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Abstract: In this paper, we consider the problem of (multiple) change-
point detection in panel data. We propose the double CUSUM statistic
which utilises the cross-sectional change-point structure by examining the
cumulative sums of ordered CUSUMs at each point. The efficiency of the
proposed change-point test is studied, which is reflected on the rate at
which the cross-sectional size of a change is permitted to converge to zero
while it is still detectable. Also, the consistency of the proposed change-
point detection procedure based on the binary segmentation algorithm, is
established in terms of both the total number and locations (in time) of
the estimated change-points. Motivated by the representation properties
of the Generalised Dynamic Factor Model, we propose a bootstrap pro-
cedure for test criterion selection, which accounts for both cross-sectional
and within-series correlations in high-dimensional data. The empirical per-
formance of the double CUSUM statistics, equipped with the proposed
bootstrap scheme, is investigated in a comparative simulation study with
the state-of-the-art. As an application, we analyse the log returns of S&P
100 component stock prices over a period of one year.
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1. Introduction

Multivariate, possibly high-dimensional observations over time have emerged in
many fields, such as economics, finance, natural science, engineering and human-
ities, thanks to the advances of computing technologies (Fan, Lv and Qi, 2011).
Multivariate data observed in practical problems often appear nonstationary
in the sense that it is natural to let some quantities or parameters involved in
the model to be time-varying. Arguably, the simplest departure from assuming
stationarity is to operate under the assumption of piecewise stationarity, which
allows more flexibility as well as providing interesting insights into the data with
regards to the structural change-points. Besides, in the case of time series anal-
ysis, it enables (short-term) prediction of the future process values, by treating
the last estimated segment as being stationary. Throughout the paper, the term
“multiple change-point detection” is used interchangeably with “segmentation”.

Panel data models are frequently adopted to analyse high-dimensional data
involving measurements over time. In this paper, we focus on the problem of
detecting (possibly) multiple change-points in the mean of panel data, where n,
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the dimensionality of the data, may increase with the number of observations
T . The panel model is presented as

xj,t = fj,t + εj,t, t = 1, . . . , T ; j = 1, . . . , n,

where {fj,t}Tt=1, j = 1, . . . , n are piecewise constant signals which share an un-
known number of change-points at unknown locations.

CUSUM statistics have been widely adopted for segmenting both univariate
and multivariate data. For univariate data segmentation, CUSUM statistics are
computed over time, and this series of CUSUMs is examined to locate a change-
point, often as where its maximum in the absolute value is attained. Combined
with a binary segmentation (BS) algorithm, the CUSUM statistics can consis-
tently detect multiple change-points in a recursive manner (see e.g., Vostrikova
(1981), Venkatraman (1992) and Cho and Fryzlewicz (2012)).

For segmenting n-dimensional panel data, we may apply the above proce-
dure to each univariate component series separately, and then prune down the
estimated change-points by identifying those detected for the identical change-
point across the panel. However, such pruning may be difficult to accomplish
even in moderately large dimensions, due to the estimation bias present in each
change-point estimate. Besides, this approach does not take into account, and
thus benefit from, the cross-sectional nature of change-points (that they are
shared across the panel) which may lead to loss of power in change-point detec-
tion. Instead, we propose to segment the n-dimensional data simultaneously by
searching for change-points from the aggregation of n series of CUSUM statistics,
rather than from individual CUSUM series separately.

1.1. Literature review

Let Cb denote a CUSUM operator which takes xj,t over a generic interval t ∈ [s, e]
with 1 ≤ s < e ≤ T as an input and returns

X j
s,b,e = Cb({σ−1

j xj,t}et=s)

=

√
e− b

(e− s+ 1)(b− s+ 1)

b∑
t=s

xj,t

σj
−
√

b− s+ 1

(e− s+ 1)(e− b)

e∑
t=b+1

xj,t

σj

=
1

σj

√
(b− s+ 1)(e− b)

e− s+ 1

(
1

b− s+ 1

b∑
t=s

xj,t −
1

e− b

e∑
t=b+1

xj,t

)
(1)

for b = s, . . . , e− 1, with a suitably chosen scaling constant σj .
Assuming the presence of at most one change-point, some change-point tests

for panel data have been proposed, based on the principle of high-dimensional
CUSUM series aggregation. Note that for single change-point detection, s = 1
and e = T . Zhang et al. (2010) considered a change-point test with the test
statistic T ZSJL

1,T = maxb∈[1,T )

∑n
j=1(X

j
1,b,T )

2 and the test criterion derived un-
der i.i.d. Gaussian setting. A similar change-point statistic was considered by
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Horváth and Hušková (2012),

T HH

1,T = max
b∈[1,T )

1√
n

b(T − b)

T 2

n∑
j=1

{(X j
1,b,T )

2 − 1},

and the limit distribution of the test statistic was derived for independent panel
data. Enikeeva and Harchaoui (2014) proposed a change-point test for panel data
with i.i.d. Gaussian noise that combines the linear statistic, which is constructed
similarly as T HH

1,T , and the scan statistic, which is aimed at detecting a cross-
sectionally sparse change. More specifically, the test statistics are

T linear

1,T = max
b∈[1,T )

1

H
√
2n

n∑
j=1

{(X j
1,b,T )

2 − 1}, and

T scan

1,T = max
b∈[1,T )

max
1≤m≤n

1

Tm

√
2m

m∑
j=1

{(X (j)
1,b,T )

2 − 1},

where |X (1)
1,b,T | ≥ . . . ≥ |X (n)

1,b,T | denote the ordered CUSUM statistics at each b ∈
[1, T ). With H and Tm acting as critical values (chosen as approximate quantiles
of χ2-distributions), their proposed change-point test is T EH = (T linear

1,T > 1) ∨
(T scan

1,T > 1) (where a ∨ b = max(a, b)).
Allowing for both temporal and cross-sectional dependence, Jirak (2015) pro-

posed a test statistic obtained from taking the pointwise maximum of the mul-
tiple CUSUM series:

T Jirak

1,T = max
b∈[1,T )

max
1≤j≤n

√
b(T − b)

T
|X j

1,b,T |, (2)

which is compared against a threshold drawn from an extreme value distribution
of Gumble type or bootstrap.

Note that with the exception of T scan

1,T , the CUSUM aggregation methods
above are not adaptive to the underlying structure of CUSUM statistic values
at each b, in the sense that they take either pointwise maximum or sum of
(squared) CUSUMs. Empirical studies conducted in Cho and Fryzlewicz (2015)
showed that such approaches may lead to inferior performance in detecting and
locating change-points in high-dimensional settings. Instead, they proposed the
Sparsified Binary Segmentation (SBS) where the change-point test T SBS

1,T (πT ) >
0 was based on the following “sparsified” or “thresholded” test statistic

T SBS

1,T (πT ) = max
b∈[1,T )

n∑
j=1

|X j
1,b,T | · I(|X

j
1,b,T | > πT )

(I(E) = 1 if and only if the event E is true), with an appropriately bounded
threshold πT chosen to guarantee that |X j

s,b,e| < πT uniformly over j ∈ {1, . . . , n}
and {(s, b, e); 1 ≤ s ≤ b < e ≤ T} with probability converging to one under the
null hypothesis of no change-point. The intuition behind the construction of
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T SBS

1,T (πT ) is that, irrelevant contribution from those components without any

change is reflected as small values of |X j
1,b,T | and hence is disregarded through

the thresholding step, while large CUSUMs formed in the vicinity of the true
change-points are summed up to strengthen the meaningful contribution from
the corresponding components. Combining the BS procedure with the thresh-
olded test statistic, the consistency of the SBS algorithm for multiple change-
point detection was established. However, it is empirically observed that the
higher autocorrelations in εj,t is, the larger πT is required to grant the consis-
tency in change-point detection, which amounts to selecting n thresholds for
segmenting n-dimensional panel data.

1.2. Outline of the paper

In this paper, we propose the double CUSUM statistic which accomplishes the
high-dimensional CUSUM series aggregation through data-driven partitioning
of the panel data at each point, while avoiding the difficulties involved in se-
lecting (possibly n) thresholds that apply directly to individual CUSUMs for
establishing change-point detection consistency.

The rest of the paper is organised as follows. We describe the double CUSUM
statistic in details in Section 2. In Section 3, we establish the consistency of the
change-point test based on the double CUSUM statistics, as well as investigat-
ing its efficiency in comparison with the tests discussed in Section 1.1. Also,
the double CUSUM Binary Segmentation algorithm is formulated and its con-
sistency in multiple change-point detection is studied. Section 4 discusses the
choice of important quantities including the test criterion, for which a bootstrap
procedure is introduced. We illustrate its performance on simulated datasets in
Section 5 and on log returns of S&P 100 component stock prices in Section 6.
Section 7 concludes the paper and the proofs of theoretical results are provided
in Section 8. Finally, some auxiliary results and simulation results are reported
in the supplementary document (Cho, 2016).

2. Double CUSUM statistic

Recall the panel data model from Introduction

xj,t = fj,t + εj,t, t = 1, . . . , T ; j = 1, . . . , n. (3)

The noise {εj,t}Tt=1 satisfies E(εj,t) = 0 for all j and t, and is allowed to be
correlated both within-series and cross-sectionally as specified later in Section 3.
The piecewise constant signals {fj,t}Tt=1, j = 1, . . . , n share N change-points 1 <
η1 < . . . < ηN < T (possibly with unknown N). That is, at each change-point
ηr, there exists an index set Πr = {j : δj,r = fj,ηr+1 − fj,ηr �= 0} ⊂ {1, . . . , n}
with mr = |Πr| =

∑n
j=1 I(|δj,r| > 0) ≥ 1 (where |S| denotes the cardinality of a

set S).
Recall the definition of X j

s,b,e in (1), which denotes the CUSUM statistic
computed on xj,t over a generic interval t ∈ [s, e] with 1 ≤ s < e ≤ T , for
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b = s, . . . , e−1. For change-point detection in panel data, we propose to employ
the double CUSUM (DC) statistics

Dϕ
m({|X (j)

s,b,e|}nj=1)

=

{
m(2n−m)

2n

}ϕ
⎛⎝ 1

m

m∑
j=1

|X (j)
s,b,e| −

1

2n−m

n∑
j=m+1

|X (j)
s,b,e|

⎞⎠ (4)

=

{
m(2n−m)

2n

}ϕ

· 1

m

m∑
j=1

⎛⎝|X (j)
s,b,e| −

1

2n−m

n∑
j=m+1

|X (j)
s,b,e|

⎞⎠ (5)

for b ∈ [s, e) and m ∈ {1, . . . , n}, where the DC operator Dϕ
m takes the ordered

CUSUM values |X (1)
s,b,e| ≥ |X (2)

s,b,e| ≥ . . . ≥ |X (n)
s,b,e| at each b, as its input for some

ϕ ∈ [0, 1]. Then, the test statistic for detecting the presence of a change-point
over a given interval [s, e], is derived as

T ϕ
s,e = max

b∈[s,e)
max

1≤m≤n
Dϕ

m({|X (j)
s,b,e|}nj=1),

which is compared against a test criterion πϕ
n,T . Once T ϕ

s,e > πϕ
n,T , the location

of the change-point is identified as where the pointwise maximum (over m) of
the DC statistics is maximised (over b), i.e.,

η̂ = arg max
b∈[s,e)

max
1≤m≤n

Dϕ
m({|X (j)

s,b,e|}nj=1).

To understand the properties of the DC statistic, first consider the case where
the noise εj,t is not present in the panel data. Then the series of DC statistics
at each fixed m is always maximised at one of the true change-points within the
interval [s, e) and consequently, the maximum over both b and m is guaranteed
to be attained at a true change-point. The formal statement and its proof can
be found in Appendix B of the supplementary document.

The key feature of the DC statistic is the ordering of the input series to Dϕ
m. In

panel data segmentation, in addition to detecting and locating the change-points
in time, it is also of interest to locate the change in coordinates as well, which
is relatively unexplored in the relevant literature with the exception of Jirak
(2015). Not only such information is useful in the interpretation of detected
change-points, but also can play an important role in aggregating the high-
dimensional CUSUM series efficiently as detailed below.

At a given time point b, one way of partitioning the components into those
with changes and those without, is to arrange the modulus of CUSUMs in the
decreasing order, and then to label the components which correspond to the
first mb (∈ {1, . . . , n}) largest values of |X j

s,b,e| as being likely to have a change-
point around b. Note that aggregating the (squared) CUSUMs via pointwise
averaging or maximising implicitly takes mb = n or mb = 1, respectively. In
constructing T SBS(πT ), the choice of mb is associated with the choice of πT ,
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i.e., mb(πT ) =
∑n

j=1 I(|X
j
s,b,e| > πT ). The DC statistic provides a data-driven

alternative for selecting mb, namely

m̂ϕ
b = arg max

1≤m≤n
Dϕ

m({|X (j)
s,b,e|}nj=1). (6)

While we do not claim that the thus-obtained partitioning consistently iden-
tify Πr at each detected change-point, we see in simulation studies reported in
Section 5 that the DC statistic performs well in change-point detection, by iden-
tifying those components that contribute to change-point detection according to
the above m̂ϕ

b .

The RHS of (5) indicates that the term (2n−m)−1
∑n

j=m+1 |X
(j)
s,b,e| acts as a

threshold on |X (j)
s,b,e|, j = 1, . . . ,m at each b, and therefore Dϕ

m({|X (j)
s,b,e|}nj=1) is

essentially a scaled average of m largest CUSUMs after soft-thresholding, from
which we draw resemblance between T ϕ

s,e and T SBS
s,e (πT ). However, since T ϕ

s,e

involves maximisation over both b and m, we avoid explicitly selecting πT that
applies directly to individual CUSUMs while still enjoying the “sparsifying”
effect of the thresholding step.

Comparing (1) and (4), we can see the connection between the two oper-
ators Dϕ

m and Cb especially when ϕ = 1/2, as both return the scaled differ-
ence between partial averages over two disjoint intervals. However, Dϕ

m involves
{m(2n − m)/(2n)}ϕ instead of {m(n − m)/n}ϕ, although the input series is
of length n. This difference comes from the observation that the latter scaling
factor may not favour a change-point that is shared by more than [n/2] rows,
and even act as a penalty when mr is close to n, which is against our intuition
on the detectability of a change-point. By adopting {m(2n − m)/(2n)}ϕ, the
DC statistic can be regarded as being computed on the panel data of dimension
2n, where there are additional n “null” components which are known to have no
change-point. Since {m(2n − m)/(2n)}ϕ is non-decreasing in m, when consid-
ering the asymptotic efficiency of the DC statistic-based change-point test, the
cross-sectional size of change accounts for both |δj,r|, the magnitude of jumps
at the change-point, and mr, its “density” (as opposed to the sparsity) across
the panel (see Remark 3.1 for further discussion).

For illustration, we computed the DC statistics from panel data generated
with a single change-point of different configurations with ϕ chosen as detailed
in Section 4.1. Fixing n = 250 and T = 100, εj,t was simulated as in (N1) of
Section 5.1.1 with 	 = 0.2 (which controls the degree of cross-correlations in εj,t).
The piecewise constant signals were generated with a change-point at η1 = T/2,
where m1 out of n components contained a shift of magnitude randomly drawn
from a uniform distribution U(0.75δ1, 1.25δ1) with (m1, δ1) = ([log n], 0.24) and
([0.5n], 0.05). We chose m1 and δ1 in order to set

∑
j∈Π1

δ2j,1 at approximately
the same level.

As shown in Figure 1, the location of the true change-point in time was ac-
curately identified as where the pointwise maximum of DC statistics was max-

imised in both settings, i.e., η̂1 = argmaxb∈[1,T ) max1≤m≤n Dϕ
m({|X (j)

1,b,T |}nj=1).

Comparing the two heat maps, where Dϕ
m({|X (j)

1,η̂1,T
|}nj=1) was maximised over
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Fig 1. (m1, δ1) = ([log n], 0.24) (top) and (m1, δ1) = ([0.5n], 0.05) (bottom); the heat map

of Dϕ
m({|X (j)

1,b,T |}nj=1) over b (x-axis) and m (y-axis) (left), the pointwise maximum of

Dϕ
m({|X (j)

1,b,T |}nj=1) over m for b ∈ [1, T ), with broken lines indicating η1 and the dotted

ones η̂1 (middle), and Dϕ
m({|X (j)

1,η̂1,T
|}nj=1), 1 ≤ m ≤ n with broken lines indicating m1 and

dotted ones m̂1.

m, namely m̂1 = argmax1≤m≤n Dϕ
m({|X (j)

1,η̂1,T
|}nj=1), was closer to m1 for the

larger δ1. This implies that not all components with the changes contribute to
the detection of a change-point in the presence of noise, due to small magnitude
of the changes, and using only a subset of Π1 may serve the purpose better for
change-point detection.

Remark 2.1. For high-dimensional change-point analysis, Aston and Kirch
(2014) defined the high-dimensional efficiency, a concept closely related to
asymptotic relative efficiency. Let δ = (δ1,1, . . . , δn,1)

�. Then, the high-dimen-
sional efficiency is determined by the rate at which the cross-sectional size of
change is allowed to converge to zero (‖δ‖2 → 0) as T and, with it, n in-
crease, such that the power of the change-point test is strictly between the size
and one. They further investigated the problem of single change-point detec-
tion using a class of change-point statistics obtained from (i) first projecting
the panel data with respect to a projection vector p ∈ R

n, and (ii) comput-
ing the series of CUSUM statistics from the univariate series {〈xt,p〉}Tt=1, with
xt = (x1,t, . . . , xn,t)

�. Assuming that εt = (ε1,t, . . . , εn,t)
� is independent over

time and denoting Σε = var(εt), the oracle projection vector with the optimal
high-dimensional efficiency was given by maximising (p�Σεp)

−1|〈δ,p〉|2 with
respect to p, as o := Σ−1

ε δ.

The DC statistic at fixed b and m coincides with the CUSUM of pointwise

projection of the panel data. More specifically, Dϕ
m({|X (j)

1,b,T |}nj=1) is associated
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with the n-vector pϕ
b,m with its elements

[pϕ
b,m]j =

⎧⎨⎩ sign(X j
1,b,T ) · σ

−1
j

{
m(2n−m)

2n

}ϕ
1
m if |X j

1,b,T | ≥ |X (m)
1,b,T |,

−sign(X j
1,b,T ) · σ

−1
j

{
m(2n−m)

2n

}ϕ
1

2n−m if |X j
1,b,T | < |X (m)

1,b,T |,

such that Dϕ
m({|X (j)

1,b,T |}nj=1) = Cb({〈xt,p
ϕ
b,m〉}Tt=1). In light of the previous dis-

cussion on pointwise ordering and partitioning of the panel data in computing
the DC statistics, our approach may be viewed as an attempt at mimicking the
performance of the oracle projection without the prior knowledge of either δ or
Σε. We further investigate the high-dimensional efficiency of the DC statistic
in comparison with other competitors and the oracle projection in Section 3.1.

Remark 2.2. The scan statistic (Enikeeva and Harchaoui, 2014) shares with
the DC statistic the pointwise maximisation of cumulative sums of the ordered

CUSUMs over 1 ≤ m ≤ n. One key difference is that the former has (X (j)
1,b,T )

2

in place of |X (j)
1,b,T |, with the interpretation of being the marginal log-likelihood

ratio at given b and m under the assumption of i.i.d. Gaussian noise. On the
other hand, the latter can be seen as a projected change-point statistic as noted in
Remark 2.1. Another difference comes from the fact that Tm, acting as thresholds
for T scan

s,e , are dependent on m, while the test criterion compared against T ϕ
s,e does

not depend on the choice of m.
Enikeeva and Harchaoui (2014) proposed two choices for Tm, a theoretical one

from a χ2
m-distribution, and an empirical one Tm = 2(2n)−1/2{m log(ne/m) +

log(Tn/α)} at a given significance level α ∈ (0, 1). In conducting the simulation
studies reported in Section 5, both choices of Tm were observed to be too sensitive
to cross-sectional correlations in the panel data. Tm may be chosen numerically
from e.g., a bootstrap scheme as indicated by the authors, but this requires se-
lecting n such Tm and moreover, it is unclear how the cross-correlations should
be treated.

3. Consistency of the double CUSUM statistic

3.1. Single change-point detection

In this section, we show the consistency of the DC statistic in the single change-
point scenario (N = 1). More specifically, we consider the null hypothesis

H0 : fj,1 = · · · = fj,T for all j = 1, . . . , n,

which indicates structural stability in the mean over time. As an alternative hy-
pothesis, we specify the scenario where the piecewise constant signals {fj,t}Tt=1,
j = 1, . . . , n contains a single change-point at an unknown location η1 ∈ (1, T ),
such that

HA : fj,1 = · · · = fj,η1 �= fj,η1+1 = · · · = fj,T for some j ∈ Π1 withm1 = |Π1| ≥ 1.
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Throughout the paper, a ∼ b is used to denote that a is of the order of b,
and a ∧ b = min(a, b). Then, the consistency of the proposed test is established
under the following conditions.

(A1) For each j, εj,t denotes a stationary, zero-mean process with the mixing
coefficients

αj(k) = sup
G∈σ(εj,t+k,εj,t+k+1,...)

H∈σ(εj,t,εj,t−1,...)

|P(H ∩G)− P(H)P(G)|.

Then, there exist fixed Cε, Cα > 0, μ ∈ (0, 1) and σ∗ ≥ σ∗ > 0 with
σ̄ = σ∗/σ∗ ∈ [1,∞), such that the followings hold.

(A1.i) E(εkj,t) ≤ Ck−2
ε k!E(ε2j,t) uniformly in j and k = 3, 4, . . ..

(A1.ii) max1≤j≤n |αj(k)| ≤ Cαμ
k for all k = 1, 2, . . ..

(A1.iii) σ2
j , the long-run variance of εj,t, satisfies σ

2
∗ ≤ σ2

j ≤ σ∗2.

(A2) The dimensionality n satisfies n ∼ Tω for some fixed ω ∈ [0,∞).
(A3) There exists a fixed constant f̄ > 0 such that max1≤j≤n max1≤t≤T |fj,t| ≤

f̄ .
(A4) There exists a fixed constant c > 0 such that η1∧ (T −η1) > cT β for some

β ∈ (0, 1].

(A5) Let δ̃1 = m−1
1

∑
j∈Π1

|δj,1|, i.e., the average magnitude of non-zero changes

at t = η1. Then for any ϕ ∈ [0, 1], we have (nϕ log T )−1mϕ
1 δ̃1T

β/2 → ∞
as T → ∞.

In (A1), each εj,t is assumed to be α-mixing (strong-mixing) at a geometric
rate, with bounded moments and long-run variance. The condition (A1.i) is
met by many distributions such as exponential, gamma and inverse Gaussian,
besides the Gaussian distribution. Note that the cross-sectional correlations of
the panel data are not explicitly controlled by any of the conditions imposed
in (A1). In (A2), the dimensionality can either be fixed or increase with T at a
polynomial rate. (A4) imposes a condition on the unbalancedness of the change-
point location, permitting T−1{η1 ∨ (T − η1)} → 0 as T → ∞ when β < 1.

(A5) places a lower bound on the rate of mϕ
1 δ̃1, which dictates the minimum

requirement on the cross-sectional size of the change for the change-point to be
detected as well as being located with accuracy. (A3) rules out the trivial case
where any |δj,1| → ∞ with T → ∞.

Remark 3.1 (High-dimensional efficiency). Recall the high-dimensional effi-
ciency discussed in Remark 2.1, which was introduced in Aston and Kirch (2014)
as a tool that allows us to quantify and compare the power of different change-
point tests. Table 1 summarises the high-dimensional efficiency of T ϕ

1,T and other
change-point tests discussed in Section 1.1, when the change-point is maximally
distanced from the extreme ends of [1, T ] (i.e., β = 1). The double vertical line
divides the tests into (i) those proposed under the assumption of cross-sectional
independence (left) and dependence (right), (ii) those detecting the presence of
a change-point only (left) and those identifying its location as well (right), and
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Table 1

High-dimensional efficiency of change-point tests when β = 1.

T HH
1,T

(
∑n

j=1 δ
2
j,1)

1/2T 1/2

n1/4
→ ∞ T Jirak

1,T

minj∈Π1 |δj,1|T 1/2

√
log T

→ ∞

T linear
1,T

(
∑n

j=1 δ
2
j,1)

1/2T 1/2

n1/4
→ ∞ T SBS

1,T (πT )
minj∈Π1 |δj,1|T 1/2

log T
→ ∞

T scan
1,T

(
∑n

j=1 δ
2
j,1)

1/2T 1/2√
m1 log(n/m1)

>
√
6.6 T ϕ

1,T

mϕ
1 δ̃1T

1/2

nϕ log T
→ ∞

(iii) those with the interpretation as projected change-point tests (right) and
those without (left).

The oracle projection-based change-point test (see Remark 2.1) achieves high-

dimensional efficiency of T 1/2‖Σ−1/2
ε δ‖2 → ∞ and thus attaining better ef-

ficiency than T HH

1,T and T linear

1,T by n1/4, and than T scan

1,T by m
1/2
1 , for diagonal

Σε (independent panel). When the change-point is sparse (m1 ∼ 1), the high-
dimensional efficiency of T 0

1,T is comparable to that of the oracle up to a logarith-
mic factor. When the change-point is dense (m1 ∼ n), the high-dimensional ef-
ficiency of T ϕ

1,T , ϕ > 0 is comparable to that of T 0
1,T . Comparing T Jirak

1,T , T SBS

1,T (πT )

and T 0
1,T , the latter attains better high-dimensional efficiency when

m−1
1

∑
j∈Π1

|δj,1| � minj∈Π1 |δj,1|. However, the former two achieves partition-
ing consistency (i.e., consistent estimation Π1), which is not granted by the
latter.

Remark 3.2. As briefly noted below (1), some studentisation is required for
panel data analysis in practice. We estimate σj using the flat-top kernel estima-
tor with the automatically chosen bandwidth as discussed in Politis (2011). Let
η̂j,1 = argmaxb∈[1,T ) |Cb({xj,t}Tt=1)|,

ε̄j,t = xj,t −
1

η̂j,1

η̂j,1∑
t=1

xj,t · I(t ≤ η̂j,1)−
1

T − η̂j,1

T∑
t=η̂j,1+1

xj,t · I(t > η̂j,1),(7)

w(t) =

⎧⎨⎩
1 for |t| ≤ 1/2,
2(1− |t|) for 1/2 < |t| < 1,
0 for |t| ≥ 1.

and cj(k) =
1
T

∑T−k
t=1 ε̄j,tε̄j,t+k. Note that ε̄j,t estimates the unobservable εj,t by

identifying a change-point candidate η̂j,1 associated with each {xj,t}Tt=1. Let τj be

the smallest positive integer such that |cj(τj + k)/cj(0)| < 1.4
√
T−1 log10 T for

k = 1, 2, 3 (where the constants are chosen as per Hušková and Kirch (2010)).
Then, the estimator is given by

σ̂2
j = max

{
cj(0) + 2

2τj∑
k=1

w

(
k

2τj

)
cj(k),

cj(0)

2

}
, (8)

where the second term in the RHS of (8) is present to prevent spuriously large
CUSUMs resulting from too small estimates of σj (flat-top kernel estimator is
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known to produce negative estimators). Hušková and Kirch (2010) showed the
consistency of the above estimator in the single change-point detection problem,
under similar conditions as those imposed on εj,t in (A1). Noting that (i) the
theoretical results derived in this paper hold without the consistency of the flat-
top kernel estimator, provided that σ̂2

j is uniformly bounded away from zero,
and also that (ii) we ultimately consider the problem of multiple change-point
detection (with adjustment to the estimator of σ2

j in order to accommodate the
presence of multiple change-points, see Remark 3.3), we assume (A6) below on
σ̂2
j without extending the consistency result of Hušková and Kirch (2010).

(A6) Define Eσ = {max1≤j≤n |σ̂2
j −σ2

j | ≤ σ2
∗/2} where σ∗ is the same as that in

(A1). Then we assume P(Eσ) → 1 with T → ∞.

Note that under (A4), short intervals near the extreme points {1, T} do not
contain the change-point. Hence we search for a change-point within [1, T ] \
I1,T only, where I1,T = [1, dT ] ∪ [T − dT , T ] with dT := [C log2 T ] for some

C > 0. That is, T ϕ
1,T = maxb∈[1,T ]\I1,T

max1≤m≤n Dϕ
m({|X (j)

1,b,T |}nj=1) and η̂1 =

argmaxb∈[1,T ]\I1,T
max1≤m≤n Dϕ

m({|X (j)
1,b,T |}nj=1).

Under these conditions, we present the following theorems on the consistency
of the DC statistic-based test equipped with a test criterion πϕ

n,T , which satisfies

C ′nϕ log T < πϕ
n,T < C ′′mϕ

1 δ̃1T
β/2 for some C ′, C ′′ > 0.

Theorem 3.1. Assume that (A1)–(A3) and (A6) hold and that there exists no

change-point (N = 0) in the panel data in (3). Then P

{
T ϕ
1,T > πϕ

n,T

}
→ 0 as

T → ∞.

Theorem 3.1 guarantees that when all signals remain constant, the test does
not detect any change-point with probability converging to one.

Theorem 3.2. Assume that (A1)–(A6) hold. Then there exists c0 > 0 such
that

P

{
T ϕ
1,T > πϕ

n,T and |η̂1 − η1| < c0εT

}
→ 1

as T → ∞, where εT = n2ϕ(mϕ
1 δ̃1)

−2 log2 T .

Theorem 3.2 states that in the presence of a single change-point, the proposed
test detects its presence as well as accurately identifying its location. From
(A5), it is easily seen that εT /T

β → 0 as T → ∞, i.e., in the rescaled time, the
estimated change-point location is consistent since T−1|η̂1−η1| ≤ T−β |η̂1−η1| →
0. We may define the optimality in change-point detection as when the true
change-point and its estimate are within the distance of Op(1), see Korostelev
(1987). Then, near-optimality in change-point estimation is achieved up to a

logarithmic factor (log2 T ) with the choice (i) ϕ = 0 when δ̃1 ∼ 1, or (ii) ϕ > 0

when m1 ∼ n and δ̃1 ∼ 1.
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3.2. Binary segmentation for multiple change-point detection

In this section, we show the consistency of the DC statistic for multiple change-
point detection when applied jointly with a BS algorithm. We first formulate
the double CUSUM Binary Segmentation (DCBS) algorithm for panel data
segmentation, which is equipped with a test criterion πϕ

n,T . As in Section 3.1,
let Is,e = [s, s + dT ] ∪ [e − dT , e] denote a fraction of the interval [s, e] on
which we do not search for change-points, in order to account for possible bias
in the previously detected change-points. This does not affect the asymptotic
consistency of the estimated change-point locations under the assumption (B1)
below, on the dispersion of change-points. The index p is used to denote the
level (indicating the progression of the segmentation procedure) and q is used
to denote the location of the node at each level.

The double CUSUM Binary Segmentation algorithm
Step 0 Set (p, q) = (1, 1), sp,q = 1 and ep,q = T .
Step 1 At the current level p, repeat the following for all q.

Step 1.1 Letting s = sp,q and e = ep,q, obtain the series of CUSUMs

{X j
s,b,e} for b ∈ [s, e) and j = 1, . . . , n, on which Dϕ

m({|X (j)
s,b,e|}nj=1) is

computed over all b and m.

Step 1.2 Obtain the test statistic

T ϕ
s,e = max

b∈[s,e]\Is,e

max
1≤m≤n

Dϕ
m({|X (j)

s,b,e|}nj=1).

Step 1.3 If T ϕ
s,e ≤ πϕ

n,T , quit searching for change-points on the interval

[s, e]. On the other hand, if T ϕ
s,e > πϕ

n,T , locate

η̂ = arg max
b∈[s,e]\Is,e

max
1≤m≤n

Dϕ
m({|X (j)

s,b,e|}nj=1)

and proceed to Step 1.4.

Step 1.4 Add η̂ to the set of estimated change-points and divide the
interval [sp,q, ep,q] into two sub-intervals [sp+1,2q−1, ep+1,2q−1] and
[sp+1,2q, ep+1,2q], where sp+1,2q−1 = sp,q, ep+1,2q−1 = η̂, sp+1,2q =
η̂ + 1 and ep+1,2q = ep,q.

Step 2 Once [sp,q, ep,q] for all q are examined at level p, set p ← p+ 1 and go
to Step 1.

Step 1.3 furnishes a stopping rule to the DCBS algorithm: the search for
further change-points is terminated once T ϕ

s,e ≤ πϕ
n,T on every [s, e] defined by

two adjacent estimated change-points.

Remark 3.3. An adjustment is required to extend the scaling estimation pro-
cedure in Remark 3.2, originally designed for single change-point detection, to
be applicable to the multiple change-point scenario. More specifically, ε̄j,t in (7)
can no longer be regarded as well-estimating εj,t when [1, η̂j,1] or (η̂j,1, T ] may
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contain further change-points. Seeing that η̂j,1 is the top node of a binary tree
that results from applying a BS algorithm to {xj,t}Tt=1, we remedy this by grow-
ing a binary tree of depth LT (= O(log T )) from each {xj,t}Tt=1, j = 1, . . . , n.
Such a tree represents a maximal segmentation of xj,t and therefore, regarding
each segment as being stationary, ε̄j,t is derived by subtracting the sample means
within those intervals. Then, the scaling estimation procedure is applied to the
thus-obtained ε̄j,t.

Note that this approach requires an arbitrary choice of LT when there is no
prior information on the upper bound on the total number of change-points,
N . For multiple change-point detection, such a requirement (or its equivalent)
is commonly found; see e.g., Soh and Chandrasekaran (2015) and Kirch and
Muhsal (2015) where the minimum distance between two consecutive change-
points plays an essential role in guaranteeing the consistency of the proposed
procedures.

The consistency of the DCBS algorithm is established under (A1)–(A3), (A6)
and the following conditions extending (A4)–(A5) in order to allow for the pres-
ence of multiple change-points.

(B1) There exists a fixed constant c > 0 such that min0≤r≤N (ηr+1 − ηr) ≥ cT β

for some β ∈ (6/7, 1], using the notational convention that η0 = 0 and
ηN+1 = T .

(B2) At each ηr, let δ̃r = m−1
r

∑
j∈Πr

|δj,r|. Then for any ϕ ∈ [0, 1], we have

Δϕ = min1≤r≤N mϕ
r δ̃r satisfy (nϕ log T )−1ΔϕT

7β/4−3/2 → ∞ as T → ∞.

Since the unbalancedness of a change-point location is closely related to the
distance between two adjacent change-points, (B1) is formulated in terms of
the latter. Note that we do not impose any upper bound on the number of
total change-points N except for the implication that can be derived from (B1),
namely thatN may grow with T provided that any two adjacent change-points is
sufficiently distanced. Comparing (B2) to (A5), the high-dimensional efficiency
is worsen by T 3/2−5β/4 when detecting multiple change-points, which is also
the case when applying the BS algorithm to univariate data. This rate can
be improved when the DC statistic is combined with e.g., the Wild Binary
Segmentation (WBS) (Fryzlewicz, 2014) which applies the CUSUM principle
to randomly drawn intervals; we leave the exploration in this direction for the
future research.

Theorem 3.3. Let η̂r, r = 1, . . . , N̂ (1 < η̂1 < . . . < η̂N̂ < T ) denote the
change-points detected by the DCBS algorithm with a test criterion πϕ

n,T satis-

fying C ′n2ϕΔ−1
ϕ T 5(1−β)/2 log T < πϕ

n,T < C ′′ΔϕT
β−1/2. Assuming (A1)–(A3),

(A6) and (B1)–(B2), there exists c0 > 0 such that

P

{
N̂ = N ; |η̂r − ηr| < c0εT for r = 1, . . . , N

}
→ 1

as T → ∞, where εT = n2ϕΔ−2
ϕ T 5(1−β) log2 T .
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Unlike in the single change-point scenario, εT now depends on the dispersion
of the change-points through β. From (B1)–(B2), it is easily seen that εT /T

β →
0 as T → ∞, and hence the multiple change-points are consistently located for
all r = 1, . . . , N .

Remark 3.4 (Post-processing of estimated change-points). In this paper, we fo-
cus on establishing the good performance of the DC statistic in high-dimensional
CUSUM series aggregation when combined with a simple segmentation method,
rather than considering more sophisticated algorithms such as the WBS (Fry-
zlewicz, 2014) or MOSUM (Kirch and Muhsal, 2015) procedures, where the DC
principle is straightforwardly applicable. The BS algorithm is known to perform
sub-optimally in certain unfavourable settings since, at each iteration, it fits a
step function with a single break to the data over a segment that contains possi-
bly multiple change-points. Hence, we equip the DCBS algorithm with an extra
step aiming at removing spuriously detected change-points which is in line with
the post-processing steps proposed in Cho and Fryzlewicz (2012) and Cho and

Fryzlewicz (2015). It checks whether T ϕ
η̂r−dr,η̂r+dr

> πϕ
n,T for r = 1, . . . , N̂ with

dr = min(η̂r − η̂r−1, η̂r+1 − η̂r)/2. In other words, we compute the DC statistics
within each segment containing a single estimated change-point, and retain only
those η̂r that survive the thresholding. More details on the post-processing step
can be found in Section 3.2.1 of Cho and Fryzlewicz (2012).

4. Choice of ϕ and test criterion

4.1. Choice of ϕ

Remark 3.1 indicates that ϕ = 0 is preferable in terms of the high-dimensional
efficiency for detecting a change-point that is known to be sparse across the
panel, while T ϕ

1,T with ϕ > 0 achieves the same high-dimensional efficiency as

T 0
1,T when the change is dense across the panel. In practice, such information is

often unavailable a priori and therefore it is of interest to find a way of combining
the information embedded in an array of DC statistics indexed by ϕ ∈ [0, 1],
which works universally well over different ranges of change-point configurations
determined by ηr, mr and δ̃r.

Recalling the data-driven partitioning of the panel achieved by the DC statis-
tic, the pointwise partitioning of the ordered CUSUM values may be regarded as

analogous to fitting a step function with a single break to |X (j)
s,b,e|, j = 1, . . . , n at

each b. Suppose that {|X (j)
s,b,e|}nj=1 arises from an additive model with a piecewise

constant signal that contains a single break at j = mr for some r ∈ {1, . . . , N}
and otherwise constant. This setting is unlikely to be satisfied by the ordered
CUSUM values in general, but provides a framework for linking the optimality
in panel partitioning to that in locating a single change-point. Then, Brodsky
and Darkhovsky (1993) showed that the choice of ϕ = 1/2 leads to the best
rate of convergence in the bias |m̂ϕ

b − mr| (recall (6)) among ϕ ∈ [0, 1], i.e.,
asymptotically, the optimal partitioning is attained by the choice of ϕ = 1/2.
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Taking into account these observations, we propose a new DC statistic

D̃m({|X (j)
s,b,e|}nj=1) = γnD0

m({|X (j)
s,b,e|}nj=1) +D1/2

m ({|X (j)
s,b,e|}nj=1),

where γn acts as a scaling factor that enables treating D0
m and D1/2

m on an

equal footing. Heuristically, the discrepancy between D0
m and D1/2

m increases
at the rate m1/2, but is not so pronounced for small values of m. Therefore,
D̃m can be viewed as an attempt at combining the different ranges of change-

point configurations over which either D0
m or D1/2

m achieves consistency, and the
following conditions modifying (A5) and (B2) reflect this point.

(A5’) (n1/2 log T )−1(γn ∨m
1/2
1 )δ̃1T

β/2 → ∞ as T → ∞.

(B2’) We have Δ = min1≤r≤N (γn∨m1/2
r )δ̃r satisfy (n1/2 log T )−1ΔT 7β/4−3/2 →

∞ as T → ∞.

Then, the consistency of DC statistics carry over to that of the newly defined
DC statistic D̃m as below.

Theorem 4.1. Assume ω > 0 such that n → ∞ as T → ∞, and n−1/2γn → 0
as n → ∞. Let D̃m replace Dϕ

m in deriving the test statistics where applicable.

(a) Assume that (A1)–(A4), (A5’) and (A6) hold. Equipped with the test crite-

rion π̃n,T satisfying C ′n1/2 log T < π̃n,T < C ′′(γn∨m
1/2
1 )δ̃1T

β/2 for some

C ′, C ′′ > 0, Theorems 3.1–3.2 hold with εT = n{(γn ∨m
1/2
1 )δ̃1}−2 log2 T

in the latter.
(b) Assume that (A1)–(A3), (A6), (B1) and (B2’) hold. Equipped with the

test criterion satisfying C ′nΔ−1T 5(1−β)/2 log T < π̃n,T < C ′′ΔT β−1/2 for
some C ′, C ′′ > 0, Theorem 3.3 holds with εT = nΔ−2T 5(1−β) log2 T .

For the purpose of testing only, it is reasonable to combine the two tests

based on D0
m and D1/2

m as in Enikeeva and Harchaoui (2014), namely, (T 0
1,T >

π0
n,T )∨ (T 1/2

1,T > π
1/2
n,T ). Adopting such an approach, however, it is not clear how

to identify the location of a change-point once its presence is detected, since we

cannot exclude the possibility that it is detected by both T 0
1,T and T 1/2

1,T , each
of which estimates its location with bias. This becomes further complicated in
the presence of multiple change-points of different change-point configurations.
On the other hand, while γn needs to be selected additionally, we can readily
identify the change-point locations using D̃m.

Theorem 4.1 assumes that n−1/2γn → 0 only. However, as the formulation
of (A5’) and (B2’) suggests, guaranteed improvement of the high-dimensional

efficiency of D̃m over that of both D0
m and D1/2

m , still requires the knowledge of
unknown sparsity or density of the change-point for the choice of γn. In Section
5, γn = log n is considered in investigating the finite sample performance of D̃m

along with that of D0
m and D1/2

m .
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4.2. Bootstrap for test criterion selection

Theorems 3.1–4.1 provide ranges for the rate of πϕ
n,T which grant size and power

consistency for both single and multiple change-point detection problems. How-
ever, the theoretical rates involve typically unattainable knowledge on the quan-
tities such as β and Δϕ and, even with such knowledge available, finite sample
performance may be heavily influenced by the choice of the multiplicative con-
stant applied to the given rate. Therefore, we propose a resampling procedure
that enables us to approximate the quantiles of T ϕ

s,e under the null hypothesis
of no change-points.

Originally proposed as a data-based simulation method for statistical infer-
ence with i.i.d. random samples, the bootstrap principle has been extended to
a variety of non-i.i.d. situations; see Härdle, Horowitz and Kreiss (2003) for
a comprehensive survey. Although some heuristic attempts have been made
(Fiecas and von Sachs, 2014), applying bootstrap methods developed for time
series of fixed dimensions to high-dimensional settings is challenging. Some re-
cent efforts in this direction include Jentsch and Politis (2015), who proposed
the Linear Process Bootstrap for multivariate time series and established its
asymptotic validity for the sample mean when n is allowed to increase with T .
The procedure involves the estimation of (nT ) × (nT )-dimensional covariance
matrix of the vectorised version of [εt, t = 1, . . . , T ] and the computation of its
Cholesky decomposition, where the latter task alone is of computational com-
plexity O(n3T 3), which makes it difficult to apply the method even to panel
data of moderately large dimensions.

Instead, we propose a bootstrap procedure motivated by the representation
theory developed for the Generalised Dynamic Factor Model (GDFM). Factor
analysis is a popular dimension reduction technique used in many disciplines,
such as econometrics, statistics, signal processing, psychometrics, and chemo-
metrics. The key idea is that pervasive cross-correlations in εt are modelled by
the common component χt, and ξt = xt − χt with moderate degree of cross-
correlations denotes the idiosyncratic component. The GDFM introduced in
Forni et al. (2000) steps further and admits the following representation theo-
rem (Forni and Lippi, 2001): any εt with a finite number (q < ∞) of diverging
dynamic eigenvalues is decomposed into χt driven by a q-tuple of white noises
ut (common shocks) as χt = b(L)ut (L denotes the lag operator and b(L) is
an n × q-matrix of one-sided and square-summable filters bik(L)), and ξt with
bounded dynamic eigenvalues. Referred to as the GDFM-boot, the proposed
bootstrap method utilises this representation property of the GDFM in order
to effectively handle the cross-correlations as well as within-series correlations
present in εt of large dimensions.

The GDFM-boot algorithm
Step 1 Obtain E = [ε̂t, t = 1, . . . , T ] where ε̂j,t = σ̂−1

j ε̄j,t (refer to (7) and
Remark 3.3 for the definition of ε̄j,t).

Step 2 Let el denote the eigenvector of the covariance matrix T−1EE�, which
corresponds to its l-th largest eigenvalue. Then, estimate q, the number of
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common shocks driving the cross-correlations of E using the information
criterion proposed by Bai and Ng (2002): IC(k) = log(T−1

∑T
t=1 ‖ε̂t −∑k

l=1 ele
�
l ε̂t‖22) + kC−1

n,T log(Cn,T ), as q = argmin0≤k≤Q IC(k) with Q =
�Cn,T / log(Cn,T )� and Cn,T = n ∧ T .

Step 3 Estimate the q-dimensional common shocks (ût) and the associated

filter (b̂(L)), such that ε̂t is decomposed into χ̂t = b̂(L)ût and ξ̂t =
ε̂t − χ̂t.

Step 4 For l = 1, . . . , B, repeat the following steps.

Step 4.1 For each k = 1, . . . , q, draw {ul
k,t}Tt=1 independently from the

empirical distribution of {ûk,t}Tt=1, from which χl
t = b̂(L)ul

t is ob-
tained.

Step 4.2 Generate a bootstrap sequence of the Fourier coefficients of ξ̂t
using the Time Frequency Toggle (TFT)-Bootstrap (Kirch and Poli-
tis, 2011), to which the inverse fast Fourier transform algorithm is
applied to produce ξlt.

Step 4.3 On the bootstrap series εlt = χl
t + ξlt, compute Ej,l

1,b,T =

Cb({εlj,t}Tt=1), from which T ϕ,l
1,T = maxb∈[1,T ), 1≤m≤n Dϕ

m({|E(j),l
1,b,T |}nj=1)

is obtained where |E(1),l
1,b,T | ≥ . . . ≥ |E(n),l

1,b,T |.

Step 5 Select the (1− α)-quantile of T ϕ,l
1,T , l = 1, . . . , B as πϕ

n,T .

In Step 1, we adopt the same approach taken in estimating σj , namely first
to estimate the locations of the change-points coordinate-wise and then to take
away the estimated piecewise constant signal from each xj,t, in order to estimate
the unobservable εj,t. Note that the practice of input data studentisation is
often adopted prior to factor modelling. Step 2 is justified by the observations
that (i) the number of factors in the static representation of factor models is
typically greater than the number of common shocks in the GDFM, and (ii) over-
estimated q still returns mean-square consistent common components (Forni
et al., 2000, Corollary 2). Section 4 of Forni et al. (2000) provides an estimator
of b(L) (and hence ut) based on the windowed estimator of the spectral density
matrix of E, which is adopted for Step 3.

Step 4.1 produces a bootstrap sample of χ̂t by treating the white noise es-
timates ûk,t as being i.i.d. over time. In Step 4.2, the Local Bootstrap, orig-
inally proposed in Kirch and Politis (2011) as a part of TFT-Bootstrap for

resampling univariate time series, is applied to the n-dimensional ξ̂t of bounded
cross-sectional correlations. It does not require an initial estimate of the spec-
tral density matrix of ξ̂t. Instead, the Fourier coefficients of ξ̂t are resampled
according to a kernel-based probability vector, under the observation that in
a neighbourhood of each frequency, the distribution of different coefficients is
almost identical (if the spectral density is smooth). A detailed description of the
Local Bootstrap is provided in the Appendix A of the supplement document.
In simulation studies, we used the Daniell kernel with the window size [0.05T ].
Since the common and idiosyncratic components are handled independently,
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generating a smaller size bootstrap sample (e.g., �
√
B�) for each component

may be sufficient to generate the bootstrap sample of size B for εt.

Once a bootstrap sample is generated at level p = 1 of the DCBS algorithm,
the same sample can be used repeatedly for critical value selection at levels
p ≥ 2. That is, in Step 4.3 above, the test statistics are computed as T ϕ,l

s′,e′ =

maxb∈[s′,e′), 1≤m≤n Dϕ
m({|E(j),l

s′,b,e′ |}nj=1) over a moving window of size e−s+1 for
1 ≤ s′ ≤ T − e+ s, e′ = s′− s+ e and l = 1, . . . , B, from which the test criterion
is drawn.

Establishing the validity of the GDFM-boot algorithm for change-point anal-
ysis is beyond the scope of the current paper and hence is left for the future
investigation. However, simulation studies in Section 5 confirm its good per-
formance in various settings together with the proposed change-point statistic.
Computationally, the GDFM-boot algorithm benefits from the dimension re-
duction via factor modelling. When applied to generate a bootstrap sample of
size B = 100 with n = 25 and T = 100 (executed on a 3.10GHz quad-core with
8GB of RAM running Windows 7), the R code implementing the algorithm took
0.38 seconds, compared to 62 seconds taken by the Linear Process Bootstrap.
Further, applying the latter was not computationally feasible for any data of
the size and dimensionality considered in our simulation study.

5. Simulation study

5.1. Single change-point detection

In this section, we evaluate the empirical performance of the DC statistic on
simulated panel data with (at most) a single change-point. For comparison,
change-point tests with two different choices of ϕ = 0, 1/2 (referred to as T 0 and

T 1/2) as well as the combined DC statistic (T̃ ) from Section 4.1 are considered,
with πϕ

n,T computed from the GDFM-boot algorithm. Also included are

• T EH

1,T = (T linear

1,T > 1)∨(T scan

1,T > 1) equipped with the thresholds H chosen as

(1 − α/2)-quantile of the χ2
n-distribution and Tm = 2√

2m
{m log(ne/m) +

log(nT/α)}, as per the recommendation made in Section 5 of Enikeeva
and Harchaoui (2014) (referred to as T EH);

• T Jirak

1,T with the test criterion chosen according to the bootstrap algorithm
(Algorithm 4.6) proposed in Jirak (2015) with the block size K = 4 (re-
ferred to as T Jirak).

Since the scaling of component series is not discussed in Enikeeva and Harchaoui
(2014), we choose to apply σ̂j estimated as in Remark 3.2 in deriving T EH

1,T . Jirak
(2015) showed the consistency of the proposed test when applied with a set
of long-run variance estimators for σj . As discussed in Section 5.1.2, T Jirak is
highly sensitive to the scaling terms estimated spuriously small, and therefore
we use the most conservative estimator among those included in Proposition
3.5 of Jirak (2015). T HH

1,T is similarly constructed as T linear

1,T with the same high-
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dimensional efficiency, and T EH is expected to perform better than either of the
two component tests. Hence T HH

1,T is omitted from our study.
As described in Section 5.1.1, each coordinate of εt is generated from the

same model, which enables us to select a single threshold πT applicable to all
n component series in deriving T SBS

1,T (πT ). Hence we include T SBS

1,T (πT ) equipped
with the “oracle” threshold in the comparative study (referred to as T SBS), where
πT is chosen from the GDFM-boot algorithm with (unobservable) εt replacing

the estimated ε̄t. Then, πT is the (1−α)-quantile of maxb∈[1,T ), 1≤j≤n |Ej,l
1,b,T |, l =

1, . . . , B.
When a bootstrap procedure is involved for test criterion selection, the boot-

strap sample size is fixed at B = 100. We report the Type I error and the
size-corrected power at the significance level α = 0.05, as well as the location
accuracy (|η̂1 − η1| < log T , in %) for T 0, T 1/2, T̃ , T Jirak and T SBS over 100
simulated sample paths for each setting; for T EH, it is not suggested how the
change-point location is to be estimated. For all tests, dT = 5 is used to trim
off the extreme ends of the interval [1, T ]. Also, we investigate the partitioning

accuracy of T 0, T 1/2, T̃ , T Jirak and T SBS by reporting the Rand index, the sum
of true positives and true negatives divided by the total (n), where Rand index
close to 1 indicates more accurate partitioning (binary classification).

5.1.1. Data generating models

We consider piecewise constant signals {fj,t}Tt=1 with varying sparsity/density
(m1), size of jumps (|δj,1| ∼ U(0.75δ1, 1.25δ1) for j ∈ Π1 with randomly assigned
signs) and locations t = η1.

Motivated by Jirak (2015), εt is generated from the following two models:

(N1) ARMA(2, 2) model. With 	i = 	(i+ 1)−1 and σv = 0.1	−1,

uj,t =

99∑
i=0

	ivj−i,t, vj,t ∼i.i.d N (0, σ2
v), (9)

εj,t = 0.2εj,t−1 − 0.3εj,t−2 + uj,t + 0.2uj,t−1.

(N2) Factor model. uj,t is generated as in (9) with 	 = 0.2 and σv =

0.5
√
1− 	2h, and

εj,t = 	hht + 0.2εj,t−1 − 0.3εj,t−2 + uj,t + 0.2uj,t−1, ht ∼i.i.d N (0, 0.12).

It is easily seen that the degree of cross-sectional correlations is controlled by
the choice of 	 ∈ {0.2, 0.5} in (N1) and 	h ∈ {0.5, 0.9} in (N2).

5.1.2. Results

Table 2 compares the Type I errors of different tests in consideration. Combined
with the DGFM-boot procedure, the DC statistic-based tests generally manages



Change-point detection in panel data 2019

to control the Type I errors below the nominal level (α = 0.05) or slightly above,
with the exception of the case when n = T = 250 and the ARMA model (N1) is
used to generate the noise with 	 = 0.5. The oracle threshold for T SBS leads to a
very conservative test, which is also evident in the power performance of T SBS.

T Jirak appears to be highly sensitive and therefore vulnerable to the choice
of σ̂j particularly when the critical value is selected by the parametric boot-
strap (not reported here), since the test statistic directly depends on the largest
CUSUM value attained by a single component series. When the noise is gener-
ated as in (N2) with 	h = 0.9, the size of T Jirak is the closest to the nominal
level, which is attributed to the presence of a strong factor as it leads to the
scaling terms being estimated homogeneously across the panel. This presence
of a strong factor has an adverse effect on the size of T EH, which is originally
proposed for independent panel data (see also Remark 2.2).

To observe the power behaviour, we present the results when n = 250 and
T = 100 as a representative example in Tables 3–4 and report the rest in Ap-
pendix C. Increasing sample size generally leads to improved power and accu-
racy in estimated change-point location. As for the dimensionality, its increase
has different effects depending on the error generating model: while there is no
strong discernible trend with regards to increasing n in the case of (N1), it brings
in dramatic improvement in the performance of T 0 for the noise generated from
(N2), especially with increasing influence of the factor (when 	h = 0.9).

The tests tend to lose power when the change-point is sparse, the jumps are
of smaller magnitude and its location is distanced away from the centre, and the
similar arguments apply to the location and partitioning accuracy. Note that
the Rand index occasionally decreases with increasing m1, as it measures both
true positives and true negatives where the former may decrease with growing
density of the change-point. This indicates that over the range of δ1 considered
here, some xj,t, j ∈ Π1 may not contribute to change-point detection due to
small jump size |δj,1|.

When εt is generated from (N1) (where the cross-sectional correlations are

relatively small), T EH and T̃ consistently achieve high (size-corrected) power
over the entire range of change-point configurations, and the latter also achieves
high location accuracy and Rand index. In the case of (N2), T 0 outperforms all
the other tests considered in our study in all change-point configurations and
criteria for evaluation. Although not reported here, the performance of T̃ in
this particular setting can be improved by using a greater value for γn, which
prompts the development of a data-driven way of exploiting the information
embedded in an array of DC statistics over ϕ ∈ [0, 1]. When the size of the data

increases (T = 250), the performance of T̃ catches up with that of T 0 in this
setting. Comparing T 0 and T 1/2, the former performs superior to the latter ex-
cept for when the change-point is highly dense and the noise is generated from
(N1).

T Jirak performs as well as T 0 and T̃ or, occasionally, even better when the
change-point is centrally located, but its performance deteriorates greatly when
η1 = 0.1T . This can be explained by the presence of a multiplicative factor
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Table 2

Type I error when α = 0.05; n = 100 (top) and n = 250 (bottom).

T = 100 T = 250


/
h T 0 T 1/2 T̃ T Jirak T EH T SBS T 0 T 1/2 T̃ T Jirak T EH T SBS

(N1)
0.2 0.06 0.05 0.06 0.15 0.08 0 0.01 0.07 0.01 0.11 0.1 0
0.5 0.04 0.03 0.04 0.19 0.08 0 0.02 0.06 0.02 0.14 0.11 0

(N2)
0.5 0.08 0.04 0.07 0.13 0.16 0 0.01 0.08 0.01 0.18 0.23 0
0.9 0.04 0.04 0.04 0.1 0.57 0 0.04 0.05 0.05 0.05 0.64 0

(N1)
0.2 0.06 0 0.06 0.15 0.07 0 0.07 0.03 0.07 0.18 0.09 0
0.5 0.06 0.01 0.04 0.21 0.09 0 0.12 0.01 0.1 0.22 0.05 0

(N2)
0.5 0.07 0.04 0.05 0.04 0.35 0 0.02 0.05 0.05 0.08 0.34 0
0.9 0.04 0.07 0.07 0.1 0.61 0 0.05 0.05 0.05 0.06 0.75 0

involving b in (2).
√

b(T − b)/T |X j
1,b,T | amounts to a CUSUM-based change-

point test that attains the slowest rate at which its Type II error converges to
zero among the set of CUSUM statistics studied in Section 3 of Brodsky and
Darkhovsky (1993), with the rate depending on T β−1 instead of T β/2−1/2 as
is the case with |X j

1,b,T |; see Theorem 3.5.2 of Brodsky and Darkhovsky (1993)
for further details. Due to the conservative behaviour of the oracle threshold as
observed in Table 2, T SBS does not outperform the other tests.

Interestingly, when T Jirak, T 0, T 1/2 and T̃ attain the similar level of power,
the latter two achieve higher accuracy in locating the change-point. It is at-
tributed to the fact that the latter usually select greater m̂ϕ

b in (6), which is
evidenced by the higher Rand index values.

5.2. Multiple change-point detection

In this section, we evaluate the empirical behaviour of the DCBS algorithm
with T 0 and T̃ , based on their good performance observed in Section 5.1.2. For
comparison, we also investigate the performance of the SBS algorithm furnished
with the oracle threshold.

Fixing the dimensionality and the size of data at n = 250 and T = 250, we
consider piecewise constant signal {fj,t}Tt=1 containing three change-points as
follows: at t = ηr, an index set Πr of cardinality mr is randomly drawn from
{1, . . . , n}, where |δj,r| ∼i.i.d U(0.75δr, 1.25δr) for j ∈ Πr. We set (η1,m1, δ1) =
([0.3T ], [0.75n], 0.050), (η2,m2, δ2) = ([0.6T ], [0.25n], 0.087), and (η3,m3, δ3) =
([0.8T ], [0.1n], 0.140) such that mrδ

2
r remains identical over all r = 1, 2, 3. The

noise εt is generated as in (N1) and (N2) of Section 5.1.1 with varying 	 and
	h. We set B = 100, dT = 5 and LT = [log2(log T + 1)] where the latter is
chosen to permit a growing number (log T ) of change-points in the data. To
account for multiple testing, the Bonferroni’s correction is adopted by setting
α = α∗/(2LT − 1) with α∗ = 0.05. We report the total number of estimated

change-points (N̂ , in %) and their location accuracy (|η̂r − ηr| < log T , in %),
over 100 simulated sample paths for each setting in Table 5 and Figures 2–3.

Overall, the BS algorithm applied with T̃ performs the best in detecting
all three change-points as well as identifying their locations over 80% of the
simulated data. In comparison, T 0 or T SBS tend to miss η1 which is associated
with the smallest jump size, while all three methods tend to detect η3 the
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Table 3. n = 250, T = 100 and α = 0.05: (N1) with � = 0.2 (top) and � = 0.5 (bottom).

size-corrected power location accuracy (%) Rand index

δ1 m1 η1 T 0 T 1/2 T̃ T Jirak T EH T SBS T 0 T 1/2 T̃ T Jirak T SBS T 0 T 1/2 T̃ T Jirak T SBS

0.05

log n
0.1T 0.08 0.02 0.08 0.03 0.06 0.08 2 0 2 0 2 0.08 0.02 0.08 0.03 0.08
0.5T 0.1 0.03 0.09 0.11 0.06 0.08 0 0 0 6 0 0.10 0.03 0.09 0.11 0.08

√
n

0.1T 0.11 0.03 0.09 0.07 0.02 0.07 1 0 1 0 1 0.10 0.03 0.08 0.06 0.06
0.5T 0.24 0.1 0.25 0.3 0.19 0.21 10 2 10 18 9 0.21 0.10 0.22 0.27 0.19

0.4n
0.1T 0.14 0.17 0.14 0.06 0.15 0.11 2 13 2 0 1 0.03 0.11 0.03 0.01 0.02
0.5T 0.56 1 0.65 0.77 0.97 0.6 23 96 31 53 26 0.12 0.77 0.16 0.18 0.13

0.075

log n
0.1T 0.09 0.01 0.09 0.05 0.04 0.07 0 0 0 0 1 0.09 0.01 0.09 0.05 0.07
0.5T 0.31 0.05 0.31 0.41 0.16 0.25 16 0 17 31 14 0.30 0.05 0.30 0.40 0.24

√
n

0.1T 0.1 0.03 0.1 0.06 0.03 0.1 1 0 1 0 3 0.09 0.03 0.09 0.05 0.09
0.5T 0.51 0.15 0.53 0.69 0.53 0.48 22 5 23 47 22 0.45 0.15 0.47 0.62 0.43

0.4n
0.1T 0.23 0.87 0.24 0.11 0.75 0.24 12 86 12 0 16 0.05 0.66 0.05 0.02 0.05
0.5T 0.89 1 1 1 0.97 0.98 55 100 90 75 75 0.19 0.87 0.53 0.30 0.23

0.1

log n
0.1T 0.12 0.02 0.14 0.04 0.04 0.11 5 0 5 0 5 0.12 0.02 0.14 0.04 0.11
0.5T 0.55 0.08 0.55 0.74 0.34 0.49 31 0 33 58 31 0.53 0.08 0.53 0.72 0.48

√
n

0.1T 0.15 0.05 0.15 0.09 0.09 0.1 7 1 7 0 4 0.13 0.05 0.13 0.08 0.09
0.5T 0.76 0.47 0.82 0.94 0.96 0.74 52 33 58 74 57 0.68 0.47 0.74 0.86 0.66

0.4n
0.1T 0.42 1 0.68 0.11 0.97 0.51 28 100 55 0 34 0.09 0.84 0.26 0.02 0.11
0.5T 1 1 1 1 0.97 1 76 100 99 85 97 0.21 0.93 0.69 0.47 0.29

0.05

log n
0.1T 0.08 0.02 0.08 0.03 0.06 0.08 2 0 2 0 2 0.08 0.02 0.08 0.03 0.08
0.5T 0.1 0.03 0.09 0.11 0.06 0.08 0 0 0 6 0 0.10 0.03 0.09 0.11 0.08

√
n

0.1T 0.11 0.03 0.09 0.07 0.02 0.07 1 0 1 0 1 0.10 0.03 0.08 0.06 0.06
0.5T 0.24 0.1 0.25 0.3 0.19 0.21 10 2 10 18 9 0.21 0.10 0.22 0.27 0.19

0.4n
0.1T 0.14 0.17 0.14 0.06 0.15 0.11 2 13 2 0 1 0.03 0.11 0.03 0.01 0.02
0.5T 0.56 1 0.65 0.77 0.97 0.6 23 96 31 53 26 0.12 0.77 0.16 0.18 0.13

0.075

log n
0.1T 0.09 0.01 0.09 0.05 0.04 0.07 0 0 0 0 1 0.09 0.01 0.09 0.05 0.07
0.5T 0.31 0.05 0.31 0.41 0.16 0.25 16 0 17 31 14 0.30 0.05 0.30 0.40 0.24

√
n

0.1T 0.1 0.03 0.1 0.06 0.03 0.1 1 0 1 0 3 0.09 0.03 0.09 0.05 0.09
0.5T 0.51 0.15 0.53 0.69 0.53 0.48 22 5 23 47 22 0.45 0.15 0.47 0.62 0.43

0.4n
0.1T 0.23 0.87 0.24 0.11 0.75 0.24 12 86 12 0 16 0.05 0.66 0.05 0.02 0.05
0.5T 0.89 1 1 1 0.97 0.98 55 100 90 75 75 0.19 0.87 0.53 0.30 0.23

0.1

log n
0.1T 0.12 0.02 0.14 0.04 0.04 0.11 5 0 5 0 5 0.12 0.02 0.14 0.04 0.11
0.5T 0.55 0.08 0.55 0.74 0.34 0.49 31 0 33 58 31 0.53 0.08 0.53 0.72 0.48

√
n

0.1T 0.15 0.05 0.15 0.09 0.09 0.1 7 1 7 0 4 0.13 0.05 0.13 0.08 0.09
0.5T 0.76 0.47 0.82 0.94 0.96 0.74 52 33 58 74 57 0.68 0.47 0.74 0.86 0.66

0.4n
0.1T 0.42 1 0.68 0.11 0.97 0.51 28 100 55 0 34 0.09 0.84 0.26 0.02 0.11
0.5T 1 1 1 1 0.97 1 76 100 99 85 97 0.21 0.93 0.69 0.47 0.29

average 0.35 0.34 0.38 0.37 0.41 0.35 19.06 29.78 24.78 24.83 22.11 0.20 0.29 0.26 0.24 0.19
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Table 4. n = 250, T = 100 and α = 0.05: (N2) with �h = 0.5 (top) and �h = 0.9 (bottom).

size-corrected power location accuracy (%) Rand index

δ1 m1 η1 T 0 T 1/2 T̃ T Jirak T EH T SBS T 0 T 1/2 T̃ T Jirak T SBS T 0 T 1/2 T̃ T Jirak T SBS

0.05

log n
0.1T 0.22 0.06 0.14 0.04 0 0.02 4 1 1 0 0 0.21 0.06 0.14 0.04 0.02
0.5T 0.3 0.07 0.19 0.08 0 0.05 12 0 6 6 1 0.29 0.07 0.18 0.08 0.05

√
n

0.1T 0.2 0.1 0.16 0.02 0 0.02 5 1 4 0 0 0.18 0.10 0.15 0.02 0.02
0.5T 0.45 0.1 0.21 0.09 0 0.03 18 1 6 4 0 0.40 0.10 0.19 0.08 0.03

0.4n
0.1T 0.4 0.08 0.25 0.07 0 0.02 20 2 11 0 0 0.08 0.05 0.10 0.01 0.00
0.5T 0.84 0.49 0.88 0.55 0.62 0.1 40 39 67 39 6 0.18 0.38 0.45 0.14 0.02

0.075

log n
0.1T 0.24 0.04 0.16 0.02 0 0.03 7 0 6 0 0 0.23 0.04 0.16 0.02 0.03
0.5T 0.68 0.08 0.48 0.26 0 0.11 40 1 27 16 8 0.66 0.08 0.47 0.25 0.11

√
n

0.1T 0.32 0.09 0.21 0.07 0 0.03 20 1 8 0 1 0.28 0.09 0.19 0.06 0.03
0.5T 0.91 0.13 0.76 0.55 0.05 0.17 53 2 54 41 10 0.81 0.13 0.69 0.50 0.15

0.4n
0.1T 0.7 0.26 0.61 0.07 0.33 0.03 44 19 48 0 2 0.15 0.19 0.28 0.02 0.01
0.5T 1 1 1 0.9 0.7 0.7 54 100 100 65 50 0.21 0.90 0.72 0.31 0.15

0.1

log n
0.1T 0.37 0.05 0.21 0.06 0 0.03 18 1 11 0 0 0.36 0.05 0.20 0.06 0.03
0.5T 0.95 0.08 0.85 0.68 0 0.49 71 0 64 55 41 0.92 0.08 0.83 0.67 0.48

√
n

0.1T 0.66 0.07 0.35 0.03 0 0.04 46 2 23 0 2 0.59 0.07 0.32 0.03 0.04
0.5T 0.99 0.15 0.98 0.88 0.69 0.7 80 3 87 74 60 0.88 0.15 0.90 0.82 0.63

0.4n
0.1T 0.92 0.86 0.99 0.04 0.7 0.2 77 84 96 1 17 0.19 0.73 0.63 0.01 0.04
0.5T 1 1 1 0.97 0.7 0.99 77 100 100 86 96 0.21 0.94 0.84 0.52 0.27

0.05

log n
0.1T 0.18 0.05 0.05 0.05 0 0.02 12 2 2 0 0 0.17 0.05 0.05 0.05 0.02
0.5T 0.75 0.05 0.05 0.24 0 0.03 43 0 0 12 2 0.73 0.05 0.05 0.23 0.03

√
n

0.1T 0.33 0.06 0.06 0.05 0 0.03 21 1 1 0 1 0.29 0.06 0.06 0.04 0.03
0.5T 0.96 0.07 0.07 0.39 0 0.1 69 0 0 28 7 0.85 0.07 0.07 0.35 0.09

0.4n
0.1T 0.69 0.07 0.07 0.05 0 0.03 47 2 2 0 1 0.14 0.06 0.06 0.01 0.01
0.5T 1 0.12 0.17 0.74 0.39 0.21 60 2 7 47 13 0.21 0.08 0.11 0.24 0.05

0.075

log n
0.1T 0.6 0.05 0.05 0.04 0 0.04 43 2 2 0 2 0.58 0.05 0.05 0.04 0.04
0.5T 1 0.07 0.09 0.76 0 0.27 83 0 2 64 22 0.97 0.07 0.09 0.74 0.26

√
n

0.1T 0.89 0.09 0.09 0.06 0 0.05 76 2 2 0 2 0.79 0.09 0.09 0.05 0.04
0.5T 1 0.09 0.11 0.85 0.28 0.43 88 0 5 70 37 0.89 0.09 0.10 0.79 0.39

0.4n
0.1T 0.94 0.09 0.09 0.12 0.25 0.12 70 2 2 1 6 0.20 0.07 0.07 0.03 0.03
0.5T 1 0.73 0.92 0.99 0.44 0.77 81 64 87 79 59 0.21 0.65 0.75 0.51 0.22

0.1

log n
0.1T 0.9 0.08 0.08 0.05 0 0.06 86 2 2 1 4 0.87 0.08 0.08 0.05 0.06
0.5T 1 0.06 0.25 0.97 0.14 0.8 92 0 21 85 73 0.97 0.06 0.24 0.96 0.78

√
n

0.1T 1 0.06 0.06 0.06 0 0.14 95 2 2 2 9 0.89 0.06 0.06 0.05 0.13
0.5T 1 0.07 0.59 1 0.44 0.96 90 0 57 90 89 0.89 0.07 0.55 0.97 0.88

0.4n
0.1T 0.99 0.1 0.29 0.16 0.44 0.23 85 6 25 3 17 0.21 0.08 0.21 0.04 0.06
0.5T 1 1 1 1 0.44 0.99 86 99 99 93 92 0.21 0.96 0.90 0.80 0.45

average 0.73 0.21 0.38 0.36 0.18 0.25 53.14 15.08 28.81 26.72 20.28 0.47 0.19 0.31 0.27 0.16
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Table 5

Summary of the total number of estimated change-points and their location accuracy:
n = 250, T = 250 and α∗ = 0.05.

N̂ (%) accuracy (%)

/
h 0 1 2 3 4 ≥5 η1 η2 η3

(N1)

0.2
T 0 0 9 37 53 0 1 35 71 89

T̃ 0 1 12 85 1 1 90 87 93

T SBS 8 66 26 0 0 0 0 37 77

0.5
T 0 0 4 37 56 3 0 46 71 92

T̃ 0 1 8 88 3 0 95 89 96

T SBS 4 67 29 0 0 0 0 46 75

(N2)

0.5
T 0 1 3 31 65 0 0 34 81 97

T̃ 0 2 7 83 8 0 96 95 97

T SBS 2 21 76 1 0 0 2 83 90

0.9
T 0 0 2 10 87 1 0 74 97 98

T̃ 3 35 37 24 1 0 44 38 92

T SBS 0 22 69 9 0 0 9 76 100

Fig 2. (N1) with � = 0.2 (left) and � = 0.5 (right): the locations of the change-points detected

by the BS algorithm in combination with T 0 (top), T̃ (middle) and T SBS (bottom); vertical
lines indicate the locations of true ηr, r = 1, 2, 3.

best, which is associated with the largest jump size. The behaviour of T 0 and
T̃ change dramatically when εt is generated from (N2) with a strong factor
(	h = 0.9), where the performance of T 0 improves (identifying all three change-
points over 70% of the simulated data) whereas that of the latter deteriorates
greatly. As observed in Section 5.1.2, using a larger scaling term γn may improve
the performance of T̃ in this setting. While the performance of T SBS is better
when εt is generated from (N2) rather than (N1), the choice of threshold for
T SBS turns out to be too conservative overall. Although each εj,t is generated
from the identical model, employing n thresholds for the n-dimensional panel
data may lead to better small sample performance of T SBS.
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Fig 3. (N2) with �h = 0.5 (left) and �h = 0.9 (right).

6. Application to financial time series data

We analysed the log returns of the closing prices of all S&P 100 component
stocks between February 24, 2015 and February 23, 2016, which are denoted by
yi,t, i = 1, . . . , ñ; t = 1, . . . , T with ñ = 88 (only those components which re-
mained in the index for a longer period were included) and T = 252. Jirak (2015)
analysed a similar financial dataset for a single change in its mean and variance,
respectively. However, considering that (i) log returns are often modelled to
have zero-mean and time-varying conditional variance using conditionally het-
eroscedastic models, and (ii) it is difficult to rule out the possible existence of
multiple change-points, we chose to perform the change-point analysis in the
(unconditional) second-order structure of yi,t using the DCBS algorithm. For
the purpose, wavelet-based periodogram and cross-periodogram sequences of
yi,t were computed, which were also adopted to comprise the input panel data
to the SBS-MVTS algorithm in Cho and Fryzlewicz (2015). Any change-point
in the autocovariance and cross-covariance structure of yi,t is detectable from
examining the wavelet (cross-)periodogram sequences; for further details, see
Section 3.1 of Cho and Fryzlewicz (2015).

We used Haar wavelets at the two finest scales to produce the periodogram
sequences, which are denoted by xj,t, j = 1, . . . , n = ñ(ñ + 1); t = 1, . . . , T .

The DCBS algorithm with D̃m detects a single change-point at t = 220, which
corresponds to January 6, 2016. It has been noted that the first week of trad-
ing in 2016 marked the worst five-day start to a year ever, according to S&P
Dow Jones Indices (Financial Times, http://www.ft.com/fastft/2016/01/
07/sp-500-logs-worst-annual-kick-off-on-record/). For example, the
S&P 500 index dropped by 4.9% during the period, and the Dow Jones Indus-
trial Average by 6.19%. Figure 4 shows yi,t (left) and the pointwise maximum
of the DC statistics at the first iteration of the DCBS algorithm (right), where

http://www.ft.com/fastft/2016/01/07/sp-500-logs-worst-annual-kick-off-on-record/
http://www.ft.com/fastft/2016/01/07/sp-500-logs-worst-annual-kick-off-on-record/
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Fig 4. Log returns of S&P 100 component stock prices (yi,t) between February 24, 2015 and

February 23, 2016 (left); pointwise maximum of D̃m({|X (j)
1,b,T |}nj=1) over b = 1, . . . , T − 1

(right); the vertical broken line denotes the location of the estimated change-point.

such behaviour of the financial market at the beginning of 2016 is reflected as a
large peak in the latter.

7. Conclusions

In this paper, we have proposed the DC statistic, a novel way of aggregat-
ing high-dimensional CUSUM series across the panel for change-point analysis,
and showed its consistency in single and multiple change-point detection both
theoretically and empirically. We conclude by listing possible future research
projects.

• The DC statistic can be applied to detect changes in high-dimensional
time series besides those in the mean of panel data. For example, the
DCBS algorithm is easily extended to detect change-points in both auto-
covariance and cross-covariance structure of n-dimensional time series, by
taking panel data consisting of local periodogram and cross-periodogram
sequences as an input, see the real data analysis in Section 6.
Moreover, the DC operator may be regarded as a generic tool that can
be adopted to aggregate multiple series of statistics cross-sectionally, the
result of which can be utilised for panel data analysis beyond change-point
detection.

• Empirically, it was shown that T̃ generally outperforms T ϕ for any ϕ ∈
{0, 1/2}, while in the presence of strong cross-correlations, T 0 performs
better than the rest. This opens up several possibilities for future re-
search, including the investigation of the “optimal” way of exploiting
the information contained in the infinite array of DC statistics over ϕ ∈
[0, 1].
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• Proposed here for test criterion selection, the GDFM-boot algorithm
showed good empirical performance, but it remains to investigate the va-
lidity of its application to change-point analysis by establishing that the
bootstrap scheme mimics the correct second-order structure for a large
class of time series processes. The GDFM-boot will have applicability
to a wide range of inference and estimation problems involving high-
dimensional time series beyond the context of change-point analysis. For
example, a key task in factor analysis is to estimate the number of common
factors that drive the pervasive cross-sectional correlations, and several in-
formation criterion-type estimators have been proposed. However, there is
lack of any attempt at statistical inference on the factor number, e.g., by
constructing its confidence interval, and the GDFM-boot can be adopted
for such tasks.

8. Proofs

8.1. Preliminary results

We first prove a set of lemmas that are stepping stones for the proofs of The-
orems 3.1–4.1. We assume that (A1)–(A3) and (A6) hold in all the lemmas
where applicable, and the notations Ci, ci, i = 0, 1, . . . are adopted to denote
fixed positive constants throughout the proofs. Further, ε̃j,t denotes the scaled

εj,t with respect to an estimator σ̂j satisfying (A6), and x̃j,t and f̃j,t are defined
similarly. Throughout, we operate within Eσ defined in (A6).

Lemma 8.1. Defining the set I1 = {(s, e) : 1 ≤ s < e ≤ T, e − s +
1 > dT = [C log2 T ]} and the event E1 = {max1≤j≤n max(s,e)∈I1

(e − s +

1)−1/2|
∑e

t=s ε̃j,t| ≤ log T} with some fixed constant C > 0, we have P(E1) → 1
as T → ∞.

Proof. We first study the following probability

P

(
1√

e− s+ 1

∣∣∣∣∣
e∑

t=s

ε̃j,t

∣∣∣∣∣ > log T

)
. (10)

Let d = e−s+1. Theorem 1.4 of Bosq (1998) showed that under the conditions
imposed in (A1), the probability in (10) is bounded from the above by{

2d

q
+ 2

(
1 +

log2 T

25dE(ε̃2j,t) + 5Cε

√
d log T

)}
exp

(
− q log2 T

25dE(ε̃2j,t) + 5Cε

√
d log T

)

+ 11Cαd

[
1 +

5{E(ε̃2j,t)}2/5
√
d

log T

]
(μ[d/(q+1)])4/5 (11)

where q ∈ {1, . . . , [d/2]}. With the choice q = [cqd/ log T ] for some cq > 0, (11)
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is bounded by

2

(
log T

cq
+ 2

)
exp

{
− cq log T

25E(ε̃2j,t) + 5CεC−1/2

}
+ 11Cαd

[
1 +

5{E(ε̃2j,t)}2/5
√
d

log T

]

× exp

{
− 4 log T

5cq log(1/μ)

}
≤ C0T

3/2 log−1 T · T−C1

for some C0, C1 > 0, where the latter depends on μ, cq, Cε, C and σ∗2/σ2
∗.

More specifically, we can impose appropriate conditions on the above parameters
in order that C1 > 7/2 + ω. Therefore, P(Ec

1) is bounded from the above by
nT 2 · C0T

3/2 log−1 T · T−C1 → 0 as T → ∞.

Lemma 8.2. Define the set I2 = {(s, b, e) : 1 ≤ s < b < e ≤ T, (b −
s + 1) ∧ (e − b) > dT } with dT given in Lemma 8.1, and the event E2 =
{max1≤j≤n max(s,b,e)∈I2

|Cb({ε̃j,t}et=s)| ≤
√
2 log T}. Then as T → ∞, we have

P(E2) → 1.

Proof. Note that I2 ⊂ I1, and

|Cb({ε̃j,t}et=s)| ≤
√

e− b

(e− s+ 1)(b− s+ 1)

∣∣∣∣∣
b∑

t=s

ε̃j,t

∣∣∣∣∣+√
b− s+ 1

(e− s+ 1)(e− b)

∣∣∣∣∣
e∑

t=b+1

ε̃j,t

∣∣∣∣∣ = I + II.

On the event E1 defined in Lemma 8.1,

I =

√
e− b

e− s+ 1
· 1√

b− s+ 1

∣∣∣∣∣
b∑

t=s

ε̃j,t

∣∣∣∣∣ ≤
√

e− b

e− s+ 1
log T,

and similarly II ≤
√

(b− s+ 1)/(e− s+ 1) log T , uniformly over all j and
(s, b, e) ∈ I2. Hence

max
1≤j≤n

max
(s,b,e)∈I2

|Cb({ε̃j,t}et=s)| ≤ max
(s,b,e)∈I2

{√
e− b

e− s+ 1
+

√
b− s+ 1

e− s+ 1

}
log T

≤
√
2 log T,

with probability tending to one as T → ∞, and therefore P(Ec
2) ≤

P(Ec
2 |E1)P(E1) + P(Ec

1) → 0.

Next, we introduce N additive models yr,t = gr,t + ξr,t, r = 1, . . . , N , which
play a vital role in the following proofs. For each r, let {kr1, . . . , krn} denote a
permutation of {1, . . . , n}, and {ir1, . . . , irn} a set of signs (taking values from
{-1, 1} with repetitions), for which the followings hold:

ir1 · δkr
1 ,r

≥ ir2 · δkr
2 ,r

≥ . . . ≥ irn · δkr
n,r

≥ 0
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(since δkr
j ,r

= fkr
j ,ηr+1 − fkr

j ,ηr = 0 for all j ≥ mr + 1, the ordering and the set

of signs are not unique). Then yr,t, gr,t and ξr,t are defined as

yr,t =

{
mr(2n−mr)

2n

}ϕ
⎧⎨⎩ 1

mr

mr∑
j=1

irj · x̃kr
j ,t

− 1

2n−mr

n∑
j=mr+1

irj · x̃kr
j ,t

⎫⎬⎭ ,

(12)

gr,t =

{
mr(2n−mr)

2n

}ϕ
⎧⎨⎩ 1

mr

mr∑
j=1

irj · f̃kr
j ,t

− 1

2n−mr

n∑
j=mr+1

irj · f̃kr
j ,t

⎫⎬⎭ ,

(13)

ξr,t =

{
mr(2n−mr)

2n

}ϕ
⎧⎨⎩ 1

mr

mr∑
j=1

irj · ε̃kr
j ,t

− 1

2n−mr

n∑
j=mr+1

irj · ε̃kr
j ,t

⎫⎬⎭ .

(14)

By its definition, {gr,t}Tt=1 is a piecewise constant signal with change-points at
t = η1, . . . , ηN , and its jump at t = ηr is of size satisfying the following:

gr,ηr+1 − gr,ηr =

{
mr(2n−mr)

2n

}ϕ
1

mr

∑
j∈Πr

|δj,r|
σ̃j

≥
{mrn

2n

}ϕ 2δ̃r
3σ∗ ≥ c1m

ϕ
r δ̃r.

(15)

Then Lemma 8.1 implies that for all r = 1, . . . , N ,

max
(s,e)∈I1

1√
e− s+ 1

∣∣∣∣∣
e∑

t=s

ξr,t

∣∣∣∣∣ ≤ 2mϕ
r log T ≤ 2nϕ log T (16)

with probability converging to one, since within the event E1 of Lemma 8.1,

1√
e− s+ 1

∣∣∣∣∣
e∑

t=s

ξr,t

∣∣∣∣∣ ≤
{
mr(2n−mr)

2n

}ϕ
⎧⎨⎩ 1

mr

mr∑
j=1

∣∣∣∣∣ 1√
e− s+ 1

e∑
t=s

εkr
j ,t

∣∣∣∣∣
+

1

2n−mr

n∑
j=mr+1

∣∣∣∣∣ 1√
e− s+ 1

e∑
t=s

εkr
j ,t

∣∣∣∣∣
⎫⎬⎭ ≤ 2mϕ

r log T.

Similarly, Lemma 8.2 implies that for all r,

max
(s,b,e)∈I2

|Cb({ξr,t}et=s)| ≤ 2
√
2mϕ

r log T ≤ 2
√
2nϕ log T (17)

with probability tending to one.
Now we consider a generic additive model

yt = gt + ξt, (18)
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where yt, gt and ξt are obtained from the panel data {xj,t}Tt=1, j = 1, . . . , n in
the same manner as yr,t, gr,t and ξr,t in (12)–(14), with respect to some m ∈
{1, . . . , n}, a permutation of index {k1, . . . , kn} and a sign sequence {i1, . . . , in}.
Then gt is a piecewise constant signal with change-points at t = η1, . . . , ηN
satisfying (B1). Also, it is easily seen that the inequalities (16)–(17) hold with
the zero-mean noise series ξt in place of ξr,t with probability converging to one.

Recall that s and e denote the start and the end of an interval which is
examined at some stage of our search for the change-points. Let s and e satisfy

ηq1 ≤ s < ηq1+1 < . . . < ηq2 < e ≤ ηq2+1 (19)

for 0 ≤ q1 < q2 ≤ N . In some of the following lemmas, we impose at least one
of following conditions:

s < ηq − c2T
β < ηq + c2T

β < e for some q ∈ {q1 + 1, . . . , q2}, (20)

{(ηq1+1 − s) ∧ (s− ηq1)} ∨ {(ηq2+1 − e) ∧ (e− ηq2)} ≤ c3ε̄T , (21)

with ε̄T to be defined later. The condition (20) implies that there is at least
one change-point to be detected which is sufficiently distanced away from the
previously detected change-points s and e, and (21) indicates that each of s and
e is detected for one of the true change-points.

Since the CUSUM statistics are not affected by the shift in the overall
level of gt, we assume that

∑e
t=s gt = 0 without loss of generality. Then the

CUSUM statistics computed on {gt}et=s can be re-written as Cb({gt}et=s) =√
e−s+1

(b−s+1)(e−b)

∑b
t=s gt, b = s, . . . , e− 1.

Lemma 8.3. For s and e satisfying (19), there exists q′ ∈ {q1+1, . . . , q2} which
satisfies ηq′ = argmaxb∈[s,e) |Cb({gt}et=s)|.
Proof. The proof follows directly from Lemmas 2.2–2.3 of Venkatraman (1992).

Lemma 8.4. Let (20) and (21) hold. For η̂ = argmaxb∈[s,e) |Cb({yt}et=s)|, there
exists a true change-point ηq ≡ η ∈ (s, e) satisfying |η̂−η| < c0ε̄T with probability
converging to one, provided that

|Cη({gt}et=s)||Cη({gt}et=s)− Cη̂({gt}et=s)| > C1n
ϕ log T ×

max

⎧⎪⎪⎨⎪⎪⎩
nϕ log T,
√
η − s+ 1

∣∣∣ 1
η̂−s+1

∑η̂
t=s gt − 1

η−s+1

∑η
t=s gt

∣∣∣,
√
ε̄T

∣∣∣ 1
η̂−s+1

∑η̂
t=s gt − 1

e−η

∑e
t=η+1 gt

∣∣∣
⎫⎪⎪⎬⎪⎪⎭ for some C1 > 0.

Proof. The following proof is an adaptation of the proof of Theorem 3.3.1 in
Fryzlewicz (2014) to a non-i.i.d. case.

On the segment [s, e], detecting a change-point is equivalent to fitting the
best step function ĝt (a piecewise constant function with one change-point)
which minimises

∑e
t=s(yt − ht)

2 among all step functions ht defined on [s, e].
Let g∗t be the best step function approximation to gt on [s, e], which may not
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be unique. From Lemma 8.3, g∗t needs to have its change-point η coincide with
one of the true change-points ηq, q ∈ {q1 + 1, . . . , q2}.

Let us assume that |η̂ − η| = c0ε̄T . Due to the fact that |Cb({gt}et=s)| is
monotonic, or decreasing and then increasing in b between two adjacent change-
points of gt (Lemma 2.7 of Venkatraman (1992)), it is enough to consider the
case when η̂ satisfies |η̂ − η| = c0ε̄T . Then, if it is shown that

e∑
t=s

(yt − g∗t )
2 −

e∑
t=s

(yt − ĝt)
2 < 0, (22)

the claim would be proved to be contradiction. Expanding the LHS of (22), we
obtain

e∑
t=s

(ξt + gt − g∗t )
2 −

e∑
t=s

(ξt + gt − ĝt)
2 = 2

e∑
t=s

ξt(ĝt − g∗t )

+
e∑

t=s

{(gt − g∗t )
2 − (gt − ĝt)

2} = I + II.

Clearly, II < 0 from the definition of g∗t .
Let Ψ be the set of vectors of length (e− s+ 1) whose elements are initially

positive and constant, then after a break, are negative and constant; moreover,
the elements sum to zero and when squared, sum to one. Since we assume that∑e

t=s gt = 0, we can find a vector ψ∗ ∈ Ψ satisfying g∗ = 〈g,ψ∗〉ψ∗ where
g = (gs, . . . , ge)

� and g∗ = (g∗s , . . . , g
∗
e)

�. Then we have

e∑
t=s

(gt − g∗t )
2 =

e∑
t=s

g2t − 〈g,ψ∗〉2.

Let a step function g̃t be chosen to minimise
∑e

t=s(gt − ht)
2 among all the

step functions ht defined on [s, e], under the constraint that ht has its change-
point at t = η̂. For such g̃t, we have

∑e
t=s(gt − g̃t)

2 ≤
∑e

t=s(gt − ĝt)
2. Again,

there exists a vector ψ̃ ∈ Ψ satisfying g̃ = 〈g, ψ̃〉ψ̃ with g̃ = (g̃s, . . . , g̃e)
�. Then

|II| ≥
e∑

t=s

{(gt − g̃t)
2 − (gt − g∗t )

2} = 〈g,ψ∗〉2 − 〈g, ψ̃〉2

= (〈g,ψ∗〉+ 〈g, ψ̃〉)(〈g,ψ∗〉 − 〈g, ψ̃〉) ≥ |〈g,ψ∗〉||〈g,ψ∗〉 − 〈g, ψ̃〉|, (23)

since |Cη({gt}et=s)| = |〈g,ψ∗〉| ≥ |〈g, ψ̃〉| = |Cη̂({gt}et=s)|.
Turning to I, it is decomposed as

2
e∑

t=s

ξt(ĝt − g∗t ) = 2
e∑

t=s

ξt(ĝt − g̃t) + 2
e∑

t=s

ξt(g̃t − g∗t ),

and each of the two terms are split into sub-sums computed over the intervals
where ĝt − g̃t and g̃t − g∗t are constant, respectively. Letting η̂ > η without loss
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of generality, we have

e∑
t=s

ξt(g̃t − g∗t ) =

⎛⎝ η∑
t=s

+

η̂∑
t=η+1

+

e∑
t=η̂+1

⎞⎠ ξt(g̃t − g∗t ) = III + IV + V.

Then |III| ≤ 2nϕ log T
√
η − s+ 1|(η̂−s+1)−1

∑η̂
t=s gt− (η−s+1)−1

∑η
t=s gt|

with probability tending to one, following (16). |V | is of the same order as
|III|, and similar arguments lead to |IV | ≤ 2nϕ log T

√
η̂ − η + 1|(η̂ − s +

1)−1
∑η̂

t=s gt − (e− η)−1
∑e

t=η+1 gt|.
As for

∑e
t=s ξt(ĝt − g̃t), we have

e∑
t=s

ξt(ĝt − g̃t) =

⎛⎝ η̂∑
t=s

+

e∑
t=η̂+1

⎞⎠ ξt(ĝt − g̃t) = V I + V II.

|V I| and |V II| are of the same order, and with probability converging to one,

|V I| = |
η̂∑

t=s

ξt| ·
1

η̂ − s+ 1

∣∣∣∣∣
η̂∑

t=s

(yt − gt)

∣∣∣∣∣ = 1

η̂ − s+ 1

(
η̂∑

t=s

ξt

)2

≤ 4n2ϕ log2 T.

Putting together (23) and the upper bound on |III|–|V II|, we have the domi-
nance of II over I under the conditions given in the lemma.

8.2. Proofs of Theorems 3.1–3.2

Throughout the section, we assume (A1)–(A3) and (A6), and (A4)–(A5) where
applicable. In the problem of detecting (at most) a single change-point, (20)–

(21) are met with s = 1 and e = T under (A4) with ε̄T = (nϕ/m1)
2δ̃21 log

2 T . For

(η̂1, m̂1) = argmaxb∈[1,T ]\I1,T , 1≤m≤n Dϕ
m({|X (j)

1,b,T |}nj=1), let {k01, . . . , k0n} denote

a permutation of {1, 2, . . . , n} satisfying |X k0
1

1,η̂1,T
| ≥ |X k0

2

1,η̂1,T
| ≥ . . . ≥ |X k0

n

1,η̂1,T
|,

and i0j ∈ {−1, 1} satisfy |X k0
j

1,η̂1,T
| = i0j · X k0

j

1,η̂1,T
for all j = 1, . . . , n. With m̂1,

{k0j } and {i0j} replacing mr, {krj} and {irj}, respectively, we have an additive
model y0,t = g0,t + ξ0,t with its components defined in the same manner as yr,t,
gr,t and ξr,t in (12)–(14). Then g0,t is piecewise constant with (at most) one
change-point at t = η1, and {ξ0,t} satisfies (16)–(17) in place of {ξr,t}. Note
that the DC statistic at m = m̂1 and b = η̂1 can equivalently be represented
using {y0,t} as

Dϕ
m̂1

({|X (j)
1,η̂1,T

|}nj=1) = Dϕ
m̂1

({i0j · X
k0
j

1,η̂1,T
}nj=1) = Cη̂1

({y0,t}Tt=1).

In the case when there exists no change-point, g0,t is constant and therefore

Cb({g0,t}Tt=1) = 0 for all b. As (1, η̂1, T ) ∈ I2, we have Dϕ
m̂1

({|X (j)
1,η̂1,T

|}nj=1) =

Cη̂1
({ξ0,t}Tt=1) < C ′nϕ log T for some C ′ > 2

√
2, which proves Theorem 3.1.

To prove Theorem 3.2, we need additional lemmas stated with the generic
additive model in (18).
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Lemma 8.5. Assume that there exists a single change-point η1 in gt which
satisfies (A4) and |gη1+1 − gη1 | ≥ δ. Then for some C2 > 0,

|Cη1({gt}Tt=1)| = max
b∈[1,T )

|Cb({gt}Tt=1)| =
√

η1(T − η1)

T
δ ≥ C2δT

β . (24)

Proof. The first equality (24) is a direct result of Lemma 8.3. The second equal-
ity follows from the definition of |Cη1({gt}Tt=1)|.
Lemma 8.6. Assume that the conditions imposed in Lemma 8.5 are met. Then
for some εT , we have

|Cη1({gt}Tt=1)− Cb′({gt}Tt=1)| ≥ C3εT |Cη1({gt}Tt=1)|
T

η1(T − η1)

with any b′ satisfying |b′ − η1| ≥ c0εT .

Proof. Without loss of generality, let gη1 = g∗1 > g∗2 = gη1+1 and that b′ > η1.
Then

Cη1({gt}Tt=1)− Cb′({gt}Tt=1)

≥
√

η1(T − η1)

T
δ −
√

(η1 + c0εT )(T − η1 − c0εT )

T

(
g∗1η1 + g∗2c0εT
η1 + c0εT

− g∗2

)

=

√
η1(T − η1)

T
δ

(
1−
√

η1(T − η1 − c0εT )

(η1 + c0εT )(T − η1)

)

= Cη1({gt}Tt=1) ·

√
1 + c0εT

η1
−
√
1− c0εT

T−η1√
1 + c0εT

η1

≥ Cη1({gt}Tt=1) ·
c0εT

2
√
2

T

η1(T − η1)
,

where the inequality follows from the Taylor expansion.

Lemma 8.3 implies that |Cη1({g0,t}Tt=1)| ≥ |Cη̂1
({g0,t}Tt=1)| while

|Cη1({y0,t}Tt=1)| ≤ |Cη̂1
({y0,t}Tt=1)| by assumption. From (17), we have

|Cb({gr,t}Tt=1)| ≥ |Cb({yr,t}Tt=1)| − c4n
ϕ log T at any b ∈ I1,T and r = 0, 1 for

some c4 > 0. Note that for all ϕ ∈ [0, 1] and 1 ≤ m ≤ n, on a given interval
[s, e], the ordering and the set of signs that are applied to {X j

1,b,T }nj=1 in or-

der to produce {|X (j)
1,b,T |}nj=1 (identical to {k0j } and {i0j} when b = η̂1), leads

to the maximum value of Dϕ
m at any b, among all possible index permutations

and the sets of signs. Based on the above observations, the following holds with
probability tending to one:

|Cη̂1
({y0,t}Tt=1)| ≥ max

1≤m≤n
Dϕ

m({|X (j)
1,η1,T

|}nj=1) ≥ |Cη1({y1,t}Tt=1)|, and

|Cη̂1
({g0,t}Tt=1)| ≥ |Cη1({g1,t}Tt=1)| − 2c4n

ϕ log T ≥ c1m
ϕ
1 δ̃1
2

√
η1(T − η1)

T
, (25)
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where the last inequality of (25) follows from (15) and Lemma 8.5. Recalling the

rates given above Theorem 3.1 for πϕ
n,T , we have Dϕ

m̂1
({|X (j)

1,η̂1,T
|}nj=1) > πϕ

n,T .
To prove the consistency in the location of the estimated change-point, let

|η̂1 − η1| = c0εT and assume that η̂1 > η1 without loss of generality. We can
view the problem of deriving the upper bound on the bias |η̂1 − η1| for η̂1 =

argmaxb∈[1,T ]\I1,T
max1≤m≤n Dϕ

m({|X (j)
1,b,T |}nj=1), as that for

η̂1 = arg max
b∈[1,T ]\I1,T

Cb({y0,t}Tt=1).

Adopting the notations in Lemma 8.6 with g0,t replacing gt,∣∣∣∣∣ 1η̂1
η̂1∑
t=1

g0,t −
1

η1

η1∑
t=s

g0,t

∣∣∣∣∣ =

∣∣∣∣g∗1η1 + g∗2c0εT
η̂1

− g∗1

∣∣∣∣ ≤ |g∗1 − g∗2 |
c0εT
η1

,∣∣∣∣∣ 1η̂1
η̂1∑
t=1

g0,t −
1

T − η1

e∑
t=η1+1

g0,t

∣∣∣∣∣ =

∣∣∣∣g∗1η1 + g∗2c0εT
η̂1

− g∗2

∣∣∣∣ ≤ |g∗1 − g∗2 |,

and (25) indicates that |g∗1 − g∗2 | ≥ c5m
ϕ
1 δ̃1 for some c5 > 0. Combining the

above bounds with Lemmas 8.5–8.6, the conditions in Lemma 8.4 are met for
η = η1, η̂ = η̂1, s = 1, e = T and εT = (nϕ/m1)

2δ̃21 log
2 T , and thus Theorem

3.2 is proved. �

8.3. Proof of Theorem 3.3

Throughout the section, we assume (A1)–(A3), (A6) and (B1)–(B2). Let s, e
satisfy (20)–(21) with ε̄T = n2ϕΔ−2

ϕ T 5(1−β) log2 T . For

(η̂, m̂) = arg max
b∈[s,e]\Is,e, 1≤m≤n

Dϕ
m({|X (j)

s,b,e|}nj=1),

let {k01, . . . , k0n} denote a permutation of {1, 2, . . . , n} satisfying |X k0
1

s,η̂,e| ≥

|X k0
2

s,η̂,e| ≥ . . . ≥ |X k0
n

s,η̂,e|, and i0j ∈ {−1, 1} satisfy |X k0
j

s,η̂,e| = i0j · X k0
j

s,η̂,e for all

j = 1, . . . , n. As before, with m̂, {k0j} and {i0j} replacing mr, {krj} and {irj}, re-
spectively, we define an additive model y0,t = g0,t+ξ0,t with its components ob-
tained in the same manner as those in (12)–(14). Then g0,t is a piecewise constant
signal with change-points at t = ηr, r = 1, . . . , N , and {ξ0,t} satisfies (16)–(17)
in place of {ξr,t}. Also, the DC statistic at m = m̂ and b = η̂ can equivalently

be represented by Dϕ
m̂({|X (j)

s,η̂,e|}nj=1) = Dϕ
m̂({i0j · X

k0
j

s,η̂,e}nj=1) = Cη̂({y0,t}et=s).
Below we introduce additional lemmas stated with the generic additive model

in (18).

Lemma 8.7. Let s and e satisfy (20) and assume that there exists a change-
point ηq ∈ (s, e) at which (ηq − s+ 1) ∧ (e− ηq) > c2T

β and |gηq+1 − gηq | ≥ δ.
Then there exists q′ ∈ {q1 + 1, . . . , q2} and C4 > 0 such that |Cηq′ ({gt}et=s)| =
maxb∈[s,e) |Cb({gt}et=s)| ≥ C4δT

β−1/2.
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Proof. The equality part is a direct result of Lemma 8.3. Since |gηq+1| ∨ |gηq | ≥
δ/2, we have |

∑ηq

t=ηq−c2Tβ+1
gt| ∨ |

∑ηq+c2T
β

t=ηq+1 gt| ≥ c2δT
β/2. Hence,

maxb∈[s,e) |
∑b

t=s gt| ≥ c2δT
β/4, from which it is derived that

max
b∈[s,e)

|Cb({gt}et=s)| ≥ min
b∈[s,e)

√
e− s+ 1

(b− s+ 1)(e− b)
· max
b∈[s,e)

|
b∑

t=s

gt| ≥ C4δT
β−1/2.

Lemma 8.8. Assume that s and e meet the conditions (20)–(21) and let η ∈
(s, e) denote a change-point that satisfies

|Cη({gt}et=s)| > max
b∈[s,e)

|Cb({gt}et=s)| − C5n
ϕ log T (26)

for some positive constant C5. Then for some εT and C6 > 0, we have

|Cη({gt}et=s)− Cb′({gt}et=s)| > C6T
β−2εT |Cη({gt}et=s)| (27)

with any b′ satisfying |b′ − η| ≥ εT .

Proof. The result is a modification of Lemma 2.6 in Venkatraman (1992) and
the arguments therein are directly applicable to show (27).

For any interval [s, e], we define an index set Rs,e ⊂ {1, . . . , N} as Rs,e =
{1 ≤ r ≤ N : ηr ∈ [s, e] \ Is,e}. Adopting the same arguments as in Section 8.2,

|Cη̂({y0,t}et=s)| ≥ max
q∈Rs,e

max
1≤m≤n

Dϕ
m({|X (j)

s,ηq,e|}
n
j=1) ≥ max

q∈Rs,e

max
1≤r≤N

|Cηq ({yr,t}et=s)|,

|Cη̂({g0,t}et=s)| ≥ max
q∈Rs,e

max
1≤r≤N

|Cηq ({gr,t}et=s)| − 2c4n
ϕ log T ≥ C4

2
c1ΔϕT

β−1/2,

(28)

where the last inequality of (28) follows from (15), (20) and Lemma 8.7.

Lemma 8.9. Let (20) and (21) hold. For η̂ = argmaxb∈[s,e]\Is,e
|Cb({y0,t}et=s)|,

there exists a true change-point ηq ≡ η ∈ (s, e) satisfying |η̂ − η| < c0εT with
probability converging to one, where εT = n2ϕΔ−2

ϕ T 5(1−β) log2 T .

Proof. We adopt the notations from the proof of Lemma 8.4 with g0,t in place
of gt.

Recall that from Lemma 8.3, g∗t needs to have its change-point η coincide
with one of the true change-points ηq1+1, . . . , ηq2 . Trivially, such η satisfies (26)
since |Cη({g0,t}et=s)| = maxb∈[s,e) |Cb({g0,t}et=s)|. Under (20)–(21), we have either
(η−s+1)∧(e−η) < c3εT or (η−s+1)∧(e−η) > c2T

β . If the former is the case,
since |g0,t| ≤ 2f̄nϕ uniformly in t under (A3), |Cη({g0,t}et=s)| ≤ 4f̄nϕ(c3εT )

1/2 <
C4ΔϕT

β−1/2, which leads to contradict (28) and thus (η−s+1)∧(e−η) > c2T
β .



Change-point detection in panel data 2035

Now we turn our attention to bound the terms |III| and |IV | in the presence
of multiple change-points. Firstly,

|(η̂ − s+ 1)−1
∑η̂

t=s g0,t − (η − s+ 1)−1
∑η

t=s g0,t|

=

∣∣∣∣ 1
η̂−s+1

√
(η̂−s+1)(e−η̂)

e−s+1 Cη̂({g0,t}et=s)− 1
η−s+1

√
(η−s+1)(e−η)

e−s+1 Cη({g0,t}et=s)

∣∣∣∣
= 1√

e−s+1

∣∣∣√ e−η̂
η̂−s+1{Cη̂({g0,t}et=s)− Cη({g0,t}et=s)}

−
(√

e−η
η−s+1 −

√
e−η̂

η̂−s+1

)
Cη({g0,t}et=s)

∣∣∣
≤
√

e−η
(e−s+1)(η−s+1)

{∣∣∣∣∣1−
√

1− η̂−η
e−η√

1+ η̂−η
η−s+1

∣∣∣∣∣ |Cη({g0,t}et=s)|+

|Cη̂({g0,t}et=s)− Cη({g0,t}et=s)

∣∣∣∣}
≤
√

e−η
(e−s+1)(η−s+1)

{
C7T

−βεT |Cη({g0,t}et=s)|+ |Cη̂({g0,t}et=s)− Cη({g0,t}et=s)|
}

for some fixed C7 > 0, where the last inequality follows from the Taylor expan-
sion. Since T β−2 ≤ T−β , Lemma 8.8 leads to

|III| ≤ 2nϕεTT
−β log T |Cη({g0,t}et=s)|

(recall the notation from Lemma 8.4) with probability tending to one. Similarly,

|(η̂ − s+ 1)−1
∑η̂

t=s g0,t − (e− η)−1
∑e

t=η+1 g0,t|

=

∣∣∣∣ 1
η̂−s+1

√
(η̂−s+1)(e−η̂)

e−s+1 Cη̂({g0,t}et=s) +
1

e−η

√
(η−s+1)(e−η)

e−s+1 Cη({g0,t}et=s)

∣∣∣∣
= 1√

e−s+1

∣∣∣(√ e−η̂
η̂−s+1 +

√
η−s+1
e−η

)
Cη({g0,t}et=s)

+
√

e−η̂
η̂−s+1{Cη̂({g0,t}et=s)− Cη({g0,t}et=s)}

∣∣∣
≤ 2

√
e−s+1

(η−s+1)(e−η) |Cη({g0,t}et=s)|,

and thus |IV | ≤ 4nϕ√c0εTT
−β/2 log T |Cη({gt}et=s)|. Plugging in the above

bounds to the condition given in Lemma 8.4, we obtain

|Cη({g0,t}et=s)||Cη({g0,t}et=s)− Cη̂({g0,t}et=s)| >

C8n
ϕ log T

{
(εTT

−β |Cη({g0,t}et=s)|) ∨ (
√
εTT

−β/2|Cη({g0,t}et=s)|) ∨ (nϕ log T )
}

for some C8 > 0. Due to (28), the above is met with εT = n2ϕΔ−2
ϕ T 5(1−β) log2 T .

With the above lemmas, we are now ready to prove the theorem. At the
beginning of the DCBS algorithm, we have s = 1 and e = T for which both (20)
and (21) hold, and thus ηr1 is estimated by η̂r1 within the distance of εT from a
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true change-point (Lemma 8.9). Then both of the two segments defined to the
left and to the right of η̂r1 satisfy (20)–(21) and so do all the subsequently defined
segments, and therefore the same arguments apply to show the consistency of
the estimates η̂r2 , η̂r3 , . . . , η̂rN .

Once all the N change-points are detected, any segment [s, e] determined by
two adjacent η̂1, . . . , η̂N (including η0 = 1 and ηN+1 = T ) satisfy either

(i) ∃ 1 ≤ r ≤ N such that r = q1+1 = q2 in (19) and (ηr − s+1)∧ (e− ηr) ≤
c6εT , or

(ii) ∃ 1 ≤ r ≤ N − 1 such that r = q1 + 1 and r + 1 = q2, and (ηr − s + 1) ∨
(e− ηr+1) ≤ c6εT

for some positive constant c6. Under (i), let

(η̂, m̂) = arg max
b∈[s,e]\Is,e 1≤m≤n

Dϕ
m({|X (j)

s,b,e|}nj=1),

and we adopt the notations y0,t, g0,y and ξ0,t introduced at the beginning of
this section with respect to η̂ and m̂. Then,

|Cη̂({y0,t}et=s)| ≤ |Cη̂({g0,t}et=s)|+ c4n
ϕ log T ≤ |Cηr ({g0,t}et=s)|+ c4n

ϕ log T

≤ 4f̄nϕ(c6εT )
1/2 + c4n

ϕ log T < πϕ
n,T ,

from the fact that |g0,t| ≤ 2f̄nϕ. A similarly conclusion can be drawn in the
case of (ii) as well, and thus the proof is completed. �

8.4. Proof of Theorem 4.1

We first prove (a) of Theorem 4.1, which states that D̃m achieves consistency in
identifying and locating the change-point under the single change-point scenario.

As in Section 8.2, let (η̂1, m̂1) = argmaxb∈[1,T ]\I1,T ,1≤m≤n D̃m({|X (j)
1,b,T |}nj=1),

and adopt the notations {k01, . . . , k0n} and i0j ∈ {−1, 1} therein. We define an
additive model y0,t = g0,t + ξ0,t, where

y0,t =

{
γn +

√
m̂1(2n− m̂1)

2n

}⎧⎨⎩ 1

m̂1

m̂1∑
j=1

i0j · x̃k0
j ,t

− 1

2n− m̂1

n∑
j=m̂1+1

i0j · x̃k0
j ,t

⎫⎬⎭ ,

and g0,t and ξ0,t are constructed analogously with f̃k0
j ,t

and ε̃k0
j ,t

in place of

x̃k0
j ,t
, respectively.

Provided that n−1/2γn → 0 with n → ∞, we have (16)–(17) satisfied with
{ξ0,t} replacing {ξr,t} with the bound of the order n1/2 log T . Also as in (25), it

is shown that |Cη̂1
({g0,t}Tt=1)| ≥ C9(γn ∨ m

1/2
1 )δ̃1

√
η1(T−η1)

T for some constant

C9 > 0, and thus D̃m̂1
({|X (j)

1,η̂1,T
|}nj=1) > π̃n,T with probability tending to one,

which indicates the consistency of the test T̃1,T > π̃n,T . Further, the same
arguments adopted in bounding |η̂1 − η1| for Theorem 3.2 are applicable to

show that εT = n{(γn ∨m
1/2
1 )δ̃1}−2 log2 T . Similarly, (28) can be modified for

D̃m and thus the proof of (b) follows verbatim. �
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Supplementary Material

Supplement to “Change-point detection in panel data via double
CUSUM statistic”
(doi: 10.1214/16-EJS1155SUPP; .pdf). We provide the detailed description of
the Local Bootstrap and proof of some auxillary results. In addition, the ta-
bles and plots summarising the outcome of the simulation studies conducted in
Section 5 are presented.
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