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Abstract: Dirichlet-process mixture models, favored for their large sup-
port and for the relative ease of their implementation, are popular choices
for Bayesian density estimation. However, despite the models’ flexibility, the
performance of density estimates suffers in certain situations, in particular
when the true distribution is skewed or heavy tailed. We detail a method
that improves performance in a variety of settings by initially transform-
ing the sample, choosing the transformation to facilitate estimation of the
density on the new scale. The effectiveness of the method is demonstrated
under a variety of simulated scenarios, and in an application to body mass
index (BMI) observations from a large survey of Ohio adults.
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1. Background

We study the problem of estimating an unknown continuous density f on the real
line. A popular Bayesian approach models the unknown density using Dirich-
let Process Mixtures (DPM) (c.f. [3], [10]). The prior for f is constructed by
convolving a continuous kernel, frequently Gaussian, with a Dirichlet Process
(DP) (c.f. [2]) distributed mixing distribution G. Many variations on this basic
structure have been proposed, one of the simplest being the location mixture of
Gaussian kernels given by

G ∼ DP
(
MG0

)
,

μi

∣∣G iid∼ G

Xi

∣∣μi, σ
indep∼ N

(
μi, σ

2
)

i = 1, . . . , n

(1)

where the base distribution G0 is often taken to be a normal distribution with
fixed parameters, and an inverse-gamma prior for the kernel variance σ2 com-
pletes the model. Although more complex structures have been proposed, even
this basic construction is known to be extremely flexible, having KL support on
a wide class of continuous distributions [5].
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Fig 1. DPM density estimates (dashed lines) based on samples of size 100 for two examples of
the two-piece distributions (the true densities are shown in solid black). The leftmost density
is symmetric, but has t2 tails. The rightmost density has Gaussian tails, but is right-skewed.

However, despite these models’ flexibility, a fact long recognized in classical
kernel density estimation is pertinent in the Bayesian context: some densities f
are easier to estimate than others. In particular, densities f which possess heavy
tails or severe skew can cause difficulties for estimation when the sample size
is small, or even moderate. Applying (1) directly to estimate such skewed and
heavy-tailed samples gives estimates that tend, qualitatively, to be overly bumpy
or unsmooth in the tails. Quantitatively, the error for estimating such densities is
inflated under a variety of metrics on the space of distributions, as will be shown
in our simulation and data examples. For an understanding of these difficulties,
consider the two examples shown in Figure 1. The plots show estimates of two
so-called two-piece distributions, which were studied, for example, in [4] and
[12]. The left plot is a (symmetric but heavy-tailed) Student t distribution with
2 degrees of freedom, while the right plot is a (light-tailed but skewed) split
normal distribution where the scale parameter is larger above the median by a
factor of 5. In both cases, the DPM estimates leave much to be desired. At left, in
the heavy tailed plot, we can see that the DPM model underestimates kurtosis.
At right, in the skewed case, the estimated density is bumpy, and appears to
underestimate the degree of asymmetry seen in the true density.

To alleviate this problem, in this paper we propose a Transformation DPM
(TDPM) method, which carefully selects a series of transformations from a
parametric family {ϕθ : θ ∈ Θ} that is designed to symmetrize and shorten the
tails of the density, so that the density of the transformed sample Y1, . . . , Yn is
easier to estimate than the density of the original observations X1, . . . , Xn, in a
sense made specific in Section 2. We fit the model (1) on this transformed scale,

produce a DPM estimate f̂Y of the density of the Yi on the transformed scale,
and then back-transform for an estimate f̂X of the density of the original Xi,
that is,

f̂X =
(
f̂Y ◦ ϕθ̂

)
· ϕ′

θ̂
. (2)

Figure 2 illustrates the application of the TDPM procedure to estimating the
two-piece densities. It is clear that for both cases, the TDPM estimates are
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Fig 2. Illustration of the Transformation-DPM technique. The heavy-tailed sample (left col-
umn, A1-A3) and skewed sample (right column, B1-B3) of figure 1 are transformed according
to the symmetrizing and tail-shortening transformations of section 2. The DPM model is fit
to the transformed samples in the bottom panels, then back-transformed to give the TDPM
estimate on the original scale.

closer to the true densities than the direct DPM estimates. This transformation-
density-estimation technique has been investigated in the context of kernel den-
sity estimation and are shown to be effective for producing improved density
estimates (c.f. [17] and [19]). Recently, [8] proposed to improve manifold learn-
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ing and cluster detection through transformations with nonparametric warping
functions. Our TDPM method, in contrast, utilizes a low dimensional paramet-
ric transformation, with the focus of minimizing a statistic that measures the
ease with which a density can be estimated.

The rest of the paper is structured as follows. In Section 2, we describe a
new family of transformations {ϕθ : θ ∈ Θ} that is rich enough to correct prob-
lems with both skew and heavy tails, and a method for selecting a series of
transformations from the family. In Section 3, we discuss the use of such trans-
formations in combination with the DP mixture model, and demonstrate the
effectiveness of the method, under a variety of simulated scenarios, at reducing
error for estimating the original fX . In Section 4, the method is used to estimate
and compare the distributions of body mass index across groups of individuals
from the 2008 Ohio Family Health Survey. Finally, Section 5 concludes with a
discussion of the contributions and of future work.

2. Transformations

Several authors [17, 13, 19] have considered the use of parametric transforma-
tions for reducing bias of kernel density estimates (KDEs), motivating their
transformations through asymptotics of the kernel estimators. Because of the
role of (1) as a Bayesian analogue of the Gaussian KDE [1], and the connections
between KDE asymptotics and the asymptotic behavior of posteriors from DP
mixture models [6], we hypothesize that these authors’ transformation-density
estimation methods are also relevant for DP mixture estimation, and that much
of their work concerning transformation selection translates well to the setting
of Bayesian density estimation.

In studying the transformation density estimation technique, we must address
two central questions:

1. How to define an appropriate family of transformations {ϕθ : θ ∈ Θ}, and
2. How to select a transformation ϕθ̂ from this family based on a sample?

The answer to the first question of course depends on the types of densities
one wishes to estimate. A quick review of work on transformation kernel den-
sity estimation yields some ideas. [17] seeks to estimate skewed densities whose
support is bounded below. They suggest a signed-power family of transforma-
tions which maps ranges [c,∞) to R. [13] estimates kurtotic densities on R by
first applying a kurtosis reducing transformation. Yang and Marron ([19]) sug-
gest that for some densities, a second or third round of transformations can
further improve the quality of kernel estimates. They consider an ensemble of
three parametric Johnson transformations, and develop an iterative method for
choosing between these families.

Bayesian methods for density estimation differ from classical methods in an
essential way: they are driven by the likelihood. Consequently, natural evalua-
tions of the success (or failure) of the methods in simulation settings is tied to
likelihood, and, for real-data examples, to out-of-sample predictive performance.
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Thus, to avoid a zero in the likelihood, it is essential to get the right support
for the density, and we consider new families of transformations which preserve
the support. For skew correction, we choose an alternative to the families of [17]
and [19] that, unlike those transformations, maps R to R. For kurtosis reduc-
tion, we forego the specific transformations in [13] and [19] in favor of a simple
cdf-inverse-cdf transformation whose parameter can be directly related to the
extreme tail index of the original density. All of the transformations we consider
are strictly monotonic. The families we employ are detailed in Section 2.1.

To answer the second question, our approach is to develop a single statistic
measuring the ease with which a density can be estimated. This statistic should
be quickly and easily computable for a large collection of candidate transforma-
tions. In their work on transformation kernel density estimation, [13], [17], and
[19] take this approach, and those authors agree on the form of the statistic. For
each candidate transformation Yθ,i = ϕθ(Xi), one can compute an estimate of
the criterion

L(θ) = σY,θ

[∫ (
f ′′
Y,θ(y)

)2
dy

]1/5
, (3)

where fY,θ is the transformed density. This criterion is motivated through study
of the L2 asymptotics of kernel density estimates; larger values of L(θ) indicate
that fY,θ is more difficult to estimate. In practice, estimation of (3) requires

estimation of the integrated curvature R(θ) =
∫ (

f ′′
Y,θ(y)

)2
dy, a problem which

is well studied because of its role in “plug-in” bandwidth selectors for kernel
density estimates [14]. Like [13], [17], and [19], we select transformations ac-
cording to a kernel estimate L̂(θ) of (3). The criterion (3) is motivated, and the
estimator described in detail, in Section 2.2.

2.1. Family of transformations

We consider a collection {ϕθ : θ ∈ Θ} of transformations consisting of two
parametric families: a skew-correcting transformation due to Yeo and Johnson
[20], and a kurtosis-reducing Student-t cdf-inverse-Gaussian-cdf transformation.

These parametric transformation families, which will be described shortly,
are appropriate for samples centered near 0 and appropriately scaled. For this
reason, the original X = (X1, . . . , Xn) are first centered and scaled according to
the sample median m(X) and interquartile range I(X), giving

X̃i = h̃(Xi) =
Xi −m(X)

I(X)
/
5

.

This rescaling sets I(X̃) = 5 as the desired interquartile range of X̃1, . . . , X̃n.
This constant affects the achievable shapes of Yeo-Johnson transformations (4);
simulations suggest samples with an IQR of 5 allow effective estimation of the
Yeo-Johnson parameter.

Selection of the appropriate transformation family proceeds with the rescaled
data. After centering and scaling according to X̃i = h(Xi), a parametric trans-
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Fig 3. The families ϕ̃(1,θ1) of Yeo-Johnson transformations and ϕ̃(2,θ2) of t-to-Normal cdf
transformations.

formation ϕ̃θ is applied to the centered and scaled data to give the final trans-
formation

Yi = ϕθ(Xi) =
(
ϕ̃θ ◦ h̃

)
(Xi).

We search for an appropriate parametric transformation ϕ̃θ over a parameter
θ ∈ Θ = {(j, θj) : j ∈ {1, 2}, θj ∈ Θj}, where j ∈ {1, 2} indexes families of
transformations with parameters θj .

The family j = 1 corrects excessively skewed distributions by employing the
Yeo-Johnson power transformations ([20]) given by

ϕ̃(1,θ1) (x) =

⎧⎪⎪⎨
⎪⎪⎩

(
(x+ 1)

θ1 − 1
)/

θ1 x ≥ 0, θ1 �= 0
log (x+ 1) x ≥ 0, θ1 = 0

−
(
(−x+ 1)

2−θ1 − 1
)/

(2− θ1) x < 0, θ1 �= 2
− log (−x+ 1) x < 0, θ1 = 2,

(4)

where the real-valued parameter θ1 is restricted to Θ1 = [0, 2]. See the left panel
of Figure 3 for the shapes of the Yeo-Johnson transformations. These are closely
related to the famous Box-Cox family and the signed power transformations of
[17]. The Yeo-Johnson family is appropriate for correcting both left and right
skew, with θ1 > 1 and θ1 < 1, respectively. Setting θ1 = 1 gives the identity
transformation. The family possesses a symmetry property that ϕ̃(1,θ1)(x) =
−ϕ̃(1,2−θ1)(x).

For excessively kurtotic distributions, we propose a family of tail shortening
cdf-inverse-cdf transformations,

ϕ̃(2,θ2)(x) = Φ−1
(
Tθ2

(
x/bθ2

))
, (5)

where Φ and Tθ2 are, respectively, the cdfs of a standard normal and a t distribu-
tion. The degrees of freedom parameter θ2 > 0 of the t cdf controls the severity of
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the kurtosis reduction. The rescaling constant bθ2 = 5
/(

T−1
θ2

(0.75)−T−1
θ2

(0.25)
)

is required to again rescale the input sample X̃1, . . . , X̃n from their interquartile
range of 5 to match the IQR of a tθ2 distribution.

2.2. A criterion for estimating transformation parameters

The criterion L(θ) given in (3) can be motivated as a target function for guiding
the transformation θ by studying of the asymptotics of the Gaussian kernel
density estimator

f̂Y,hθ
(y) =

1

n

n∑
i=1

φhθ
(y − Yθ,i) (6)

of the transformed density fY,θ. The kernel in this classic estimator is φh(u) =

(2π)−1/2h−1e−u2/h. In this section, we review the asymptotic considerations of
(6) that give rise to the criterion L(θ) in (3), a data-based estimator L̂(θ) of L,

and finally, a selection for θ̂ ∈ Θ.
Provided fY,θ possesses two bounded, continuous derivatives, the mean inte-

grated squared error

MISE(θ) =

∫ (
f̂Y,hθ

(y)− fY,θ(y)
)2

dy (7)

of the KDE f̂Y,hθ
admits an expansion that is quite standard in the kernel

density estimation literature (c.f. [16]),

MISE(θ) = AMISE(θ) + o
( 1

nhθ
+ h4

θ

)
, n → ∞, hθ → 0, nhθ → ∞. (8)

These asymptotics allow different bandwidth selections ĥθ for each possible
transformed sample Yθ,1, . . . , Yθ,n, but require, for each θ, that the bandwidth

shrinks to 0 more slowly than n−1. For large n, the L2 error of f̂Y,hθ
depends

chiefly on the asymptotic mean integrated squared error

AMISE(θ, hθ) =
R(φ)

nhθ
+

1

4
h4
θR(f ′′

Y,θ), (9)

where R is the curvature functional

R(f ′′
Y,θ) =

∫
(f ′′

Y,θ(y))
2 dy (10)

of the transformed density fY,θ. This suggests a strategy of choosing both the
transformation parameter θ and the bandwidth hθ to reduce AMISE(θ, hθ). For
a given R(f ′′

Y,θ), the bandwidth minimizing the AMISE is

h∗
θ = C1(φ)

(
R(f ′′

Y,θ)
)−1/5

n−1/5.
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Plugging h∗
θ into (9), we find that for each θ, the minimum AMISE over possible

bandwidths hθ > 0 is

AMISE∗(θ) = AMISE(θ, h∗
θ) = C2(φ)

[∫ (
f ′′
Y,θ(y)

)2
dy

]1/5
n−4/5,

which depends on θ only through a positive power of the curvature R(f ′′
Y,θ).

Hence, the transformation θ which minimizes R(f ′′
Y,θ) also minimizes the AMISE

(9).
There is a technical difficulty that, like the MISE itself, the curvature R(f ′′

Y,θ)
is not scale invariant. For example, standardizing fY,θ by its mean μY,θ =

EfX (ϕθ(X)) and standard deviation σY,θ = Var
1/2
fX

(ϕθ(X)), and considering
the density fZ,θ(z) = σY,θfY,θ(σY,θz + μY,θ) of Z = (Y − μY,θ)/σY,θ, one finds
that R(f ′′

Z,θ) = σ5
Y,θR(fY,θ). This is an unacceptable property if we are to use

R as a criterion for transformations.
Standardizing R for scale yields the criterion (3). L(θ) is used as a target

function in the transformation density estimation schemes of [13], citeWand1991,
and [19]. Transformations θ ∈ Θ near the L-optimal θ∗ = argminθ∈ΘL(θ) lead

to densities for which the global-bandwidth normal KDE f̂Y,hθ
in (6) will incur

smaller L2 errors for estimating the true fY,θ.
In practice, of course, L cannot be evaluated, so θ∗ is unknown. To concoct

an estimate θ̂, we adopt the strategy of [13], [17], and [19] of first developing a

kernel estimate L̂(θ) of (3), and taking θ̂ = argminL̂(θ). The estimates are of
the form

L̂(θ) = σ̂Y,θ

[
R̂(f ′′

Y,θ)
]1/5

, (11)

where σ̂2
Y,θ = (n − 1)−1

∑
(Yθ,i − Y θ)

2, and the chief difficulty is choosing an

estimator R̂(f ′′
Y,θ) of the integrated curvature R(fY,θ) in (10).

Several estimators of R(f ′′
Y,θ) have been proposed. [9] suggests the popular

“diagonals-in” choice

R̂2 = n−2b−5
n∑

i=1

n∑
j=1

K(4)
(
b−1(Yθ,i − Yθ,j)

)
, (12)

derived from a further kernel estimate

f̃Y,b = n−1b−1
n∑

i=1

K
(
b−1(y − Yi)

)
, (13)

where b is a bandwidth and K is a kernel for estimating R(f ′′
Y,θ), not to be

confused with h and φ in (6). Sheather and Jones ([14]) give a rule for selecting
b of the form

bSJ = C(fY,θ)D(K)n−1/7 (14)

by setting the asymptotically dominant terms in the bias of (12) to zero and
solving the resulting equation. The constant C(fY,θ) involves higher order in-
tegrated squared derivatives of fY,θ, which [14] suggests estimating in another
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similar stage. An implementation of the bandwidth selector and curvature esti-
mator (12) is given by the R package KernSmooth [15].

However, the strategy of [14] using (12) requires at least 2n2 operations,
which is too costly for our setting, in which we would like to compute (12) for
many candidate values of θ. We take a simple numerical approach to estimating
the integrated curvature of the kernel approximation (13),

R(f̃ ′′
Y,bSJ

) =

∫ (
f̃ ′′
Y,bSJ

(y)
)2

dy.

We use a bandwidth bSJ selected according to the Sheather-Jones rule (14), and
a normal kernelK = φ. The integral is approximated over an equally spaced grid
of 1000 points covering 20 sample standard deviations. The result is taken as
R̂(f ′′

Y,θ) in (11). [18] gives some asymptotic results concerning properties of L̂(θ)

as an estimator of L(θ), and θ̂ of θ∗. The trials we conduct in the simulations

and data analysis sections are concerned less with accuracy of θ̂ for θ∗, but more
importantly with the accuracy of density estimation. To suit this purpose, the
L̂-optimal transformation performs quite well.

In Section 2.3, we describe rules for selecting, in an iterative fashion, a series
of transformations from among the families described in Section 2.1.

2.3. Iterative transformation selection

As demonstrated by [19], we note that some difficult densities may benefit from
multiple transformations applied in sequence. In particular, densities which are
both heavy tailed and skewed may require application of both transformation
families ϕ(1,θ1) and ϕ(2,θ2) described in Section 2.1.

We now describe a method for selecting, on the basis of the statistic L̂(θ), a
series of transformations

θ̂(1), θ̂(2), . . . , θ̂(K) ∈ Θ = {(j, θj) : j ∈ {1, 2}, θj ∈ Θj},
chosen from the families (j, θj) giving transformed sample values

Yθ̂,i =
(
ϕθ̂(K) · · · ◦ ϕθ̂(2) ◦ ϕθ̂(1)

)
(Xi). (15)

In the simulations and data analyses of the next sections, we set Θ1 and Θ2

to be equally spaced grids over reasonable parameter values for the skew- and
tail-transformations. For the Yeo-Johnson family (4), Θ1 is set as a grid of 1000
equally spaced values between 0 and 2. For the cdf-inverse-cdf transformation,
the set Θ2 consists of 1000 possible values, equally spaced on the inverse scale
between 1 and 20. In total, this yields 2000 candidate transformations plus the
identity.

The total number K of transformations that should be applied for a given
density is of great interest. The procedure should be sensitive enough to give a
number K of transformation so that

fY,θ(y) =
(
fX ◦ ϕ−1

θ(1) ◦ · · · ◦ ϕ−1
θ(K)

)
·

K∏
l=1

(
ϕ−1
θ(l)

)′
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has a small value of L(θ). However, it should not be too aggressive in suggesting
transformations of already-easy densities such as the normal, nor should it apply
transformations that do not give a substantial reduction in L̂.

To control the sensitivity of the procedure, we simulate 10, 000 standard nor-
mal samples of size n, evaluate L̂ for these, and continue applying transforma-
tions only so long as L̂(θ) satisfies the two conditions: (1) L̂ exceeds the sample
1 − α quantile L̂n,1−α of the 10,000 simulated normal L̂ values for some small

α, which we set to be α = 0.1, and (2) the L̂-optimal transformation reduces L̂
by more than a minimum percentage, which we set to be 5%. Thus, at stage k,

given the current transformed version of the data X
(k)
1 , . . . , X

(k)
n , the procedure

finds the optimal transformation over the grids Θ1 and Θ2 of skew- and tail-
transformation parameter values. Let θ̂(k+1) and L̂(k+1) denote the minimizer
and the minimum, respectively. If either

1. L̂(k+1) ≥ 0.95L̂(k), or
2. L̂(k+1) ≤ L̂n,1−α,

the transformation θ(k) is not applied: we set K = k, and proceed with density
estimation with the sample values (15). Otherwise, θ(k+1) is applied, and another
round of transformations is proposed.

3. Simulation study

3.1. Simulation design

We design a simulation study to investigate the utility of the transformation
method in estimating densities of varying skewness and tail heaviness. We con-
sider estimating two-piece densities of the form,

fX(x) =
2

σ1 + σ2

[
g
(x− μ

σ1

)
I(−∞,μ)(x) + g

(x− μ

σ2

)
I(−∞,μ)(x)

]
, (16)

where g is a symmetric density from a location-scale family, and σ1, σ2 > 0
are distinct scale parameters for the regions above and below the median μ of
fX . The parent density g controls the tail behavior of fX , while the ratio of σ1

to σ2 controls the degree of skewness. Parametric estimation of these densities
has been studied, for example, by [4] and [12]. In the simulations detailed here,
we fix μ = 0 and σ1 = 1. We then study cases where σ2 = 1, for symmetric
distributions, and where σ2 = 5, for right-skewed distributions. Additionally,
we study two choices for the parent family g: a standard normal density and
a heavy-tailed t density with 2 degrees of freedom. The resulting four densities
are depicted in the leftmost column of Figure 4. From each of the four two-
piece densities and each of three different sample sizes n = 100, 200 and 500, we
perform 20 replicates of the simulation.

For each sample, we compare the direct DPM density estimate — found by
fitting the basic DPM model (1) to the untransformed Xi so that f̂X is the
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posterior predictive density — to the Transformation DPM density estimate
(2), with the transformation selected as described in Section 2, so that

f̂X =
(
f̂Y ◦ ϕθ̂

)
· ϕ′

θ̂
,

where f̂Y is the posterior predictive density of the DPM (1) applied on the
transformed scale to the Yi’s. In addition, we fit Griffin’s modified DPM model,
which can be represented by

G ∼ DP(MG0)

μi

∣∣G iid∼ G

Xi

∣∣μi
indep∼ N

(
μi, a

ζi
μζ

σ2
)

i = 1, . . . , n

(17)

where a ∼ Beta(α, β), G0 = N(μ0, (1− a)σ2), ζi are iid from an inverse-gamma
distribution with mean μζ , and σ2 is given an inverse-gamma prior. This model
was proposed by [7] as an improved procedure over the basic DPM model (1)
for density estimation, and is used as a benchmark in our simulation studies.

Computationally, the MCMC for the Bayesian methods is the most demand-
ing component for CPU time. The basic location mixture (1) is a conjugate-style
model, and is fit with a Gibbs sampler over a collapsed sample space, along the
lines of Algorithm 3 of [11]. Griffin’s model is non-conjugate; for this model,
we implement the MCMC strategy suggested by the author in Appendix A of
[7]. In comparison, estimation of the transformation is far less computationally
demanding. Consider one example of a sample of size n = 500 from the skewed
and heavy-tailed density. Using one core of a 2×Twelve Core Xeon E5-2690 v3 /
2.6GHz / 128GB machine, the sequence of transformations can be completed in
3.09 minutes, while 5000 iterations of MCMC for the basic DPM model requires
27.44 minutes.

3.2. Simulation results

For comparing point estimates to the truth, we employ the Hellinger distance,
expressed here for a real-valued variate,

dH
(
p, q

)
=

(∫
R

(√
p(x)−

√
q(x)

)2

dx

)1/2

.

Hellinger distance is a useful metric for quantifying the distance between distri-
butions p and q. Bayesian methods construct the point estimates using MCMC
approximations to the posterior predictive density given the observations. For
each estimate f̂X , we evaluate the Hellinger distance dH(f̂X , fX) between the
point estimate and the true two-piece density. Although the numerical results
are presented only under the Hellinger distance, other metrics such as the total
variation distance and the Kullback-Leibler distance have also been evaluated,
and the results are similar under these alternative metrics.
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Fig 4. Boxplots give a comparison of Hellinger error for four density estimates, KDE, TKDE,
DPM, and TDPM. Each row represents a different two-piece scenario, and results are shown
for 20 replicate samples from each scenario and sample size. The horizontal dotted line repre-
sents the median Hellinger distance obtained by fitting Griffin’s (2010) model without trans-
formation to those 20 samples.

Figure 4 gives a comparison of the Hellinger error for the Transformation
DPM (TDPM) density estimates, direct DPM density estimates, transforma-
tion KDE (TKDE), and direct KDE, across all simulation settings. The hor-
izontal dotted lines represent the median of Hellinger distance for direct fits
of Griffin’s model (17). These numerical results again suggest that the TDPM
approach gives improved estimates for skewed or heavy-tailed distributions. For
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Fig 5. Illustration of the estimated transformations based on 20 simulated samples of size
n = 200 from each of the four two piece scenarios (a)-(d).

the heavy-tailed scenarios in particular, transformations reduced the median
Hellinger error by half in comparison to a direct fit of (1). Griffin’s DPM (17)
notably outperforms the basic DP mixture (1) for capturing skewness and heavy
tails, but the TDPM method, combining (1) with a pre-transformation, gives
still better results.

To investigate the transformations employed in the estimation procedures,
we illustrate the selected transformations in Figure 5 for the samples with size
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Fig 6. Top: comparison of density estimates (via KDE and DPM) with and without trans-
formation, based on a single sample of size n = 200 from the skewed and heavy tailed density
with σ2 = 5 and g(·) a t distribution with 2 degrees of freedom. Bottom: quantile-quantile plot
comparing estimated to true quantiles for the same sample and model fits. Dashed and dotted
lines represent point estimates of the quantiles, while the shaded regions represent pointwise
90% credible intervals for the true quantile based on the Bayesian fits.

n = 200. For the skewed and heavy-tailed densities investigated here, the crite-
rion (11) appears to be effective for identifying an appropriate remedial trans-
formation. In each case, the transformation symmetrizes and shortens the tail
of the original density, allowing more accurate density estimation on the trans-
formed scale. When the true density is already “easy” to estimate1, as is the
case with the standard normal density shown in the top row of Figure 5, the
selected transformations are close to linear. When the distribution is skewed,
as in the second column, the skew-correcting transformations (4) of Yeo and
Johnson are most commonly chosen. When the distribution is heavy tailed but
symmetric, the tail-shortening copula transformations (5) are most common.

The Bayesian DPM model (1) allows a natural description of the uncertainty
in the density estimation procedure. For a sample of size n = 200 from the
skewed and heavy-tailed two-piece density with t2 tails, in Figure 6 we show
draws from the DPM and TDPM posterior distributions for the density. It can
be seen that for this moderate sample size, the location-mixture (1) of Gaus-
sians struggles to capture the polynomial tail decay of a t2; while after a tail-
correcting transformation, the TDPM model gives a more accurate depiction of

1As noted by [19], normal densities possess a curvature (3) that is already near the mini-
mum among all densities with continuous second derivative.
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Fig 7. Quantiles of the empirical distribution of BMI, separated by gender and age.

the extreme tail behavior. Moreover, the DPM model yields unstable estimates
of the extreme quantiles, with the empirical confidence levels of the credible
intervals often falling much below the nominal values. On the other hand, the
TDPM method provides much more stable estimates and more reliable credible
interval coverage.

4. An application to BMI modeling

We demonstrate the use of transformations in modeling body mass index (BMI)
measurements for Ohio adults grouped by age and gender. The data are from
the 2008 Ohio Family Health Survey (OFHS), and are publicly available online
(at http://grc.osu.edu/omas/datadownloads/ofhsoehspublicdatasets/). BMI is
calculated as an individual’s weight in kilograms divided by the square of height
in meters. Due to the ease of its calculation, BMI is often used as a surrogate
for more difficult measures of obesity, such as body fat percentage. Inference
for the distribution of BMI, and for the extreme quantiles in particular, is of
significant public-health interest. Individuals with extreme BMI have greater
risk for a variety of health problems, including heart disease, stroke, and type-2
diabetes.

Figure 7 displays sample quantiles of the observed BMIs for each gender and
age group in the study. The distributions of the BMI measurements are strongly-
skewed, with heavy right tails, but the strength of these features varies with age
and gender. We divide the survey respondents into subgroups by age and gender,
with the aim of estimating BMI distributions for each age-by-gender group.
For a given gender g and age group a, denote the set of BMI measurements
by xga = {xgai : i ∈ Iga}, where Iga = {1, . . . , nga} are the indices for the
respondents in the age-and-gender subgroup. The sizes of these subgroups are
shown in Table 1.

http://grc.osu.edu/omas/datadownloads/ofhsoehspublicdatasets/
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Table 1

Ohio Family Health Survey (2008) sample sizes, divided into training and holdout samples.

Age group
18-24 25-34 35-44 45-54 55-64 65+ Total

Female
OFHS sample size 1194 3226 4656 6268 6299 9191 30,834

Training sample size 200 200 200 200 200 200 1200
Holdout sample size 994 3026 4456 6068 6099 8991 29,634

Male
OFHS sample size 895 1838 2914 3892 3852 4660 18,051

Training sample size 200 200 200 200 200 200 1200
Holdout sample size 695 1638 2714 3692 3652 4460 16,851

To assess the effectiveness of the transformation DPM method for estimating
the BMI densities, we draw subsamples of size 200 from each age-and-gender
group, and measure the out-of-sample predictive likelihood. For gender g and
age a, we partition the indices Iga = {1, . . . , nga} at random into training cases
Itrain
ga and holdout cases Ihold

ga , with
∣∣Itrain

ga

∣∣ = 200. Denote the training set of

BMIs by xtrain
ga = {xgai : i ∈ Itrain

ga } and the holdout set by xhold
ga = {xgai :

i ∈ Ihold
ga }. With the 200 training observations xtrain

ga , we form direct-DPM
and transformation-DPM point estimates of the BMI density. As a measure of
the quality of these density estimates, we consider the average log predictive
likelihood for the holdout cases,

Lga =
1∣∣Ihold
ga

∣∣
∑

i∈Ihold
ga

log
(
f̂ga(xgai|xtrain

ga )
)
. (18)

Figure 8 gives a comparison of Lga for the DPM and TDPM fits.
Some improvement can be seen for the middle-aged subgroups, which also

tend to have the heaviest-tailed distributions of BMI (see Figure 7). The youngest

Fig 8. Comparison of the average log predictive likelihood of the holdout cases (18) based on
the DPM and TDPM fits.



Transformations and Bayesian density estimation 3371

and oldest groups have relatively more symmetric and less heavy-tailed distri-
butions. In such cases, there is less to be gained by transforming these samples
prior to estimation, which was clear in the simulations of Section 3.

5. Discussion

In modern work on nonparametric Bayesian density estimation, many excellent
and sophisticated models have been proposed, often by modifying the structure
of the DP mixture (1). Here we follow a different path to improved performance,
by deconstructing a difficult problem — estimation of an unknown density with
extreme features — into two easier problems. First we choose a sequence of
transformations to symmetrize and shorten the tails of the distribution, and
second, we use basic DPM models to estimate the resulting “well-behaved”
density. The evidence presented here suggests that devoting some attention to
choosing a good transformation of the sample can yield substantial gains in
performance for density estimation.

These two subproblems of the density estimation problem differ intrinsically
in difficulty. The transformation part of the problem is low-dimensional and
parametric, and so we expect estimation of the transformation parameters to
follow conventional root-n asymptotics. The density estimation part of the prob-
lem is infinite dimensional, and so we expect both poorer large sample behavior
and a slower asymptotic rate. Density estimators based on the DPM model are
consistent under very mild conditions, and so we have little interest in finding
the “optimal” transformation. Rather, we seek to find a decent one, and we then
let a standard DPM model do its work. The difference in asymptotic rates for
the two parts of the problem ensures that, for large samples, the transformation
has little variation in comparison to the density estimate, motivating our choice
to fix a single transformation rather than averaging over transformations. This
strategy applies to a wide variety of statistical problems where different portions
of the problem exhibit different rates. Among them, are problems where portions
of a model differ greatly in dimension (as here) and problems where portions of
the model are informed by different amounts of data, as in multiscale, local and
treed regression models.

The advantages of the strategy we have pursued are twofold. First, condition-
ing on a single estimated transformation allows us to focus our computational
resources on density estimation given the transformation. This task is simpler
than averaging over transformations, and it allows us to rely on standard Markov
chain Monte Carlo methods and code for fitting the model. Second, the single
transformation approach provides a simpler conceptual framework, providing
the user with a model which is easier to grasp.

There are many variations on the method we have presented. The families
of transformations we have used could be replaced with other families. The
transformations could be driven by likelihood rather than L̂(θ). The rule for
when to stop the iterative process of transformation selection need not be driven
by the perspective of hypothesis testing (rule (1) of section 2.3). Information
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criteria could be used to select transformation and density estimate, or a fully
Bayesian approach could be used, averaging over transformations. These last
two strategies are relatively expensive in terms of computation.

Nonparametric Bayesian density estimation is often used in multivariate set-
tings. A natural question is how to extend this method to multivariate trans-
formations to alleviate excess skewness and kurtosis. One promising route is to
preprocess the data by first conducting a principal components analysis of the
data. The transformation approach described herein could then be applied to
each margin. Full development of such a method awaits further work.

The TDPM model can be represented in alternative forms. While we describe
the model in terms of a transformation, followed by a DPM model, and finally
completed with a back-transformation to the original scale, a mathematically
equivalent version describes the model as a DPM with a non-standard base
measure and kernel. Both presentations of the model have value; we believe the
presentation here highlights our overall modelling strategy.

One of the great advantages of DP mixture models such as (1) and (17) is
their flexibility, allowing them to capture unusual features in the target density.
Only two such features, skew and heavy-tails, are investigated here with the
transformation method. The usefulness of the transformation strategy has not
been established for other situations, such as estimation of many-modal distri-
butions. The basic idea, however, remains powerful. The area in which TDPM
estimates show the most improvement over basic DPM is in the tails of the
estimates. We would expect this advantage to persist, even if strange features
are present in the body of the distribution.
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