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RANDOM PERTURBATION TO THE GEODESIC EQUATION1

BY XUE-MEI LI

University of Warwick

We study random “perturbation” to the geodesic equation. The geodesic
equation is identified with a canonical differential equation on the orthonor-
mal frame bundle driven by a horizontal vector field of norm 1. We prove
that the projections of the solutions to the perturbed equations, converge, af-
ter suitable rescaling, to a Brownian motion scaled by 8

n(n−1)
where n is the

dimension of the state space. Their horizontal lifts to the orthonormal frame
bundle converge also, to a scaled horizontal Brownian motion.

1. Introduction. Let M be a complete smooth Riemannian manifold of di-
mension n and TxM its tangent space at x ∈ M . Let OM denote the space of
orthonormal frames on M and π the projection that takes an orthonormal frame
u :Rn → TxM to the point x in M . Let Tuπ denote its differential at u. For e ∈ R

n,
let Hu(e) be the basic horizontal vector field on OM such that Tuπ(Hu(e)) = u(e),
that is, Hu(e) is the horizontal lift of the tangent vector u(e) through u. If
{ei} is an orthonormal basis of Rn, the second-order differential operator �H =∑n

i=1 LH(ei)LH(ei) is the Horizontal Laplacian. Let {wi
t ,1 ≤ i ≤ n} be a family of

real valued independent Brownian motions. The solution (ut , t < ζ ), to the follow-
ing semi-elliptic stochastic differential equation (SDE), dut = ∑n

i=1 Hut (ei)◦dwi
t ,

is a Markov process with infinitesimal generator 1
2�H and lifetime ζ . We denote

by ◦ Stratonovich integration. The solutions are known as horizontal Brownian
motions. It is well known that a horizontal Brownian motion projects to a Brown-
ian motion on M . We recall that a Brownian motion on M is a sample continuous
strong Markov process with generator 1

2� where � is the Laplace–Beltrami opera-
tor. This construction of Brownian motions on a Riemannian manifold is canonical
and has fundamental applications in analysis on path spaces.

For e0 ∈ R
n, the horizontal vector field H(e0) does not project to a vector field

on M . It, however, induces a vector field X on T M which is a geodesic spray. If
(u

e0
t ) is the solution to the first-order differential equation

u̇(t) = Hu(t)(e0), u(0) = u0,

then π(u
e0
t ) is the geodesic on M with initial velocity u0(e0) and initial value

π(u0).
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Let N = n(n−1)
2 and let so(n) be the space of skew symmetric matrices in di-

mension n. It is the Lie algebra of the orthogonal group O(n). For A ∈ so(n), we
denote by A∗ the fundamental vertical vector field on OM determined by right ac-
tions of the exponentials of tA; see (2.1) below. If X is a vector field, we denote
by LX Lie differentiation in the direction of X. Let us fix a time T > 0. Let ρ be
the Riemannian distance function on M , ∇ the Levi–Civita connection and � the
Laplace–Beltrami operator. Let ε a positive number. Our main theorems concern
the convergence, as ε approaches zero, of the “horizontal part” of the solutions to
a family of stochastic differential equations with parameter ε. The definitions for
the horizontal and vertical vector fields and for the horizontal lift of a curve are
given in Section 2. Let e0 be a unit vector in R

n.

THEOREM 1.1. Let M be a complete Riemannian manifold of dimension
n > 1 and of positive injectivity radius. Suppose that there are positive numbers C

and a such that supρ(x,y)≤a |∇ dρ|(x, y) ≤ C. Let x0 ∈ M and u0 ∈ π−1(x0). Let

Ā ∈ so(n) and {A1, . . . ,AN } be an orthonormal basis of so(n). Let (uε
t ,0 ≤ t ≤ T )

be the solution to the SDE⎧⎪⎪⎨
⎪⎪⎩

duε
t = Huε

t
(e0) dt + 1√

ε

N∑
k=1

A∗
k

(
uε

t

) ◦ dwk
t + Ā∗(

uε
t

)
dt,

uε
0 = u0.

(1.1)

Let xε
t = π(uε

t ) and let (x̃ε
t ,0 ≤ t ≤ T ) be the horizontal lift of (xε

t ,0 ≤ t ≤ T ) to
OM through u0. Then the following statements hold:

(1) The SDE does not explode.
(2) The processes (xε

t/ε,0 ≤ t ≤ T ) and (x̃ε
t/ε,0 ≤ t ≤ T ) converge in law, as

ε → 0.
(3) The limiting law of (xε

t/ε,0 ≤ t ≤ T ) is independent of e0. It is a scaled

Brownian motion with generator 4
n(n−1)

�. The limiting law of (x̃ε
t/ε,0 ≤ t ≤ T ) is

that associated to the generator 4
n(n−1)

�H .

If “ε = ∞” and Ā = 0, the SDE (1.1) reduces to the first-order differential equa-
tion u̇(t) = Hu(t)(e0) whose solutions are geodesics. If “ε = 0”, the SDE “reduces”
to the “vertical SDE”, duε

t = 1√
ε

∑N
k=1 A∗

k(u
ε
t ) ◦ dwk

t . This vertical equation does
not have a meaning for ε = 0, nevertheless the “vertical SDE” has a first integral
π : OM → M , that is, π(uε

t ) = π(uε
0). By a preliminary multi-scale analysis, we

see that π(uε
t ) varies slowly with ε and there is a visible effective motion in the

time interval [0, 1
ε
]. The first integral π is not a real-valued function. It is a func-

tion from a manifold to a manifold and the slow variables {(xε
t ), ε > 0} are not

Markov processes. Before further discussions on conservation laws related to the
SDEs, we remark the following features: (1) the slow motion solves a first-order
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differential equation, (2) the “fast motion” on OM is not elliptic, (3) the limiting
process is semi-elliptic. Another feature of Theorem 1.1 is that the pair of the in-
tertwined family of stochastic processes (xε

t/ε, x̃
ε
t/ε) converge. We will explore (3)

in a forthcoming article on homogeneous manifolds. For now, the following ob-
servation indicates a potential application of (3): the stochastic area of two lin-
ear Brownian motions {w1

t ,w
2
t } is the principal part of the horizontal lift of the

two-dimensional Brownian motion (w1
t ,w

2
t ) to the three-dimensional Heisenberg

group. We remark also that the first-order horizontal geodesic equation on the or-
thonormal frame bundle corresponds a second-order differential equation on the
manifold, which explains the unusual scaling in (1.1).

There have been many studies of limit theorems whose geometric settings or
scalings or methodologies relate that in this article. For example, our philosophy
agrees with that in Bismut [3] where the equation ẍ = 1

T
(−ẋ + ẇ) interpolates

between classical Brownian motion (T → 0) and the geodesic flow (T → ∞). In
Ikeda [16] and Ikeda and Ochi [17], the authors studied limit theorems for line in-
tegrals of the form

∫ t
0 φ(dxs), where φ is a differential form and (xs) is a suitable

process such as a Brownian motion. In Manabe and Ochi [23] the authors ob-
tained central limit theorems for line integrals along geodesic flows. One of their
tools is symbolic representations of geodesic flows. Another related work can be
found in Pinsky [27], where a piecewise geodesic with a Poisson-type switching
mechanism is shown to converge to the horizontal Brownian motion. We also note
that geodesic flows perturbed by vertical Brownian motions were considered by
Franchi and Le Jan [10], in the context of relativistic diffusions.

The conclusion of (1.1) is consistent with the following central limit theorems
for geodesic flows. Let M be a manifold of constant negative curvature and of
finite volume. Let (γt (x, v)) denote the geodesic with initial value (x, v) in the
unit tangent bundle STM and let θt (v) = (γt (x, v), γ̇t (x, v)), a stochastic process
on STM. Let f be a bounded measurable function on STM with the property that
it is centered with respect to the normalized Liouville measure m. Then there is a
number σ with the property that

lim
t→∞m

{
ξ :

∫ t
0 f (θs(ξ)) ds

σ
√

t
≤ a

}
= 1√

2π

∫ a

−∞
e−y2/2 dy.

See Sinai [30], Ratner [28]; see Guivarch and Le Jan [12] and Enriquez, Franchi
and Le Jan [8] for further developments. See also Helland [15] and Kipnis and
Varadhan [19]. These results exploit the chaotic nature of the deterministic dy-
namical system on manifolds of negative curvature.

In the homogenisation literature, the following works are particularly rele-
vant: Khasminskii [14, 18], Nelson [24], Borodin and Freidlin [4], Freidlin and
Wentzell [11] and Bensoussan, Lions and Papanicolaou [1]. We note in particular
Theorem 2.1 in [4] which deals with the convergence of path integrals of a suitable
function along a family of ergodic Markov processes. In this article, such integrals
are better understood as integrals of differential 1-forms along random paths. Fi-
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nally, we mention the following work: Li [21] for averaging of integrable systems
and Ruffino and Gonzales Gargate [29] for averaging on foliated manifolds. See
also [22] for an earlier work on the orthonormal frame bundle. We also refer to
Dowell [5] for a scaling limit of Ornstein–Uhlenbeck type.

Open question. The local uniform bound on ∇ dρ is only used in Lemma 3.2
for the proof of tightness. This bound can be weakened, for example, replaced by
a local uniform control over the rate of growth of the norms of ∇ dρ

ρ
and ∇ ρ

ρ
. We

remark that Brownian motion constructed in Theorem 1.1 is automatically com-
plete. The conditions in Theorem 1.1 appear to be related to the uniform cover
criterion on stochastic completeness and could be studied in connection with that
in Li [20]. Also, much of the work in this article is valid for a connection ∇ with
torsion, the horizontal tangent bundle and �H will then be induced by this connec-
tion with torsion. The effect of the torsion will generally lead to an additional drift
to the Brownian motion downstairs. In this case the geodesic completeness of the
manifold M may no longer be equivalent to the metric completeness of (M,ρ).

2. Preliminaries. Given a Riemannian metric on M , an orthonormal frame
u = {u1, . . . , un} is an ordered basis of TxM that is orthonormal. We denote by OM
the set of all orthonormal frames on M and π the map that takes the frame u to the
point x ∈ M . Let π−1(x) = {u ∈ OM :π(u) = x}. If (O,x) is a coordinate system
on M , ui = ∑

j u
j
i

∂
∂xj

|x . This gives a coordinate map on OM. The map (x, u
j
i ) is

a homeomorphism from π−1(O) to (x(O),O(n)). If we identify a frame u with
the transformation u :Rn → TxM , then OM is a principal bundle with fibre O(n)

and group G, acting on the right. We adopt the notation ue = u(e). For g ∈ O(n)

let Rg denote right multiplication on O(n) and the right action of O(n) on OM.
For A,B ∈ so(n) let 〈A,B〉 = trABT .

A tangent vector v in OM is vertical if T π(v) = 0 where T π denotes the dif-
ferential of π . If A belongs to the Lie algebra so(n), we denote by exp(tA) the
exponential map. If u is a frame, the composition u exp(tA) is again a frame in the
same fibre. We define the fundamental vertical vector fields associated to A by A∗,

A∗(u) = d

dt

∣∣∣∣
t=0

u exp(tA).(2.1)

By a linear connection on the principal bundle OM, we mean a splitting of
the tangent bundle T OM with the following properties: (1) TuOM = HTuOM ⊕
V TuOM (2) (Ra)∗HuT OM = HuaT OM for all u ∈ OM and a ∈ G. The spaces
HTuOM and V TuOM are, respectively, the horizontal tangent spaces and the ver-
tical tangent spaces. We will introduce a metric on OM such that π is an isometry
between HuT OM and Tπ(u)M and such that HuT OM and V TuOM are orthogonal.
The metric on so(n) is the bi-invariant metric introduced earlier. We will restrict
our attention to the Levi–Civita connection.

Let hu(v) denote the horizontal lift of v ∈ TxM through u ∈ π−1(x). To each
e ∈ R

n we denote Hu(e) = hu(ue) the basic vector field. Later, we also use Hue for
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Hu(e). If {e1, . . . , en} is an orthonormal basis of Rn, then {Hu(e1), . . . ,Hu(en)} is
an orthonormal basis for the horizontal tangent space HTuOM.

A piecewise C1 curve γ on OM is horizontal if the one-sided derivatives γ̇ (±)

are horizontal for all t . If c is a C1 curve on M , there is a horizontal curve c̃

on OM such that c̃ covers c, that is, π(c̃(t)) = c(t). In fact, c̃(t) is the family of
orthonormal frames along c that are obtained by parallel transporting the frame
c̃(0). We say that c̃ is a horizontal lift of c. The map c̃(t)(c̃(0))−1 :Tc(0)M →
Tc(t)M is the parallel translation along the curve c(t). In a coordinate chart (O,x),
the principal part of c̃(t) is a n×n matrix whose column vectors {c̃1(t), . . . , c̃n(t)}
form a frame. In components, write c̃l(t) = (c̃1

l (t), . . . , c̃
n
l (t))

T . Then

∂c̃k
l (t)

∂t
+

n∑
i=1,j=1

∂ci(t)

∂t

k

ij

(
c(t)

)
c̃
j
l (t) = 0.

Take c(t) = (0, . . . , t, . . . ,0), where the nonzero entry is in the ith-place. We ob-
tain the principal part of the horizontal lift of ∂

∂xi
through u = c̃(0) = (u

j
l ):

(
hc̃(0)

(
∂

∂xi

))
l

=
(

∂c̃

∂t
(0)

)
l

= −
(∑

j


1
ij u

j
l , . . . ,

n∑
j=1


n
iju

j
l

)T

.

Denote by Ai the matrix whose element at the (b, l) position is
∑

j 
b
iju

j
l . Then

Ai is the principal part of Hu(
∂

∂xi
) and the horizontal space at u is spanned by the

basis {( ∂
∂xi

,Ai)}.
A basic object we use in our computation is the connection 1-form � on OM.

A connection 1-form assigns a skew symmetric matrix to every tangent vector on
OM and it satisfies the following conditions:

(1) �(A∗) = A for all A ∈ so(n);
(2) for all a ∈ O(n) and w ∈ OM, �(Ra∗w) = Ad(a−1)�(w). We recall that

Ra∗(A∗) = (Ad(a−1)A)∗ for all a ∈ O(n). It is convenient to consider horizon-
tal tangent vectors on OM as elements of the kernel of � . If {A1, . . . ,AN } is
a basis of so(n), then the horizontal component of a vector w is wh = w −∑

j 〈�(w),Aj 〉A∗
j .

The connection 1-form � is basically the set of Christoffel symbols. Let E =
{E1, . . . ,En} be a local frame; we define the Christoffel symbols relative to E by
∇Ej = ∑

ki 

k
ij dxi ⊗ Ek . Let θi be the set of dual differential 1-forms on M to

{Ei}: θi(Ej ) = δij . We define ωi
k = 
i

lkθ
l . Then dθi = −∑

k ωi
k ∧ θk . Let {Aj

i } be

a basis of g. To each moving frame E, we associate a 1-form, ω = ∑
i,j ωi

jA
j
i , on

M . If (O,x) is a chart of M and s :O → OM is a local section of OM, let us denote
by ωs the differential 1-form given above, then �(s∗v) = ωs(v). Conditions (1)
and (2) are equivalent to the following: if a :U → G is a smooth function,

�
(
(s · a)∗v

) = a−1(x) da(v) + a−1(x)�(s∗v)a(x).
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This corresponds to the differentiation of s · a and this type of consideration will
be used in the next section.

3. Some lemmas.

LEMMA 3.1. Let M be a geodesically complete Riemannian manifold. Let
(uε

t ) be the solution to the SDE (1.1) on OM. Let xε
t = π(uε

t ), which has a unique
horizontal lift, x̃ε

t , through u0 ≡ uε
0. Then

d

dt
x̃ε
t = Hx̃ε

t

(
gε

t e0
)
,

dgε
t = 1√

ε

m∑
k=1

gε
t Ak ◦ dwk

t + gε
t Ā dt,

where gε
0 is the unit matrix. Consequently the SDE (1.1) is conservative.

PROOF. By the defining properties of the basic horizontal vector fields, ẋε
t =

π∗(Huε
t
(e0)) = uε

t e0. Let hu(v) denote the horizontal lift of a tangent vector v

through u ∈ OM. Since uε
t e0 has unit speed, the solution exists for all time if (uε

t )

does, and

d

dt
x̃ε
t = hx̃ε

t

(
ẋε
t

) = hx̃ε
t

(
uε

t e0
)
.

At each time t , the horizontal lift (x̃ε
t ) of the curve (xε

t ) through u0 and the original
curve uε

t belong to the same fibre. Let gε
t be an element of G with the property that

uε
t = x̃ε

t g
ε
t . Then gε

0 is the unit matrix and

d

dt
x̃ε
t = hx̃ε

t

(
x̃ε
t g

ε
t e0

) = Hx̃ε
t

(
gε

t e0
)
.

If at is a C1 path with values in O(n), a−1
t ȧt = d

dr
|r=0e

ra−1
t ȧt , its action on u gives

rise to a fundamental vector field,

d

dt

∣∣∣∣
t

uat = d

dr

∣∣∣∣
r=0

uata
−1
t ar+t = (

a−1
t ȧt

)∗
(uat ).

We denote by DLg and DRg , respectively, the differentials of the left multiplication
and of the right action. By Itô’s formula applied to the product x̃ε

t g
ε
t ,

duε
t = DRgε

t
◦ dx̃ε

t + (
DL(gε

t )
−1 ◦ dgε

t

)∗(
uε

t

)
.

Since right translation of horizontal vectors are horizontal, the connection 1-form
vanishes on the first term and �(◦duε

t ) = DL(gε
t )

−1 ◦dgε
t . We apply � to the SDE
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for uε
t ,

dgε
t = DLgε

t
�

(◦duε
t

) = DLgε
t
�

(
1√
ε

N∑
k=1

A∗
k

(
uε

t

) ◦ dwk
t + Ā∗(

uε
t

)
dt

)

= 1√
ε

m∑
k=1

gε
t Ak ◦ dwk

t + gε
t Ā dt.

There is a global solution to the above equation. The ODE d
dt

x̃ε
t = Hx̃ε

t
(gε

t e0) has
bounded right-hand side and has a global solution. It follows that uε

t = x̃ε
t g

ε
t has a

global solution. �

REMARK 3.1. Since the stochastic process (gε
t ) is sample continuous with

initial value the unit matrix, it stays in the connected component SO(n) of O(n).

If {Ak} is an orthonormal basis of so(n) let LG = 1
2

∑N
k=1 LgAk

LgAk
. Then (gε

t )

is a Markov process with infinitesimal generator

Lε = 1

ε
LG + LgĀ.

LEMMA 3.2. Let M be a complete Riemannian manifold with positive in-
jectivity radius. Suppose that there are numbers C > 0 and a2 > 0 such that
supρ(x,y)≤a2

|∇ dρ|(x, y) ≤ C. Let T > 0. The probability distributions of the fam-

ily of stochastic processes {x̃ε
t/ε, t ≤ T } are tight. There is a metric d̃ on M such

that {(x̃ε
t/ε)} is equi-Hölder continuous with exponent α < 1

2 .

PROOF. Let με be the probability laws of (x̃ε
t ) on the path space over OM with

initial value u0, which we denote by C([0, T ];OM). Since x̃ε
0 = u0, it suffices to

estimate the modulus of continuity and show that for all positive numbers a, η,
there exists δ > 0 such that for all ε sufficiently small (see Billingsley [2] and
Ethier and Kurtz [9])

P
(
ω : sup

|s−t |<δ

d
(
x̃ε
t , x̃

ε
s

)
> a

)
< δη.

Here, d denotes a distance function on OM. We will choose a suitable distance
function. The Riemannian distance function ρ̃(x, y) is not smooth in y if y is in
the cut locus of x. To avoid any assumption on the cut locus of OM, we construct
a new distance function that preserves the topology of OM.

Let 2a be the minimum of 1, a2 and the injectivity radius of M . Let φ :R+ →
R+ be a smooth concave function such that φ(r) = r when r < a and φ(r) = 1
when r ≥ 2a. Let ρ and ρ̃ be, respectively, the Riemannian distance on M and on
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OM. Then φ ◦ ρ and d̃ = φ ◦ ρ̃ are distance functions on M and on OM, respec-
tively. Then for r < t ,

φ2 ◦ ρ̃
(
x̃ε
t/ε, x̃

ε
r/ε

) =
∫ t/ε

r/ε
D

(
φ2 ◦ ρ̃

(
x̃ε
r , ·

))
x̃ε
s

(
Hx̃ε

s

(
gε

s e0
))

ds.

Since Hx̃ε
s
(gε

s e0) has unit length, from the equation above we do not observe, di-
rectly, a uniform bound in ε.

For further estimates, we work with a C2 function F : OM → R to simplify the
notation. Also, the computations below and some of the identities will be used later
in the proof of Theorem 1.1. Let 0 ≤ r < t ,

F
(
x̃ε
t/ε

) = F
(
x̃ε
r/ε

) +
∫ t/ε

r/ε
(DF)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
))

ds.(3.1)

Let {ei} be an orthonormal basis of R
n. We define two sets of functions

fi : OM →R and hi :O(n) →R:

fi(u) = (DF)u(Huei), αi(g) = 〈ge0, ei〉.
From the linearity of Hu, we obtain the identity Hu(ge0) = ∑n

i=1 Hu(ei)αi(u).
Thus, the integrand in (3.1) factorizes and we have

F
(
x̃ε
t/ε

) = F
(
x̃ε
r/ε

) +
n∑

i=1

∫ t/ε

r/ε
fi

(
x̃ε
s

)
αi

(
gε

s e0
)
ds.(3.2)

Since the Riemannian metric on G = SO(n) is bi-invariant, the Riemannian vol-
ume measure, which locally has the form

√
det(gij ) dx1 ∧ · · · ∧ dxN , is the Haar

measure. Let dg be the Haar measure normalized to be a probability measure on G.
Let g̃ be a rotation such that g̃e0 = −e0. Then

∫
G g(g̃e0) dg = ∫

G g(e0) dg. The in-
tegral of ge0 with respect to the Haar measure vanishes. In particular,

∫
G αi dg = 0.

On a compact Riemannian manifold the Poisson equation with a smooth function
that is centered with respect to the Riemannian volume measure has a unique cen-
tered smooth solution. For each i, let hi :G → R be the smooth centred solution
to the Poisson equation

LGhi = αi = 〈ge0, ei〉.(3.3)

We apply Itô’s formula to the function fihi and r < t ,

fi

(
x̃ε
t/ε

)
hi

(
gε

t/ε

) = fi

(
x̃ε
r/ε

)
hi

(
gε

r/ε

) +
∫ t/ε

r/ε
(Dfi)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
))

hi

(
gε

s

)
ds

+ 1√
ε

∑
k

∫ t/ε

r/ε
fi

(
x̃ε
s

)
(Dhi)(gε

s )

(
gε

s Ak

)
dwk

s

+
∫ t/ε

r/ε
fi

(
x̃ε
s

)
Lgε

s Ā
hi

(
gε

s

)
ds + 1

ε

∫ t/ε

r/ε
fi

(
x̃ε
s

)
LGhi

(
gε

s

)
ds.
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We sum up the above equation from i = 1 to n. Note that
n∑

i=1

fi(u)LGhi(g) =
n∑

i=1

fi(u)αi(g).

We compare the last term in the above formula for fi(x̃
ε
t/ε)hi(g

ε
t/ε) with the inte-

gral in (3.2) to obtain that

F
(
x̃ε
t/ε

) = F
(
x̃ε
r/ε

) + ε

n∑
i=1

(
fi

(
x̃ε
t/ε

)
hi

(
gε

t/ε

) − fi

(
x̃ε
r/ε

)
hi

(
gε

r/ε

))

− ε

n∑
i=1

∫ t/ε

r/ε
(Dfi)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
))

hi

(
gε

s

)
ds

− ε

n∑
i=1

∫ t/ε

r/ε
fi

(
x̃ε
s

)
Lgε

s Ā
hi

(
gε

s

)
ds

− √
ε

n∑
i=1

N∑
k=1

∫ t/ε

r/ε
fi

(
x̃ε
s

)
(Dhi)(gε

s )

(
gε

s Ak

)
dwk

s .

Let us compute the differential of fi(u) = (DF)u(Huei). Let ∇ be the flat con-
nection on OM. It is determined by the parallelization X : OM × R

n × so(n) →
T OM where Xu(e,A) = Hu(e) + �−1

u (A). In the calculation below, we use the
fact that ∇H(e) = 0.

F
(
x̃ε
t/ε

) − F
(
x̃ε
r/ε

)

= ε

n∑
i=1

(
(DF)x̃ε

t/ε
(Hx̃ε

t/ε
ei)hi

(
gε

t/ε

) − (DF)x̃ε
r/ε

(Hx̃ε
r/ε

ei)hi

(
gε

r/ε

))

− ε

n∑
i=1

∫ t/ε

r/ε
(∇DF)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
)
,Hx̃ε

s
(ei)

)
hi

(
gε

s

)
ds(3.4)

− ε

n∑
i=1

∫ t/ε

r/ε
(DF)x̃ε

s
(Hx̃ε

s
ei)Lgε

s Ā
hi

(
gε

s

)
ds

− √
ε

n∑
i=1

N∑
k=1

∫ t/ε

r/ε
(DF)x̃ε

s
(Hx̃ε

s
ei)(Dhi)(gε

s )

(
gε

s Ak

)
dwk

s .

We also remark that |Hx̃ε
s
ei | = 1, |Hx̃ε

s
gε

s ei | = 1, |gε
s Ā| = |Ā|. If F is a function

that is BC2, by the Kunita–Watanabe inequality, for any p ≥ 1,

E
∣∣F (

x̃ε
t/ε

)−F
(
x̃ε
r/ε

)∣∣p ≤ C1(T )εp(|DF |∞+|∇DF |∞)+C1(T )|DF |∞|t −r|p/2,

for some constant C1(T ). If ε2 ≤ |t − r|, there exists a constant C2(T ), such that
E|F(x̃ε

t/ε) − F(x̃ε
r/ε)|p ≤ C2(T )|t − r|p/2. If |t − r| < ε2, we estimate directly



PERTURBATION TO GEODESIC EQUATION 553

from (3.1):

∣∣F (
x̃ε
t/ε

) − F
(
x̃ε
r/ε

)∣∣ ≤ C
t − r

ε
≤ C

√
t − r.

Thus, for C(T ) = C2(T ) + Cp ,

E
∣∣F (

x̃ε
t/ε

) − F
(
x̃ε
r/ε

)∣∣p ≤ C(T )|t − r|p/2.

We apply the above formula to F = φ2 ◦ ρ̃(·, u0) where u0 = x̃ε
0 . Since φ is

bounded so is F . Since |∇ρ̃(·, u0)| ≤ 1 and φ′ is bounded, ∇F = 2φφ′∇ρ(·, u0)

is bounded. The norm of its second derivative is∣∣2(
φ′)2∇ρ ⊗ ∇ρ + 2

(
φφ′′)∇ρ ⊗ ∇ρ + 2

(
φφ′)∇ dρ

∣∣,
and the tensor is evaluated at ρ(x, y). We remark that φ′(x, y) = 0 when ρ(x, y) ≥
a and |∇ dρ(ρ(x, y))| ≤ C when ρ(x, y) ≥ a. Hence, for all u0, there is a common
number C(T ) s.t.

E
∣∣d̃(

x̃ε
t/ε, u0

)∣∣p ≤ C(T )tp/2.

Conditioning on Fr to see that

E
∣∣d̃(

x̃ε
t/ε, x̃

ε
r/ε

)∣∣p ≤ C(T )|t − r|p/2.

The tightness of the law of {x̃ε
t/ε} follows. By Kolmogorov’s criterion, {x̃ε

t/ε} is

Hölder continuous with exponent α for any α < 1
2 . The Hölder constants are inde-

pendent of ε and, for any p′ < p, Kolmogorov’s criterion yields

sup
ε

E sup
s �=t

( d̃(x̃ε
t/ε, x̃

ε
s/ε)

|t − s|α
)p′

< ∞,(3.5)

thus completing the proof. �

We will need the following lemma in which we make a statement on the limit
of a function of two variables, one of which is ergodic and the other one varies
significantly slower. The result is straightforward, but we include the proof for
completeness. If f :N → R is a Lipschitz continuous function on a metric space
(N,d) with distance function d , we denote by |f |Lip its Lipschitz semi-norm.
If S is a subset of N , we let OscS(f ) denote | supx∈S f (x) − infx∈S f (x)|, the
Oscillation of f over S. Let Osc(f ) = OscN(f ).

Let E(N) be one of the following classes of real valued functions on a metric
space (N,d):

E(N) = {
f :N →R : |f |Lip < ∞,Osc(f ) < ∞}

or Er(N) = E(N) ∩ Cr , where r = 0,1, . . . ,∞. Denote

|f |E = |f |Lip + Osc(f ).



554 X.-M. LI

Let d be the metric with respect to which the Lipschitz property is defined. We
define d̃ = d ∧ 1 to be a new metric on N . Then |f |Lip ≤ C and Osc(f ) ≤ C is
equivalent to f being Lipschitz with respect to d̃ .

Let p ≥ 1 and let Wp(N) denote the Wasserstein p-distance between two prob-
ability measures on a metric space (N,d):

(
Wp(μ1,μ2)

)p = inf{ν : (π1)∗ν=μ1,(π2)∗ν=μ2}

∫
N×N

(
d(x, y)

)p
dν(x, y).

Let με,μ be a family of probability measures on the metric space (N,d).
Then με → μ in Wp(N) if and only if they converge weakly and
supx∈N

∫
(d(x, y))p dμε(y) is bounded for any x ∈ N . If d̃ = d ∧ 1, then d̃ and

d induce the same topology on N and the concepts of weak convergence are
equivalent. With respect to d̃ , weak convergence is equivalent to Wasserstein p-
convergence.

Let (�,F, (Ft ),P ) be a filtered probability space. Let (Y,ρ), (Z, d) be met-
ric spaces or Cm manifolds. Let {(yε

t , t ≤ T ), ε > 0} be a family of Ft -adapted
stochastic processes with state space Y . Let (zε

t ) be a family of sample continuous
Ft -Markov processes on Z.

ASSUMPTION 3.3. (1) The stochastic processes (yε
t/ε, t ≤ T ) are equi-

uniformly continuous and converge weakly to a continuous process (ȳt , t ≤ T ).
(2) For each ε, (zε

tε, t ≤ T ) has an invariant measure με . There exists a function
δ on R+ × Z ×R+ with the property that δ(·, z, ε) is nondecreasing for each pair
of (z, ε) and limε→0 supz∈Z δ(K, z, ε) = 0 for all K and for all f ∈ Er(Z) and
t > 0,

E

∣∣∣∣εt
∫ t/ε

0
f

(
zε
sε

)
ds −

∫
Z

f (z) dμε(z)

∣∣∣∣ ≤ δ

(
|f |E, zε

0,
ε

t

)
.

(3) There exists a probability measure μ on W 1(C([0, T ];Z)) s.t.
limε→0 W1(με,μ) = 0.

(4) The processes (yε
t/ε) converges to (ȳt ) in W1(Y ), and there exists an expo-

nent α > 0 such that

sup
ε

E

(
sup
s �=t

ρ(yε
t/ε, y

ε
s/ε)

|t − s|α
)

< ∞.

We cannot assume that (ȳt ) is adapted to the filtration with respect to which
(zε

t/ε) is a Markov process. The process (zε
t/ε) is usually not convergent and we do

not assume that (yε
t , z

ε
t ) and (ȳt ) are realized in the same probability space.

We denote by P̂η the probability distribution of a random variable η and let T

be a positive real number. If r is a positive number, let C([0, r];Y) denote the
space of continuous paths, σ : [0, r] → Y , on Y . If F :C([0, r];Y) → R is a Borel
measurable function, we use the shorter notation F(yε·/ε) for F((yε

u/ε, u ≤ r)).
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LEMMA 3.4. Let (�,F, (Ft ),P ) be a filtered probability space. Let (Y,ρ),

(Z, d) be metric spaces or Cm manifolds in case m ≥ 1. Let {(yε
t , t ≤ T ), ε > 0}

be a family of Ft -adapted stochastic processes on Y . Let (zε
t ) be a family of sample

continuous Ft -Markov processes on Z. Let G ∈ Em(Y × Z). Let 0 ≤ r < t and let
F :C([0, r];Y) →R be a bounded continuous function. We define

A(ε) ≡ A(ε,F,G) := F
(
yε·/ε

) ∫ t

r
G

(
yε
s/ε, z

ε
s/ε

)
ds.

• If (1)–(3) in Assumption 3.3 hold, then the random variables A(ε) converge
weakly to A as ε → 0, where

A ≡ A(F,G) := F(ȳ·)
∫ t

r

∫
Z

G(ȳs, z) dμ(z) ds.

• Assume (1)–(4) in Assumption 3.3. Then there is a constant c, s.t. for ε < 1,

W1(P̂A(ε), P̂A)

≤ c|F |∞ max
z∈Z

δ

(
|G|E, z,

ε

t − r

)
+ 2ε|F |∞ min

(|G|∞,
∣∣Osc(G)

∣∣)
+ c(t − r)|F |∞|G|Lip

(
W1

(
P̂yε·/ε , P̂ȳ·

) + W1
(
με,μ

)) + cεα|F |∞|G|Lip.

PROOF. Let us fix the functions F , G, r , t and define

E1(r, t) =
∫ t

r
G

(
yε
s/ε, z

ε
s/ε

)
ds −

∫ t

r

∫
Z

G
(
yε
s/ε, z

)
dμε(z) ds;

E2 = F
(
yε·/ε

)(∫ t

r

∫
Z

G
(
yε
s/ε, z

)
dμε(z) ds −

∫ t

r

∫
Z

G
(
yε
s/ε, z

)
dμ(z) ds

)
;

I (ε) = F
(
yε·/ε

) ∫ t

r

∫
Z

G
(
yε
s/ε, z

)
dμ(z) ds.

The proof is split into three parts: (i) F(yε·/ε)E1(r, t) converges to zero in Lp(�)

for any p > 1, (ii) E2 converges to zero in Lp(�) for any p > 1 and (iii) I (ε)

converges to A weakly.
We first prove that F(yε([0, r

ε
]))E1(r, t) converges to zero in Lp(�). Since F is

bounded it is sufficient to take r = 0 and F a constant, and to work with E1(0, t).
Let us write

E1 :=
∫ t

0
G

(
yε
s/ε, z

ε
s/ε

)
ds −

∫ t

0

∫
Z

G
(
yε
s/ε, z

)
dμε(z) ds.

Let 0 = t0 < t1 < · · · < tM ≤ t be a partition of [0, t] into pieces of size tε.
Let M ≡ Mε = [1

ε
]. Let �ti = ti+1 − ti and let t̃ = tεMε . Below a ∼ b indicates

“a − b = O(ε)” as ε converges to 0. Since G ∈ Em(Y × Z),
∣∣E1(t̃ , t)

∣∣ ≤ 2 min
(
|G|∞,

∣∣Osc(G)
∣∣, |G|Lip max

0≤s≤t

∫
Z

d
(
zε
s/ε, z

)
με(dz)

)
(t − t̃ )

≤ ε2 min
(|G|∞,

∣∣Osc(G)
∣∣) ≤ 2ε

(|G|E)
.
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By the Lipschitz continuity of G, for each ε > 0 the following holds:

E3 :=
∣∣∣∣∣
Mε−1∑
i=0

∫ ti+1

ti

G
(
yε
s/ε, z

ε
sε

)
ds −

Mε−1∑
i=0

∫ ti+1

ti

G
(
yε
ti/ε

, zε
sε

)
ds

∣∣∣∣∣
≤ |G|Lip

Mε−1∑
i=0

∫ ti+1

ti

ρ
(
yε
s/ε, y

ε
ti/ε

)
ds.

By equi-uniform continuity of (yε
s/ε), for almost surely all ω, E3 converges to zero.

Since E3 is bounded the convergence is in Lp(�). If (yε
s/ε) is assumed to be equi-

Hölder continuous as in condition (4), there is a convergence rate of εα|G|Lip for
the Lp convergence.

We prove next that
∑Mε−1

i=0

∫ ti+1
ti

G(yε
ti/ε

, zε
s/ε) ds converges. We apply the

Markov property of (zε
t ) and we use the fact that (yε

t ) is adapted to the filtration
(Ft ), with respect to which (zε

t ) is a Markov process:

Mε−1∑
i=1

E

∣∣∣∣
∫ ti+1

ti

G
(
yε
ti/ε

, zε
s/ε

)
ds − �ti

∫
Z

G
(
yε
ti/ε

, z
)
dμε(z)

∣∣∣∣

≤
Mε−1∑
i=1

�tiE

(
E

{∣∣∣∣ 1

�ti

∫ ti+1

ti

G
(
yε
ti/ε

, zε
s/ε

)
ds

−
∫
Z

G
(
yε
ti/ε

, z
)
dμε(z)

∣∣∣∣∣∣∣Fti/ε

})

=
Mε−1∑
i=1

�tiE

(
E

(∣∣∣∣ ε2

�ti

∫ ti+1/ε
2

ti/ε
2

G
(
y, zε

sε

)
ds

−
∫
Z

G(y, z) dμε(z)

∣∣∣∣
)∣∣∣

y=yε
ti /ε

)
.

Since ε2

�ti
= ε

t
, we may now apply condition (2) and obtain

E

(∣∣∣∣ ε2

�ti

∫ ti+1/ε
2

ti/ε
2

G
(
y, zε

sε

)
ds −

∫
Z

G(y, z) dμε(z)

∣∣∣∣
)

≤ δ

(∣∣G(
yε
ti/ε

, ·)∣∣E, zε
ti/ε

,
ε

t

)
≤ δ

(
|G|E, zε

ti/ε
,
ε

t

)
.

We record that

E4 := E

∣∣∣∣∣
Mε−1∑
i=0

∫ ti+1

ti

G
(
yε
ti/ε

, zε
s/ε

)
ds −

Mε−1∑
i=0

�ti

∫
Z

G
(
yε
ti/ε

, z
)
dμε(z)

∣∣∣∣∣
(3.6)

≤ max
z∈Z

δ

(
|G|E, z,

ε

t

)
.
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Let us define

E5 :=
Mε−1∑
i=0

�ti

∫
Z

G
(
yε
ti/ε

, z
)
dμε(z) −

∫ t

0

∫
Z

G
(
yε
s/ε, z

)
dμε(z) ds.

By the definition of Riemann integral

E5 ≤ |G|Lip

Mε−1∑
i=0

�tiOsc[si ,si+1]
(
yε
s/ε

)
,

where Osc[a,b](f ) denotes the oscillation of a function f in the indicated in-
terval. Since (yε

s/ε) is equi-uniform continuous on [0, T ], E5 → 0 in Lp . Given
Hölder continuity of (yε

s/ε) from condition (4), we have the quantitative estimates:
|E5|Lp(�) ≤ C|G|Lipε

α . To summarize,∣∣E1(0, t)
∣∣ ≤ ∣∣E1(t̃ , t)

∣∣ + E3 + E4 + E5.

It follows that F(yε
r/ε)E1(r, t) converges to zero.

When condition (4) holds, there is a constant C such that∣∣F (
yε·/ε

)
E1(r, t)

∣∣
Lp(�)

≤ |F |∞(
2ε min

(|G|∞,
∣∣Osc(G)

∣∣) + E3 + E4 + E5
)

(3.7)
≤ C|F |∞(

εα + ε
)|G|Lip + 2ε|F |∞ min

(|G|∞,
∣∣Osc(G)

∣∣)
+ C|F |∞ max

z∈Z
δ

(
|G|E, z,

ε

t − r

)
.

For any two random variables on the same probability space and with the same
state space, the Lp norm of their difference dominates their Wasserstein p-
distance. The random variable

F
(
yε
r/ε

) ∫ t

r
G

(
yε
s/ε, z

ε
s/ε

)
ds − F

(
yε
r/ε

) ∫ t

r

∫
Z

G
(
yε
s/ε, z

)
dμε(z) ds

Wp(N)→ 0,

with the same rate as indicated above.
We proceed to step (ii). It is clear that for almost all ω, F(yε·/ε)

∫ t
r G(yε

s/ε, z) ds

is Lipschitz continuous in z. For any z1, z2 ∈ Z,∣∣∣∣F (
yε·/ε

) ∫ t

r
G

(
yε
s/ε, z1

)
ds − F

(
yε·/ε

) ∫ t

r
G

(
yε
s/ε, z2

)
ds

∣∣∣∣
≤ |F |∞d(z1, z2)

∫ t

r

∣∣G(
yε
s/ε, ·

)∣∣
Lip ds ≤ (t − r)d(z1, z2)|F |∞|G|Lip.

By the Kantorovich duality formula, for the distance between two probability mea-
sures μ1 and μ2,

W1(μ1,μ2) = sup
{∫

U dμ1 −
∫

U dμ2 : |U |Lip ≤ 1
}
,
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we have

|E2| ≤ (t − r) · |F |∞ · |G|Lip · W1
(
με,μ

)
.

For part (iii), let U be a continuous function on C([0, T ];Y). If σ ∈ C([0, T ];
Y), let us denote by σ([0, r]) the restriction of the path to [0, r]. Since F is
bounded continuous and G is Lipschitz continuous,

σ �→ U

(
F

(
σ

([0, r]))(∫ t

r

∫
Z

G(σs, z) dμ(z) ds

))

is a continuous function on C([0, T ];Y). By the weak convergence of (yε·/ε),
E(U(I (ε))) converges to E(U(A(F,G))) and the random variables I (ε) converge
weakly to A(F,G). By now, we have proved that A(ε,F,G) converges to A(F,G)

weakly; we thus conclude the first part of the lemma.
Let us assume condition (4) from Assumption 3.3. In particular, (yε·/ε) converges

in W1(C([0, T ];Y)). Let U be a Lipschitz continuous function on C([0, T ];Y).
We define Ũ :C([0, T ];Y) →R by

Ũ (σ ) = U

(
F

(
σ

([0, r]))(∫ t

r

∫
Z

G(σs, z) dμ(z) ds

))
.

Let σ 1, σ 2 are two paths on Y ,∣∣Ũ (σ1) − Ũ (σ2)
∣∣

≤ |U |Lip · |F |∞
∣∣∣∣
∫ t

r

∫
Z

G
(
σ 1

s , z
)
dμ(z) ds −

∫ t

r

∫
Z

G
(
σ 2

s , z
)
dμ(z) ds

∣∣∣∣
≤ (t − r)|U |Lip · |F |∞ · |G|Lip · sup

0≤s≤T

ρ
(
σ 1

s , σ 2
s

)
.

By the Kantorovitch duality and assumption (4),

W1(P̂I (ε), P̂I ) ≤ (t − r) · |F |∞ · |G|Lip · W1(P̂yε·/ε , P̂ȳ·).

We collect all the estimations together. Under assumptions (1)–(4), the follow-
ing estimates hold:

W1(P̂A(ε), P̂A) ≤ C|F |∞|G|Lip
(
εα + ε

) + C|F |∞ max
z∈Z

δ

(
|G|E, z,

ε

t − r

)

+ C(t − r) · |F |∞ · |G|Lip · (
W1(P̂yε·/ε , P̂ȳ·) + W1(με,μ)

)
+ 2ε|F |∞ min

(|G|∞,
∣∣Osc(G)

∣∣).
We may now limit ourselves to ε ≤ 1 and conclude part 2 of the lemma. �

REMARK 3.2. In the lemma above, we should really think that the zε process
and process yε follow different clocks, the former is run at the fast time scale 1

ε
and the latter at scale 1.
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EXAMPLE 3.5. Let (gs) be a Brownian motion on G = SO(n), solving

dgt =
N∑

k=1

LgtAk
dwk

t .

Here, {A1, . . . ,AN } is an orthonormal basis of g. In Lemma 3.4 we take zε
t = gt/ε ,

then condition (2) holds. If f is a Lipschitz continuous function, it is well known
that the law of large numbers holds for

∫ t
0 f (gs) ds, so does a central limit theorem.

The remainder term in the central limit theorem is of order
√

t and depends on f

only through the Lipschitz constant |f |Lip.
It is easy to see that the remainder term in the law of large numbers depends only

on the Lipschitz constant of the function. Without loss of generality, we assume
that

∫
f dg = 0. Let α solve the Poisson equation: �Gα = f . Then

1

t

∫ t

0
f (gs) ds = 1

t
α(gt ) − 1

t
α(g0) − ∑

k

1

t

∫ t

0
(Dα)(gsAk) dwk

s .

Since α is bounded, we are only concerned with the martingale term. By
Burkholder–Davis–Gundy inequality, its L2 norm is bounded by

2

t

(
N∑

k=1

∫ t

0
E

(
(Dα)(gsAk)

)2
ds

)1/2

≤ 2

t

(∫ t

0
E|Dα|2gs

ds

)1/2

.

By elliptic estimates, |Dα| is bounded by |f |L∞ . Since f is centered, it is bounded
by Osc(f ). In summary,

E

(
1

t

∫ t

0
f (gs) ds −

∫
N

f (g)dg

)2

≤ C
(
Osc(f )t−1/2)2

.

In Theorem 1.1, we may wish to add an extra drift of the form 1
ε
A∗ where A ∈ g,

so that LG is 1
2�G + LgA. Translations by orthogonal matrices are isometries, so

for any A ∈ g the vector field gA is a killing field, and the Haar measure remains
an invariant measure for the diffusion with infinitesimal generator 1

2�G + LgA.
However, on a compact Lie group no left invariant vector field is the gradient of a
function and 1

2�G + LgA is no longer a symmetric operator. In this case, we do
not know how to obtain the estimate in the example.

4. Proof. We are ready to prove the main theorem. In Lemma 3.2, we used a
fundamental technique to split the integral∫ t/ε

r/ε
(DF)x̃ε

s
(Hxε

s
)
(
gε

s e0
)
ds

into the sum of a process of finite variation and a martingale. The computation in
the proof of Lemma 3.2 will be used to prove the weak convergence. A similar
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consideration was used in Li [21], which was inspired by a paper of Hairer and
Pavliotis [13]. In the above-mentioned papers, the convergence is in probability;
while here we can only expect weak convergence. To prove the convergence, we
apply Stroock–Varadhan’s martingale method and Lemma 3.4; see also Borodin
and Freidlin [4]; Papanicolaou, Stroock and Varadhan [25, 26] where the limit is
given by a double integration in time. Our formulation for the limit is in terms of
space averaging. Finally, we use explicit eigenfunctions of the Laplacian on SO(n)

to compute the limiting generator.

PROOF OF THEOREM 1.1. We define a Markov generator L̄ on OM. If
F : OM → R is bounded and Borel measurable and {ei} is an orthonormal basis
of Rn, we define

L̄F = −
n∑

i=1

∫
G
(∇DF)u

(
Hu(ge0),Hu(ei)

)
hi(g) dg

(4.1)

−
n∑

i=1

∫
G
(DF)u(Huei)LgĀhi(g) dg,

where hi is the solution to the Poisson equation (3.3). Since (x̃ε
t/ε) is tight by

Lemma 3.2, every sub-sequence of (x̃ε
t/ε) has a sub-sequence that converges in

distribution. We will prove that the probability distributions of (x̃ε
t/ε) converge

weakly to the probability measure, P̄ , determined by L̄. It is sufficient to prove
that if (ȳt ) is a limit of (x̃ε

t/ε), then

F(ȳt ) − F(u0) −
∫ t

0
L̄F(ȳs) ds

is a martingale. Since the convergence is weak, and the Markov process (x̃ε
t , g

ε
t/ε)

is not tight, we do not have a suitable filtration on � to work with. We formulate
the above convergence on the space of continuous paths over OM on a given time
interval [0, T ].

Let Xt be the coordinate process on the path space over OM, Gt = σ {(Xs) : 0 ≤
s ≤ t} and let P̂x̃ε be the probability distribution of (x̃ε

t/ε) on the path space over

OM. By taking a subsequence if necessary, we may assume that {P̂x̃ε} converges
to P̄ .

Let F : OM → R be a smooth function with compact support. We will prove
that with respect to P̄ ,

E

{
F(Xt) − F(Xr) −

∫ t

r
L̄F(Xs) ds

∣∣∣Gr

}
= 0.

Since P̂x̃ε
→ P̄ weakly, we only need to prove that for all bounded and continuous

real value random variables ξ that are measurable with respect to Gr ,

lim
ε→0

∫
ξ
(
F(Xt) − F(Xr)

)
dP̂x̃ε =

∫ (
ξ

∫ t

r
L̄F(Xs) ds

)
dP̄ .(4.2)
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By formula (3.4) in the proof of Lemma 3.2, for t ≥ r ,

F
(
x̃ε
t/ε

) − F
(
x̃ε
r/ε

)

∼ −ε

n∑
i=1

∫ t/ε

r/ε
(∇DF)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
)
,Hx̃ε

s
(ei)

)
hi

(
gε

s

)
ds

(4.3)

− ε

n∑
i=1

∫ t/ε

r/ε
(DF)x̃ε

s
(Hx̃ε

s
ei)Lgε

s Ā
hi

(
gε

s

)
ds

− √
ε

n∑
i=1

N∑
k=1

∫ t/ε

r/ε
(DF)x̃ε

s
(Hx̃ε

s
ei)(Dhi)(gε

s )

(
gε

s Ak

)
dwk

s .

Hence, up to a term of order ε,∫
ξ
(
F(Xt) − F(Xr)

)
dP̂x̃ε

= O(ε) − ε

n∑
i=1

∫ (
ξ

∫ t/ε

r/ε
(∇DF)Xs

(
HXs (Gse0),HXs (ei)

)
hi(Gs) ds

)
dP̂x̃ε

− ε

n∑
i=1

∫ (
ξ

∫ t/ε

r/ε
(DF)Xs (HXsei)LGsĀ

hi(Gs) ds

)
dP̂x̃ε .

We prove this by working with the original processes. Let (x̃ε
t ) denote a sub-

sequence of the original sequence with limit (ȳs). For each i, l = 1, . . . , n, let us
define

βli(u) = (∇DF)u
(
Hu(el),Hu(ei)

)
.

By linearity of Hu and ∇DF ,

(∇DF)u
(
Hu(ge0),Huei

)
hi(g)

=
n∑

l=1

(∇DF)u
(
Hu(el),Hu(ei)

)〈ge0, el〉hi(g) =
n∑

l=1

βli(u)〈ge0, el〉hi(g),

for each i = 1, . . . , n; and

−ε

∫ t/ε

r/ε
(∇DF)x̃ε

s

(
Hx̃ε

s

(
gε

s e0
)
,Hx̃ε(s)(ei)

)
hi

(
gε

s

)
ds

= −ε

n∑
l=1

∫ t/ε

r/ε
βli

(
x̃ε
s

)〈
gε

s e0, el

〉
hi

(
gε

s

)
ds

= −
n∑

l=1

∫ t

r
βli

(
x̃ε
s/ε

)〈
gε

s/εe0, el

〉
hi

(
gε

s/ε

)
ds.
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We observe that (gε
sε) satisfies the equation dgt = ∑

k gtAk ◦dwk
t with initial value

the identity element. The solution stays in the connected component SO(n). It is
ergodic with the normalized Haar measure dg on SO(n) as its invariant measure
and it satisfies the Birkhoff ergodic theorem; see Example 3.5. By Lemma 3.2,
(x̃ε

s/ε) is tight, and equi-uniformly Hölder continuous on [0, T ]. In Assumption 3.3,
we take zε

t = gε
t , dμε = dg, yε

t = x̃ε
t and check that conditions (1)–(4) are satisfied.

In Lemma 3.4, we take G(u,g) = ∑n
l=1 βli(u)〈ge0, el〉hi(g). Since the functions

hi :G → R are smooth and G is compact, also βli are smooth and bounded by
construction, we may apply Lemma 3.4. If φ is a bounded real valued continuous
function on C([0, r];OM), let ξ = φ(x̃ε

u/ε,0 ≤ u ≤ r). Then

lim
ε→0

E

(
ξ

n∑
l=1

∫ t

r
βli

(
x̃ε
s/ε

)〈
gε

s/εe0, el

〉
hi

(
gε

s/ε

)
ds

)

=
n∑

l=1

E

(
ξ

∫ t

r
βli(ȳs) ds

)∫
G
〈ge0, el〉hi(g) dg

=
n∑

l=1

E

(
ξ

∫ t

r
∇DFȳs

(
Hȳs (el),Hȳs (ei)

))∫
G
〈ge0, el〉hi(g) dg

=
n∑

l=1

E

(
ξ

∫ t

r

∫
G

∇DFȳs

(
Hȳs (ge0),Hȳs (ei)

)
hi(g) dg

)
.

By the same reasoning, we also have

lim
ε→0

εE

(
ξ

∫ t/ε

r/ε
(DF)x̃ε

s
(Hx̃ε

s
ei)Lgε

s Ā
hi

(
gε

s

)
ds

)

= E

(
ξ

∫ t

r
(DF)ȳs (Hȳs ei) ds

∫
G

LgĀhi(g) dg

)
.

We have proved (4.2). Since every sub-sequence of P̂x̃ε has a sub-sequence that
converges to the same limit, we have proved P̂x̃ε → P̄ weakly.

Finally, we compute the limiting Markov generator L̄. We observe that there is
a family of eigenfunctions of the Laplacian on G with eigenvalue −n−1

2 . Indeed,

since
∑n(n−1)/2

k=1 (Ak)
2 = −n−1

2 I ,

n(n−1)/2∑
k=1

LgAk
LgAk

(
− 4

n − 1
〈ge0, ei〉

)
= − 4

n − 1

n(n−1)/2∑
k=1

〈
g(Ak)

2e0, ei

〉
= 2〈ge0, ei〉.

Thus,

hi = − 4

n − 1
〈ge0, ei〉



PERTURBATION TO GEODESIC EQUATION 563

is the solution to the Poisson equation (3.3):

LGhi = 〈ge0, ei〉 where LG = 1

2

n(n−1)/2∑
k=1

LgAk
LgAk

.

We compute the second integral in (4.1). Since LgĀhi = − 4
n−1〈gĀe0, ei〉, we have

n∑
i=1

∫
G
(DF)u(Huei)LgĀhi(g) dg

= − 4

n − 1

∫
G
(DF)u(HugĀe0) dg

= − 4

n − 1
(DF)u

(
Hu

(∫
G

gĀe0 dg

))
= 0.

Consequently,

L̄F = −
n∑

i=1

∫
G
(∇DF)u

(
Hu(ge0),Hu(ei)

)
hi(g) dg

= −
n∑

i,j=1

∫
G
(∇DF)u

(
Hu(ej ),Hu(ei)

)〈ge0, ej 〉hi(g) dg.

In the last step, we use the fact that Hu(·) is linear and that {ei} is an o.n.b. of Rn.
Let us define

ai,j (e0) = −
∫
G
〈ge0, ej 〉hi(g) dg

= 4

n − 1

∫
G
〈ge0, ej 〉〈ge0, ei〉dg.

Then

L̄F = −
n∑

i,j=1

ai,j (∇DF)u
(
Hu(ej ),Hu(ei)

)
.(4.4)

To further identify the limit, we first prove that ai,j (e0) is independent of e0.
Recall that G acts transitively on the unit sphere of Rn. Let e′

0 ∈ R
n we take O

such that Oe′
0 = e0. By the right invariant property of the Haar measure,∫

G

〈
ge′

0, ej

〉〈
ge′

0, ei

〉
dg =

∫
G
〈gOe0, ej 〉〈gOe0, ei〉dg =

∫
G
〈ge0, ej 〉〈ge0, ei〉dg.

We first compute the case of i �= j and n = 2:

a1,2(e1) =
∫

SO(2)
〈ge1, e1〉〈ge1, e2〉dg = −

∫ 2π

0
cos(θ) sin(θ) dθ = 0.
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If n > 2, for any i �= j , there is an orientation preserving rotation matrix O

such that Oei = −ei and Oej = ej . For example, if i = 1, j = 2, we take O =
(−e1, e2,−e3, e4, . . . , en). So∫

G
〈ge0, ej 〉〈ge0, ei〉dg = −

∫
G
〈ge0,Oej 〉〈ge0,Oei〉dg

= −
∫
G
〈ge0, ej 〉〈ge0, ei〉dg.

Thus, ai,j = 0 if i �= j . Let

Ci =
∫
G
〈ge0, ei〉2 dg.

For i = 1, . . . , n, Ci = ∫
G〈ge0, ei〉2 dg is independent of i and

∫
G

n∑
i=1

〈ge0, ei〉2 dg = 1

and consequently Ci = 1
n

. The nonzero values of (ai,j ) are

ai,i = −
∫
G
〈ge0, ei〉hi(g) dg = 4

n − 1

∫
G
〈ge0, ei〉2 dg = 4

(n − 1)n
.

By the definition, �HF(u) = ∑n
i=1 LH(ei)LH(ei)F . Since ∇ is the canonical flat

connection, ∇H(ei)H(ei) = 0. See the paragraph before equation (3.4). By (4.4),
we see that

L̄F(u) = −
n∑

i,j=1

ai,j (∇DF)u
(
Hu(ej ),Hu(ei)

)

= 4

(n − 1)n

n∑
i=1

(∇DF)u
(
Hu(ei),Hu(ei)

)

= 4

(n − 1)n
�HF(u).

We conclude that (x̃ε
t/ε) is a diffusion process with infinitesimal generator

4
(n−1)n

�H . Since (xε
t/ε) is the projection of (x̃ε

t/ε) it is also convergent. The op-
erators �H and � are intertwined by π ; for f :M → R smooth, (�Hf ) ◦ π =
�(f ◦ π). See, for example, Theorem 4C of Chapter II in Elworthy [6] and also
Elworthy, Le Jan and Li [7]; �H is cohesive and a horizontal operator in the ter-
minology of [7] and is the horizontal lift of �. We see that (xε

t/ε) converges to
a process with generator 4

(n−1)n
� where � is the Laplacian on the Riemannian

manifold M . We have completed the proof of Theorem 1.1. �
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