff dimension
n < d in R

d as in the assumptions of Theorem 19, and λ̂μ,N be the multivariate
“Minkowski content”-based estimator defined in (23). Then, if rN ≡ ro,cN given
in (31), the sequence{(

λ̂μ,N
Θn

(x1)− λ1√
λ1/wN

, . . . ,
λ̂μ,N
Θn

(xm)− λm√
λm/wN

)
: N ≥ 1

}

converges weakly (as N → ∞) to the m-variate Normal distribution Nm(ν, 11),
with mean

ν :=

√
d− n

2

(a1
A

√
Λ

λ1
, . . . ,

am
A

√
Λ

λm

)
and the identity matrix 11 as covariance matrix, for any (x1, . . . , xm) ∈ (Rd)m

such that (24) is fulfilled.

Proof. To lighten the notation we denote (vj)j=1,...,m := (v1, . . . , vm).

By remembering that Y
(j)
i,N := 11

Θ
(i)
n⊕rN

(xj) for any j = 1, . . . ,m, a direct

calculation shows that(
λ̂μ,N
Θn

(xj)− λj√
λj/wN

)
j=1,...,m

=

(
1

wN

∑N
i=1 Y

(j)
i,N − λj√

λj/wN

)
j=1,...,m
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=

(
1√
λjwN

N∑
i=1

(
Y

(j)
i,N − wNλj

N

))
j=1,...,m

=

(
1√
λjwN

N∑
i=1

(Y
(j)
i,N − p

(j)
N ) +

Np
(j)
N − wNλj√
λjwN

)
j=1,...,m

=

(
1√
λjwN

N∑
i=1

(Y
(j)
i,N − p

(j)
N )

)
j=1,...,m

+

(
Np

(j)
N − wNλj√
λjwN

)
j=1,...,m

. (32)

We study the convergence in distribution of the two vectors in (32) separately.
Let us consider the first one and remember that

λ̂μ,N
Θn

(xj) =
1

wN

N∑
i=1

Y
(j)
i,N ;

hence(
1√
λjwN

N∑
i=1

(Y
(j)
i,N − p

(j)
N )

)
j=1,...,m

=

(
1√
λj

wN λ̂μ,N
Θn

(xj)−Np
(j)
N√

wN

)
j=1,...,m

,

which converges weakly (as N → ∞) to a standard m-variate normal distribu-
tion Nm(0, 11) by Corollary 17.

Now we pass to consider the (non-random) vector in (32):(
Np

(j)
N − wNλj√
λjwN

)
j=1,...,m

=

(√
wN

λj

(NpjN
wN

− λj

))
j=1,...,m

.

By remembering that wN = Nbd−n(r
o,c
N )d−n and that (see [10, Eq. (5)])

Bias(λ̂μ,N
Θn

(xj)) =
P(xj ∈ Θn⊕rN

)

bd−nr
d−n
N

− λΘn(xj),

we get

Np
(j)
N

wN
=

P(xj ∈ Θn⊕rN
)

bd−n(r
o,c
N )d−n

= Bias(λ̂μ,N
Θn

(xj)) + λj = ajr
o,c
N + o(ro,cN ) + λj ,

where the last equation follows by Theorem 2 and Theorem 3 in [10].

By replacing now the expression (31) for ro,cN , the previous equality becomes

Np
(j)
N

wN

(31)
= λj + aj

(
(d− n)Λ

2Nbd−nA2

)1/(d−n+2)

+ o
(
N−1/(d−n+2)

)
;
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therefore we have(
Np

(j)
N − wNλj√
λjwN

)
j=1,...,m

=

⎛⎝√ Nbd−n

N (d−n)/(d−n+2)λj

√(
(d− n)Λ

2bd−nA2

)(d−n)/(d−n+2)

×
(
aj

(
(d− n)Λ

2Nbd−nA2

)1/(d−n+2)

+ o
(
N−1/(d−n+2)

)))
j=1,...,m

=

(
aj
A

√
Λ

λj

√
d− n

2
+ o(1)

)
j=1,...,m

.

Hence

lim
N→∞

(
Np

(j)
N − wNλj√
λjwN

)
j=1,...,m

=

√
d− n

2

(
aj
A

√
Λ

λj

)
j=1,...,m

and the assertion follows.

Corollary 22 (Univariate case). For every x ∈ R
d, if rN = ro,AMSE

N (x), we
have

λ̂μ,N
Θn

(x)− λΘn(x)√
λΘn(x)/wN

d−→ Z as N → ∞,

where Z ∼ N(
√
(d− n)/2, 1).

Proof. In this case ro,cN = ro,AMSE
N (x) and the assertion is a direct consequence

of Theorem 21 with m = 1 .

Remark 23. Under the same assumptions of Theorem 21 we can equivalently
say that the sequence{(

λ̂μ,N
Θn

(x1)− λ1√
λ1/wN

−
√

d− n

2

a1
A

√
Λ

λ1
, · · · ,

λ̂μ,N
Θn

(xm)− λm√
λm/wN

−
√

d− n

2

am
A

√
Λ

λm

)
: N ≥ 1

}
converges weakly (as N → ∞) to the m-variate Normal distribution Nm(0, 11),
if rN ≡ ro,cN given in (31).

With the aim to find out a confidence region for the vector λΘn , we prove
now the following result, which will easily follow by Theorem 21 and Slutsky’s
Theorem.

Proposition 24. Let the assumptions of Theorem 21 be satisfied. Then, if
rN ≡ ro,cN given in (31), denoted by

Λ̂N :=

m∑
j=1

λ̂μ,N
Θn

(xj),
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the sequence⎧⎪⎨⎪⎩
⎛⎝ λ̂μ,N

Θn
(xj)− λj√

λ̂μ,N
Θn

(xj)/wN

−
√

d− n

2

aj
A

√√√√ Λ̂N

λ̂μ,N
Θn

(xj)

⎞⎠
j=1,...,m

: N ≥ 1

⎫⎪⎬⎪⎭
converges weakly (as N → ∞) to the centered m-variate Normal distribution
Nm(0, 11) for any (x1, · · · , xm) ∈ (Rd)m such that (24) is fulfilled.

Proof. Let us consider the random vector XN = (X
(1)
N , . . . , X

(m)
N ), whose com-

ponents are defined as

X
(j)
N :=

λ̂μ,N
Θn

(xj)− λj√
λj/wN

−
√

d− n

2

aj
A

√
Λ

λj

for j = 1, . . . ,m. By Remark 23 we know thatXN converges weakly (asN → ∞)
to the m-variate Normal distribution Nm(0, 11).

Let us also define the random vector YN = (Y
(1)
N , . . . , Y

(m)
N ), with components

Y
(j)
N :=

λ̂μ,N
Θn

(xj)− λj√
λ̂μ,N
Θn

(xj)/wN

−
√

d− n

2

aj
A

√√√√ Λ̂N

λ̂μ,N
Θn

(xj)
∀j = 1, . . . ,m.

We remember that λ̂μ,N
Θn

(xj)
P→ λj for every j = 1, . . . ,m, and also Λ̂N

P→ Λ by
the continuous mapping theorem; thus it follows that

|X(j)
N − Y

(j)
N | ≤

∣∣∣∣∣∣ λ̂
μ,N
Θn

(xj)− λj√
λj/wN

−
λ̂μ,N
Θn

(xj)− λj√
λ̂μ,N
Θn

(xj)/wN

∣∣∣∣∣∣
+

√
d− n

2

aj
A

∣∣∣∣∣∣
√

Λ

λj
−

√√√√ Λ̂N

λ̂μ,N
Θn

(xj)

∣∣∣∣∣∣ P−→ 0,

and so ||XN −YN || P→ 0. Finally a direct application of Slutsky’s Theorem (see
[20, Theorem 18.8]) implies the assertion.

The univariate case directly follows by applying the above proposition with
m = 1:

Corollary 25 (Univariate case). For every x ∈ R
d, if rN = ro,AMSE

N (x), we
have

λ̂μ,N
Θn

(x)− λΘn(x)√
λ̂μ,N
Θn

(x)/wN

d−→ Z as N → ∞,

where Z ∼ N(
√

(d− n)/2, 1).
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Now, we are ready to state the main theorem of this section concerning the
confidence region for λΘn :

Theorem 26. Let the assumptions of Theorem 21 be satisfied with rN ≡ ro,cN

given in (31), and Kα be such that P(W ≤ Kα) = 1 − α, for α ∈ (0, 1), where
W ∼ χ2

m.
For any (x1, . . . , xm) ∈ (Rd)m such that (24) is fulfilled, an asymptotic con-

fidence region for λΘn is the ellipsoid in R
m so defined{

y ∈ R
m : (y − b)tQ(y − b) ≤ 1

}
,

where the vector b = (b1, . . . , bm) and the m×m matrix Q are defined, respec-
tively, by

bj := λ̂μ,N
Θn

(xj)−
aj
A

√
Λ̂N (d− n)

2wN

and

Q :=
wN

Kα
diag

(
1

λ̂μ,N
Θn

(x1)
, · · · , 1

λ̂μ,N
Θn

(xm)

)
.

Proof. Let us notice that⎛⎝ √
wN√

λ̂μ,N
Θn

(xj)
(λj − bj)

⎞⎠t

j=1,...,m

⎛⎝ √
wN√

λ̂μ,N
Θn

(xj)
(λj − bj)

⎞⎠
j=1,...,m

=
m∑
j=1

⎛⎝ √
wN√

λ̂μ,N
Θn

(xj)
(λj − bj)

⎞⎠2

=

m∑
j=1

⎛⎝ λ̂μ,N
Θn

(xj)− λj√
λ̂μ,N
Θn

(xj)/wN

−
√

d− n

2

aj
A

√√√√ Λ̂N

λ̂μ,N
Θn

(xj)

⎞⎠2

is asymptotically χ2
m distributed as a consequence of Proposition 24.

Defined Kα as in the statement of the theorem, and denoted by

R :=
{
y ∈ R

m : (y − b)tQ(y − b) ≤ 1
}

the random ellipsoid in R
m, it is easy to observe that

1− α � P

⎛⎜⎝
⎛⎝ √

wN√
λ̂μ,N
Θn

(xj)
(λj − bj)

⎞⎠t

j=1,...,m

·

⎛⎝ √
wN√

λ̂μ,N
Θn

(xj)
(λj − bj)

⎞⎠
j=1,...,m

≤ Kα

⎞⎟⎠ = P(λΘn ∈ R),

and so the assertion follows.
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Corollary 27 (Univariate case). For every x ∈ R
d, if rN = ro,AMSE

N (x), an
asymptotic confidence interval for λΘn(x) at level α is given by⎡⎣λ̂μ,N

Θn
(x)−

√
λ̂μ,N
Θn

(x)

wN

(√d− n

2
+ Jα

)
, λ̂μ,N

Θn
(x)−

√
λ̂μ,N
Θn

(x)

wN

(√d− n

2
− Jα

)⎤⎦
where Jα is such that 1− α = P(−Jα ≤ Z ≤ Jα), with Z ∼ N(0, 1).

Proof. The assertion directly follows either by applying Theorem 26 withm = 1,
or as a consequence of Corollary 25.
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