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Abstract: Feature screening via the marginal screening ([5]; [7]) has gained
special attention for high dimensional regression problems. However, their
results are confined to the generalized linear model (GLM) with the expo-
nential family of distributions. This inspires us to explore the suitability of
applying screening procedures to more general models, for example with-
out assuming either the explicit form of distributions or parametric forms
between response and covariates. In this paper, we extend the marginal
screening procedure, by means of Bregman divergence (BD) as the loss
function, to include not only the GLM but also the quasi-likelihood model.
A sure screening property for the resulting screening procedure is estab-
lished under this very general framework, assuming only certain moment
conditions and tail properties, where the dimensionality pn is allowed to
grow with the sample size n as fast as log(pn) = O(na) for some a ∈ (0, 1).
Simulation and real data studies illustrate that a two-step procedure, which
combines the feature screening in the first step and a penalized-BD esti-
mation in the second step, is practically applicable to identifying the set of
relevant variables and achieving good estimation of model parameters, with
the computational cost much less than those without using the screening
step.
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1. Introduction

In the recent literature, there has been a tremendous amount of work on the high
dimensional regression estimation and classification. These types of studies arise
frequently from many different areas of scientific research, such as fMRI brain
images, microarrays, genomics, financial data, and internet traffic data. With
the development of new technologies, we are now able to collect data sets which
are much larger and more complex than we could have imagined a few years
ago. In certain applications, we can even see that the dimensionality p = pn
can grow much faster than the sample size n. Particularly, if pn can grow at
log(pn) = O(na) for some a > 0, we call pn the non-polynomial dimensionality
or “NP-dimensionality”.

For problems with NP-dimensionality, the classical regression model with pn
parameters is not identifiable. On the other hand, in many applications only
a small number of variables among all pn covariates would really have actual
impact on the response variable. Thus, a sparse structure is usually assumed in
such cases. As a result, those techniques that can generate sparse solutions are
preferred and extensively studied. Regularization is one of the most commonly
used techniques aiming at obtaining well behaved solutions to overparameterized
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estimation problems. Numerous variable selection methods, based on regular-
ization/penalization, have been developed, including the bridge regression ([8]),
the Lasso ([17]), the SCAD ([6]), the MCP ([21]), and the Dantzig selector ([3]),
among many others.

[5] proposed another approach, which is a screening procedure to select rel-
evant variables based on their marginal correlations. The “sure independence
screening” property was established under certain conditions in their work. [7]
extended the sure independence screening procedure to the generalized linear
model (GLM) ([15]). Their result works well for the GLM, but is somewhat
restrictive, since their arguments largely depend on the nice properties associ-
ated with the exponential family and the canonical link function. [24] proposed
a model-free feature screening approach (SIRS) using a special marginal utility
measure based on the conditional distribution of the response given covariates.
They showed that their approach can rank the relevant variables above irrele-
vant ones asymptotically in multi-index models. [14] studied another model-free
feature screening method by considering the distance correlation and demon-
strated the sure screening property for their method. [13] developed the robust
rank correlation based screening procedure for the linear model and discussed
the possibility of extending their method to the generalized linear model. In [4],
an independence feature screening procedure based on the marginal empirical
likelihood is studied for the generalized linear models under the exponential
family distribution assumption.

Those works inspire us to explore the suitability of applying the screening
procedures to more general models, for example without either the explicit form
of distributions or any parametric forms between response and covariates. In this
paper, we extend the marginal screening procedure, by means of the notation of
Bregman divergence (BD) as the loss function ([22]), to a wider class of screening
procedure, including not only ranking by marginal maximum likelihood estimate
in the GLM, which has been studied by [7], but also ranking by the quasi-
likelihood ([16]), which has been less developed, and a lot more. An interesting
example is given in Section 5.1.1 for overdispersed Poisson responses, to which
the conventional GLM is not applicable. Hence, compared with the methods in
[13] and [4], our proposed method is applicable to a more general setting than
the generalized linear model. Furthermore, there are a few BD loss functions
widely used in machine learning systems, for example hinge loss for the support
vector machine ([19]) and exponential loss for boosting ([12]), but not generally
fulfilling GLM model assumptions.

The proposed method utilizes the marginal regression minimum-BD estima-
tor of each covariate and ranks their importance according to the absolute values
of the marginal estimates. The sure screening property can be established based
on a non-asymptotic probability bound for the occurrences of selection incon-
sistency. This means that all the truly relevant variables will be selected with
overwhelming probabilities and the results are applicable under NP dimension-
ality which allows the dimension pn to grow as fast as log(pn) = O(na) for some
a ∈ (0, 1). Our results do not require that the covariate either follows an ellip-
tically contoured distribution as in [7] or satisfies linearity condition as in [24].
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While the above screening procedure is able to identify relevant variables, it
does not directly provide good estimates of the non-zero parameters in a given
parametric model. It is thus natural to devise a two-step procedure, which com-
bines the “feature screening” in the first step with the “parameter estimation”
in the second step, to obtain the final model. To our knowledge, the theoretical
properties of such two-step procedure, where the second step uses the penalized-
BD estimation of parameters ([23]), have not been studied in the existing works
on screening procedures. We carry out numerical assessment and comparison of
the proposed screening method and the resulting estimation performance of sev-
eral popular methods for the final model, via both simulation studies and real
data analysis. From the simulation studies, the performance of our proposed
screening method is better than the other model-free alternative methods like
those in [24] and [14] in ultra-high dimensional settings. Our screening method
based marginal regression minimum-BD estimator performs well, especially in
the most stringent simulation setting in which both response and covariates
are binary and very sparse. The results show that the two-step procedure is
practically applicable. Another considerable advantage enjoyed by this two-step
procedure is that by filtering out most of the irrelevant variables in the first step,
we can greatly reduce the computational expense for parameter estimation in
the second step which is usually more costly. Thus, the computation time of the
two-step procedure in the simulation is just a fraction of those without using
the screening step.

It is relevant to note that our main contribution in this paper is using Breg-
man divergence as a powerful tool to unify many commonly used loss functions
and simultaneously study their asymptotic behavior under a very general frame-
work in which the distribution of the response, conditional on the covariates,
is allowed to be incompletely or not fully specified, and only certain moment
conditions and tail properties are assumed. The main result of sure screening
property does not require a particular parametric model, and it reveals that
different choices of BD will only affect some constants in the probability bound.

The rest of the paper is organized as follows. Section 2 introduces the setup of
the general regression model and briefly reviews the Bregman divergence (BD).
Section 3 develops a screening procedure, based on componentwise regression
minimum-BD estimation, and justifies its sure screening property. Section 4
proposes a two-step procedure combined with the penalized-BD estimation and
demonstrates the oracle property of parameter estimation. Simulation results
are presented in Section 5, and real data applications are given in Section 6.
Details of technical assumptions and proofs are relegated to the Appendix.

2. Regression model and Bregman divergence (BD)

2.1. A general framework

Assume that the observed data {(Xi, Yi) : i = 1, . . . , n} are random samples
from the population distribution of a p-dimensional covariate vector X and a
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scalar response Y , where X = (X1, . . . , Xp)
T and Xi = (Xi1, . . . , Xip)

T . The
number of variables p is allowed to grow with the sample size n, thus we denote
it as pn when needed. In this paper, we are interested in predicting the response
Y by its conditional expectation given X,

m(X) = E(Y | X). (2.1)

While it is possible that pn can grow much faster than n, we assume that
the true underlying model is sparse, which means that m(X) functionally only
depends on a small fraction of the covariates, denoted by

Mn = {1 ≤ j ≤ pn : m(X) functionally depends on Xj}

with cardinality sn = |Mn|. Without loss of generality, we can re-arrange the

covariates such that Mn = {1, . . . , sn}. Write X = (X(I)T ,X(II)T )T , where

X(I) collects all truly relevant covariates and X(II) is just noise. Under this
framework, our goal is to investigate the performance of a wide class of feature
screening methods, by means of Bregman divergence that will be introduced in
the next section.

2.2. Bregman divergence

[2] introduced a device for constructing a bivariate function which can be used
as a general loss function. For a given concave function q, define the Bregman
divergence as

Q(ν, μ) = −q(ν) + q(μ) + (ν − μ)q′(μ). (2.2)

Conversely, for a given Q-loss, [22] provided necessary and sufficient conditions
for Q being a BD, and further derived an explicit formula for solving the gener-
ating q-function. They also showed that the quadratic function, the Kullback-
Leibler divergence (or the deviance loss) for the exponential family of probability
functions, the (negative) quasi-likelihood function, and many margin-based loss
functions, such as the misclassification loss, the hinge loss for the support vector
machine ([19]), and the exponential loss used in AdaBoost ([12]), are all special
cases of BD.

As an illustration, when we relax the distributional assumption on the re-
sponse Y by only assuming var(Y | X = x) = σ2V {m(x)} for a known con-
tinuous function V (·) > 0, the quasi-likelihood function Q, given by the partial
differential equation

∂Q(Y, μ)/∂μ = (Y − μ)/V (μ),

for a nuisance parameter σ2 > 0, is usually used as an alternative of complete
log-likelihood function. [22] verified that the (negative) quasi-likelihood function
belongs to the BD and derived the generating q-function, given by

q(μ) =

∫ μ

a

s− μ

V (s)
ds, (2.3)

where a is a finite constant such that the integral is well-defined.
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3. Screening via componentwise regression minimum-BD estimation

Our proposed screening procedure is based on the componentwise regression
minimum-BD estimators, defined as

m̂j(·) = argmin
m

1

n

n∑
i=1

Q{Yi,m(Xij)}, for j = 1, . . . , pn, (3.1)

where the loss functionQ is a BD as defined in (2.2) with a generating q-function.
Furthermore, we restrict m(x) in (3.1) to be of the form,

F−1(αj + xβj), (3.2)

where αj and βj are two parameters to be estimated, and F is a known link
function for appropriate data type. Usually, an identity link F (μ) = μ cor-
responds to the linear regression model for continuous responses; a logit link
F (μ) = log( μ

1−μ ) is utilized in the logistic regression for binary responses; a log

link F (μ) = log(μ) is used in the Poisson regression of count responses.

The functional form in (3.2) is a linear approximation to the problem in
(3.1) which appears somewhat restrictive, however our later theoretical results
show that such class of functions is actually rich enough to detect the marginal
importance of covariates for the screening purpose.

Thus, the minimization problem in (3.1) is equivalent to estimating (α̂CR
j ,

β̂CR
j ), for j = 1, . . . , pn, which are defined as

(α̂CR
j , β̂CR

j ) = argmin
(αj ,βj)∈R2

1

n

n∑
i=1

Q{Yi, F
−1(αj +Xijβj)}. (3.3)

We select the variables by choosing those whose componentwise coefficient
estimators |β̂CR

j | exceed a predefined threshold value γn > 0, i.e. variables Xj

with indices j belonging to the set

M̂γn = {1 ≤ j ≤ pn : |β̂CR
j | ≥ γn}

will be selected; the remaining variables will be screened out.

The minimization problem (3.3) only involves a univariate covariate and an
intercept. Thus fast and robust computation would be feasible even in NP-
dimensional problems. When an appropriate γn is chosen, we can significantly
reduce the dimension of the original parameter space to a much smaller one and
thus make it more manageable. After the screening step, other variable selection
methods, like those (mentioned in Section 1) based on penalization, would be
more feasible on survived variables.

In our screening procedure, the magnitude of the componentwise regression
coefficient estimator, β̂CR

j , serves as a proxy for the importance of the corre-
sponding feature Xj . Two questions arise naturally:
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(I) how well the set M̂γn preserves all relevant covariates, given that the

estimators β̂CR
j from the componentwise minimization problem (3.3) only

approximate the importance of covariates in the original model (2.1);

(II) how small the size of M̂γn can be, given that M̂γn should still include all
truly relevant variables.

We will answer these two questions, by showing that the sure screening property
holds under certain conditions, in the following sections.

3.1. Population version of componentwise regression minimum-BD
estimator

Recall that the estimators in (3.3) are based on empirical minimization. To gain
further insights, we define a population analogue of (3.3), denoted by

(αCR
j , βCR

j ) = argmin
(αj ,βj)∈R2

E[Q{Y, F−1(αj +Xjβj)}], (3.4)

where the expectation is taken with respect to the underlying joint distribution
of (X, Y ).

Note that the componentwise minimum-BD estimator β̂CR
j will converge in

probability to the population version βCR
j . To guarantee the validity of the

screening procedure, it is necessary that βCR
j should at least preserve the signif-

icance of truly relevant covariates, i.e. those whom m(X) functionally depends
on. Theorem 1 confirms that the significance of βCR

j (i.e. βCR
j �= 0) only depends

on the correlation between Y and Xj .

Theorem 1. Assume Conditions A1–A4 in the Appendix. For any j=1, . . . , pn,
it follows that βCR

j = 0 if and only if cov(Y,Xj) = cov{m(X), Xj} = 0.

Theorem 1 implies that if the response variable Y is correlated with a relevant
variable Xj , then the componentwise regression coefficient βCR

j will be non-zero.
In contrast, for those irrelevant variables Xj which are uncorrelated with Y ,
βCR
j will be zero. Theorem 2 further indicates that the magnitude of βCR

j is also
closely related to the magnitude of correlation between Xj and Y .

Theorem 2. Assume Conditions A1–A5 in the Appendix. For any positive
sequences An and Bn,

(i) if minj=1,...,sn |cov(Y,Xj)| ≥ An, then there exists a positive constant c1
such that

min
j=1,...,sn

|βCR
j | ≥ c1An;

(ii) if maxj=sn+1,...,pn |cov(Y,Xj)| = O(Bn), then

max
j=sn+1,...,pn

|βCR
j | = O(Bn).



2046 C. Zhang et al.

The conditions used in Theorem 2 are typically regarded as mild and are
often assumed in the literature ([22]; [7]). Assumptions A1 and A2 are related
to the tail behavior of the population distribution. Assumptions A3 and A4
are about the convexity and smoothness of BD. The requirement of covariance
between Y and Xj ’s for j ∈ Mn is to ensure that the minimal signal strength
of relevant variables should not be too weak and still identifiable.

If those conditions hold and An � Bn, naturally we could utilize the gap
between two groups of {|βCR

j |}pn

j=1 to identify the relevant variables, where an �
bn denotes that there exists a constant c > 0 such that an ≥ cbn for all n ≥ 1.

3.2. Sure screening property of componentwise BD regression

We start by giving the uniform convergence of componentwise regression min-
imum-BD estimator (3.3). To facilitate the derivation, we assume E(Xj) = 0
and E(X2

j ) = 1, for j = 1, . . . , pn in the following results.

Theorem 3. Assume Conditions A1–A5 in the Appendix. Then for any positive
sequence An satisfying An

√
n/ log(n) → ∞, there exists some positive constant

c2 such that

P( max
1≤j≤pn

|β̂CR
j − βCR

j | ≥ An) ≤ pn{exp(−c2A2
nn) + nm0 exp(−m1A2

nn)},

where m0 and m1 are the constants given in Condition A2 of the Appendix.

Theorem 3 is an application of the exponential bound for the Quasi-MLE in
[7] (Theorem 1). It guarantees that the empirical estimator β̂CR

j will be close

enough to the population version βCR
j with large probability. With Theorem 3,

we obtain Corollary 1 below which demonstrates the sure screening property of
componentwise BD regression.

Corollary 1. Assume conditions in Theorem 3. Set γn = c1An/2, where c1 is
the constant given in Theorem 2.

(i) (Sure screening property) If minj=1,...,sn |cov(Y,Xj)| ≥ An, then

P(Mn ⊆ M̂γn) ≥ 1− sn{exp(−c2c
2
1A2

nn/4) + nm0 exp(−m1c
2
1A2

nn/4)}.

(ii) If maxj=sn+1,...,pn |cov(Y,Xj)| ≤ Bn = o(An), then

P(M̂γn ⊆ Mn)

≥ 1− (pn − sn){exp(−c2c
2
1A2

nn/4) + nm0 exp(−m1c
2
1A2

nn/4)}.

Corollary 1 addressed the first question raised at the beginning of Section 3.
It is easy to see that if we assume An = c0n

−α with a constant 0 < α < 1/2 and
log(pn) = o(n1−2α), then the probability bounds in Corollary 1 are approaching
one with the order 1−O{pn exp(−c3n

1−2α)} for a positive constant c3, which is
the same rate obtained in [5] and [7]. This implies that the correct model will be
selected with probability tending to one even under NP-dimensionality, where
pn is permitted to be as large as log(pn) = o(n1−2α).
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Remark 1. In Corollary 1, the conclusion from part (i) and the conclusion from
part (ii) hold separately. In some cases, the assumption about the covariance
between the response and covariates in part (ii) of Corollary 1 needs to be relaxed,
but the sure screening property given in part (i) of Corollary 1 will still hold. It
means that even if we can not eliminate all irrelevant covariates due to certain
correlation between covariates, it is still guaranteed that we will not miss any
truly relevant variables.

3.3. Comparison with sure independence screening in GLM

While our motivation is from [7]’s work on the generalized linear model (GLM),
our results largely enhance the capability of marginal screening methods by
extending it to a broader class of models with any BD as a loss function. In
fact, proving the sure screening property under such general framework is by
no means straightforward. The main challenge is that certain relationships in
GLM are not applicable under the arbitrary choice of BD and link function in
our setting. For example, the following equality holds under GLM combined
with its canonical link F ,

E{F−1(αCR
j + βCR

j Xj)Xj} = E{F−1(β0;0 +XTβ0)Xj}, (3.5)

where β0;0 and β0 = (β1;0, . . . , βp;0)
T are unknown true parameters (see param-

eterization in (4.1)). Actually, (3.5) is the same as equation (14) in [7] which
is a significant part of the proofs for Theorems 2, 3 and 5 therein. However,
(3.5) no longer holds in the BD estimation when F could be an arbitrary link.
To overcome such technical challenge, we need to introduce a different way to
express the componentwise regression minimum BD estimate and also impose
some assumptions on the uniform bound of covariates. For details, please see
the Appendix.

Although the proposed screening procedure is based on certain linear form,
the sure screening property of the proposed screening method actually does not
require any particular parametric form of relationship between the response Y
and the covariates X. Instead, the sure screening property is mainly built on
the assumption about minimal signal strength of relevant variables measured
by marginal covariance. Our results also reveal that different choices of BD will
only affect constants c1 and c2 in the probability bounds in Corollary 1.

4. Two-step procedure with penalized-BD estimation

The results in Section 3 show that the screening procedure based on compo-
nentwise regression minimum-BD estimation works well in selecting the truly
relevant variables. However, it may not be a good way to build a predictive
model and provide estimates. In the absence of screening, [23] investigated the
penalized-BD estimation and its oracle property in a large-dimensional model
with the following form,

m(X) = E(Y | X) = F−1(β0;0 +XTβ0), (4.1)
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where β0;0 and β0 = (β1;0, . . . , βp;0)
T are unknown true parameters, and F is a

known link function. Particularly, their penalized-BD estimator using weighted
L1 penalties minimizes the criterion function,

�(β0,β) =
1

n

n∑
i=1

Q{Yi, F
−1(β0 +XT

i β)}+ λn

pn∑
j=1

wj |βj |, (4.2)

where λn is the tuning parameter and {wj}pn

j=1 are given weights for parameters
{βj}pn

j=1. In this section, we adopt the same setting.

Now we could answer the second question given at the beginning of Section 3
by Theorem 4 which is to control the number of the selected variables in the set
M̂γn .

Theorem 4. Assume the conditions in Theorem 3 and Condition C in the
Appendix. Let γn = c1An/2, where c1 is the constant given in Theorem 2. It
holds that

P[|M̂γn | ≤ O{A−2
n λmax(Σ)}]

≥ 1− pn{exp(−c2c
2
1A2

nn/4) + nm0 exp(−m1c
2
1A2

nn/4)},

where Σ = var(X) and λmax(Σ) denotes the maximum eigenvalue of Σ.

When An = O(n−α) and λmax(Σ) = O(nτ ) with 2α+τ < 1, Theorem 4 indi-
cates that the number of selected covariates will not exceed the order n2α+τ =
o{n/ log(n)}. Therefore, we propose a two-step procedure from screening fea-
tures to estimating coefficients of selected variables as follows. Since the cutoff
value γn involves some unknown constant, in practice we propose another easier
and more straightforward scheme that choose γn to be the p′nth largest values

of |β̂CR
j |, where p′n = �n/ log(n)� and �·� denotes the floor function. The choice

of p′n is large enough so that all truly relevant covariates will be selected, and
also suitable for further estimation method in the second stage.

Step 1: Obtain the componentwise regression minimum-BD estimators β̂CR
j in

(3.3) and select sufficiently many covariates, corresponding to p′n largest

values of |β̂CR
j |. Denote by M̂ the set of indices of selected variables, where

|M̂| = p′n.

Step 2: Set the coefficients of (pn − p′n) variables not in M̂ equal to zero. Use
(4.2) to estimate the other parameters of those p′n features selected in Step
1.

The idea of two-step procedures is widely used in the literature, for exam-
ple the multi-stage method in [20]. After the first step, we can greatly reduce
the dimensionality and at the same time, by the sure screening property, still
preserve all truly relevant variables with high probability.

Proposition 1 also indicates that our two-step procedure enjoys the oracle
property under certain conditions.
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Proposition 1. Assume the conditions in Theorem 4 and An = O(1), Bn =
o(An). Suppose sn = o(n1/5), sn(p

′
n − sn) = o(n) and λmax(Σ)/(p

′
nA2

n) = o(1).
Let λn = An/

√
n and select weights in (4.2) by

ŵj = |β̂PCR
j |−1 for j ∈ M̂,

where β̂PCR
j is based on the penalized componentwise regression BD estimation,

(α̂PCR
j , β̂PCR

j ) = argmin
(αj ,βj)∈R2

[ 1
n

n∑
i=1

Q{Yi, F
−1(αj +Xijβj)}+ κn|βj |

]
(4.3)

with κn = An. Let X̃
(I)

= (1,X(I)T )T , β̃0 = (β0;0,β
T
0 )

T , β̃
(I)

0 = (β0;0,β
(I)T
0 )T .

Then we have the following results for the two-step estimator.

(i) There exists a local minimizer
̂̃
β such that ‖̂̃

β − β̃0‖2 = OP{(sn/n)1/2}.

(ii) Any (n/sn)
1/2-consistent local minimizer

̂̃
β = (

̂̃
β
(I)T

, β̂
(II)T

)T satisfies

P(β̂
(II)

= 0) → 1.
(iii) Assume Condition D in the Appendix. If minj=1,...,sn |βj |/(sn/n)1/2 → ∞,

then for any fixed integer k and any k × (sn + 1) matrix An such that
AnA

T
n → G with G being a k × k nonnegative-definite symmetric matrix,

we have that

√
nAnΩ

−1/2
n {Hn(

̂̃
β
(I)

− β̃
(I)

0 ) + λnWnsign(β̃
(I)

0 )} L−→ N(0, G),

where

Ωn = E[var(Y | X){q′′(m(X))/F ′(m(X))}2X̃
(I)
X̃

(I)T
],

Hn = −E[q′′(m(X))/{F ′(m(X))}2X̃
(I)
X̃

(I)T
],

Wn = diag(0, ŵ1, . . . , ŵsn),

and sign(β̃
(I)

0 ) = (sign(β0;0), sign(β1;0), . . . , sign(βsn;0))
T .

Note that the proposed componentwise BD regression weight selection method
in [23] excludes an intercept term. In contrast, our current weight selection
method (4.3) includes the intercept term. Nevertheless, the assumptions for the
oracle property are still satisfied and thus our procedure would also enjoy the
oracle property.

5. Simulation study

In this section, we assess the performance of both the screening step and the
estimation step in the two-step procedure. Two different settings of (n, pn) are
used in our simulation,

(250, 250) and (350, 15000),

which represent the high dimensionality and ultra-high dimensionality of data,
respectively.
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5.1. Performance of feature screening

To evaluate the performance of screening methods, we will measure the accuracy
of the importance ranking of the covariates by the minimum model size (MMS)
needed to include all truly relevant covariates. We also provide a coverage mea-
sure as the percentage of runs that all truly non-zero coefficients are picked up
when setting p′n = �n/ log(n)�. The following methods are compared:

“SIS-BD” : our proposed screening method,

“DC-SIS” : method in [14],

“EL-SIS” : method in [4],

“RRCS” : method in [13],

“SIRS” : method in [24].

(5.1)

All the results are averaged over 400 simulation runs.

5.1.1. Overdispersed Poisson responses

Here we consider the overdispersed Poisson model with the response Y generated
according to var(Y | X = x) = 2m(x), where m(x) = E(Y | X = x). The link
function used for count data is the log link. Thus,

log{m(x)} = β0;0 + xTβ0,

where β0;0 = 1 and β0 = (2.5, 2, 2, 1.5, 0, . . . , 0)T . The covariates are generated
by Xij = Φ(Zij)− 0.5, i = 1, . . . , n and j = 1, . . . , pn, where Φ is the standard
normal distribution function, and

(Zi1, . . . , Zipn)
T ∼ N(0, ρJpn + (1− ρ)Ipn), (5.2)

with Jd a d×d matrix in which all entries are ones and Id a d×d identity matrix.
Thus (Xi1, . . . , Xipn) are marginally Uniform(−0.5, 0.5) random variables and
correlated if ρ �= 0. The type of BD we used here is

Q(Y, μ) = μ− Y log(μ)− Y + Y log(Y )

which is generated by the q-function in (2.3) when V (μ) = μ, explicitly, q(μ) =
μ− a− μ{log(μ)− log(a)}.

Table 1 presents the mean, standard deviation along with a five number sum-
mary of the MMS as well as the coverage percentage for the screening methods
in different settings. For the case of (n, pn) = (250, 250) and ρ = 0.2, all the
procedures work well in this nonlinear model and rank the truly relevant co-
variates at the very top of the list, as the resulting MMS’s are very close to the
true model size. Also for (n, pn) = (250, 250), when the dependence parameter ρ
increases from 0.2 to 0.5, the correlation between the covariates becomes larger
and the irrelevant covariates can be easily confounded with the relevant covari-
ates. In this case, the MMS becomes a little bigger and the coverage percentage
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Table 1

(Simulation results: overdispersed Poisson count responses) Mean, standard
deviation (std), and five number summary of the minimum model size, out of 400

replications with Q1: first quartile; Q2: median; Q3: third quartile; CP: percentage of runs

that all truly non-zero coefficients are covered by M̂. Methods SIS-BD, DC-SIS, EL-SIS,
RRCS and SIRS are described in (5.1).

n
pn

ρ Method Mean (std) Min Q1 Q2 Q3 Max CP

250
250

0.2 SIS-BD 4.62 ( 0.2) 4 4 4 4 71 .998

DC-SIS 4.44 ( 0.1) 4 4 4 4 34 1.00
EL-SIS 5.53 ( 0.2) 4 4 4 5 50 .998
RRCS 4.43 ( 0.1) 4 4 4 4 17 1.00
SIRS 4.52 ( 0.1) 4 4 4 4 26 1.00

0.5 SIS-BD 7.11 ( 0.4) 4 4 4 6 89 .990
DC-SIS 6.45 ( 0.4) 4 4 4 6 86 .988
EL-SIS 8.43 ( 0.7) 4 4 5 7 174 .983
RRCS 7.06 ( 0.5) 4 4 4 6 127 .988
SIRS 7.39 ( 0.5) 4 4 4 6 121 .993

350
15000

0.2 SIS-BD 7.81 ( 0.9) 4 4 4 5 242 .988

DC-SIS 8.40 ( 1.6) 4 4 4 5 590 .988
EL-SIS 43.27 (10.9) 4 4 4 11 2937 .893
RRCS 10.13 ( 1.6) 4 4 4 5 402 .980
SIRS 11.37 ( 1.9) 4 4 4 5 595 .968

0.5 SIS-BD 48.02 ( 6.5) 4 4 8 32 1176 .865
DC-SIS 69.61 (12.0) 4 4 7 26 2936 .835
EL-SIS 181.68 (32.8) 4 6 13 62 7113 .738
RRCS 66.71 (11.3) 4 4 7 28 2615 .838
SIRS 81.75 (13.5) 4 4 9 39.5 3043 .800

becomes slightly smaller, while all methods still perform comparably well. For
(n, pn) = (350, 15000), our proposed method performs better than or as well
as the other methods. Particularly, when ρ = 0.5, SIS-BD has a significantly
smaller mean MMS and a larger coverage percentage than the other methods.
It’s also seen that, in the ultra-high dimensional case, as ρ increases, the MMS
increases and the coverage percentage decreases as expected. By comparing the
results for (n, pn) = (350, 15000) with those for (n, pn) = (250, 250), the higher
dimensionality makes the feature selection problem harder, but the values of
the MMS do not increase much, which supports our theoretical results in Sec-
tion 3.

5.1.2. Bernoulli binary responses

We further investigate the logistic regression model with a binary response Y ,
which is generated as a Bernoulli random variable with

P(Y = 1 | X = x) =
1

1 + exp{−(β0;0 + xTβ0)}
,
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where β0;0 = 3 and β0 = (3, 2,−3,−2, 0, . . . , 0)T . The covariates are also gener-
ated by independent Bernoulli random variables with

P(Xij = 1) = r, i = 1, . . . , n, j = 1, . . . , pn. (5.3)

The logit link function is used.
Results from two types of BD will be presented in this section, the Bernoulli

deviance (DEV) loss,

Q(Y, μ) = −2{Y log(μ) + (1− Y ) log(1− μ)}

which corresponds to q(μ) = −2{μ log(μ) + (1 − μ) log(1 − μ)}, and the expo-
nential (EXP) loss,

Q(Y, μ) = exp[−(Y − .5) log{μ/(1− μ)}]

which corresponds to q(μ) = 2{μ(1− μ)}1/2.
Table 2 reports the mean and the five number summary of the MMS from

our simulation. Our proposed methods SIS-BD(DEV) and SIS-BD(EXP), com-
bined with two choices of loss functions, DEV and EXP respectively, give similar
results in all cases as expected and both perform better than or as well as the
other methods. When r = 0.2, the signal from the data is more scarce and it
is more difficult to identify the truly relevant variables. Under this stringent
situation, the mean values of the MMS for our methods remain at a low level
compared with the total number of covariates, and are smaller than those of the
other methods. For r = 0.5, the performance of the screening methods is im-
proved compared with that for r = 0.2. As the dimensionality grows, the MMS’s
for our methods increase, but at a much smaller rate so that the identification
of relevant covariates and further parameter estimation would still be possible.
However, because of the ultra-high dimensionality and the sparse signals from
the covariates, there is a dramatic decrease in the coverage percentage as pn
increases from 250 to 15000 for r = 0.2. Compared with the corresponding re-
sults in Table 1 for the overdispersed Poisson model, the values of the MMS in
Table 2 are much larger, because, in the logistic regression model, the response
and covariates are all binary which provide very limited information from ei-
ther part. It’s worth noting that the RRCS method fails to identify the truly
non-zero coefficients. This doesn’t contradict the conclusions in [13], where the
sure screening properties of RRCS are demonstrated for linear models but not
for generalized linear models due to technical difficulties as discussed in their
Section 4.2.

5.2. Performance of parameter estimation

Here we will compare the performance of the two-step procedure with those
variable selection methods using penalization which are directly applied to all
variables. Namely, they minimize a criterion function similar to (4.2), except
that the choice of the penalty can be the following:
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Table 2

(Simulation results: Bernoulli binary responses) Mean, standard deviation, and five
number summary of the minimum model size, out of 400 replications. Methods SIS-BD,

DC-SIS, EL-SIS, RRCS and SIRS are described in (5.1).

n
pn

r Method Mean (std) Min Q1 Q2 Q3 Max CP

250
250

0.2
SIS-BD
(DEV)

24.92 ( 1.7) 4 8 12.5 25 240 .858

SIS-BD
(EXP)

25.03 ( 1.7) 4 8 13 25 239 .855

DC-SIS 28.02 ( 1.7) 4 9 15 32 241 .843
EL-SIS 25.73 ( 1.7) 4 7 12 28 239 .855
RRCS 244.53 ( 0.6) 168 245 249 250 250 .000
SIRS 28.14 ( 1.7) 4 9 15 32 240 .835

0.5
SIS-BD
(DEV)

9.21 ( 0.6) 4 4 5 9 96 .975

SIS-BD
(EXP)

9.20 ( 0.6) 4 4 5 9 96 .975

DC-SIS 9.13 ( 0.6) 4 4 5 9 97 .978
EL-SIS 9.13 ( 0.6) 4 4 5 9 95 .978
RRCS 250 ( 0.0) 250 250 250 250 250 .000
SIRS 9.15 ( 0.6) 4 4 5 9 97 .980

350
15000

0.2
SIS-BD
(DEV)

597.11 (67.5) 4 81.5 185 434.5 10627 .193

SIS-BD
(EXP)

597.37 (67.5) 4 81.5 186 441.5 10612 .190

DC-SIS 713.77 (71.5) 8 78.5 234 669.5 10803 .200
EL-SIS 616.30 (70.7) 4 36 142.5 481.5 10631 .335
RRCS 14814.73 (22.3) 9949 14821 14960 14995 15000 .000
SIRS 716.39 (71.8) 8 78.5 234.5 670 10836 .200

0.5
SIS-BD
(DEV)

125.24 (24.2) 4 5 10.5 53.5 6099 .773

SIS-BD
(EXP)

125.39 (24.3) 4 5 10.5 54 6137 .775

DC-SIS 125.15 (24.4) 4 4 10.5 49.5 6294 .765
EL-SIS 124.86 (24.2) 4 4 11 51.5 6128 .765
RRCS 14999.99 ( 0.0) 14999 15000 15000 15000 15000 .000
SIRS 125.62 (24.5) 4 4 10.5 49.5 6306 .763

(I) (SCAD) the SCAD penalty, with an accompanying parameter a = 3.7 ([6]);
(II) (MCP) the MCP penalty, with an accompanying parameter a = 3.7 ([21]);
(III) (L1) the L1 penalty ([17]);
(IV) (WL1PCR) the weighted-L1 penalty with weights selected by (4.3).

Let p′n = �n/ log(n)� in the first step. For brevity, the two-step procedures are
referred to as S-SCAD, S-MCP, S-L1, and S-WL1PCR, respectively. The tuning
constants λn and κn are selected via a grid search separately to minimize the
BIC. All the results are averaged over 100 simulation runs.

5.2.1. Overdispersed Poisson responses

The setting is similar to that in Section 5.1.1, except that the dependence pa-
rameter between covariates is fixed at ρ = 0.2. To compare the accuracy of the
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Table 3

(Simulation results: overdispersed Poisson count responses) Covariates are
marginally Uniform(−0.5, 0.5) with dependence parameter ρ = 0.2 in (5.2). Results are

averaged over 100 replications. Here TE is the test error obtained from an independent test
set; time is the average running time in seconds. Timing was carried out on an Intel 3.60

GHz processor.

n
pn

Method ‖̂̃
β − β̃0‖2 TE #C-Z #C-NZ

Time
(sec)

250
250

SCAD 0.72 1.02 231.1 (0.6) 4.0 (0.0) 0.53

S-SCAD 0.54 0.97 237.3 (0.3) 4.0 (0.0) 0.05
MCP 0.60 0.99 234.9 (0.7) 4.0 (0.0) 0.48
S-MCP 0.51 0.97 239.4 (0.3) 4.0 (0.0) 0.05
L1 0.80 1.04 231.7 (0.6) 4.0 (0.0) 0.18
S-L1 0.70 1.01 235.6 (0.4) 4.0 (0.0) 0.05
WL1PCR 0.53 0.97 241.4 (0.3) 4.0 (0.0) 1.45
S-WL1PCR 0.53 0.97 241.3 (0.3) 4.0 (0.0) 0.34

350
15000

SCAD 1.09 1.15 14959.6 (1.2) 4.0 (0.0) 29.54

S-SCAD 0.65 1.01 14982.1 (0.4) 4.0 (0.0) 1.72
MCP 0.83 1.04 14969.1 (1.0) 4.0 (0.0) 29.64
S-MCP 0.63 1.01 14984.2 (0.4) 4.0 (0.0) 1.70
L1 1.13 1.16 14962.2 (1.2) 4.0 (0.0) 12.27
S-L1 0.90 1.10 14977.9 (0.4) 4.0 (0.0) 1.69
WL1PCR 0.72 1.02 14984.4 (0.5) 4.0 (0.0) 102.52
S-WL1PCR 0.75 1.04 14984.8 (0.5) 4.0 (0.0) 6.62

estimated parameters by different methods, the average of ‖̂̃
β − β̃0‖2 across

those 100 training sets is calculated. The test error (TE) is obtained from an in-

dependently generated test set {(x�, y�)}L=10000
�=1 by

∑L
�=1 Q{y�, m̂(x�)}/L. We

also provide the model selection performance via C-Z which is the total number
of coefficients which are correctly estimated to be zero when the true coefficients
are zero, and C-NZ which is the total number of coefficients which are correctly
estimated to be non-zero when the true coefficients are non-zero. Finally, we
record the average running time of each method under different settings. The
high dimensional problem usually imposes a big challenge in computations as
well as model selection and estimation, so considerably faster speed can be
viewed as an advantage. Table 3 summarizes the simulation results.

By comparing the average losses of the estimates for β̃0 and the test errors,
we can see that all methods have satisfactory performance, while most two-step
procedures are slightly better than their counterparts which directly apply the
estimation step. Besides, every method is able to select all of the truly non-zero
parameters. While the gain of the accuracy from the screening step does not
seem to be very dramatic, we notice that the speed of the two-step procedures
is much faster, where the screening step can reduce the computation time by
a factor of 3 to 20. This indicates that the screening step can indeed filter
out most irrelevant covariates without sacrificing the accuracy, so that we can
make better use of the computational resources. When pn grows from 250 to
15000, for each method, the average loss of the estimates for β̃0 and the test
error increase slightly, indicating that the two-step procedures work conceivably
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well for ultra-high dimensional case. Compared with all the other methods,
the screening-based estimation method using the MCP penalty corresponds to

the smallest values of ‖̂̃
β − β̃0‖2 and the test error, and enjoys the shortest

computational time. But, the difference between the performance of different
two-step procedures is indeed not significant.

5.2.2. Bernoulli binary responses

The setting is similar to that in Section 5.1.2, except that we only present the
results with r = 0.5. For this type of classification problem, we calculate the
misclassification rate (MR) for an independent test set instead of the test error.
Other metrics are similar to those in Section 5.2.1. The results are summarized
in Table 4.

From Table 4, for most of the methods, the two-step procedures perform bet-
ter than or as well as the counterparts without applying the screening step in
each setting. Among all the two-step procedures, the one using the weighted-L1

penalized estimation with weights selected by the PCR corresponds to the small-
est averaged loss of the estimates for β̃0 and the lowest misclassification rate
for each setting. As pn increases, for each method and loss function, there is a
reasonable increase in the loss of the estimate for β̃0 and a slight increase in the
misclassification rate. Therefore, the two-step procedures have satisfactory per-
formance under the ultra-high dimensional situation. Again, in our comparison,
the screening step can make the computation much faster than those methods
that directly work with all possible covariates. Compared with Table 3, Table 4

has much larger values of ‖̂̃
β − β̃0‖2 and smaller values of C-NZ, which is due

to the specific setting for the logistic regression model where the covariates and
response are binary.

6. Real data application

In this section, we apply the methods considered in Section 5.2 to real data
to illustrate the practical usefulness of the screening procedures. The tuning
constants λn and κn in the second step is selected by the Akaike’s information
criterion (AIC).

6.1. Colon data

The classification of colon cancer is discussed in [1] and the data set can be
downloaded from http://genomics-pubs.princeton.edu/oncology/. It con-
sists of p = 2000 genes and n = 62 samples, in which 22 samples are from normal
colon tissues and 40 samples are from tumor tissues. In our analysis, the data
set is randomly split into two parts, with 45 samples as training samples and the
rest 17 as test samples. We repeat the random split 100 times and calculate the

http://genomics-pubs.princeton.edu/oncology/
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Table 4

(Simulation results: Bernoulli binary responses) Covariates are independent
Bernoulli random variables with r = 0.5 in (5.3). MR is the misclassification rate on an

independent test set. Results are averaged over 100 replications. Timing was carried out on
an Intel 3.60 GHz processor.

n
pn

Loss Method ‖̂̃
β − β̃0‖2 MR #C-Z #C-NZ

Time
(sec)

250
250

DEV SCAD 24.45 0.17 236.1 (0.4) 3.9 (0.0) 0.44

S-SCAD 11.58 0.16 238.8 (0.4) 3.9 (0.0) 0.44
MCP 22.63 0.17 236.1 (0.3) 3.9 (0.0) 0.45
S-MCP 10.93 0.16 239.3 (0.4) 3.9 (0.0) 0.44
L1 3.75 0.16 244.5 (0.1) 3.6 (0.1) 0.07
S-L1 3.74 0.16 244.4 (0.1) 3.6 (0.1) 0.04
WL1PCR 2.52 0.13 244.4 (0.2) 3.7 (0.1) 0.36
S-WL1PCR 2.52 0.13 244.4 (0.2) 3.7 (0.1) 0.13

EXP SCAD 34.77 0.17 236.1 (0.3) 3.9 (0.0) 0.53
S-SCAD 16.22 0.16 239.0 (0.5) 3.9 (0.0) 0.48
MCP 36.90 0.17 235.9 (0.3) 3.9 (0.0) 0.52
S-MCP 16.76 0.16 238.9 (0.4) 3.9 (0.0) 0.45
L1 3.31 0.16 244.2 (0.2) 3.7 (0.1) 0.08
S-L1 3.31 0.16 244.2 (0.2) 3.7 (0.1) 0.04
WL1PCR 2.31 0.13 244.5 (0.2) 3.6 (0.1) 0.41
S-WL1PCR 2.31 0.13 244.5 (0.2) 3.6 (0.1) 0.15

350
15000

DEV SCAD 26.25 0.17 14987.4 (0.2) 3.8 (0.1) 15.68

S-SCAD 22.36 0.18 14984.3 (0.3) 3.7 (0.1) 1.58
MCP 25.94 0.17 14987.1 (0.2) 3.7 (0.1) 15.09
S-MCP 23.22 0.18 14983.7 (0.3) 3.7 (0.1) 1.59
L1 4.29 0.17 14994.7 (0.1) 3.2 (0.1) 5.68
S-L1 4.28 0.17 14994.7 (0.1) 3.2 (0.1) 1.24
WL1PCR 3.21 0.15 14993.8 (0.2) 3.4 (0.1) 31.59
S-WL1PCR 3.21 0.15 14993.8 (0.2) 3.4 (0.1) 2.88

EXP SCAD 39.80 0.18 14987.6 (0.2) 3.6 (0.1) 15.68
S-SCAD 34.63 0.18 14984.1 (0.3) 3.7 (0.1) 1.75
MCP 36.67 0.18 14987.5 (0.2) 3.6 (0.1) 15.40
S-MCP 35.25 0.18 14984.0 (0.3) 3.7 (0.1) 1.78
L1 3.98 0.17 14994.5 (0.2) 3.3 (0.1) 6.35
S-L1 4.03 0.17 14994.1 (0.5) 3.3 (0.1) 1.38
WL1PCR 2.76 0.15 14994.6 (0.3) 3.0 (0.1) 35.48
S-WL1PCR 2.76 0.15 14994.0 (0.5) 3.1 (0.1) 3.08

average number of misclassified cases in both sets. The results are summarized
in Table 5.

From Table 5, we see that the two-step procedures are capable of identifying
those relevant variables and obtaining a good estimation and prediction while
considerably fewer computational resources are needed. Among all the two-step
procedures, it turns out that the one using the L1 penalty corresponds to the
smallest number of misclassified cases for both the training and test sets using
either the deviance or exponential loss. Although method WL1PCR without
using the screening step performs slightly better than S-L1, its computational
time is much longer. Moreover, the choice of loss functions in the penalized-BD
estimators has a relatively negligible impact on the classification performance.
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Table 5

(Real data: Colon) Average number of misclassified cases among 45 training samples and
17 test samples, average number of selected variables among all 2000 covariates and the

average computation time in seconds, over 100 replications. Timing was carried out on an
Intel 3.60 GHz processor.

Loss Method # Error # Error # Selected Time
(training) (test) (sec)

DEV SCAD 2.9 3.8 4.2 0.9
S-SCAD 2.6 3.4 4.7 0.2
MCP 2.9 3.8 4.2 0.8
S-MCP 2.6 3.4 4.7 0.2
L1 1.0 3.8 16.1 1.7
S-L1 0.6 3.2 11.1 0.3
WL1PCR 0.5 3.3 10.3 10.8
S-WL1PCR 1.0 3.3 8.5 1.4

EXP SCAD 3.8 3.8 4.3 1.0
S-SCAD 3.1 3.8 4.6 0.3
MCP 3.8 4.0 4.2 1.0
S-MCP 3.2 3.7 4.6 0.3
L1 0.7 3.7 15.6 1.8
S-L1 0.7 3.3 10.5 0.3
WL1PCR 0.4 3.2 9.6 11.6
S-WL1PCR 1.0 3.4 8.3 1.5

Appendix: Proofs of Main Results

Notation. For notational brevity, let Xj = (1, Xj)
T and bj = (αj , βj)

T denote
the two-dimensional covariate and parameter of the componentwise regression
minimum-BD estimation in (3.3), respectively. Denote b̂CR

j = (α̂CR
j , β̂CR

j )T and

bCR
j = (αCR

j , βCR
j )T . Throughout this section, ‖ · ‖1 is the L1-norm, ‖ · ‖2 is the

Euclidean L2-norm, and ‖ · ‖∞ is used to denote the L∞-norm.

Condition. We have the following assumptions in which M , B, B′ are suffi-
ciently large constants. Those are not the weakest possible, but serve to facilitate
the technical derivations.

A1. For all j, Xj are uniformly bounded, i.e. ‖X‖∞ ≤ M . Σ = var(X) exists
finitely and is nonsingular.

A2. var(Y | X) > 0, E(Y 2) < ∞ and the tail probability of Y satisfies that
there exist some positive constants m0 and m1 such that for sufficiently
large t, P(|Y | > t) ≤ m0 exp(−m1t).

A3. Assume that the quantities qk(y; θ) = (∂k/∂θk)Q{y, F−1(θ)}, k = 0, 1, . . .,
exist finitely up to any order required. Suppose q2(y; θ) > 0 for all θ ∈ R

and all y in the range of Y .
A4. F (·) is a bijection and F ′′′ is continuous. Without loss of generality, assume

F ′(·) > 0.
A5. For all j, bCR

j is an interior point of R2
B = {(a, b) ∈ R

2 : |a| ≤ B, |b| ≤ B}.
C. ‖β(I)

0 ‖1 ≤ B′.
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D. Assume that the eigenvalues of Ωn and Hn are uniformly bounded away
from 0; ‖H−1

n Ωn‖2 is bounded away from ∞.

Proof of Theorem 1. Since m(X) = E(Y | X),

cov{E(Y | X), Xj} = E{E(Y | X)Xj} − E{E(Y | X)}E(Xj)
= E{E(Y Xj | X)} − E(Y )E(Xj)
= E(Y Xj)− E(Y )E(Xj) = cov(Y,Xj).

It follows from Condition A3 that Q{y, F−1(θ)} is strictly convex in θ. There-
fore, the minimizer of (3.4) is the solution of the score equations of (3.4) which
are given by

E{q1(Y ;αCR
j +Xjβ

CR
j )} = E

{ (Y − μCR
j )q′′(μCR

j )

F ′(μCR
j )

}
= 0,

E{q1(Y ;αCR
j +Xjβ

CR
j )Xj} = E

{Xj(Y − μCR
j )q′′(μCR

j )

F ′(μCR
j )

}
= 0,

where μCR
j = F−1(αCR

j +Xjβ
CR
j ).

We first show that if βCR
j = 0, then cov(Y,Xj) = 0. When βCR

j = 0, μCR
j is

a constant. Two score equations become

μCR
j = F−1(αCR

j ) = E(Y ), E(XjY )− μCR
j E(Xj) = 0,

which imply cov(Y,Xj) = 0.
On the other side, if cov(Y,Xj) = 0, it is easy to verify that (F (E(Y )), 0)

satisfies the score equations,

E
[{Y − E(Y )}q′′(E(Y ))

F ′(E(Y ))

]
= E{Y − E(Y )} q

′′(E(Y ))

F ′(E(Y ))
= 0,

E
[Xj{Y − E(Y )}q′′(E(Y ))

F ′(E(Y ))

]
= cov(Y,Xj)

q′′(E(Y ))

F ′(E(Y ))
= 0.

Therefore βCR
j = 0.

Proof of Theorem 2. We first show part (i). The first two partial derivatives of
�CR
j (αj , βj) = E[Q{Y, F−1(αj +Xjβj)}] with respect to αj are given by

∂�CR
j (αj , βj)

∂αj
= E{q1(Y ;αj +Xjβj)},

∂2�CR
j (αj , βj)

∂α2
j

= E{q2(Y ;αj +Xjβj)}.

By Condition A3, it follows that �CR
j (αj , βj) is convex in αj . Then, for any

given βj = b, the minimizer of �CR
j (αj , b) will be the solution to the following

equation,
hj(α; b) = E{q1(Y ;α+Xjb)} = 0.
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Denote by αj(b) the solution of hj(α; b) = 0. Thus, αj(b) is unique and a well-
defined function of b.

Now we have an equivalent definition of βCR
j given by

βCR
j = argmin

b
�j(b),

where �j(b) = E[Q{Y, F−1(αj(b) +Xjb)}] and the first and second derivatives
of �j(b) are given by

�′j(b) =
d�j(b)

db
= E[q1{Y ;αj(b) +Xjb}{α′

j(b) +Xj}],

�′′j (b) =
d2�j(b)

db2
= E[q2{Y ;αj(b) +Xjb}{α′

j(b) +Xj}2] > 0,

which imply that �j(b) is convex in b and βCR
j is unique and satisfies �′j(β

CR
j ) = 0.

By the mean-value theorem,

�′j(b) = �′j(0) + b�′′j (b
∗), (6.1)

where b∗ is between 0 and b. It can be shown that

αj(0) = F (E(Y )) for any j = 1, . . . , pn.

Since E{q1(Y ;αj(0))} = 0, we observe that

�′j(0) = E{q1(Y ;αj(0))Xj} = C0 cov(Y,Xj),

where C0 = q′′(E(Y ))/F ′(E(Y )). By Conditions A1 and A3, |Xj | ≤ M and
q2(y; θ) > 0, we observe that for any b and j = 1, . . . , pn,

|α′
j(b)| =

∣∣∣ − E{q2(Y ;αj(b) +Xjb)Xj}
E{q2(Y ;αj(b) +Xjb)}

∣∣∣ ≤ M.

Let K1 = sup|θ|≤(M+1)B E{q2(Y ; θ)}. Then for any j = 1, . . . , pn and any −B <
b < B,

�′′j (b) ≤ (2M)2K1.

Let c1 = C0/(4K1M
2). By (6.1), for any j = 1, . . . , sn,

|βCR
j | ≥ |C0 cov(Y,Xj)|

4K1M2
= c1|cov(Y,Xj)| ≥ c1An.

We now show part (ii). Let K2 = inf |θ|≤(M+1)B E{q2(Y ; θ)}. Similar to part
(i), for any j = 1, . . . , pn and any −B < b < B,

�′′j (b) ≥ K2var(Xj) = K2.

Again by (6.1), for any j = sn + 1, . . . , pn,

|βCR
j | ≤ |C0 cov(Y,Xj)|/(K2δ

2) = O(Bn). (6.2)
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Proof of Theorem 3. To prove Theorem 3, the following lemma (which is The-
orem 1 of [7]) will be needed.

Lemma 1. Consider data {(Xi, Yi) : i = 1, . . . , n} which are n i.i.d. samples
of (X, Y ) ∈ X × Y for some space X ∈ R

d and Y ∈ R. A regression model for
X and Y is assumed with loss function �(XTβ, Y ). Let

β0 = argmin
β

E{�(XTβ, Y )}

be the population parameter. Assume that β0 is an interior point of a sufficiently
large, compact and convex set B ∈ R

d. Assume the following conditions on the
model,

(F1) The matrix,

I(β) = E
[{ ∂

∂β
�(XTβ, Y )

}{ ∂

∂β
�(XTβ, Y )

}T ]
,

exists finitely and is positive definite at β = β0. Moreover,

‖I(β)‖B = sup
β∈B,‖x‖2=1

‖I(β)1/2x‖2

exists.
(F2) The function �(XTβ, Y ) satisfies the Lipschitz property with a positive

constant kn,

|�(xTβ, y)− �(xTβ′, y)|In(x, y) ≤ kn|xTβ − xTβ′|In(x, y)

for any β ∈ B and β′ ∈ B, where In(x, y) = I{(x, y) ∈ Ωn} with

Ωn = {(x, y) : ‖x‖∞ ≤ Kn, |y| ≤ K∗
n}

for some sufficiently large positive constants Kn and K∗
n. In addition, there

exists a sufficiently large constant C such that with bn = CknV
−1
n (d/n)1/2

and Vn given in Condition (F3),

sup
β∈B,‖β−β0‖2≤bn

|E[{�(XTβ, Y )− �(XTβ0, Y )}{1− In(X, Y )}]| ≤ o(d/n).

(F3) The function �(XTβ, Y ) is convex in β, satisfying

E{�(XTβ, Y )− �(XTβ0, Y )} ≥ Vn‖β − β0‖22

for all ‖β − β0‖2 ≤ bn and some positive constant Vn.

Then for any t > 0,

P(
√
n‖β̂ − β0‖2 ≥ 16kn(1 + t)/Vn) ≤ exp(−2t2/K2

n) + nP(Ωc
n).
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We now prove Theorem 3. The main idea is to apply Lemma 1 by letting
d = 2, X = Xj , β = bj and

�(XTβ, Y ) = Q{Y, F−1(XT
j bj)}.

So we need to show that the conditions (F1)–(F3) hold under our assumptions.
For condition (F1),

Ij(bj) = E{q21(Y ;XT
j bj)XjX

T
j }

= E
[{

(Y − μj)
q′′(μj)

F ′(μj)

}2

XjX
T
j

]
,

where μj = F−1(XT
j bj). By assumptions A1 and A2, Ij(bj) is bounded and

positive definite at bj = bCR
j .

For condition (F3), it suffices to show that E{q2(Y ; xTj b)XjX
T
j } ≥ V I2 for

some V > 0, where I2 is the 2 × 2 identity matrix. Since E(XjX
T
j ) = I2 and

q2(Y ; xTj b) > 0, we only need to show that E{q2(Y ; xTj b)} ≥ V which is followed
by

E{q2(Y ; xTj b)} ≥ P(|Y | ≤ K)ξ,

where K is some sufficiently large positive constant such that P(|Y | ≤ K) > 0
and ξ = inf |y|≤K,|θ|≤(M+1)B q2(y; θ).

Lastly for condition (F2), let Kn = M and K∗
n = A2

nn and Vn = V . For
(x, y) ∈ Ωn, we have that, for any b ∈ B and b′ ∈ B,

Q{y, F−1(xTb)} −Q{y, F−1(xTb′)}
= {q(F−1(xTb))− q(F−1(xTb′))}+ y{q′(F−1(xTb))− q′(F−1(xTb′))}
− {F−1(xTb)q′(F−1(xTb))− F−1(xTb′)q′(F−1(xTb′))}

= {f1(xTb)− f1(x
Tb′)}+ y{f2(xTb)− f2(x

Tb′)} − {f3(xTb)− f3(x
Tb′)},

where f1(t) = q(F−1(t)), f2(t) = q′(F−1(t)) and f3(t) = F−1(t)q′(F−1(t)). Let

C1 = sup
|t|<(B+1)M

|f ′
1(t)|,

C2 = sup
|t|<(B+1)M

|f ′
2(t)| and

C3 = sup
|t|<(B+1)M

|f ′
3(t)|.

Then

|Q{y, F−1(xTb)} −Q{y, F−1(xTb′)}|In(x, y)
≤ (C1 +K∗

nC2 + C3)|xTb− xTb′|In(x, y)

which verifies the first part of condition (F2) with kn = C1 +K∗
nC2 + C3. For

the second part of condition (F2), for all j = 1, . . . , pn,

|E[Q{Y, F−1(XT
j b)} −Q{Y, F−1(XT

j b
CR
j )}{1− In(Xj , Y )}]|
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≤ E{(C ′
1 + |Y |C ′

2 + C ′
3) I(|Y | > K∗

n)}

≤
√
E{(C ′

1 + |Y |C ′
2 + C ′

3)
2}

√
P(|Y | > K∗

n)

≤ O{exp(−m1An

√
n/2)} = o(1/n),

where

C ′
1 = sup

|t|<(M+1)B

f1(t)− inf
|t|<(M+1)B

f1(t),

C ′
2 = sup

|t|<(M+1)B

f2(t)− inf
|t|<(M+1)B

f2(t),

C ′
3 = sup

|t|<(M+1)B

f3(t)− inf
|t|<(M+1)B

f3(t).

Then by Lemma 1, for any t and any j = 1, . . . , pn,

P{
√
n‖b̂CR

j − bCR
j ‖2 ≥ 16kn(1 + t)/Vn} ≤ exp(−2t2/K2

n) + nm0 exp(−m1K
∗
n).

Taking (1 + t) = An
√
nVn/(16kn) and noting K∗

n = A2
nn yield

P(‖b̂CR
j − bCR

j ‖2 ≥ An) ≤ exp(−c2A2
nn) + nm0 exp(−m1A2

nn),

where c2 is a suitable positive constant. The desired result follows from using
P(|β̂CR

j −βCR
j | ≥ An) ≤ P(‖b̂CR

j −bCR
j ‖2 ≥ An) and Bonferroni inequality.

Proof of Theorem 4. Define βCR = (βCR
1 , . . . , βCR

pn
)T . We first prove that

‖βCR‖22 =

pn∑
j=1

|βCR
j |2 = O{λmax(Σ)}.

Let C4 = C0/(K2M
2). By (6.2), for all j = 1, . . . , pn,

|βCR
j | ≤ C4|cov(Xj , Y )|

= C4|E[{Xj − E(Xj)}E(Y | X)]|
= C4|E[{Xj − E(Xj)}F−1(β0;0 +XTβ0)]|.

On the other hand, we have

|{Xj − E(Xj)}{F−1(β0;0 +XTβ0)− F−1(β0;0 + E(XTβ0))}|
≤ C5|{Xj − E(Xj)}{X − E(X)}Tβ0|,

where C5 = sup|t|<B′M+B(F
−1)′(t). Again, by taking the expectation on both

sides and then putting it into the vector form, we have

‖E[{X − E(X)}{F−1(β0;0 +XTβ0)}]‖22
= ‖E[{X − E(X)}{F−1(β0;0 +XTβ0)− F−1(β0;0 + E(XTβ0))}]‖22
≤ C2

5‖E[{X − E(X)}{X − E(X)}T ]β0‖22 = C2
5‖Σβ0‖22

≤ C2
5λmax(Σ)‖Σ1/2β0‖22.
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Since ‖Σ1/2β0‖22 = var(XTβ0) ≤ M ′, it follows that

‖βCR‖22 ≤ C2
4C

2
5M

′λmax(Σ).

Finally by the above result, the cardinality of the set {j : |βCR
j | > εAn} can

not be bigger than O(A−2
n λmax) for any ε > 0. The desired result can be easily

seen from Theorem 3.

Proof of Proposition 1. The oracle property was obtained by [23] for BD esti-
mation when s5n/n → 0 and sn(pn − sn) = o(n). If we can prove that when the

number p′n = |M̂| of variables selected in the screening step can be set appro-

priately, the event {Mn ⊆ M̂} happens with probability approaching 1, then
the conclusion should follow.

By Theorem 4, we have

P(|M̂γn | ≤ O(A−2
n λmax(Σ))) = 1− o(1).

Since we choose p′n such that λmax(Σ)/(p
′
nA2

n) = o(1), it is equivalent to choos-

ing another appropriate γ′
n ≤ γn. Thus, M̂γn ⊆ M̂ and by Corollary 1,

P(Mn ⊆ M̂) ≥ P(Mn ⊆ M̂γn) = 1− o(1).

The oracle property can be expressed as P(event O) → 1 as n → ∞. Since
sn = o(n1/5) and p′n = o(n/sn), we have

P(event O | Mn ⊆ M̂) = 1− o(1).

The desired result follows from

P(event O) ≥ P(event O | Mn ⊆ M̂)P(Mn ⊆ M̂) = 1− o(1).
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