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1. Introduction

The celebrated Bernstein-von Mises (BvM) theorem [24, 3, 30, 25, 28] justifies
Bayesian methods from a frequentist point of view. It bridges the gap between
Bayesians and frequentists. Consider a parametric model (Pθ : θ ∈ Θ), and a
prior distribution θ ∼ Π. Suppose we have i.i.d. observationsXn = (X1, . . . , Xn)
from the product measure Pn

θ∗ . Under some weak assumptions, Bernstein-von
Mises theorem shows that the conditional distribution of

√
n(θ − θ̂)|Xn

is asymptotically N(0, V 2) under the distribution Pn
θ∗ with some centering θ̂

and covariance V 2 when n → ∞. In a local asymptotic normal (LAN) family,

the centering θ̂ can be taken as the maximum likelihood estimator (MLE) and
V 2 as the inverse of the Fisher information matrix. An immediate consequence
of the Bernstein-von Mises theorem is that the distributions

√
n(θ − θ̂)|Xn and

√
n(θ̂ − θ)|θ = θ∗

are asymptotically the same under the sampling distribution Pn
θ∗ . Note that the

first one, known as the posterior, is of interest to Bayesians, and the second one is
of interest to frequentists in the large sample theory. Applications of Bernstein-
von Mises theorem include constructing confidence sets from Bayesian methods
with frequentist coverage guarantees.

Besides the classical parametric setting where the parameter has a fixed di-
mension, BvM results can also be established when the unknown parameter is
of increasing dimensions. For example, [19, 4, 11] established BvM results in
high-dimensional linear models, and [18, 20, 5, 15] established BvM results in
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high-dimensional exponential models, given certain conditions on the growth
rate of the dimension. In this paper, we consider the question whether it is
possible to have BvM results for matrix functionals, such as matrix entries
and eigenvalues, when the dimension of the matrix p grows with the sample
size n.

This paper provides some positive answers to this question. To be specific, we
consider a multivariate Gaussian likelihood and put a prior on the covariance
matrix. We prove that the posterior distribution has a BvM behavior for various
matrix functionals including entries of the covariance matrix, entries of the pre-
cision matrix, quadratic forms, log-determinant, and eigenvalues. All of these
conclusions are obtained from a general theoretical framework we provide in
Section 2, where we propose explicit easy-to-check conditions on both function-
als and priors. We illustrate the theory by both conjugate and non-conjugate
priors. A slight extension of the general framework leads to BvM results for
discriminant analysis. Both linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA) are considered.

This work is inspired by a growing interest in studying the BvM phenomena
on a low-dimensional functional of the whole parameter. That is, the asymptotic
distribution of √

n(f(θ)− f̂)|Xn,

with f being a map from Θ to R
d, where d does not grow with n. A special

case is the semiparametric setting, where θ = (μ, η) contains both a paramet-
ric part μ and a nonparametric part η. The functional f takes the form of
f(μ, η) = μ. To the best of our knowledge, the first general framework for
semiparametric BvM with conditions cleanly stated and easy to check is the
beautiful work by [9], in which the recent advancement in Bayes nonparamet-
rics such as [21] is nicely absorbed. [27] proves BvM for linear functionals for

which the distribution of
√
n(f(θ) − f̂)|Xn converges to a mixture of normal

instead of a normal. At the point when this paper is drafted, the most up-
dated theory is due to [10], which provides conditions for BvM to hold for
general functionals. The general framework we provide for matrix functional
BvM is greatly inspired by the framework developed in [10] for functionals
in nonparametrics. However, the theory in this paper is different from theirs
since we can take advantage of the structure in the Gaussian likelihood and
avoid unnecessary expansion and approximation. Hence, in the covariance ma-
trix functional case, our assumptions can be significantly weaker. A related
line of development is the semiparametric BvM results using profile likelihood
[12, 13, 14].

The paper is organized as follows. In Section 2, we state the general theo-
retical framework of our results. It is illustrated with two priors, one conjugate
prior and one non-conjugate prior. Section 3 considers specific examples of ma-
trix functionals and the associated BvM results. The extension to discriminant
analysis is developed in Section 4. Finally, we devote Section 5 to some discus-
sions on the assumptions and possible generalizations. Most of the proofs are
gathered in Section 6.
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1.1. Notation

Given a matrix A, we use ||A|| to denote its spectral norm, and ||A||F to denote
its Frobenius norm. The norm || · ||, when applied to a vector, is understood to
be the usual vector norm. Let Sp−1 be the unit sphere in R

p. For any a, b ∈ R,
we use notation a ∨ b = max(a, b) and a ∧ b = min(a, b). The probability PΣ

stands for N(0,Σ) and P(μ,Ω) is for N(μ,Ω−1). In most cases, we use Σ to denote
the covariance matrix, and Ω to denote the precision matrix (including those
with superscripts or subscripts). The notation P is for a generic probability,
whenever the distribution is clear in the context. We use OP (·) and oP (·) to
denote stochastic orders under the sampling distribution of the data. We use C
to indicate constants throughout the paper. They may be different from line to
line.

2. A general framework

Consider i.i.d. samples Xn = (X1, . . . , Xn) drawn from N(0,Σ∗), where Σ∗ is a
p× p covariance matrix with inverse Ω∗. A Bayes method puts a prior Π on the
precision matrix Ω, and the posterior distribution is defined as

Π(B|Xn) =

∫
B
exp

(
ln(Ω)

)
dΠ(Ω)∫

exp
(
ln(Ω)

)
dΠ(Ω)

,

where ln(Ω) is the log-likelihood of N(0,Ω−1) defined as

ln(Ω) =
n

2
log det(Ω)− n

2
tr(ΩΣ̂), where Σ̂ =

1

n

n∑
i=1

XiX
T
i .

We deliberately omit the logarithmic normalizing constant in ln(Ω) for sim-
plicity and it will not affect the definition of the posterior distribution. Note
that specifying a prior on the precision matrix Ω is equivalent to specifying a
prior on the covariance matrix Ω−1. The goal of this work is to show that the
asymptotic distribution of the functional f(Ω) under the posterior distribution
is approximately normal, i.e.,

Π
(√

nV −1
(
f(Ω)− f̂

)
≤ t|Xn

)
→ P(Z ≤ t),

where Z ∼ N(0, 1), as (n, p) → ∞ jointly with some appropriate centering f̂

and variance V 2. In this paper, we choose the centering f̂ to be the sample
version of f(Ω) = f(Σ−1), where Σ is replaced by the sample covariance Σ̂, and

compare the BvM results with the classical asymptotical normality for f̂ in the
frequentist sense. Other centering f̂ , including bias correction on the sample
version, will be considered in the future work. The paper focuses on Gaussian
distribution, though the idea of the general framework is possible to be extended
to other distributions.
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We first provide a framework for approximately linear functionals, and then
use the general theory to derive results for specific examples of priors and func-
tionals. For clarity of presentation, we consider the cases of functionals of Σ and
functionals of Ω separately. Though a functional of Σ is also a functional of Ω,
we treat them separately, since some functional may be “more linear” in Σ than
in Ω, or the other way around.

2.1. Functional of the covariance matrix

Let us first consider a functional of Σ, f = φ(Σ). The functional is approximately
linear in a neighborhood of the truth. We assume there is a set An satisfying

An ⊂ {||Σ− Σ∗|| ≤ δn} , (2.1)

for any sequence δn = o(1), on which φ(Σ) is approximately linear in the sense
that there exists a symmetric matrix Φ such that

sup
An

√
n
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥−1

F

∣∣∣φ(Σ)− φ(Σ̂)− tr
(
(Σ− Σ̂)Φ

)∣∣∣ = oP (1). (2.2)

When φ(Σ) is exactly linear in the sense that φ(Σ)−φ(Σ̂) = tr((Σ− Σ̂)Φ), (2.2)
automatically holds. The main result is stated in the following theorem.

Theorem 2.1. Under the assumptions of (2.2) and ||Σ∗|| ∨ ||Ω∗|| = O(1), if
for a given prior Π, the following two conditions are satisfied:

1. Π(An|Xn) = 1− oP (1),

2. For any fixed t ∈ R,
∫
An

exp(ln(Ωt))dΠ(Ω)∫
An

exp(ln(Ω))dΠ(Ω)
= 1 + oP (1) for the perturbed

precision matrix

Ωt = Ω+

√
2t√

n
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

Φ,

then

sup
t∈R

∣∣∣∣∣Π
( √

n
(
φ(Σ)− φ(Σ̂)

)
√
2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ = oP (1),

where Z ∼ N(0, 1).

The theorem gives explicit conditions on both prior and functional. The first
condition says that the posterior distribution concentrates on a neighborhood of
the truth under the spectral norm, on which the functional is approximately lin-
ear. The second condition says that the bias caused by the shifted parameter can
be absorbed by the posterior distribution. Under both conditions, Theorem 2.1
shows that the asymptotic posterior distribution of φ(Σ) is

N

(
φ(Σ̂), 2n−1

∥∥∥Σ∗1/2ΦΣ∗1/2
∥∥∥2
F

)
.
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2.2. Functional of the precision matrix

We state a corresponding theorem for functionals of precision matrix in this
section. The condition for linear approximation is slightly different. Consider
the functional f = ψ(Ω). Let An be a set satisfying

An ⊂ {√rp||Σ− Σ∗|| ≤ δn} , (2.3)

for some integer r > 0 and any sequence δn = o(1). We assume the functional
ψ(Ω) is approximately linear on An in the sense that there exists a symmetric
matrix Ψ satisfying rank(Ψ) ≤ r, such that

sup
An

√
n
∥∥∥Ω∗1/2ΨΩ∗1/2

∥∥∥−1

F

∣∣∣ψ(Ω)− ψ(Σ̂−1)− tr
(
(Ω− Σ̂−1)Ψ

)∣∣∣ = oP (1). (2.4)

The main result is stated in the following theorem.

Theorem 2.2. Under the assumptions of (2.4), rp2/n = o(1) and ||Σ∗|| ∨
||Ω∗|| = O(1), if for a given prior Π, the following conditions are satisfied:

1. Π(An|Xn) = 1− oP (1),

2. For any fixed t ∈ R,
∫
An

exp(ln(Ωt))dΠ(Ω)∫
An

exp(ln(Ω))dΠ(Ω)
= 1 + oP (1) for the perturbed

precision matrix

Ωt = Ω−
√
2t√

n
∥∥Ω∗1/2ΨΩ∗1/2

∥∥
F

Ω∗ΨΩ∗,

then

sup
t∈R

∣∣∣∣∣Π
(√

n
(
ψ(Ω)− ψ(Σ̂−1))

)
√
2
∥∥Ω∗1/2ΨΩ∗1/2

∥∥
F

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ = oP (1),

where Z ∼ N(0, 1).

Remark 2.1. The extra condition rp2/n = o(1) does not appear in Theo-
rem 2.1. We show that this condition is indeed sharp for Theorem 2.2 in Sec-
tion 5.3 in comparison with the asymptotics of MLE.

2.3. Priors

In this section, we provide examples of priors. In particular, we consider both
a conjugate prior and a non-conjugate prior. A covariance matrix prior can
be viewed as a vector prior with an additional constraint of positive semidef-
initeness. Note that the result of a conjugate prior can be derived by directly
exploring the posterior form without applying our general theory. However, the
general framework provided in this paper can handle both conjugate and non-
conjugate priors in a unified way.
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2.3.1. Wishart prior

Consider the Wishart prior Wp(I, p+ b− 1) on Ω with density function

dΠ(Ω)

dΩ
∝ exp

(
b− 2

2
log det(Ω)− 1

2
tr(Ω)

)
, (2.5)

supported on the set of symmetric positive semi-definite matrices.

Lemma 2.1. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p/n = o(1). Then, for any
integer b = O(1), the prior Π = Wp(I, p+ b− 1) satisfies the two conditions in
Theorem 2.1 for some An. If the extra assumption rp2/n = o(1) is made, the
two conditions in Theorem 2.2 are also satisfied for some An.

Remark 2.2. In the proof of Lemma 2.1 (Section 6.2), we set

An =

{
||Σ− Σ∗|| ≤ M

√
p

n

}
,

for some M > 0.

2.3.2. Gaussian prior

Consider Gaussian prior on Ω with density function

dΠ(Ω)

dΩ
∝ exp

(
− 1

2
||Ω||2F

)
, (2.6)

supported on the following set

{
Ω = ΩT � 0, ||Ω|| < 2Λ, ||Σ|| ≤ 2Λ

}
,

for some constant Λ > 0.

Lemma 2.2. Assume ||Σ∗|| ∨ ||Ω∗|| ≤ Λ = O(1) and p2 logn
n = o(1). The

Gaussian prior Π defined above satisfies the two conditions in Theorem 2.1 for

some appropriate An. If the extra assumption rp3 logn
n = o(1) is made, the two

conditions in Theorem 2.2 are also satisfied for some appropriate An.

Remark 2.3. In the proof of Lemma 2.2 (Section 6.3), we set

An =

{
||Σ− Σ∗||F ≤ M

√
p2 logn

n

}
,

for some constant M > 0.
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3. Examples of matrix functionals

We consider various examples of functionals in this section. The two conditions
of Theorem 2.1 and Theorem 2.2 are satisfied by Wishart prior and Gaussian
prior, as is shown in Lemma 2.1 and Lemma 2.2 respectively. Hence, it is suffi-
cient to check the approximate linearity of the functional with respect to Σ or
Ω for the BvM result to hold. Among the four examples we consider, the first
two are exactly linear and the last two are approximately linear. In the below
examples, Z is always a random variable distributed as N(0, 1).

3.1. Entry-wise functional

We consider the elementwise functional σij = φij(Σ) and ωij = ψij(Ω). Note
that these two functionals are linear with respect to Σ and Ω respectively. For
σij , we write

σij = tr
(
Σ
(1
2
Eij +

1

2
Eji

))
,

where the matrix Eij is the (i, j)-th basis in R
p×p with 1 on its (i, j)-the element

and 0 elsewhere. For ωij , we write

ωij = tr
(
Ω
(1
2
Eij +

1

2
Eji

))
.

Note that rank(12Eij +
1
2Eji) ≤ 2. Hence, the corresponding matrices Φ and Ψ

in the linear expansion of φ and ψ are 1
2Eij +

1
2Eji. In view of Theorem 2.1 and

Theorem 2.2, the asymptotic variance for
√
n
(
φ(Σ)− φ(Σ̂)

)
is

2
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥2
F
= σ∗

iiσ
∗
jj + σ∗2

ij .

The asymptotic variance for
√
n
(
ψ(Ω)− ψ(Σ̂−1)

)
is

2
∥∥∥Ω∗1/2ΨΩ∗1/2

∥∥∥2
F
= ω∗

iiω
∗
jj + ω∗2

ij .

Plugging these quantities in Theorem 2.1, Theorem 2.2, Lemma 2.1, and
Lemma 2.2, we have the following Bernstein-von Mises results.

Corollary 3.1. Consider the Wishart prior Π = Wp(I, p+ b− 1) in (2.5) with
integer b = O(1). Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p/n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣∣Π
(√

n(σij − σ̂ij)√
σ∗
iiσ

∗
jj + σ∗2

ij

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣∣ → 0,

where σ̂ij is the (i, j)-th element of the sample covariance Σ̂. If we additionally
assume p2/n = o(1), then

Pn
Σ∗ sup

t∈R

∣∣∣∣∣∣Π
( √

n(ωij − ω̂ij)√
ω∗
iiω

∗
jj + ω∗2

ij

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣∣ → 0,

where ω̂ij is the (i, j)-th element of Σ̂−1.
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Corollary 3.2. Consider the Gaussian prior Π in (2.6). Assume ||Σ∗||∨||Ω∗|| ≤
Λ = O(1) and p2 log n

n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣∣Π
(√

n(σij − σ̂ij)√
σ∗
iiσ

∗
jj + σ∗2

ij

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣∣ → 0.

If we additionally assume p3 logn
n = o(1), then

Pn
Σ∗ sup

t∈R

∣∣∣∣∣∣Π
( √

n(ωij − ω̂ij)√
ω∗
iiω

∗
jj + ω∗2

ij

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣∣ → 0,

where σ̂ij and ω̂ij are defined in Corollary 3.1.

3.2. Quadratic form

Consider the functional φv(Σ) = vTΣv = tr(ΣvvT ) and ψv(Ω) = vTΩv =
tr(ΩvvT ) for some v ∈ R

p. Therefore, the corresponding matrices Φ and Ψ are
vvT . It is easy to see that rank(vvT ) = 1. The asymptotic variances are

2
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥2
F
= 2|vTΣ∗v|2, 2

∥∥∥Ω∗1/2ΨΩ∗1/2
∥∥∥2
F
= 2|vTΩ∗v|2.

Plugging these representations in Theorem 2.1, Theorem 2.2, Lemma 2.1 and
Lemma 2.2, we have the following Bernstein-von Mises results.

Corollary 3.3. Consider the Wishart prior Π = Wp(I, p+ b− 1) in (2.5) with
integer b = O(1). Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p/n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n(vTΣv − vT Σ̂v)√
2|vTΣ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0.

If we additionally assume p2/n = o(1), then

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n(vTΩv − vT Σ̂−1v)√
2|vTΩ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0.

Corollary 3.4. Consider the Gaussian prior Π in (2.6). Assume ||Σ∗||∨||Ω∗|| ≤
Λ = O(1) and p2 log n

n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n(vTΣv − vT Σ̂v)√
2|vTΣ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0.

If we additionally assume p3 logn
n = o(1), then

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n(vTΩv − vT Σ̂−1v)√
2|vTΩ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0.
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Remark 3.1. The entry-wise functional and the quadratic form are both special
cases of the functional uTΣv for some u, v ∈ R

p. It is direct to apply the general
framework to this functional and obtain the result

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
( √

n(uTΣv − uT Σ̂v)√
|uTΣ∗v|2 + |uTΣ∗u||vTΣ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0.

Similarly, for the functional uTΩv for some u, v ∈ R
p, we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
( √

n(uTΩv − uT Σ̂−1v)√
|uTΩ∗v|2 + |uTΩ∗u||vTΩ∗v|

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0,

Both results can be derived under the same conditions of Corollary 3.3 and
Corollary 3.4.

3.3. Log determinant

In this section, we consider the log-determinant functional. That is φ(Σ) =
log det(Σ). Different from entry-wise functional and quadratic form, we do not
need to consider log det(Ω) because of the simple observation

log det(Ω) = − log det(Σ).

The following lemma establishes the approximate linearity of log det(Σ).

Lemma 3.1. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p3/n = o(1), then for any
δn = o(1), we have

sup{ √
n/p||Σ−Σ∗||2F

∨√
p||Σ−Σ∗||F≤δn

}
√

n

p

∣∣∣log det(Σ)− log det(Σ̂)− tr
(
(Σ− Σ̂)Ω∗

)∣∣∣ = oP (1).

By Lemma 3.1, the corresponding matrix Φ is Ω∗. The asymptotic variance
of

√
n(φ(Σ)− φ(Σ̂)) is

2
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥2
F
= 2p.

Corollary 3.5. Consider the Wishart prior Π = Wp(I, p+ b− 1) in (2.5) with
integer b = O(1). Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p3/n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n

2p

(
log det(Σ)− log det(Σ̂)

)
≤ t

∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0,

where Σ̂ is the sample covariance matrix.
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Proof. By Theorem 2.1 and Lemma 2.1, we only need to check the approximate
linearity of the functional. According to the proof of Lemma 2.1, the choice of
An such that Π(An|Xn) = 1− oP (1) is

An =

{
||Σ− Σ∗|| ≤ M

√
p

n

}
,

for some M > 0. This implies ||Σ− Σ∗||F ≤ M
√

p2

n . Therefore,

An ⊂ {
√
n/p||Σ− Σ∗||2F ∨√

p||Σ− Σ∗||F ≤ δn},

for some δn = o(1). By Lemma 3.1, we have

sup
An

√
n

p

∣∣∣log det(Σ)− log det(Σ̂)− tr
(
(Σ− Σ̂)Ω∗

)∣∣∣ = oP (1),

and the approximate linearity holds.

Corollary 3.6. Consider the Gaussian prior Π in (2.6). Assume ||Σ∗||∨||Ω∗|| ≤
Λ = O(1) and p3(logn)2

n = o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n

2p

(
log det(Σ)− log det(Σ̂)

)
≤ t

∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0,

where Σ̂ is the sample covariance matrix.

Proof. The proof of this corollary is the same as the proof of the last one using
Wishart prior. The only difference is that the choice of An, according to the
proof of Lemma 2.2, is

An =

{
||Σ− Σ∗||F ≤ M

√
p2 logn

n

}
,

for some M > 0. Therefore,

An ⊂ {
√
n/p||Σ− Σ∗||2F ∨√

p||Σ− Σ∗||F ≤ δn},

for some δn = o(1) under the assumption, and the approximate linearity holds.

One immediate consequence of the result is the Bernstein-von Mises result
for the entropy functional, defined as

H(Σ) =
p

2
+

p log(2π)

2
+

log det(Σ)

2
.

Then it is direct that√
2n

p

(
H(Σ)−H(Σ̂)

)∣∣∣Xn ≈ N(0, 1).
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3.4. Eigenvalues

In this section, we consider the eigenvalue functional. In particular, let
{λm(Σ)}pm=1 be eigenvalues of the matrix Σ with decreasing order. We inves-
tigate the posterior distribution of λm(Σ) for each m = 1, . . . , p. Define the
eigen-gap

δ =

⎧⎪⎨
⎪⎩
|λ1(Σ

∗)− λ2(Σ
∗)| m = 1,

min{|λm(Σ∗)− λm−1(Σ
∗)|, |λm(Σ∗)− λm+1(Σ

∗)|} m = 2, 3, . . . , p− 1,

|λm−1(Σ
∗)− λm(Σ∗)| m = p.

The asymptotic order of δ plays an important role in the theory. The following
lemma characterizes the approximate linearity of λm(Σ).

Lemma 3.2. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p
δ
√
n

= o(1), then for any

δn = o(1), we have

sup{ δ−1√n||Σ−Σ∗||2
∨(δ−1+

√
p)||Σ−Σ∗||≤δn

}
√
n

∣∣∣∣∣λm(Σ)−λm(Σ̂)−tr

(
(Σ−Σ̂)u∗

mu∗T
m

)∣∣∣∣∣
|λm(Σ∗)| = oP (1),

where u∗
m is the m-th eigenvector of Σ∗.

Lemma 3.2 implies that the corresponding Φ in the linear expansion of φ(Σ)
is u∗

mu∗T
m , and the asymptotic variance is

2
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥2
F
= 2|λm(Σ∗)|2.

We also consider eigenvalues of the precision matrix. With slight abuse of
notation, we define the eigengap of λm(Ω∗) to be

δ =

⎧⎪⎨
⎪⎩
|λ1(Ω

∗)− λ2(Ω
∗)| m = 1,

min{|λm(Ω∗)− λm−1(Ω
∗)|, |λm(Ω∗)− λm+1(Ω

∗)|} m = 2, 3, . . . , p− 1,

|λm−1(Ω
∗)− λm(Ω∗)| m = p.

The approximate linearity of λm(Ω) is established in the following lemma.

Lemma 3.3. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1), then for any δn = o(1), we have

sup{ δ−1√n||Σ−Σ∗||2
∨(δ−1+

√
p)||Σ−Σ∗||≤δn

}
√
n

∣∣∣∣∣λm(Ω)−λm(Σ̂−1)−tr

(
(Ω−Σ̂−1)u∗

mu∗T
m

)∣∣∣∣∣
|λm(Ω∗)| = o(1),

where u∗
m is the m-th eigenvector of Ω∗.

Similarly, Lemma 3.3 implies that the corresponding Ψ in the linear expansion
of ψ(Ω) is u∗

mu∗T
m , and the asymptotic variance is

2
∥∥∥Ω∗1/2ΨΩ∗1/2

∥∥∥2
F
= 2|λm(Ω∗)|2.
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Plugging the above lemmas into our general framework, we get the following
corollaries.

Corollary 3.7. Consider the Wishart prior Π = Wp(I, p+ b− 1) in (2.5) with
integer b = O(1). Assume ||Σ∗|| ∨ ||Ω∗|| = O(1) and p

δ
√
n
= o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n√
2λm(Σ∗)

(
λm(Σ)− λm(Σ̂)

)
≤ t|Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0,

where Σ̂ is the sample covariance matrix. If we instead assume p
δ
√
n
= o(1) with

δ being the eigengap of λm(Ω∗), then

Pn
Σ∗ sup

t∈R

∣∣∣∣Π(
√

n√
2λm(Ω∗)

(
λm(Ω)− λm(Σ̂−1)

)
≤ t|Xn

)
− P

(
Z ≤ t

)∣∣∣∣ → 0.

Proof. We only need to check the approximate linearity. According to Lemma 2.1,
the choice of An is

An =

{
||Σ− Σ∗|| ≤ M

√
p

n

}
,

for some M > 0. The assumption p
δ
√
n
= o(1) implies

δ−1
√
n||Σ− Σ∗||2 ∨ (δ−1 +

√
p)||Σ− Σ∗|| = o(1),

on the set An. By Lemma 3.2 and Lemma 3.3, we have

sup
An

√
n|λm(Σ∗)|−1

∣∣∣λm(Σ)− λm(Σ̂)− tr
(
(Σ− Σ̂)u∗

mu∗T
m

)∣∣∣ = oP (1),

and

sup
An

√
n|λm(Ω∗)|−1

∣∣∣λm(Ω)− λm(Σ̂−1)− tr
(
(Ω− Σ̂−1)u∗

mu∗T
m

)∣∣∣ = oP (1).

Corollary 3.8. Consider the Gaussian prior Π in (2.6). Assume ||Σ∗||∨||Ω∗|| ≤
Λ = O(1) and p2 log n

δ
√
n

= o(1), then we have

Pn
Σ∗ sup

t∈R

∣∣∣∣∣Π
(√

n√
2λm(Σ∗)

(
λm(Σ)− λm(Σ̂)

)
≤ t|Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ → 0,

where Σ̂ is the sample covariance matrix. If we instead assume p2 logn
δ
√
n

= o(1)

with δ being the eigengap of λm(Ω∗), then

Pn
Σ∗ sup

t∈R

∣∣∣∣Π(
√

n√
2λm(Ω∗)

(
λm(Ω)− λm(Σ̂−1)

)
≤ t|Xn

)
− P

(
Z ≤ t

)∣∣∣∣ → 0.
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Proof. We only need to check the approximate linearity. According to Lemma 2.2,
the choice of An is

An =

{
||Σ− Σ∗||F ≤ M

√
p2 logn

n

}
,

for some M > 0. The assumption p2 logn
δ
√
n

= o(1) implies

δ−1
√
n||Σ− Σ∗||2 ∨ (δ−1 +

√
p)||Σ− Σ∗|| = o(1),

on the set An. By Lemma 3.2 and Lemma 3.3, we have

sup
An

√
n|λm(Σ∗)|−1

∣∣∣λm(Σ)− λm(Σ̂)− tr
(
(Σ− Σ̂)u∗

mu∗T
m

)∣∣∣ = oP (1),

and

sup
An

√
n|λm(Ω∗)|−1

∣∣∣λm(Ω)− λm(Σ̂−1)− tr
(
(Ω− Σ̂−1)u∗

mu∗T
m

)∣∣∣ = oP (1).

4. Discriminant analysis

In this section, we generalize the theory in Section 2 to handle the BvM theorem
in discriminant analysis. Let Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn) be n
i.i.d. training samples, where

Xi ∼ N(μ∗
X ,Ω∗−1

X ), Yi ∼ N(μ∗
Y ,Ω

∗−1
Y ).

The discriminant analysis problem is to predict whether an independent new
sample z is from the X-class or Y -class. For a given (μX , μY ,ΩX ,ΩY ), Fisher’s
QDA rule can be written as

Δ(μX , μY ,ΩX ,ΩY ) =− (z − μX)TΩX(z − μX)

+ (z − μY )
TΩY (z − μY ) + log

det(ΩX)

det(ΩY )
.

In this section, we are going to find the asymptotic posterior distribution

√
nV −1

(
Δ(μX , μY ,ΩX ,ΩY )− Δ̂

)∣∣∣Xn, Y n, z,

with some appropriate variance V 2 and some prior distribution. Since the result
is conditional on the new observation z, we treat it as a fixed (non-random)
vector in this section without loss of generality.

Note that when ΩX = ΩY is assumed, the QDA rule can be reduced to the
LDA rule. We give general results for Bernstein-von Mises theorem to hold in
both cases respectively.
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4.1. Linear discriminant analysis

Assume Ω∗
X = Ω∗

Y . For a given prior Π, the posterior distribution for LDA is
defined as

Π(B|Xn, Y n) =

∫
B
exp

(
ln(μX , μY ,Ω)

)
dΠ(μX , μY ,Ω)∫

exp
(
ln(μX , μY ,Ω)

)
dΠ(μX , μY ,Ω)

,

where ln(μX , μY ,Ω) is the log-likelihood function decomposed as

ln(μX , μY ,Ω) = lX(μX ,Ω) + lY (μY ,Ω),

where

lX(μX ,Ω) =
n

2
log det(Ω)− n

2
tr(ΩΣ̃X),

with Σ̃X = 1
n

∑n
i=1(Xi−μX)(Xi−μX)T , and lY (μY ,Ω) is defined in the similar

way.
Consider the LDA functional

Δ(μX , μY ,Ω) = −(z − μX)TΩ(z − μX) + (z − μY )
TΩ(z − μY ).

Define the following quantities

Φ =
1

2
Ω∗

(
(z − μ∗

X)(z − μ∗
X)T − (z − μ∗

Y )(z − μ∗
Y )

T
)
Ω∗,

ξX = 2(z − μ∗
X), ξY = 2(μ∗

Y − z),

Ωt = Ω+
2t√
n
Φ,

μX,t = μX +
t√
n
ξX , μY,t = μY +

t√
n
ξY ,

Σ̂ =
1

2

(
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T +
1

n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T

)
,

V 2 = 4
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥2
F
+ ξTXΩ∗ξX + ξTY Ω

∗ξY . (4.1)

Assume An is a set satisfying

An ⊂
{√

n
(
||μX − μ∗

X ||2 + ||μY − μ∗
Y ||2 + ||Σ− Σ∗||2

)

∨√p
(
||μX − μ∗

X ||+ ||μY − μ∗
Y ||+ ||Σ− Σ∗||

)
≤ δn

}
, for some δn = o(1),

The main result for LDA is the following theorem.
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Theorem 4.1. Assume that ||Σ∗|| ∨ ||Ω∗|| = O(1), p2/n = o(1), and V −1 =
O(1). If for a given prior Π, the following two conditions are satisfied:

1. Π(An|Xn, Y n) = 1− oP (1),

2. For any fixed t ∈ R,
∫
An

exp(ln(μX,t,μY,t,Ωt))dΠ(μX ,μY ,Ω)∫
An

exp(ln(μX ,μY ,Ω))dΠ(μX ,μY ,Ω)
= 1 + oP (1),

then

sup
t∈R

∣∣∣Π(√nV −1
(
Δ(μX , μY ,Ω)− Δ̂

)
≤ t|Xn, Y n

)
− P

(
Z ≤ t

)∣∣∣ = oP (1),

where Z ∼ N(0, 1) and the centering is Δ̂ = Δ(X̄, Ȳ , Σ̂−1).

A curious condition in the above theorem is V −1 = O(1). The following
proposition shows it is implied by the separation of the two classes.

Proposition 4.1. Under the setting of Theorem 4.1, if ||μ∗
X − μ∗

Y || ≥ c for
some constant c > 0, then we have V −1 = O(1).

Proof. By the definition of V 2, we have

V 2 ≥ ξTXΩ∗ξX + ξTY Ω
∗ξY ≥ C

(
||ξX ||2 + ||ξY ||2

)
= 4C

(
||z − μ∗

X ||2 + ||z − μ∗
Y ||2

)
≥ 2C||μ∗

X − μ∗
Y ||2,

which is greater than a constant under the separation assumption.

Now we give examples of priors for LDA. Let us use independent priors. That
is

Ω ∼ ΠΩ, μX ∼ ΠX , μY ∼ ΠY ,

independently. The prior for the whole parameter (Ω, μX , μY ) is a product mea-
sure defined as

Π = ΠΩ ×ΠX ×ΠY .

Let ΠΩ be the Gaussian prior defined in (2.6). Let both ΠX and ΠY beN(0, Ip×p).

Theorem 4.2. Assume ||Σ∗|| ∨ ||Ω∗|| ≤ Λ = O(1), V −1 = O(1), and p2 =

o(
√
n

logn ). The prior defined above satisfies the two conditions in Theorem 4.1 for
some appropriate An. Thus, the Bernstein-von Mises result holds.

4.2. Quadratic discriminant analysis

For the general case that Ω∗
X = Ω∗

Y may not be true, the posterior distribution
for QDA is defined as

Π(B|Xn) =

∫
B
exp

(
ln(μX , μY ,ΩX ,ΩY )

)
dΠ(μX , μY ,ΩX ,ΩY )∫

exp
(
ln(μX , μY ,ΩX ,ΩY )

)
dΠ(μX , μY ,ΩX ,ΩY )

,
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where ln(μX , μX ,ΩX ,ΩY ) has decomposition

ln(μX , μX ,ΩX ,ΩY ) = lX(μX ,ΩX) + lY (μY ,ΩY ).

We define the following quantities,

ΦX = −Ω∗
X

(
Σ∗

X − (z − μ∗
X)(z − μ∗

X)T
)
Ω∗

X ,

ΦY = Ω∗
Y

(
Σ∗

Y − (z − μ∗
Y )(z − μ∗

Y )
T
)
Ω∗

Y ,

ξX = 2(z − μ∗
X), ξY = 2(μ∗

Y − z),

ΩX,t = ΩX +
2t√
n
ΦX , ΩY,t = ΩY +

2t√
n
ΦY ,

μX,t = μX +
t√
n
ξX , μY,t = μY +

t√
n
ξY ,

Σ̂X =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)T , Σ̂Y =
1

n

n∑
i=1

(Yi − Ȳ )(Yi − Ȳ )T ,

V 2 = 2
∥∥∥Σ∗1/2

X ΦXΣ
∗1/2
X

∥∥∥2
F
+ 2

∥∥∥Σ∗1/2
Y ΦY Σ

∗1/2
Y

∥∥∥2
F
+ ξTXΩ∗ξX + ξTY Ω

∗ξY . (4.2)

Assume An is a set satisfying

An ⊂
{√

n
(
||μX − μ∗

X ||2 + ||μY − μ∗
Y ||2 + ||Σ− Σ∗||2

)
∨√p

(
||μX − μ∗

X ||+ ||μY − μ∗
Y ||+ ||Σ− Σ∗||

)
∨
√
n/p

(
||ΣX − Σ∗

X ||2F + ||ΣY − Σ∗
Y ||2F

)
∨√p

(
||ΣX − Σ∗

X ||F + ||ΣY − ΣY ||F
)
≤ δn

}
,

with some δn = o(1). The main result for QDA is the following theorem.

Theorem 4.3. Assume ||Σ∗|| ∨ ||Ω∗| = O(1), V −1 = O(1), and p3/n = o(1). If
for a given prior Π, the following two conditions are satisfied:

1. Π(An|Xn, Y n) = 1− oP (1),

2. For any fixed t ∈ R,
∫
An

exp(ln(μX,t,μY,t,ΩX,t,ΩY,t))dΠ(μX ,μY ,ΩX ,ΩY )∫
An

exp(ln(μX ,μY ,ΩX ,ΩY ))dΠ(μX ,μY ,ΩX ,ΩY )
= 1 +

oP (1),

then

sup
t∈R

∣∣∣Π(√nV −1
(
Δ(μX , μY ,ΩX ,ΩY )− Δ̂

)
≤ t|Xn, Y n

)
− P

(
Z ≤ t

)∣∣∣ = oP (1),

where Z ∼ N(0, 1) and the centering is Δ̂ = Δ(X̄, Ȳ , Σ̂−1
X , Σ̂−1

Y ).
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Remark 4.1. With the new definition of V in QDA, the assumption V −1 =
O(1) is also implied by the separation condition ||μX − μY || > c by applying
the same argument in Proposition 4.1.

Remark 4.2. For independent prior in the sense that

dΠ(μX , μY ,ΩX ,ΩY ) = dΠ(μX ,ΩX)× dΠ(μY ,ΩY ),

the posterior is also independent because of the decomposition of the likelihood.
In this case, we have

Π(An|Xn, Y n) = ΠX(AX,n|Xn)×ΠY (AY,n|Y n),

with AX,n and AY,n being versions of An involving only (μX ,ΩX) and (μY ,ΩY ).
In the same way, we also have∫

An
exp

(
ln(μX,t, μY,t,ΩX,t,ΩY,t)

)
dΠ(μX , μY ,ΩX ,ΩY )∫

An
exp

(
ln(μX , μY ,ΩX ,ΩY )

)
dΠ(μX , μY ,ΩX ,ΩY )

=

∫
AX,n

exp
(
ln(ΩX,t, μX,t)

)
dΠX(μX ,ΩX)∫

AX,n
exp

(
ln(ΩX , μX)

)
dΠX(μX ,ΩX)

×

∫
AY,n

exp
(
ln(ΩY,t, μY,t)

)
dΠY (μY ,ΩY )∫

AY,n
exp

(
ln(ΩY , μY )

)
dΠY (μY ,ΩY )

.

Hence, for the two conditions in Theorem 4.3, it is sufficient to check

1. Π(AX,n|Xn) = 1− oP (1),

2. For any fixed t ∈ R,

∫
AX,n

exp(ln(ΩX,t,μX,t))dΠX(μX ,ΩX)∫
AX,n

exp(ln(ΩX ,μX))dΠX(μX ,ΩX)
= 1 + oP (1),

and the corresponding conditions for Y , when the prior has an independent
structure.

The example of prior we specify for QDA is similar to the one for LDA. Let
us use independent priors. That is

ΩX ∼ ΠΩX
, ΩY ∼ ΠΩY

, μX ∼ ΠX , μY ∼ ΠY ,

independently. The prior for the whole parameter (ΩX ,ΩY , μX , μY ) is a product
measure defined as

Π = ΠΩX
×ΠΩY

×ΠX ×ΠY .

Let ΠΩX
and ΠΩY

be the Gaussian prior defined in Section 2.3.2. Let both ΠX

and ΠY be N(0, Ip×p).

Theorem 4.4. Assume ||Σ∗
X || ∨ ||Ω∗

X || ∨ ||Σ∗
Y || ∨ ||Ω∗

Y || ≤ Λ = O(1), V −1 =

O(1) and p2 = o(
√
n

logn ). The prior defined above satisfies the two conditions in
Theorem 4.1 for some appropriate An. Thus, the Bernstein-von Mises result
holds.
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5. Discussion

5.1. Comparison: Asymptotic normality of φ(Σ̂) and ψ(Σ̂−1)

In this section, we present the classical results for asymptotic normality of the
estimators φ(Σ̂) and ψ(Σ̂−1). Note that in many cases, they coincide with MLE.
The purpose is to compare them with the BvM results obtained in this paper. We
first review and define some notation. Remember σ̂ij is the (i, j)-th element of Σ̂

and ω̂ij is the (i, j)-th element of Σ̂−1. We let ΔL and ΔQ be the LDA and QDA
functionals respectively. The corresponding asymptotic variances are denoted
by V 2

L and V 2
Q, defined in (4.1) and (4.2) respectively. As p, n → ∞ jointly,

the asymptotic normality of φ(Σ̂) or ψ(Σ̂−1) holds under different asymptotic
regimes for different functionals. For comparison, we assume that VL, VQ and
the eigengap δ are at constant levels.

Theorem 5.1. Let p, n → ∞ jointly, then for any asymptotic regime of (p, n),

√
n(σ̂ij − σ∗

ij)√
σ∗2
ij + σ∗

iiσ
∗
jj

� N(0, 1),

√
n(vT Σ̂v − vTΣ∗v)√

2|vTΣ∗v|
� N(0, 1).

Assume p2/n = o(1), we have

√
n(ω̂ij − ω∗

ij)√
ω∗2
ij + ω∗

iiω
∗
jj

� N(0, 1), (5.1)

√
n(vT Σ̂−1v − vTΩ∗v)√

2|vTΩ∗v|
� N(0, 1), (5.2)

√
n
(
λm(Σ̂)− λm(Σ∗)

)
√
2λm(Σ∗)

� N(0, 1), (5.3)

√
n
(
λm(Σ̂−1)− λm(Ω∗)

)
√
2λm(Ω∗)

� N(0, 1), (5.4)

√
nV −1

L

(
ΔL(X̄, Ȳ , Σ̂−1)−ΔL(μ

∗
X , μ∗

Y ,Ω
∗)
)

� N(0, 1). (5.5)

Assume p3/n = o(1), we have√
n

2p

(
log det(Σ̂)− log det(Σ∗)

)
� N(0, 1), (5.6)

√
nV −1

Q

(
ΔQ(X̄, Ȳ , Σ̂−1

X , Σ̂−1
Y )−ΔQ(μ

∗
X , μ∗

Y ,Ω
∗
X ,Ω∗

Y )
)

� N(0, 1). (5.7)
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Since the above results are more or less scattered in the literature, we do not
present their proofs in this paper. Readers who are interested can derive these
results using delta method.

We remark that the condition p2/n = o(1) is sharp for (5.1)-(5.5). For (5.1)
and (5.2), a common example is ω11 = eT1 Ωe1, where eT1 = (1, 0, . . . , 0). By
distributional facts of inverse Wishart,

√
n(ω̂11 − ω∗

11) is not asymptotically
normal if p2/n = o(1) does not hold. Since the functional ΔL is harder than
vTΩv (the latter is a special case of the former if μ∗

X and μ∗
Y are known),

p2/n = o(1) is also sharp for (5.5). For (5.3) and (5.4), we have the following
proposition to show that p2/n = o(1) is necessary.

Proposition 5.1. Consider a diagonal Σ∗. Let the eigengap σ∗
11 − σ∗

22 be at
constant level when p, n → ∞ jointly. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1), n1/2 =
o(p) and p = o(n2/3). Then λ1(Σ̂) is not

√
n-consistent. As a consequence,

λp(Σ̂
−1) = λ−1

1 (Σ̂) is not
√
n-consistent.

The condition p3/n = o(1) is sharp for (5.6) and (5.7). If p3/n = o(1) does not
hold, a bias correction is necessary for (5.6) to hold (see [6]). That the condition
p3/n = o(1) is necessary for (5.7) is because the functional ΔQ contains the
part log det(Σ).

In the next section, we are going to discuss the asymptotic regime of (p, n)
for BvM and compare them with the frequentist results listed in this section.

5.2. The asymptotic regime of (p, n)

For all the BvM results we obtain in this paper, they assume different asymptotic
regime of the sample size n and the dimension p. Ignoring the logn factor and
assume constant eigengap δ and asymptotic variances for LDA and QDA, the
asymptotic regime for (p, n) is summarized in the following table.

functional φ(Σ̂) or ψ(Σ̂−1) conjugate non-conjugate
σij *** p � n p2 � n
ωij p2 � n p2 � n p3 � n
vTΣv *** p � n p2 � n
vTΩv p2 � n p2 � n p3 � n
log det(Σ) p3 � n p3 � n p3 � n
λm(Σ) p2 � n p2 � n p4 � n
λm(Ω) p2 � n p2 � n p4 � n
LDA p2 � n p2 � n p4 � n
QDA p3 � n p3 � n p4 � n

The table has three columns for the asymptotic normality of φ(Σ̂) and ψ(Σ̂−1)
and for BvM with conjugate and non-conjugate priors respectively. The purpose
is to compare our BvM result with the classical frequentist asymptotic normality.
The priors are the Wishart prior and Gaussian prior we consider in this paper.
For discriminant analysis, we did not consider conjugate prior because of limit of
space. The conjugate prior in the LDA and QDA settings is the normal-Wishart
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prior. Its posterior distribution can be decomposed as a marginal Wishart times
a conditional normal. The analysis of the BvM result for this case is direct, and
we claim the asymptotic regimes for LDA and QDA are p2 � n and p3 � n
respectively without giving a formal proof.

Comparing the first and the second columns, the condition for p and n we
need for the BvM results with conjugate prior matches the conditions for the
frequentist results. The two exceptions are σij and vTΣv, where for the fre-
quentist asymptotic normality to hold, there is no assumption on p, n. Our
technique of proof requires p � n. This is because our theory requires a set
An ⊂ {||Σ − Σ∗|| ≤ δn} for some δn = o(1) to satisfy Π(An|Xn) = 1 − oP (1).
The best rate of convergence for ||Σ−Σ∗|| is

√
p/n, which leads to p � n. Such

assumption may be weaken if a different theory than ours can be developed (or
through direct calculation by taking advantage of the conjugacy).

The comparison of the second and the third columns suggests that using of
non-conjugate prior requires stronger assumptions. We believe these stronger
assumptions can all be weakened. The current stronger assumptions on p and
n are caused the technique we use in this paper to prove posterior contraction,
which is Condition 1 in Theorem 2.1 and Theorem 2.2. The current way of
proving posterior contraction in nonparametric Bayes theory only allows loss
functions which are at the same order of the Kullback-Leibler divergence. In the
covariance matrix estimation setting, we can only deal with Frobenius loss. We
choose

An =

{
||Σ− Σ∗||2F ≤ M

p2 logn

n

}
.

For functionals of covariance such as σij and vTΣv, we need An ⊂ {||Σ−Σ∗|| ≤
δn} for some δn. We have to bound ||Σ− Σ∗|| as

||Σ− Σ∗|| ≤ ||Σ− Σ∗||F ≤
√

M
p2 log n

n
,

and require
√

M p2 logn
n ≤ δn = o(1). This leads to p2 � n. For functionals of

precision matrix, we need An ⊂ {√p||Σ− Σ∗|| ≤ δn}. Again, we have bound

√
p||Σ− Σ∗|| ≤ √

p||Σ− Σ∗||F ≤
√
M

p3 logn

n
,

and require
√

M p3 logn
n = o(1). This leads to p3 � n. It would be great if we

can prove a posterior contraction on {||Σ − Σ∗|| ≤ M
√

p/n} directly without
referring to the Frobenius loss. However, under the current technique of Bayes
nonparemtrics [21], this is impossible. See a lower bound argument in [22].

5.3. Sharpness of the condition rp2/n = o(1) in Theorem 2.2

It is curious whether the condition rp2/n = o(1) is sharp in Theorem 2.2. Let
us consider the funcitonal ψ(Ω) = log det(Ω). In this case, the corresponding
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matrix Ψ in the linear expansion of ψ(Ω) is Ψ = Σ∗ and r = rank(Σ∗) = p. Then,
the condition rp2 = o(1) becomes p3/n = o(1). Since log det(Ω) = − log det(Σ)
and p3/n = o(1) is sharp for BvM to hold for log det(Σ), it is also sharp for
log det(Ω).

5.4. Covariance priors

The general framework in Section 2 only considers prior defined on precision
matrix Ω. However, sometimes it is more natural to use prior defined on covari-
ance matrix Σ, for example, Gaussian prior on Σ. Then, the first conditions in
Theorem 2.1 and Theorem 2.2 are hard to check. We propose a slight variation
of this condition, so that our theory can also be user-friendly for covariance
priors.

We first consider approximate linear functionals of Σ satisfying (2.2). Then,
the first condition of Theorem 2.1 can be replaced by

∫
An

exp
(
ln(Σ

−1
t )

)
dΠ(Σ)∫

An
exp

(
ln(Σ−1)

)
dΠ(Σ)

= 1 + oP (1), for each fixed t ∈ R,

where Σt = Σ− 2t√
n||Σ∗1/2ΦΣ∗1/2||F Σ∗ΦΣ∗. Then we consider approximate linear

functionals of Ω satisfying (2.4). The first condition of Theorem 2.2 can be
replaced by

∫
An

exp
(
ln(Σ

−1
t )

)
dΠ(Σ)∫

An
exp

(
ln(Σ−1)

)
dΠ(Σ)

= 1 + oP (1), for each fixed t ∈ R,

where Σt = Σ+ 2t√
n||Ω∗1/2ΨΩ∗1/2||F Ψ.

With the new conditions, it is direct to check them for covariance priors by
change of variable, as is done in the proof of Lemma 2.1 and Lemma 2.2. In
particular, for the Gaussian prior on covariance matrix, we claim the conclusion
of Lemma 2.2 holds. We avoid expanding the technical details for the covariance
priors in this paper due to the limit of space.

5.5. Relation to matrix estimation under Non-Frobenius loss

As we have mentioned in the end of Section 5.2, the current Bayes nonparametric
technique for proving posterior contraction rate only covers losses which are
at the same order of Kullback-Leiber divergence. It cannot handle other non-
intrinsic loss [22]. In the Bayes matrix estimation setting, whether we can show
the following conclusion

Π
(
||Σ− Σ∗|| ≤ M

√
p

n

∣∣∣Xn
)
= 1− oP (1), (5.8)
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for a general non-conjugate prior still remains open. This explains why there is
so little literature in this field compared to the growing research using frequentist
methods. See, for example, [7] and [8].

However, we observe that for the spectral norm loss,

||Σ− Σ∗|| ≤ 2 sup
v∈N

|vT (Σ− Σ∗)v|,

where N is a subset of Sp−1 with cardinality bound log |N | ≤ cp for some c > 0.
The BvM result we establish for the functional vTΣv indicates that for each v,
the posterior distribution of |vT (Σ − Σ∗)v| is at the order of n−1/2. Therefore,

heuristically, 2 supv∈N |vT (Σ − Σ∗)v| should be at the order of

√
log |N |√

n
, which

is
√
p/n. We will use this intuition as a key idea in our future research project

on the topic of Bayes matrix estimation.
Once (5.8) is established for a non-conjugate prior (e.g. Gaussian prior in this

paper), then we may use (5.8) to weaken the conditions in the third column of
the table in Section 5.2. In fact, most entries of that column can be weakened
to match the conditions in the second column for a conjugate prior. As argued
in Section 5.2, (5.8) directly implies the concentration Π(An|Xn) = 1 − oP (1),
which is Condition 1 in both Theorem 2.1 and Theorem 2.2.

5.6. Matrices with structures

The paper mainly deals with covariance and precision matrices without struc-
tural assumptions. Extension of the results to more complex settings where the
matrices may admit certain banded or sparsity structures is an interesting prob-
lem. In this section, we provide such an example by leveraging a recent posterior
contraction result of Bayesian banded precision matrix estimation due to [2].

Define a class of positive semi-definite matrices with a k-banded structure by

Fk =
{
Ω = ΩT = (ωij) : λmin(Ω) ≥ 0, ωij = ωijI{|i− j| ≤ k}

}
.

We are going to consider precision matrices in Fk. A natural conjugate prior to
model a banded precision matrix is the G-Wishart distribution, whose density
function is given by

dΠ(Ω)

dΩ
∝ exp

(
b− 2

2
log det(Ω)− 1

2
tr(Ω)

)
I{Ω ∈ Fk}.

Note that the G-Wishart distribution has the same density function as the
Wishart distribution except that it is supported on the set Fk. Banerjee and
Ghosal [2] established the posterior contraction rate under the Gaussian covari-
ance model.

Theorem 5.2 ([2]). Consider the G-Wishart prior with b > 2 and b = O(1).

Assume ||Σ∗|| ∨ ||Ω∗|| = O(1), Ω∗ ∈ Fk and k5 log p
n = o(1). Then,

Π

(
||Ω− Ω∗||�1 ≤ M

√
k5 log p

n

∣∣∣X
)

= 1− oP (1),
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with some large constant M > 0. The symbol || · ||�1 stands for the matrix �1
norm defined as the maximal row sum.

Now let us use this result to establish the BvM property of some (approx-
imate) linear functionals of the covariance matrix. In view of Theorem 5.2,
Condition 1 of Theorem 2.1 holds with

An =

{
||Ω− Ω∗||�1 ≤ M

√
k5 log p

n

}
. (5.9)

Some direct calculation shows that Condition 2 also holds (details of the ar-
gument are given in the proof of Corollary 5.1). Hence, we have the following
result.

Corollary 5.1. Consider the G-Wishart prior with b > 2 and b = O(1), and the
functional φ(Σ) satisfying (2.2) with some symmetric matrix Φ = (ΦijI{|i−j| ≤
k}) of rank r and the set An defined by (5.9). Assume ||Σ∗|| ∨ ||Ω∗|| = O(1),

Ω∗ ∈ Fk,
k5 log p

n = o(1) and r
n = o(1). Then,

sup
t∈R

∣∣∣∣∣Π
( √

n
(
φ(Σ)− φ(Σ̂)

)
√
2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣ = oP (1),

where Z ∼ N(0, 1).

Remark 5.1. The condition k5 log p
n = o(1) only depends on the dimension p

logarithmically due to the structural assumption on Ω∗. In [2], a wider class
than Fk was considered. The result can be extended in a routine way, but we
choose to stick to the class Fk for clarity of presentation.

Compared with the BvM results for matrices without structural assump-
tion, Corollary 5.1 works for a more restrictive class of functionals. Namely, the
symmetric matrix must also have a k-banded structure. For example, consider
φ(Σ) = σij for any (i, j) satisfying |i− j| ≤ k, and then we have

sup
t∈R

∣∣∣∣∣∣Π
(√

n(σij − σ̂ij)√
σ∗
iiσ

∗
jj + σ∗2

ij

≤ t
∣∣∣Xn

)
− P

(
Z ≤ t

)∣∣∣∣∣∣ = oP (1).

For |i − j| > k, the result may not hold. This is because Condition 2 of Theo-
rem 2.1 requires a change of variable that,

Ωt = Ω+

√
2t√

n||Σ∗1/2ΦΣ∗1/2||F
Φ

with respect to the prior distribution. Since the G-Wishart prior is only sup-
ported on the class of banded matrices, we need Φ to be banded so that Ωt is in
the support. For the same reason, we do not have a cleanly stated BvM result
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for functionals of precision matrices, which, according to Theorem 2.2, requires
a change of variable that

Ωt = Ω−
√
2t√

n||Ω∗1/2ΨΩ∗1/2||F
Ω∗ΨΩ∗.

Therefore, Ω∗ΨΩ∗ is required to be k-banded, which does not imply a clear
restriction on Ψ.

To summarize, the extension of the BvM results to matrices with more struc-
tures still remain open. We hope Corollary 5.1 provides a stimulating attempt
towards that direction.

6. Proofs

6.1. Proof of Theorem 2.1 & Theorem 2.2

Before stating the proofs, we first display some lemmas. The following lemma
is Lemma 2 in [10]. It allows us to prove BvM results through convergence of
moment generating functions.

Lemma 6.1. Consider the random probability measure Pn and a fixed proba-
bility measure P . Suppose for any real t, the Laplace transformation

∫
etxdP (x)

is finite, and
∫
etxdPn(x) →

∫
etxdP (x) in probability. Then, it holds that

sup
t∈R

∣∣∣Pn

(
(−∞, t]

)
− P

(
(−∞, t]

)∣∣∣ = oP (1).

The next lemma is an expansion of the Gaussian likelihood.

Lemma 6.2. Assume ||Σ∗|| ∨ ||Ω∗|| = O(1). For any symmetric matrix Φ and
the perturbed precision matrix

Ωt = Ω+

√
2t√

n
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

Φ,

the following equation holds for all Ω ∈ An with An satisfying (2.1) or (2.3).

ln(Ωt)− ln(Ω) =
t
√
n√

2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

tr
(
(Σ− Σ̂)Φ

)
(6.1)

−1

2
t2

∥∥Σ1/2ΦΣ1/2
∥∥2
F∥∥Σ∗1/2ΦΣ∗1/2
∥∥2
F

− n

2

p∑
j=1

(hj − s)2

(1− s)3
ds,

where {hj}pj=1 are eigenvalues of Σ1/2(Ω− Ωt)Σ
1/2.

The following lemma is Proposition D.1 in the supplementary material of
[26], which is rooted in [16].
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Lemma 6.3. Let Yl ∼ N(0, Ip×p). Then, for any t > 0,

Pn
I

(∥∥∥∥∥ 1n
n∑

l=1

YlY
T
l − I

∥∥∥∥∥ ≤ 2
(√ p

n
+ t

)
+

(√ p

n
+ t

)2
)

≥ 1− 2e−nt2/2.

Proof of Theorem 2.1. We are going to use Lemma 6.1 and establish the con-
vergence of moment generating function. We claim that

ln(Ωt)− ln(Ω) =
t
√
n√

2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

(
φ(Σ)− φ(Σ̂)

)
− 1

2
t2 + oP (1), (6.2)

uniformly over An. The derivation of (6.2) will be given at the end of the proof.
Define the posterior distribution conditioning on An by

ΠAn(B|Xn) =
Π(An ∩B|Xn)

Π(An|Xn)
, for any B.

It is easy to see

sup
B

∣∣ΠAn(B|Xn)−Π(B|Xn)
∣∣ = oP (1), (6.3)

by the first condition of Theorem 2.1. Now we calculation the moment generating

function of
√
n(φ(Σ)−φ(Σ̂))√

2‖Σ∗1/2ΦΣ∗1/2‖F
under the distribution ΠAn(·|Xn), which is

∫
exp

(
t
√
n
(
φ(Σ)− φ(Σ̂)

)
√
2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

)
dΠAn(Ω|Xn)

=

∫
An

exp
( t

√
n

(
φ(Σ)−φ(Σ̂)

)
√
2‖Σ∗1/2ΦΣ∗1/2‖

F

+ ln(Ω)
)
dΠ(Ω)∫

An
exp

(
ln(Ω)

)
dΠ(Ω)

=
(
1 + oP (1)

)
exp

(
t2/2

)∫An
exp

(
ln(Ωt)

)
dΠ(Ω)∫

An
exp

(
ln(Ω)

)
dΠ(Ω)

=
(
1 + oP (1)

)
exp

(
t2/2

)
,

where the second equality is because of (6.2) and the last inequality is because
of the second condition of Theorem 2.1. We have shown that the moment gener-

ating function of
√
n(φ(Σ)−φ(Σ̂))√

2‖Σ∗1/2ΦΣ∗1/2‖F
under the distribution ΠAn(·|Xn) converges

to the moment generating function of N(0, 1) in probability. By Lemma 6.1 and
(6.3), we have established the desired result.

To finish the proof, let us derive (6.2). Using the result of the likelihood
expansion in Lemma 6.2, we will first show

ln(Ωt)− ln(Ω) =
t
√
n√

2
∥∥Σ∗1/2ΦΣ∗1/2

∥∥
F

tr
(
(Σ− Σ̂)Φ

)
− t2

2
+ o(1), (6.4)
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where the o(1) above is uniform on An. Compare (6.4) with (6.1) in Lemma 6.2,
it is sufficient to bound

R1 =

∣∣∣∣∣
∥∥Σ1/2ΦΣ1/2

∥∥2
F∥∥Σ∗1/2ΦΣ∗1/2
∥∥2
F

− 1

∣∣∣∣∣ and R2 =

∣∣∣∣∣∣
n

2

p∑
j=1

(hj − s)2

(1− s)3
ds

∣∣∣∣∣∣ .
We use the following argument to bound R1 on An.∣∣∣||Σ1/2ΦΣ1/2||2F − ||Σ1/2∗ΦΣ∗1/2||2F

∣∣∣
= |tr(ΣΦΣΦ)− tr(Σ∗ΦΣ∗Φ)|
≤

∣∣∣tr(ΣΦ(Σ− Σ∗)Φ
)∣∣∣+ ∣∣∣tr((Σ− Σ∗)ΦΣ∗Φ

)∣∣∣
=

∣∣∣tr(Σ1/2ΦΣΦΣ1/2(I − Σ−1/2Σ∗Σ−1/2)
)∣∣∣

+
∣∣∣tr(Σ∗1/2ΦΣ∗ΦΣ∗1/2(Σ∗−1/2ΣΣ∗−1/2 − I)

)∣∣∣
≤ tr

(
Σ1/2ΦΣΦΣ1/2

)
||I − Σ−1/2Σ∗Σ−1/2|| (6.5)

+tr
(
Σ∗1/2ΦΣ∗ΦΣ∗1/2

)
||I − Σ∗−1/2ΣΣ∗−1/2||

= ||Σ1/2ΦΣ1/2||2F ||I − Σ−1/2Σ∗Σ−1/2||
+||Σ1/2∗ΦΣ∗1/2||2F ||I − Σ∗−1/2ΣΣ∗−1/2||

≤ o(1)||Σ1/2ΦΣ1/2||2F + o(1)||Σ1/2∗ΦΣ∗1/2||2F , (6.6)

where the inequality (6.5) is by von Neumann’s trace inequality and the inequal-
ity (6.6) is due to the fact that ||Σ−Σ∗|| = o(1) on An. Rearranging the above
argument, we get R1 = o(1) uniformly on An. To bound R2, we first use Weyl’s
theorem to get

max
1≤j≤p

|hj | ≤
√
2t√
n

∥∥Σ1/2ΦΣ1/2
∥∥∥∥Σ∗1/2ΦΣ∗1/2
∥∥
F

= O(n−1/2),

on An. Thus, on An, we have

R2 ≤ Cn

∣∣∣∣∣∣
p∑

j=1

∫ hj

0

(hj − s)2ds

∣∣∣∣∣∣
≤ Cn

p∑
j=1

|hj |3

≤ Cn max
1≤j≤p

|hj |
p∑

j=1

|hj |2

≤ Cn×O(n−1/2)×O

( ∥∥Σ1/2ΦΣ1/2
∥∥2
F

n
∥∥Σ∗1/2ΦΣ∗1/2

∥∥2
F

)

= O(n−1/2).
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Hence, (6.4) is proved. Together with the approximate linearity condition (2.2)
of the functional φ(Σ), (6.2) is proved. Thus, the proof is complete.

Proof of Theorem 2.2. We follow the reasoning in the proof of Theorem 2.1 and
omit some similar steps. Define

Φ = −Ω∗ΨΩ∗.

It is easy to see that∥∥∥Ω∗1/2ΨΩ∗1/2
∥∥∥
F
=

∥∥∥Σ∗1/2ΦΣ∗1/2
∥∥∥
F
.

Then by Lemma 6.2 and the similar arguments in the proof of Theorem 2.1, we
obtain

ln(Ωt)− ln(Ω) =
t
√
ntr

(
(Σ− Σ̂)Φ

)
√
2
∥∥Ω∗1/2ΨΩ∗1/2

∥∥
F

− 1

2
t2 + o(1),

uniformly on An, which is analogous to (6.4). We are going to approximate√
ntr((Σ−Σ̂)Φ) by

√
n(ψ(Ω)−ψ(Σ̂−1)) on An. Define Ω̂ = Σ̂−1. The assumption

rp2/n = o(1) implies that p/n = o(1). Thus, Ω̂ is well defined. By Lemma 6.3,

||Σ̂− Σ∗|| = O
(√ p

n

)
, ||Ω̂− Ω∗|| = O

(√ p

n

)
. (6.7)

Using notation V = 2
∥∥Ω∗1/2ΨΩ∗1/2∥∥2

F
, the approximation error on An is

√
nV −1/2

∣∣∣ψ(Ω)− ψ(Ω̂)− tr
(
(Σ− Σ̂)Φ

)∣∣∣
=

√
nV −1/2

∣∣∣tr((Ω− Ω̂)Ψ
)
+ tr

(
(Σ− Σ̂)Ω∗ΨΩ∗

)∣∣∣
=

√
nV −1/2

∣∣∣tr((Σ− Σ̂)(Ω∗ΨΩ∗ − ΩΨΩ̂)
)∣∣∣

≤
√
nV −1/2

∣∣∣tr((Σ− Σ̂)Ω∗Ψ(Ω∗ − Ω̂)
)∣∣∣

+
√
nV −1/2

∣∣∣tr((Σ− Σ̂)(Ω∗ − Ω)ΨΩ̂
)∣∣∣ .

Let the singular value decomposition of Ψ be Ψ =
∑r

l=1 dlqlq
T
l . Then,∣∣∣tr((Σ− Σ̂)Ω∗Ψ(Ω∗ − Ω̂)

)∣∣∣
≤

r∑
l=1

|dl|
∣∣∣tr((Σ− Σ̂)Ω∗qlq

T
l (Ω

∗ − Ω̂)
)∣∣∣

≤
r∑

l=1

|dl|||(Σ− Σ̂)Ω∗ql||||qTl (Ω∗ − Ω̂)
)
||

≤ OP

(
||Σ̂− Σ||||Σ̂− Σ∗||

r∑
l=1

|dl|
)
.
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Similarly, ∣∣∣tr((Σ− Σ̂)(Ω∗ − Ω)ΨΩ̂
)∣∣∣

≤ OP

(
||Σ̂− Σ||||Σ̂− Σ∗||

r∑
l=1

|dl|
)
.

Since

V −1/2 ≤ C||Ψ||−1
F =

C√∑r
l=1 d

2
l

,

we have

√
nV −1/2

∣∣∣ψ(Ω)− ψ(Ω̂)− tr
(
(Σ− Σ̂)Φ

)∣∣∣
≤ OP

(√
nr||Σ̂− Σ||||Σ̂− Σ∗||

)
≤ OP

(√
nr||Σ̂− Σ∗||2 +

√
nr||Σ̂− Σ∗||||Σ− Σ∗||

)

≤ OP

(√
rp2

n
+
√
rp||Σ− Σ∗||

)

= oP (1)

uniformly on An, where we have used (6.7) in the second last inequality above.
Hence,

ln(Ωt)− ln(Ω) =
t
√
n
(
ψ(Ω)− ψ(Σ̂−1)

)
√
2
∥∥Ω∗1/2ΨΩ∗1/2

∥∥
F

− 1

2
t2 + oP (1), (6.8)

uniformly on An. The remaining part of the proof are the same as the corre-
sponding steps in the proof of Theorem 2.1. Thus, the proof is complete.

6.2. Proof of Lemma 2.1

Proof of Lemma 2.1. The proof has two parts. In the first part, we establish
the first condition of the two theorems by proving a posterior contraction rate.
In the second part, we establish the second condition of the two theorems by
showing that a change of variable is negligible under Wishart density.

Part I. The posterior distribution Ω|Xn is Wp((nΣ̂ + I)−1, n + p + b − 1).
Conditioning on Xn, let Zl|Xn ∼ P(nΣ̂+I)−1 i.i.d. for each l = 1, 2, . . . , n+ p+
b − 1. Then the posterior distribution of Ω is identical to the distribution of∑n+p+b−1

l=1 ZlZ
T
l

∣∣Xn. Define the set

Gn =

{
||Ω∗1/2Σ̂Ω∗1/2 − I|| ≤ C

√
p

n

}
,
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and we have Pn
Σ∗(Gc

n) ≤ exp(−cp) by Lemma 6.3, for some c, C > 0. The event

Gn implies ||Σ̂− Σ∗|| ≤ C||Σ∗||
√

p
n , by which we can deduce

∥∥∥∥(Σ̂ +
1

n
I
)−1

∥∥∥∥ =
1

λmin

(
Σ̂ + 1

nI
)

≤ 1

λmin(Σ∗)− 1
n − ||Σ̂− Σ∗||

≤ 2||Ω∗||.

Using the obtained results, we can bound the deviation of the sample covariance
by ∥∥∥(n+ p+ b− 1)(nΣ̂ + I)−1 − Ω∗

∥∥∥
≤

∥∥∥∥∥(n+ p+ b− 1)(nΣ̂ + I)−1

(
n

n+ b+ p− 1
(Σ̂− Σ∗)

− b+ p− 1

n+ b+ p− 1
Σ∗ +

1

n+ p+ b− 1
I

)
Ω∗

∥∥∥∥∥
≤

∥∥∥∥(Σ̂ +
1

n
I
)−1

∥∥∥∥ ||(Σ̂− Σ∗)Ω∗||+ ||(p+ b− 1)(nΣ̂ + I)−1||+ ||(nΣ̂ + I)−1Ω∗||

≤ 2C||Σ∗||1/2||Ω∗||3/2
√

p

n
+

2(p+ b− 1)

n
||Ω∗||+ 2

n
||Ω∗||2

≤ C ′||Σ∗||1/2||Ω∗||3/2
√

p

n
,

and the posterior deviation can be bounded by

Pn
Σ∗Π

(
||Ω− Ω∗|| > 2C ′||Σ∗||1/2||Ω∗||3/2

√
p

n
|Xn

)

≤ Pn
Σ∗Π

(
||Ω− Ω∗|| > 2C ′||Σ∗||1/2||Ω∗||3/2

√
p

n
|Xn

)
IGn + Pn

Σ∗(Gc
n)

≤ Pn
Σ∗Π

(∥∥∥Ω− (n+ p+ b− 1)(nΣ̂ + I)−1
∥∥∥ > C ′||Σ∗||1/2||Ω∗||3/2

√
p

n
|Xn

)
IGn

+ Pn
Σ∗(Gc

n)

= Pn
Σ∗P

(∥∥∥∥∥
n+p+b−1∑

l=1

ZlZ
T
l − (n+ p+ b− 1)(nΣ̂ + I)−1

∥∥∥∥∥ >

C ′||Σ∗||1/2||Ω∗||3/2
√

p

n

∣∣∣Xn

)
+ Pn

Σ∗(Gc
n)
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≤ Pn
Σ∗P

(∥∥∥∥∥(n+ p+ b− 1)−1

n+p+b−1∑
l=1

WlW
T
l − I

∥∥∥∥∥ >

1

2

1

||(Σ̂ + n−1I)−1||
C ′||Σ∗||1/2||Ω∗||3/2

√
p

n

∣∣∣Xn

)
+ Pn

Σ∗(Gc
n)

≤ P

(∥∥∥∥∥(n+ p+ b− 1)−1

n+p+b−1∑
l=1

WlW
T
l − I

∥∥∥∥∥ >
1

4
C ′||Σ∗||1/2||Ω∗||1/2

√
p

n

)

+ Pn
Σ∗(Gc

n)

≤ exp
(
− c′p

)
,

where we use Wl ∼ N(0, I) in the above equations. In summary, we have proved

Pn
Σ∗Π

(
||Ω− Ω∗|| ≤ 2C ′||Σ∗||1/2||Ω∗||3/2

√
p

n

∣∣∣Xn

)
→ 1, (6.9)

which implies

Pn
Σ∗Π

(
||Σ− Σ∗|| ≤ M

√
p

n

∣∣∣Xn
)
→ 1,

with some sufficiently large M > 0. We choose

An =

{
||Σ− Σ∗|| ≤ M

√
p

n

}
,

so that Π(An|Xn) = 1− oP (1) is true. For Theorem 2.1, let δn = M
√

p
n . Then

δn = o(1) by assumption, and An ⊂ {||Σ − Σ∗|| ≤ δn}. For Theorem 2.2, let

δn = M
√

r2p
n , then we have δn = o(1) and An ⊂ {√rp||Σ− Σ∗|| ≤ δn}.

Part II. Note that the proof for this part is the same for both Theorem 2.1
and Theorem 2.2 by letting Φ = −Ω∗ΨΩ∗. We introduce the notation

Φ̃ =
(√

2
∥∥∥Σ∗1/2ΦΣ∗1/2

∥∥∥
F

)−1

Φ.

Now we study the integral
∫
An

exp(ln(Ωt))dΠ(Ω). LetN (p, b) be the normalizing

constant of Wp(I, p+ b− 1). We have∫
An

exp
(
ln(Ωt)

)
dΠ(Ω)

= N−1(p, b)

∫
An

exp
(
ln(Ω + 2tn−1/2Φ̃) +

b− 2

2
log det(Ω)− 1

2
tr(Ω)

)
dΩ

= N−1(p, b)

∫
An+2tn−1/2Φ̃

exp
(
ln(Γ) +

b− 2

2
log det(Γ− 2tn−1/2Φ̃)

− 1

2
tr(Γ− 2tn−1/2Φ̃)

)
dΓ
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=

∫
An+2tn−1/2Φ̃

exp
(
ln(Ω)

)

exp
(b− 2

2
log det(I − 2tn−1/2Ω−1Φ̃) +

1

2
tr(2tn−1/2Φ̃)

)
dΠ(Ω).

The above integrals are meaningful because An ∪ (An + 2tn−1/2Φ̃) ⊂ {Ω : Ω >
0,Ω = ΩT }. Note that

An + 2tn−1/2Φ̃ =

{∥∥∥(Ω− 2tn−1/2Φ̃)−1 − Σ∗
∥∥∥ ≤ M

√
p

n

}
.

Since ||2tn−1/2Φ̃|| = o(
√

p
n ), there exist M ′,M ′′ arbitrarily close to M such

that M ′ < M < M ′′ and

A′
n ⊂ An + 2tn−1/2Φ̃ ⊂ A′′

n

for A′
n = {||Σ − Σ∗|| ≤ M ′√ p

n} and A′′
n = {||Σ − Σ∗|| ≤ M ′′√ p

n}. The result
(6.9) implies Π(A′

n|Xn) = 1 − oP (1) and Π(A′′
n|Xn) = 1 − oP (1) are also true

when M ′,M,M ′′ are large enough. Let ||Φ̃||N be the nuclear norm of Φ̃, defined
as the sum of its absolute eigenvalues. Note that on A′′

n,

||Φ̃||N ≤ C
||Φ||N
||Φ||F

≤ C
√
p.

Since

sup
A′′

n

∣∣∣∣b− 2

2
log det(I − 2tn−1/2Ω−1Φ̃) +

1

2
tr(2tn−1/2Φ̃)

∣∣∣∣
≤ tn−1/2 sup

A′′
n

∣∣∣|b− 2|||Ω−1/2Φ̃Ω−1/2||N + ||Φ̃||N
∣∣∣

≤ O(
√

p/n)

= o(1),

we have ∫
An

exp
(
ln(Ωt)

)
dΠ(Ω) ≤

(
1 + o(1)

) ∫
A′′

n

exp
(
ln(Ω)

)
dΠ(Ω),

and ∫
An

exp
(
ln(Ωt)

)
dΠ(Ω) ≤

(
1− o(1)

) ∫
A′

n

exp
(
ln(Ω)

)
dΠ(Ω).

The facts that Π(A′
n|Xn) = 1− oP (1) and Π(A′′

n|Xn) = 1− oP (1) lead to

∫
An

exp
(
ln(Ωt)

)
dΠ(Ω)∫

An
exp

(
ln(Ω)

)
dΠ(Ω)

= 1 + oP (1).
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6.3. Proof of Lemma 2.2

Now we are going to prove Lemma 2.2. Like the proof of Lemma 2.1, it has
two parts. The first part is to show posterior contraction on some appropriate
set An. Note that Wishart prior is a conjugate prior. The posterior contraction
can be directly calculated. For the Gaussian prior, its non-conjugacy requires
to apply some general result from nonparametric Bayes theory. To be specific,
we follow the testing approach in [21]. The outline of using testing approach to
prove posterior contraction for Bayesian matrix estimation is referred to Section
5 in [17].

We first state some lemmas.

Lemma 6.4. Assume p2 = o(n/ log n) and ||Σ∗|| ∨ ||Ω∗|| ≤ Λ = O(1). For the
Gaussian prior Π, we have

Π
(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn

n

)
≥ exp

(
− Cp2 logn

)
,

for some constant C > 0.

The next lemma is Lemma 5.1 in [17].

Lemma 6.5. Let Kn = {||Ω||2||Σ − Σ∗||2F ≤ p2 logn
n }. Then for any b > 0, we

have

Pn
Σ∗

(∫
exp

(
ln(Ω)− ln(Ω

∗)
)
dΠ(Ω) ≤ Π(Kn) exp

(
− (b+ 1)p2 logn

))

≤ exp
(
− Cb2p2 log n

)
,

for some constant C > 0.

The next lemma is Lemma 5.9 in [17].

Lemma 6.6. For ||Σ∗|| ∨ ||Ω∗|| ≤ Λ = O(1) and ||Σ1|| ∨ ||Ω1|| ≤ 2Λ, there exist
small δ, δ′ > 0 only depending on Λ, and a testing function φ such that

Pn
Σ∗φ ≤ 2 exp

(
− Cδ′||Σ∗ − Σ1||2F

)
,

sup
{Σ∈supp(Π):||Σ−Σ1||F≤δ||Σ∗−Σ1||F }

Pn
Σ(1− φ) ≤ 2 exp

(
− Cδ′||Σ∗ − Σ1||2F

)
,

for some constant C > 0.

Proof of Lemma 2.2. Like what we have done in the Wishart case, the proof has
two parts. In the first part, we establish the first condition of the two theorems
by proving a posterior contraction rate. In the second part, we establish the
second condition of the two theorems by showing that a change of variable is
negligible under Gaussian density.
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Part I. Define

An =

{
||Σ− Σ∗||F ≤ M

√
p2 logn

n

}
,

for some M sufficiently large. Then, we may write

Π(Ac
n|Xn) =

∫
Ac

n
exp

(
ln(Ω)− ln(Ω

∗)
)
dΠ(Ω)∫

exp
(
ln(Ω)− ln(Ω∗)

)
dΠ(Ω)

=
Nn

Dn
.

Let us establish a testing between the following hypotheses:

H0 : Σ = Σ∗ vs H1 : Σ ∈ Ac
n ∩ supp(Π).

There exists {Σj}Nj=1 ⊂ Ac
n ∩ supp(Π), such that

Ac
n ∩ supp(Π) ⊂ supp(Π) ∩

(
∪N
j=1

{
||Σ− Σj ||F ≤

√
p2 logn

n

})
.

We choose the smallest N , which is determined by the covering number. Since
Ac

n ∩ supp(Π) ⊂ {||Ω||F ≤ 2Λ
√
p}, we have

logN ≤ C ′p2 log

(
2Λ

√
n√

p log n

)
≤ Cp2 logn.

By Lemma 6.6, there exists φj such that

Pn
Σ∗φj ≤ 2 exp

(
− CM2p2 logn

)
,

sup
{Σ∈supp(Π):||Σ−Σj ||F≤

√
p2 logn/n}

Pn
Σ(1− φj) ≤ 2 exp

(
− CM2p2 log n

)
.

Define φ = max1≤j≤N φj . Using union bound to control the testing error, we
have

Pn
Σ∗φ ≤ exp

(
− C1M

2p2 log n
)
,

sup
{Σ∈Ac

n∩supp(Π)}
Pn
Σ(1− φ) ≤ exp

(
− C1M

2p2 logn
)
,

for sufficiently large M . We bound Π(Ac
n|Xn) by

Pn
Σ∗Π(Ac

n|Xn) ≤ Pn
Σ∗Π(Ac

n|Xn)(1− φ)I
{
Dn > exp(−2p2 logn)

}
+Pn

Σ∗φ+ Pn
Σ∗

(
Dn ≤ exp(−2p2 logn)

)
≤ exp

(
2p2 logn

)
Pn
Σ∗

∫
Ac

n

exp
(
ln(Ω)− ln(Ω

∗)
)
(1− φ)dΠ(Ω)

+Pn
Σ∗φ+ Pn

Σ∗

(
Dn ≤ exp(−2p2 logn)

)
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≤ exp
(
2p2 logn

) ∫
Ac

n

Pn
Σ(1− φ)dΠ(Ω)

+Pn
Σ∗φ+ Pn

Σ∗

(
Dn ≤ exp(−2p2 logn)

)
≤ exp

(
2p2 logn

)
sup

Σ∈Ac
n∩supp(Π)

Pn
Σ(1− φ)

+Pn
Σ∗φ+ Pn

Σ∗

(
Dn ≤ exp(−2p2 logn)

)
.

In the upper bound above, the first two terms are bounded by the testing error
we have established. The last term can be bounded by combining the results of
Lemma 6.4 and Lemma 6.5. Hence, we have proved that

Π(Ac
n|Xn) = 1− oP (1).

For Theorem 2.1, let δn = M
√

p2 logn
n . Then δn = o(1) by assumption, and

An ⊂ {||Σ − Σ∗|| ≤ δn}. For Theorem 2.2, let δn = M
√

rp3 logn
n , then we have

δn = o(1) and An ⊂ {√rp||Σ− Σ∗|| ≤ δn}.
Part II. Let ΠG induce a prior distribution on symmetric Ω with each of the
upper triangular element independently following N(0, 1). The density of ΠG is

dΠG(Ω)

dΩ
= ξ−1

p exp
(
− 1

2
||Ω̄||2F

)
,

where we use Ω̄ to zero out the lower triangular elements of Ω except the diagonal
part and ξp is the normalizing constant. Write∫

An

exp
(
ln(Ωt)

)
dΠ(Ω)

= ξ−1
p

∫
An

exp
(
ln(Ωt)−

1

2
||Ω̄||2F

)
dΩ̄.

Remembering the notation Φ̃ defined in the proof of Lemma 2.1, we have∫
An

exp
(
ln(Ωt)−

1

2
||Ω̄||2F

)
dΩ̄

=

∫
An+2tn−1/2Φ̃

exp
(
ln(Γ)−

1

2
||Γ̄− 2tn−1/2 ¯̃Φ||2F

)
dΓ̄

=

∫
An+2tn−1/2Φ̃

exp
(
ln(Γ)−

1

2
||Γ̄||2F + 2tn−1/2tr

(
Γ̄ ¯̃Φ

)
− 2t2n−1|| ¯̃Φ||2F

)
dΓ̄.

We may choose M ′,M ′′ arbitrarily close to M such that M ′ < M < M ′′ and
A′

n ⊂ An + 2tn−1/2Φ̃ ⊂ A′′
n for

A′
n =

{
||Σ− Σ∗||F ≤ M ′

√
p2 logn

n

}
, A′′

n =

{
||Σ− Σ∗||F ≤ M ′′

√
p2 logn

n

}
.
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This can always be done because ||2tn−1/2Φ̃||F = O(n−1/2) = o(
√

p2 logn
n ).

Moreover, we have Π(A′
n|Xn) = 1− oP (1), Π(A′′

n|Xn) = 1− oP (1) and

sup
A′′

n

∣∣∣2tn−1/2tr
(
Γ̄ ¯̃Φ

)
− 2t2n−1|| ¯̃Φ||2F

∣∣∣
≤ C sup

A′′
n

∣∣∣n−1/2||Γ||F ||Φ̃||F + n−1||Φ̃||2F
∣∣∣

= O

(√
p

n
+

1

n

)

= o(1).

Therefore, using the same argument in the proof of Lemma 2.1, we have∫
An

exp
(
ln(Ωt)

)
dΠ(Ω)∫

An
exp

(
ln(Ω)

)
dΠ(Ω)

= 1 + oP (1).

This completes the proof.

6.4. Proof of technical Lemmas

Proof of Lemma 6.2. First, we show Ωt is a valid precision matrix under the
event An, i.e., Ωt > 0. Using Weyl’s theorem, we have

|λmin(Ωt)− λmin(Ω
∗)| ≤ ||Ωt − Ω||+ ||Ω− Ω∗||,

where the first term is bounded by

||Ωt − Ω|| ≤
√
2t√
n

||Φ||∥∥Σ∗1/2ΦΣ∗1/2
∥∥
F

= O(n−1/2).

Hence,
|λmin(Ωt)− λmin(Ω

∗)| ≤ O(n−1/2) + ||Ω− Ω∗||.
Under the current assumption, O(n−1/2) + ||Ω − Ω∗|| = o(λmin(Ω

∗)). Hence,
λmin(Ωt) > 0. Knowing the fact that ln(Ωt) is well-defined, we study ln(Ωt) −
ln(Ω),

ln(Ωt)− ln(Ω) =
n

2
tr
(
Σ̂(Ω− Ωt)

)
+

n

2
log det

(
I − (Ω− Ωt)Σ

)
=

n

2
tr
(
(Σ̂− Σ)(Ω− Ωt)

)
+

n

2
tr
(
Σ1/2(Ω− Ωt)Σ

1/2
)

+
n

2
log det

(
I − Σ1/2(Ω− Ωt)Σ

1/2
)
.

Let {hj}pj=1 be eigenvalues of Σ1/2(Ω− Ωt)Σ
1/2. Then, we have

n

2
tr
(
Σ1/2(Ω− Ωt)Σ

1/2
)
+

n

2
log det

(
I − Σ1/2(Ω− Ωt)Σ

1/2
)
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=
n

2

p∑
j=1

(
hj + log(1− hj)

)

= −n

4

p∑
j=1

h2
j −

n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds

= −n

4
||Σ1/2(Ω− Ωt)Σ

1/2||2F − n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds,

where
∫ hj

0
(hj−s)2

(1−s)3 ds is the remainder of the Taylor expansion. Therefore, we

have obtained the expansion

ln(Ωt)− ln(Ω)

=
n

2
tr
(
(Σ̂− Σ)(Ω− Ωt)

)
− n

4
||Σ1/2(Ω− Ωt)Σ

1/2||2F − n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds

=
t
√
n√

2||Σ∗1/2ΦΣ∗1/2||F
tr
(
(Σ− Σ̂)Φ

)
− t2

2

||Σ1/2ΦΣ1/2||2F
||Σ∗1/2ΦΣ∗1/2||2F

− n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds.

The proof is complete.

Proof of Lemma 6.4. Define ΠG to be the distribution which specifies i.i.d.
N(0, 1) on the upper triangular part of Ω and then take the lower triangular
part to satisfy ΩT = Ω. Define

D = {||Ω|| ∨ ||Σ|| ≤ 2Λ}.

Then according to the definition of Π, we have

Π(B) =
ΠG(B ∩D)

ΠG(D)
, for any B.

Since ΠG(D) ≤ 1, we have

Π(B) ≥ ΠG(B ∩D), for any B.

In particular, we have

Π
(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn/n

)
≥ ΠG

(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn/n, ||Ω|| ∨ ||Σ|| ≤ 2Λ

)
.

Since p2/n = o(1), we have{
||Ω− Ω∗||F ≤ p

√
logn

(2Λ)3
√
n

}
⊂

{
||Ω||2||Σ− Σ∗||2F ≤ p2 logn

n
, ||Ω|| ∨ ||Σ|| ≤ 2Λ

}
.
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Thus,

Π
(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn/n

)
≥ ΠG

(
||Ω− Ω∗||F ≤ p

√
logn

(2Λ)3
√
n

)
.

Calculate using Gaussian density directly, for example, according to Lemma E.1
in [17], and we have

ΠG

(
||Ω− Ω∗||F ≤ p

√
logn

(2Λ)3
√
n

)

≥ e−||Ω∗||2F
(
P

(
|Z|2 ≤ log n

cn

))p(p+1)/2

≥ exp
(
− ||Ω∗||2F − Cp2 logn

)
,

where Z ∼ N(0, 1). The proof is complete by observing that ||Ω∗||2F = o(p2 log n)
under the assumption.

Appendix A: Proof of Theorem 4.1 & Theorem 4.3

Lemma A.1. Under the setting of Theorem 4.1, assume p2/n = o(1) and
||Σ∗|| ∨ ||Ω∗|| = O(1), then we have

ln(μX,t, μY,t,Ωt)− ln(μX , μY ,Ω)

=
2t
√
n

V
tr
(
(Σ− Σ̂)Φ

)
− t

√
n

V
(X̄ − μX)TΩ∗ξX

− t
√
n

V
(Ȳ − μY )

TΩ∗ξY − 1

2
t2 + oP (1),

uniformly on An.

Proof. Since

ln(μX,t, μY,t,Ωt)− ln(μX , μY ,Ω)

=
(
lX(μX,t,Ωt)− lX(μX ,Ω)

)
+

(
lY (μY,t,Ωt)− lY (μY ,Ω)

)
,

we expand both quantities in the brackets using the general notation l(μt,Ωt)−
l(μ,Ω). Using Taylor expansion as in the proof of Lemma 6.2 and the notation
Σ̃ = 1

n

∑n
i=1(Xi − μ)(Xi − μ)T , we have

l(μt,Ωt)− l(μ,Ω)

=
n

2
tr
(
(Σ̃− Σ)(Ω− Ωt)

)
−n(μ− μt)

TΩt(X̄ − μ)− n

2

∥∥∥Σ1/2(Ω− Ωt)Σ
1/2

∥∥∥2
F

−n

2
(μ− μt)

TΩt(μ− μt)−
n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds
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=
t
√
n

V
tr
(
(Σ− Σ̃)Φ

)
+

t
√
n

V
ξTΩt(X̄ − μ)

− t2

V 2

∥∥∥Σ1/2ΦΣ1/2
∥∥∥2
F
− t2

2V 2
ξTΩtξ −

n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds,

where {hj}pj=1 are eigenvalues of Σ
1/2(Ω−Ωt)Σ

1/2. The same proof in Lemma 6.2
implies ∣∣∣∣∣∣

n

2

p∑
j=1

∫ hj

0

(hj − s)2

(1− s)3
ds

∣∣∣∣∣∣ = o(1), on An.

Therefore,

ln(μX,t, μY,t,Ωt)− ln(μX , μY ,Ω)

=
2t
√
n

V
tr

((
Σ− 1

2

(
Σ̃X + Σ̃Y

))
Φ

)
+

t
√
n

V
(X̄ − μX)TΩtξX

+
t
√
n

V
(Ȳ − μY )

TΩtξY − t2

2V 2

(
4
∥∥∥Σ1/2ΦΣ1/2

∥∥∥2
F
+ ξTXΩtξX + ξTY ΩtξY

)
+o(1).

We approximate 2t
√
n

V tr((Σ − 1
2

(
Σ̃X + Σ̃Y

)
)Φ) by 2t

√
n

V tr((Σ − Σ̂)Φ), and the
approximation error is bounded by

C
√
n

V

∣∣∣tr((Σ̂X − Σ̃X)Φ
)∣∣∣+ C

√
n

V

∣∣∣tr((Σ̂Y − Σ̃Y )Φ
)∣∣∣

≤ CV −1
√
n
(
(X̄ − μX)TΦ(X̄ − μX) + (Ȳ − μY )

TΦ(Ȳ − μY )
)

≤ C||Φ||V −1
√
n
(
||X̄ − μX ||2 + ||Ȳ − μY ||2

)
≤ C||Φ||V −1

√
n
(
||μX − μ∗

X ||2 + ||μY − μ∗
Y ||2 +OP (p/n)

)
= oP (1),

under An and the assumption p2/n = o(1), where we have used the fact that

||Φ||/V ≤ C. We approximate t
√
n

V (X̄−μX)TΩtξX by t
√
n

V (X̄−μX)TΩ∗ξX , and
the difference is bounded by

C
√
nV −1

∣∣ξTX(Ωt − Ω)(X̄ − μX)
∣∣+ C

√
nV −1

∣∣ξTX(Ω− Ω∗)(X̄ − μX)
∣∣

≤ CV −2||ξX ||||X̄ − μX ||||Φ||+ C
√
nV −1||ξX ||||Ω− Ω∗||||X̄ − μX ||

≤ C||X̄ − μX ||+ C
√
n||Ω− Ω∗||||X̄ − μX ||

≤ C
(
||μX − μ∗

X ||+
√
n||μX − μ∗

X ||||Ω− Ω∗||+√
p||Ω− Ω∗||+OP (

√
p/n)

)
= oP (1),

under An and the fact that ||ξX ||/V ≤ C. Using the same argument, we can also

approximate t
√
n

V (Ȳ − μY )
TΩtξY by t

√
n

V (Ȳ − μY )
TΩ∗ξY . Now we approximate
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the quadratic terms. Using the same argument in the proof of Lemma 6.2, we
have ∣∣∣∥∥Σ1/2ΦΣ1/2

∥∥2
F
−
∥∥Σ∗1/2ΦΣ∗1/2∥∥2

F

∣∣∣
V 2

= o(1).

We also have

|ξTX(Ωt − Ω∗)ξX |
V 2

≤ C
(
||Ω− Ω∗||+ ||Ωt − Ω||

)
= o(1),

and the same bound for
|ξTY (Ωt−Ω∗)ξY |

V 2 . Therefore,

t2

2V 2

(
4
∥∥∥Σ1/2ΦΣ1/2

∥∥∥2
F
+ ξTXΩtξX + ξTY ΩtξY

)
=

t2

2
+ o(1),

on An. The proof is complete by considering all the approximations above.

Lemma A.2. Under the same setting of Lemma A.1 and further assume V −1 =
O(1), we have

t
√
n

V

(
Δ(μX , μY ,Ω)−Δ(X̄, Ȳ , Σ̂−1)

)
=

2t
√
n

V
tr
(
(Σ− Σ̂)Φ

)
− t

√
n

V
(X̄ − μX)TΩ∗ξX − t

√
n

V
(Ȳ − μY )

TΩ∗ξY

+oP (1),

uniformly on An.

Proof of Theorem 4.1. Combining Lemma A.1 and Lemma A.2, we have

ln(μX,t, μY,t,Ωt)− ln(μX , μY ,Ω)

=
t
√
n

V

(
Δ(μX , μY ,Ω)−Δ(X̄, Ȳ , Σ̂−1)

)
− 1

2
t2 + oP (1),

uniformly in An. The remaining of the proof is the same as the proof of Theo-
rem 2.1.

The proof of Theorem 4.3, is very similar to the proof of Theorem 4.1. We
simply state the technical steps in the following lemmas and omit the details of
the proof.

Lemma A.3. Under the setting of Theorem 4.3, assume p2/n = o(1) and
||Σ∗|| ∨ ||Ω∗|| = O(1), then we have

ln(μX,t, μY,t,ΩX,t,ΩY,t)− ln(μX , μY ,ΩX ,ΩY )

=
t
√
n

V
tr
(
(ΣX − Σ̂X)ΦX

)
+

t
√
n

V
tr
(
(ΣY − Σ̂Y )ΦY

)
− t

√
n

V
(X̄ − μX)TΩ∗ξX − t

√
n

V
(Ȳ − μY )

TΩ∗ξY − 1

2
t2 + oP (1),

uniformly on An.
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Lemma A.4. Under the same setting of Lemma A.3 and further assume V −1 =
O(1) and p3/n = o(1), then

t
√
n

V

(
Δ(μX , μY ,ΩX ,ΩY )−Δ(X̄, Ȳ , Σ̂−1

X , Σ̂−1
Y )

)
=

t
√
n

V
tr
(
(ΣX − Σ̂X)ΦX

)
+

t
√
n

V
tr
(
(ΣY − Σ̂Y )ΦY

)
− t

√
n

V
(X̄ − μX)TΩ∗ξX − t

√
n

V
(Ȳ − μY )

TΩ∗ξY + oP (1),

uniformly on An.

Proof of Theorem 4.3. Combining Lemma A.3 and Lemma A.4, we have

ln(μX,t, μY,t,ΩX,t,ΩY,t)− ln(μX , μY ,ΩX ,ΩY )

=
t
√
n

V

(
Δ(μX , μY ,ΩX ,ΩY )−Δ(X̄, Ȳ , Σ̂−1

X , Σ̂−1
Y )

)
− 1

2
t2 + oP (1),

uniformly in An. The remaining of the proof is the same as the proof of Theo-
rem 2.1.

Appendix B: Proof of Theorem 4.2 & Theorem 4.4

In this section, we are going to prove Theorem 4.2 and Theorem 4.4. Due to
the similarity of the two theorems, we only present the details of the proof of
Theorem 4.4. The proof of Theorem 4.2 will be outlined. By the remark after
Theorem 4.4, it is sufficient to check the two conditions in Theorem 4.4 for X
and Y separately. Therefore, we only prove for theX part and omit the subscript
X from now on.

Denote the prior for (Ω, μ) as Π = ΠΩ × Πμ. The following lemma is a
generalization of Lemma 6.5 to the nonzero mean case.

Lemma B.1. Let ε be any sequence such that ε → 0. Define

Kn =
{
||Ω||2||Σ− Σ∗||2F + 2||Ω||||μ− μ∗||2 ≤ ε2

}
.

Then for any b > 0, we have

Pn
Σ∗

(∫
exp

(
ln(Ω)− ln(Ω

∗)
)
dΠ(Ω) ≤ Π(Kn) exp

(
− (b+ 1)nε2

))

≤ exp
(
− Cb2nε2

)
,

for some constant C > 0.

Proof. We renormalize the prior Π as Π̃ = Π(Kn)
−1Π̃ so that Π̃ is a distribution

with support within Kn. Write EΠ̃ to be the expectation using probability Π̃.
Define the random variable
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Yi =

∫
log

dPΣ

dPΣ∗
(Xi)dΠ̃(Ω)

= c+
1

2
(Xi − μ∗)T (Ω∗ − EΠ̃Ω)(Xi − μ∗) + (Xi − μ∗)TEΠ̃

(
Ω(μ− μ∗)

)
,

for i = 1, . . . , n, where c is a constant independent of X1, . . . , Xn. Then, Yi is a
sub-exponential random variable with mean

−PΣ∗Yi =

∫
D(PΣ∗ ||PΣ)dΠ̃(Ω)

≤
∫ (

1

4
||Ω||2||Σ− Σ∗||2F +

1

2
||Ω||||μ− μ∗||2

)
dΠ̃(Ω)

≤ ε2/4.

Thus, by Jensen’s inequality, we have

Pn
Σ∗

(∫
dPn

Σ

dPn
Σ∗

(Xn)dΠ̃(Ω) ≤ exp
(
− (b+ 1)nε2

))

≤ Pn
Σ∗

(
1

n

n∑
i=1

Yi ≤ −(b+ 1)ε2

)

≤ Pn
Σ∗

(
1

n

n∑
i=1

(Yi − PΣ∗Yi) ≤ −bε2

)

= Pn
Σ

(
1

n

n∑
i=1

(Y1i − PΣ∗Y1i) +
1

n

n∑
i=1

(Y2i − PΣ∗Y2i) ≤ −bε2

)
,

where in the last equality we defined

Y1i =
1

2
(Xi − μ∗)T (Ω∗ − EΠ̃Ω)(Xi − μ∗), Y2i = (Xi − μ∗)TEΠ̃

(
Ω(μ− μ∗)

)
,

for i = 1, . . . , n. By union bound, we have

Pn
Σ

(
1

n

n∑
i=1

(Y1i − PΣ∗Y1i) +
1

n

n∑
i=1

(Y2i − PΣ∗Y2i) ≤ −bε2

)

≤ Pn
Σ

(
1

n

n∑
i=1

(Y1i − PΣ∗Y1i) ≤ −bε2

2

)

+Pn
Σ

(
1

n

n∑
i=1

(Y2i − PΣ∗Y2i) ≤ −bε2

2

)
.

In the proof of Lemma 5.1 of [17], we have shown that

Pn
Σ

(
1

n

n∑
i=1

(Y1i − PΣ∗Y1i) ≤ −bε2

2

)
≤ exp

(
− Cb2nε2

)
.
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Hence, it is sufficient to bound the second term. Define Zi = Ω∗1/2(Xi − μ∗),
and then we have

Y2i − PΣ∗Y2i = ZT
i a and Zi ∼ N(0, Ip×p)

with a = Σ∗1/2
EΠ̃(Ω(μ − μ∗)). By Bernstein’s inequality (see, for example,

Proposition 5.16 of [29]), we have

P

(
1

n

n∑
i=1

aTZi ≤ −bε2

2

)
≤ exp

(
− Cmin

( (nbε2)2
n||a||2 ,

nbε2

||a||∞

))
.

Since

||a||2 ≤ ||Σ∗||
∥∥∥EΠ̃

(
Ω(μ− μ∗)

)∥∥∥2
≤ ||Σ∗||EΠ̃||Ω(μ− μ∗)||2

≤ C ′ε2,

and ||a||∞ ≤ ||a|| ≤
√
C ′ε2, then

P

(
1

n

n∑
i=1

aTZi ≤ −bε2

2

)
≤ exp

(
− Cmin

(
b2nε2, bnε

))
= exp

(
− Cb2nε2

)
,

because ε → 0. The conclusion follows the fact that

PΣ∗

(∫
dPn

Σ

dPn
Σ∗

(Xn)dΠ(Ω) ≤ Π(Kn) exp
(
− (b+ 1)nε2

))

≤ Pn
Σ∗

(∫
dPn

Σ

dPn
Σ∗

(Xn)dΠ̃(Ω) ≤ exp
(
− (b+ 1)nε2

))
.

The following lemma proves prior concentration.

Lemma B.2. Assume p2 = o(n/ log n), ||μ∗|| = O(1) and ||Σ∗|| ∨ ||Ω∗|| ≤ Λ =
O(1). For the prior Π = ΠΩ ×Πμ, we have

Π
(
||Ω||2||Σ− Σ∗||2F + 2||Ω||||μ− μ∗||2 ≤ p2 log n

n

)
≥ exp

(
− Cp2 logn

)
,

for some constant C > 0.

Proof. We have

Π
(
||Ω||2||Σ− Σ∗||2F + 2||Ω||||μ− μ∗||2 ≤ p2 logn

n

)
≥ Π

(
||Ω||2||Σ− Σ∗||2F + 4Λ||μ− μ∗||2 ≤ p2 logn

n

)
≥ Π

(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn

2n
, 4Λ||μ− μ∗||2 ≤ p2 logn

2n

)
= ΠΩ

(
||Ω||2||Σ− Σ∗||2F ≤ p2 logn

2n

)
Πμ

(
4Λ||μ− μ∗||2 ≤ p2 logn

2n

)
,
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where the first term is lower bounded in Lemma 6.4. It is sufficient to lower
bound Πμ(4Λ||μ− μ∗||2 ≤ p2 logn

2n ). By the definition of Gaussian density,

Πμ

(
4Λ||μ− μ∗||2 ≤ p2 logn

2n

)

≥ e−||μ∗||2/2

(
P

(
|Z|2 ≤ p log n

cn

))p

≥ exp
(
− ||μ∗||2/2− Cp logn

)
.

The proof is complete by noticing ||μ∗|| = O(1).

Lemma B.3. Assume ||Σ∗||∨||Ω∗|| ≤ Λ = O(1). Then for any constant M > 0,
there exists a testing function φ such that

Pn
(μ∗,Ω∗)φ ≤ exp

(
− CM2p2 logn

)
,

sup

{(μ,Ω)∈supp(Π):||μ−μ∗||>M

√
p2 log n

n }

Pn
(μ,Ω)(1− φ) ≤ exp

(
− CM2p2 logn

)
,

for some constant C > 0.

Proof. Use notation ε2 = p2 logn/n. Consider the testing function

φ =

{
||X̄ − μ∗|| > Mε

2

}
.

Then we have

Pn
(μ∗,Ω∗)φ = P

(
1√
n
||Σ∗1/2ZΣ∗1/2|| > Mε

2

)
≤ P

(
||Z||2 ≥ CM2nε2

)
,

where Z ∼ N(0, Ip×p). We also have for any (μ,Ω) in the alternative set,

Pn
(μ,Ω)(1− φ) ≤ Pn

(μ,Ω)

(
||μ− μ∗|| − ||X̄ − μ|| ≤ M

2
ε

)

≤ Pn
(μ,Ω)

(
||X̄ − μ|| > Mε

2

)

= P

(
1√
n
||Σ1/2ZΣ1/2|| > Mε

2

)

≤ P

(
||Z||2 ≥ CM2nε2

)
.

Finally, it is sufficient to bound P(||Z||2 ≥ CM2nε2). We have
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P

(
||Z||2 ≥ CM2nε2

)

= P

(
p∑

j=1

(Z2
j − 1) ≥ CM2nε2 − p

)

≤ P

(
p∑

j=1

(Z2
j − 1) ≥ CM2nε2/2

)

≤ exp
(
− Cmin

(
(M2nε2)2/p,M2nε2

))
= exp

(
− CM2nε2

)
,

where we have used Bernstein’s inequality. The proof is complete.

Lemma B.4. Assume ||Σ∗||∨ ||Ω∗|| ≤ Λ = O(1) and ||Σ1||∨ ||Ω1|| ≤ 2Λ. There
exist small δ, δ′, δ̄ > 0 only depending on Λ such that for any M > 0, there exists
a testing function φ such that

Pn
(μ∗,Ω∗)φ ≤ 2 exp

(
− Cδ′||Σ∗ − Σ1||2F

)
,

sup{
(μ,Ω)∈supp(Π):||Σ−Σ1||F≤δ||Σ∗−Σ1||F ,

||μ−μ∗||≤Mε

} Pn
Σ(1− φ) ≤ 2 exp

(
− Cδ′||Σ∗ − Σ1||2F

)
,

for some constant C > 0, whenever 6ΛM2ε2 ≤ δ̄||Σ1 − Σ∗||2F .
Proof. Since the lemma is a slight variation of Lemma 5.9 in [17]. We do not
write the proof in full details. We choose to highlight the part where the current
form is different from that in [17], and omit the similar part where the readers
may find its full details in the proof of Lemma 5.9 in Gao and Zhou. We use the
testing function

φ =

{
1

n

n∑
i=1

(Xi − μ∗)T (Ω∗ − Ω1)(Xi − μ∗) > log det(ΩΣ1)

}
.

We immediately have

Pn
(μ∗,Ω∗)φ ≤ 2 exp

(
− Cδ′||Σ1 − Σ∗||2F

)
,

as is proved in [17]. Now we are going to bound Pn
(μ,Ω)(1 − φ) for every (μ,Ω)

in the alternative set. Note that we have

1− φ

=

{
1

n

n∑
i=1

(Xi − μ)T (Ω∗ − Ω1)(Xi − μ) + 2(X̄ − μ)T (Ω∗ − Ω)(μ− μ∗)

+(μ− μ∗)T (Ω∗ − Ω1)(μ− μ∗) < log det(ΩΣ1)

}
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=

{
1

n

n∑
i=1

(
(Xi − μ)T (Ω∗ − Ω1)(Xi − μ)

−P(μ,Ω)(Xi − μ)T (Ω∗ − Ω1)(Xi − μ)

)

+2(X̄ − μ)T (Ω∗ − Ω1)(μ− μ∗) + (μ− μ∗)T (Ω1 − Ω∗)(μ− μ∗) > ρ̄

}
,

where we have proved in [17] that

ρ̄ ≥ δ̄||Σ1 − Σ∗||2F ,

for some δ̄ only depending on Λ. Using union bound, we have

Pn
(μ,Ω)(1− φ)

≤ Pn
(μ,Ω)

{
1

n

n∑
i=1

(
(Xi − μ)T (Ω∗ − Ω1)(Xi − μ)

−P(μ,Ω)(Xi − μ)T (Ω∗ − Ω1)(Xi − μ)

)
>

ρ̄

2

}

+Pn
(μ,Ω)

{
2(X̄ − μ)T (Ω∗ − Ω1)(μ− μ∗)

+(μ− μ∗)T (Ω1 − Ω∗)(μ− μ∗) >
ρ̄

2

}
.

[17] showed that the first term above is bounded by 2 exp(−Cδ′||Σ1 − Σ∗||2F ).
It is sufficient to bound the second term to close the proof. Actually, this is the
only difference between this proof and the one in [17]. Note that

|(μ− μ∗)T (Ω1 − Ω∗)(μ− μ∗)| ≤ 3Λ||μ− μ∗||2 ≤ 3ΛM2ε2.

By assumption,

3ΛM2ε2 ≤ 1

2
δ̄||Σ1 − Σ∗||2F ≤ ρ̄

4
.

Hence,

Pn
(μ,Ω)

{
2(X̄ − μ)T (Ω∗ − Ω1)(μ− μ∗) + (μ− μ∗)T (Ω1 − Ω∗)(μ− μ∗) >

ρ̄

2

}
≤ Pn

(μ,Ω)

{
2(X̄ − μ)T (Ω∗ − Ω1)(μ− μ∗) >

ρ̄

4

}

= P

(
ZTa >

ρ̄

8

)
,

where Z ∼ N(0, 1) and a = Σ1/2(Ω∗ −Ω)(μ− μ∗). Using Hoeffding’s inequality
(see, for example, Proposition 5.10 of [29]), we have

P

(
ZTa >

ρ̄

8

)
≤ exp

(
− Cρ̄2

||a||2
)
,
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where

||a||2 ≤ 9Λ3||μ− μ∗||2 ≤ 9Λ3M2ε2 ≤ 3Λ2

4
ρ̄,

according to the assumption. Thus,

P

(
ZTa >

ρ̄

8

)
≤ exp

(
− Cδ′||Σ1 − Σ∗||2F

)
,

for some δ′ only depending on Λ. Therefore, Pn
(μ,Ω)(1 − φ) ≤ exp(−Cδ′||Σ1 −

Σ∗||2F ) for all (μ,Ω) in the alternative set and the proof is complete.

Proof of Theorem 4.2 and Theorem 4.4. According to the remark after Theo-
rem 4.3,

Π(An|Xn, Y n) = ΠX(AX,n|Xn)ΠY (AY,n|Y n).

Thus, it is sufficient to show both ΠX(AX,n|Xn) and ΠY (AY,n|Y n) converge
to 1 in probability. Since they have the same form, we treat them together by
omitting the subscript X and Y . The posterior distribution is defined as

Π(Ac
n|Xn) =

∫
Ac

n
exp

(
ln(μ,Ω)− ln(μ

∗,Ω∗)
)
dΠ(μ,Ω)∫

exp
(
ln(μ,Ω)− ln(μ∗,Ω∗)

)
dΠ(μ,Ω)

=
Nn

Dn
,

where we consider

An =

{
||μ− μ∗|| ≤ M

√
p2 logn

n
, ||Σ− Σ∗||F ≤ M̄

√
p2 logn

n

}
,

for some M and M̄ sufficiently large. We are going to establish a test between
the following hypotheses:

H0 : (μ,Ω) = (μ∗,Ω∗) vs H1 : (μ,Ω) ∈ Ac
n ∩ supp(Π).

Decompose Ac
n as

Ac
n = B1n ∪B2n,

where

B1n =

{
||μ− μ∗|| > M

√
p2 logn

n

}
,

and

B2n =

{
||μ− μ∗|| ≤ M

√
p2 logn

n
, ||Σ− Σ∗||F > M̄

√
p2 logn

n

}
.

By Lemma B.3, there exists φ1 such that

Pn
(μ∗,Ω∗)φ1 ∨ sup

supp(Π)∩B1n

Pn
(μ,Ω)(1− φ1) ≤ exp

(
− CM2p2 log n

)
.
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For B2n, we pick a covering set {Σj}Nj=1 ⊂ B2n ∩ supp(Π), such that

B2n ⊂ ∪N
j=1B2nj ,

where

B2nj =

{
||μ− μ∗|| ≤ M

√
p2 log n

n
, ||Σ− Σj ||F ≤

√
p2 logn

n

}
,

and the covering number N can be chosen to satisfy

logN ≤ Cp2 logn,

as is shown in detail in the proof of Lemma 2.2. We may choose M̄ large enough
so that the assumption of Lemma B.4 is satisfied, which implies the existence
of φ2j such that

Pn
(μ∗,Ω∗)φ2j ∨ sup

supp(Π)∩B2nj

Pn
(μ,Ω)(1− φ2j) ≤ exp

(
− CM̄2p2 log n

)
.

Define the final test as φ = max(φ1,∨N
j=1φ2j). Then using union bound, we have

Pn
(μ∗,Ω∗)φ ∨ sup

supp(Π)∩Ac
n

Pn
(μ,Ω)(1− φ) ≤ exp

(
− C(M̄2 ∧M2)p2 logn

)
,

for large M and M̄ . Combining the testing result and the conclusions from
Lemma B.1 and Lemma B.2, we have

Pn
(μ∗,Ω∗)Π(A

c
n|Xn) = oP (1),

by using the same argument in the proof of Lemma 2.2. For QDA, as long as

p2 = o(
√
n

logn ), An satisfies the requirement. For LDA, we use a An defined as

An =

{
||μX − μ∗

X || ∨ ||μY − μ∗
Y || ≤ M

√
p2 logn

n
, ||Σ− Σ∗||F ≤ M̄

√
p2 log n

n

}
.

The proof needs some slight modification (including the previous lemmas) which

is not essential and we choose to omit here. When p2 = o(
√
n

logn ) is true, An also
satisfies the requirement there.

Now we are going to check the second conditions of Theorem 4.1 and Theo-
rem 4.3. We mainly sketch the QDA case. Using the notation in Lemma 2.2,∫
An

exp
(
ln(Ωt, μt)

)
dΠ(Ω, μ) = ξ−1

p

∫
An

exp
(
ln(Ωt, μt)−

1

2
||Ω̄||2F−

1

2
||μ||2

)
dΩ̄dμ,

where ξp is a normalizing constant and
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An

exp
(
ln(Ωt, μt)−

1

2
||Ω̄||2F − 1

2
||μ||2

)
dΩ̄dμ

=

∫
An+(2tn−1/2Φ,tn−1/2ξ)

exp
(
ln(Γ, θ)−

1

2
||Γ̄− 2tn1/2Φ̄||2F − 1

2
||θ − tn−1/2ξ||2

)
dΓ̄dθ.

Proceeding as in Lemma 2.2, the result is proved.

Appendix C: Proof of Lemma 3.1

Let Ω̂ = Σ̂−1. Note that∣∣∣log det(Σ)− log det(Σ̂)− tr
(
(Σ− Σ̂)Ω∗

)∣∣∣
≤

∣∣∣log det(Ω̂1/2ΣΩ̂1/2 − I + I
)
− tr

(
Ω̂1/2ΣΩ̂1/2 − I

)∣∣∣
+
∣∣∣tr((Σ− Σ̂)(Ω∗ − Ω̂)

)∣∣∣ .
For the second term,√

n

p

∣∣∣tr((Σ− Σ̂)(Ω∗ − Ω̂)
)∣∣∣

≤ C

√
n

p
||Σ− Σ̂||F ||Σ̂− Σ∗||F

≤ C

√
n

p

(
||Σ̂− Σ∗||2F + ||Σ− Σ∗||F ||Σ̂− Σ∗||F

)

≤ OP

(√
p3

n
+

√
p||Σ− Σ∗||F

)
,

which converges to zero whenever
√
p||Σ−Σ∗||F ≤ δn = o(1). For the first term,√

n

p

∣∣∣log det(Ω̂1/2ΣΩ̂1/2 − I + I
)
− tr

(
Ω̂1/2ΣΩ̂1/2 − I

)∣∣∣
≤ C

√
n

p

∥∥∥Ω̂1/2ΣΩ̂1/2 − I
∥∥∥2
F

≤ C

√
n

p

(
||Σ− Σ∗||2F + ||Σ̂− Σ∗||2F

)

≤ OP

(√
p3

n
+

√
n

p
||Σ− Σ∗||2F

)
,

which converges to zero whenver
√

n
p ||Σ − Σ∗||2F ≤ δn = o(1). Thus, the proof

is complete.
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Appendix D: Proof of Lemma 3.2, Lemma 3.3 & Proposition 5.1

Due to the similarity between Lemma 3.2 and Lemma 3.3, we only give the proof
of Lemma 3.2. Let us study the linear approximation of eigenvalue perturbation.
In particular, we are going to find the first-order Taylor expansion of λm(Σ)−
λm(Σ̂) and control the error term in some set An. We have the following spectral
decomposition for the three covariance matrices Σ, Σ̂,Σ∗.

Σ = UDUT , Σ̂ = ÛD̂ÛT , Σ∗ = U∗D∗U∗T .

Denote the m-th column of U, Û , U∗ by um, ûm, u∗
m. Then,

λm(Σ)− λm(Σ̂) = λm(ÛTΣÛ)− λm(ÛT Σ̂Û)

= λm(D̂ + ÛT (Σ̂− Σ)Û)− λm(D̂).

Write A = D̂ and Δ = ÛT (Σ̂− Σ)Û . The problem is reduced to the eigenvalue
perturbation of a diagonal matrix. According to the expansion formula in [23]
and [1], we have

λm(A+Δ)− λm(A) = λ′
m(A,Δ) +

∞∑
k=2

λ(k)
m (A,Δ), (D.1)

where the first-order term is

λ′
m(A,Δ) = Δmm = tr

(
ÛT (Σ̂− Σ)ÛEmm

)

= tr
(
(Σ̂− Σ)ÛEmmÛT

)
= tr

(
(Σ̂− Σ)ûmûT

m

)
.

In the remainder term, we have

λ(k+1)
m (A,Δ) = − 1

k + 1

∑
v1+···+vk+1=k,v1,...,vk+1≥0

tr
(
ΔÃv1 . . .ΔÃvk+1

)
,

where Ãv is the matrix power when v ≥ 1 with an exception that Ã0 = −emeTm,
where em is the m-th vector of the canonical basis of Rp. The matrix Ã is defined
as

Ã =
∑

1≤j≤p,j �=m

eje
T
j

am − aj
,

where aj = λj(Σ̂) is the (j, j)-th entry of A. Therefore, for any integer v ≥ 1,

||Ãv|| = ||Ã||v ≤ max

{
1

|am − am−1|
,

1

|am − am+1|

}
.

We are going to show that the first term in (D.1) is a good enough approximation
of λm(A + Δ) − λm(A) by bounding the higher-order terms. Let us provide a

bound for |λ(k+1)
m (A,Δ)|. Let N = {0, 1, 2, . . .}. Consider the set

{(v1, . . . , vk+1) ∈ N : v1 + · · ·+ vk+1 = k} .
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From its definition, there must be some l, such that vl = 0 to satisfy v1 + · · ·+
vk+1 = k. Thus, the set can be decomposed into a union of disjoint subsets as
follows, {

(v1, . . . , vk+1) ∈ N
k+1 : v1 + · · ·+ vk+1 = k

}
=

k+1⋃
l=1

{
(v1, . . . , vl−1, vl+1, . . . , vk+1) ∈ N

k :

v1 + · · ·+ vl−1 + vl+1 + · · ·+ vk+1 = k

}
.

Clearly, each the cardinality of each subset is(
2k − 1

k − 1

)
≤ (3e)k.

We give names to the sets we have mentioned by

Vk+1 = ∪k+1
l=1 Vk+1,l.

For l = 1, we have∣∣∣∣∣∣
∑

Vk+1,1

tr
(
ΔÃv1 . . .ΔÃvk+1

)∣∣∣∣∣∣ ≤
∑

Vk+1,1

∣∣∣tr(ΔÃv1 . . .ΔÃvk+1

)∣∣∣
=

∑
Vk+1,1

∣∣∣tr(ΔÃ0ΔÃv2 . . .ΔÃvk+1

)∣∣∣
=

∑
Vk+1,1

∣∣∣tr(ΔemeTmΔÃv2 . . .ΔÃvk+1

)∣∣∣
≤

∑
Vk+1,1

‖Δem‖
∥∥∥eTmΔÃv2 . . .ΔÃvk+1

∥∥∥
≤

∑
Vk+1,1

||Δ||k+1||Ã||v2+···+vk+1

=
∑

Vk+1,1

||Δ||k+1||Ã||k

= ||Δ||
(
3e||Δ||||Ã||

)k

In the same way, the bound also holds for other l. Therefore,

|λ(k+1)
m (A,Δ)| =

∣∣∣∣∣∣
1

k + 1

k+1∑
l=1

∑
Vk+1,l

tr
(
ΔÃv1 . . .ΔÃvk+1

)∣∣∣∣∣∣
≤ 1

k + 1

k+1∑
l=1

||Δ||
(
3e||Δ||||Ã||

)k

= ||Δ||
(
3e||Δ||||Ã||

)k

.
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When 3e||Δ||||Ã|| < 1, we may sum over k, and obtain∣∣∣∣∣
∞∑
k=2

λ(k)
m (A,Δ)

∣∣∣∣∣ ≤ ||Δ||
∞∑
k=1

(
3e||Δ||||Ã||

)k

≤ 3e||Δ||2||Ã||
1− 3e||Δ||||Ã||

.

Note that

||Δ|| = ||Σ̂− Σ|| ≤ ||Σ̂− Σ∗||+ ||Σ− Σ∗|| ≤ OP

(√ p

n

)
+ ||Σ− Σ∗||,

and

||Ã|| ≤ Cmin
{
max{|λm − λm−1|−1, |λm − λm+1|−1}, ||Σ̂− Σ||−1

}
= OP

(
min

(
δ−1,

√
n/p

))
.

Therefore,

3e||Δ||||Ã|| = OP

(√
p/n+ ||Σ− Σ∗||

δ

)
= oP (1),

holds under the assumption δ−1
√

p/n = o(1) and when δ−1||Σ− Σ∗|| = oP (1).
The remainders are controlled by

√
n

∣∣∣∣∣
∞∑
k=2

λ(k)
m (A,Δ)

∣∣∣∣∣ = OP

(
p

δ
√
n
+

√
n||Σ− Σ∗||2

δ

)
= oP (1),

under the assumption p
δ
√
n
= o(1) and when δ−1

√
n||Σ − Σ∗||2 = o(1). Hence,

by (D.1), we have proved

sup
{δ−1||Σ−Σ∗||∨δ−1

√
n||Σ−Σ∗||2≤δn}

√
n |λm(A+Δ)− λm(A)− λ′

m(A,Δ)| = oP (1),

for any δn = o(1).
Finally, for the first order term λ′

m(A,Δ), we approximate it by tr((Σ̂ −
Σ)u∗

mu∗T
m ), and the approximation error is∣∣∣tr((Σ̂− Σ)(ûmûT

m − u∗
mu∗T

m )
)∣∣∣ = ||u∗

mu∗T
m − ûmûT

m||F
∣∣∣tr((Σ̂− Σ)K

)∣∣∣ ,
where K is a rank-two unit Frobenius norm matrix. It has SVD K = c1d1d

T
1 +

c2d2d
T
2 , with c1 ∨ c2 ≤ 1. Therefore,

||u∗
mu∗T

m − ûmûT
m||F

∣∣∣tr((Σ̂− Σ)K
)∣∣∣ ≤ C||Σ̂− Σ||||Σ̂− Σ∗||

≤ OP

( p

n

)
+OP

(√ p

n
||Σ− Σ∗||

)
.
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Under the assumption p = o(n), when
√
p||Σ− Σ∗|| = o(1), we have

√
n
∣∣∣tr((Σ̂− Σ)(ûmûT

m − u∗
mu∗T

m )
)∣∣∣ = oP (1).

Therefore, the proof of Lemma 3.2 is complete.
Now we prove Proposition 5.1. We redefine A = D∗ and Δ = U∗T (Σ∗− Σ̂)U∗

and correspondingly Ãv. In the case where δ is a constant, we have

||Ã|| ≤ C, ||Δ|| = OP

(√
p

n

)
.

Similar to (D.1), we have

λ1(Σ̂)− λ1(Σ
∗) = λ′

1(A,Δ) +

∞∑
k=2

λ
(k)
1 (A,Δ),

where λ′
1(A,Δ) = tr((Σ∗ − Σ̂)u∗

1u
∗T
1 ) and thus

√
nλ′

1(A,Δ) is asymptotically
normal. For the remainder term, we decompose it as

∞∑
k=2

λ
(k)
1 (A,Δ) = λ

(2)
1 (A,Δ) +

∞∑
k=3

λ
(k)
1 (A,Δ).

Using similar techniques in proving Lemma 3.2, we have

√
n

∣∣∣∣∣
∞∑
k=3

λ
(k)
1 (A,Δ)

∣∣∣∣∣ ≤
√
n

∞∑
k=2

||Δ||
(
3e||Δ||||Ã||

)k

≤ C
√
n||Δ||3

= OP

(√
p3

n2

)
,

which is oP (1) under the assumption. Therefore,

√
n
(
λ1(Σ̂)− λ1(Σ

∗)
)
=

√
ntr

(
(Σ∗ − Σ̂)u∗

1u
∗T
1

)
+

√
nλ

(2)
1 (A,Δ) + oP (1).

It remains to show that
√
nλ

(2)
1 (A,Δ) is not oP (1). Note that Ã =

∑
j≥2

eje
T
j

a1−aj
,

with aj = λj(Σ
∗). Hence,

√
n
∣∣∣λ(2)

1 (A,Δ)
∣∣∣ =

√
n
∣∣∣tr(ΔÃΔe1e

T
1

)∣∣∣
=

√
n

∣∣∣∣∣∣
∑
j≥2

1

a1 − aj
|eT1 U∗T (Σ∗ − Σ̂)U∗ej |2

∣∣∣∣∣∣
≥

√
n

a1 − a2

∑
j≥2

|eT1 U∗T (Σ∗ − Σ̂)U∗ej |2.
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For fixed eigengap, a1 − a2 is a constant. When Σ∗ is diagonal, U∗ = I, and
we have |eT1 U∗T (Σ∗ − Σ̂)U∗ej |2 = σ̂2

1j . Moreover, the fact that Σ∗ is diagonal

implies σ̂2
1j are independent for j = 2, . . . , p. Hence,

√
n
∣∣∣λ(2)

1 (A,Δ)
∣∣∣ ≥ C

√
n

p∑
j=2

σ̂2
1j ,

where
√
n
∑p

j=2 σ̂
2
1j is at the level of p/

√
n, which diverges to ∞ under the

assumption. The proof is complete.

Appendix E: Proof of Corollary 5.1

The proof follows closely to that of Lemma 2.1. First, Theorem 5.2 implies that
Π(An|Xn) = 1−oP (1) with An defined by (5.9). To check the second condition,
let

Ωt = Ω+ 2tn−1/2Φ̃,

with Φ̃ = (
√
2‖Σ∗1/2ΦΣ∗1/2‖F )−1Φ. Then, using the same argument in the proof

of Lemma 2.1, we get∫
An

exp (ln(Ωt)) dΠ(Ω)

=

∫
An+2tn−1/2Φ̃

exp (ln(Ω))

exp

(
b− 2

2
log det(I − 2tn−1/2Ω−1Φ̃) +

1

2
tr(2tn−1/2Φ̃)

)
dΠ(Ω).

Note that

An + 2tn−1/2Φ̃ =

{
Ω ∈ Fk :

∥∥∥Ω− 2tn−1/2Φ̃− Ω∗
∥∥∥ ≤ M

√
k5 log p

n

}
.

Using the fact that Φ̃ ∈ Fk and ||2tn−1/2Φ̃|| ≤ 2tn−1/2||Φ̃||F = O(n−1/2), we
have

A′
n ⊂ An + 2tn−1/2Φ̃ ⊂ A′′

n

for

A′
n =

{
Ω ∈ Fk : ||Ω− Ω∗||�1 ≤ M ′

√
k5 log p

n

}
,

A′′
n =

{
Ω ∈ Fk : ||Ω− Ω∗||�1 ≤ M ′′

√
k5 log p

n

}
.

Moreover, Π(A′
n|Xn) = 1 − oP (1) and Π(A′′

n|Xn) = 1 − oP (1) by Theorem 5.2
for large M,M ′,M ′′. Finally,

sup
A′′

n

∣∣∣∣b− 2

2
log det(I − 2tn−1/2Ω−1Φ̃) +

1

2
tr(2tn−1/2Φ̃)

∣∣∣∣
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≤ tn−1/2 sup
A′′

n

∣∣∣|b− 2|
∥∥∥Ω−1/2Φ̃Ω−1/2

∥∥∥
N
+ ||Φ̃||N

∣∣∣
= O

(√
r

n

)
= o(1).

Following the rest of the proof of Lemma 2.1, the proof is complete.
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événments. Eng. trans. in Statistic Sciences 1 359–378.

[25] Le Cam, L. and Yang, G. L. (2000). Asymptotics in statistics: Some
basic concepts. Springer. MR1784901

[26] Ma, Z. (2013). Sparse principal component analysis and iterative thresh-
olding. The Annals of Statistics 41 772–801. MR3099121

[27] Rivoirard, V. and Rousseau, J. (2012). Bernstein–von Mises theorem
for linear functionals of the density. The Annals of Statistics 40 1489–1523.
MR3015033

[28] van der Vaart, A. W. (2000). Asymptotic statistics. Cambridge univer-
sity press. MR1652247

[29] Vershynin, R. (2010). Introduction to the non-asymptotic analysis of
random matrices. arXiv preprint arXiv:1011.3027. MR2963170

[30] Von Mises, R. (1928). Wahrscheinlichkeit, statistik und wahrheit. Berlin.

http://www.ams.org/mathscinet-getitem?mr=2483424
http://www.ams.org/mathscinet-getitem?mr=2678969
http://www.ams.org/mathscinet-getitem?mr=1863696
http://www.ams.org/mathscinet-getitem?mr=3325710
http://www.ams.org/mathscinet-getitem?mr=1475901
http://www.ams.org/mathscinet-getitem?mr=1681701
http://www.ams.org/mathscinet-getitem?mr=1790613
http://www.ams.org/mathscinet-getitem?mr=1790007
http://www.ams.org/mathscinet-getitem?mr=1335452
http://www.ams.org/mathscinet-getitem?mr=1784901
http://www.ams.org/mathscinet-getitem?mr=3099121
http://www.ams.org/mathscinet-getitem?mr=3015033
http://www.ams.org/mathscinet-getitem?mr=1652247
http://www.ams.org/mathscinet-getitem?mr=2963170

	Introduction
	Notation

	A general framework
	Functional of the covariance matrix
	Functional of the precision matrix
	Priors
	Wishart prior
	Gaussian prior


	Examples of matrix functionals
	Entry-wise functional
	Quadratic form
	Log determinant
	Eigenvalues

	Discriminant analysis
	Linear discriminant analysis
	Quadratic discriminant analysis

	Discussion
	Comparison: Asymptotic normality of () and (-1)
	The asymptotic regime of (p,n)
	Sharpness of the condition rp2/n=o(1) in Theorem 2.2
	Covariance priors
	Relation to matrix estimation under Non-Frobenius loss
	Matrices with structures

	Proofs
	Proof of Theorem 2.1 & Theorem 2.2
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of technical Lemmas

	Proof of Theorem 4.1 & Theorem 4.3
	Proof of Theorem 4.2 & Theorem 4.4
	Proof of Lemma 3.1
	Proof of Lemma 3.2, Lemma 3.3 & Proposition 5.1
	Proof of Corollary 5.1
	References

