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BRANCHING BROWNIAN MOTION IN A STRIP:
SURVIVAL NEAR CRITICALITY

BY S. C. HARRIS, M. HESSE AND A. E. KYPRIANOU

University of Bath, Weierstrass Institute and University of Bath

We consider a branching Brownian motion with linear drift in which
particles are killed on exiting the interval (0,K) and study the evolution of
the process on the event of survival as the width of the interval shrinks to
the critical value at which survival is no longer possible. We combine spine
techniques and a backbone decomposition to obtain exact asymptotics for the
near-critical survival probability. This allows us to deduce the existence of
a quasi-stationary limit result for the process conditioned on survival which
reveals that the backbone thins down to a spine as we approach criticality.

This paper is motivated by recent work on survival of near critical branch-
ing Brownian motion with absorption at the origin by Aïdékon and Harris
[Near-critical survival probability of branching Brownian motion with an
absorbing barrier (2010) Unpublished manuscript] as well as the work of
Berestycki et al. [Ann. Probab. 41 (2013) 527–618; J. Stat. Phys. 143 (2011)
833–854].

1. Introduction and main results.

1.1. Introduction and main results. We consider a branching diffusion in
which each particle performs a Brownian motion with drift −μ, for μ ≥ 0, and
is killed on hitting 0 or K . All living particles undergo branching at constant rate
β to be replaced by a random number of offspring particles, A, where A is an
independent random variable with distribution {qk;k = 0,1, . . .} and finite mean
m > 1 and such that E(A log+ A) < ∞. Once born, offspring particles move off
independently from their birth position, repeating the stochastic behaviour of their
parent.

In other words, the motion of a single particle is governed by the infinitesimal
generator

L = 1

2

d2

dx2 − μ
d

dx
, x ∈ (0,K),(1.1)

defined for all functions u ∈ C2(0,K), the space of twice continuously differen-
tiable functions on (0,K), with u(0+) = u(K−) = 0. The branching activity is

Received December 2012; revised February 2014.
MSC2010 subject classifications. 60J80, 60E10.
Key words and phrases. Branching Brownian motion, backbone decomposition, large deviations,

multiplicative martingales, additive martingales.

235

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/14-AOP972
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


236 S. C. HARRIS, M. HESSE AND A. E. KYPRIANOU

characterised by the branching mechanism

F(s) = β
(
G(s) − s

)
, s ∈ [0,1],

where G(s) = ∑∞
k=0 qks

k is the probability generating function of A.
Denote by Nt and |Nt | the set of and the number of particles alive at time t ,

respectively. For a particle u ∈ Nt , we write xu(t) for its spatial position at time t .
We define Xt = ∑

u∈Nt
δxu(t) to be the spatial configuration of particles alive at

time t , and we set X = (Xt , t ≥ 0). Denote by P K
ν the law of X with X0 = ν where

ν ∈ Ma(0,K), the space of finite atomic measures on (0,K) of the form
∑n

i=1 δxi

with xi ∈ (0,K) and n ∈ N. If the process is initiated from a single particle at
x ∈ (0,K), then we simply write P K

x (instead of P K
δx

). We will sometimes neglect
the dependence on the initial configuration and write P K without a subscript. We
call the process X a P K -branching diffusion.

Further, (ξ = (ξt , t ≥ 0),PK
x ) will henceforth denote a Brownian motion with

drift −μ starting from x ∈ (0,K) which is killed upon exiting the interval (0,K).
PK is the law of the single particle motion under P K .

For x ∈ [0,K] we define the survival probability pK(x) = P K
x (ζ = ∞) where

ζ = inf{t > 0 : |Nt | = 0} is the time of extinction. As a first result we identify the
critical width K0 below at which survival is no longer possible.

PROPOSITION 1. If μ <
√

2(m − 1)β and K > K0 where K0 :=
π(

√
2(m − 1)β − μ2)−1, then pK(x) > 0 for all x ∈ (0,K); otherwise pK(x) = 0

for all x ∈ [0,K].
Proposition 1 is essentially not new as, in the case of binary branching, it is

already implicit in Theorem 3 in Engländer and Kyprianou [16]; see also [15],
Example 14. Nevertheless, we will give a short proof of Proposition 1 in Section 2
as the techniques therein will be important later. In particular, the proof uses a spine
argument, decomposing X into a Brownian motion conditioned to stay in (0,K)

dressed with independent copies of (X,P K) which “immigrate” along its path.
Our aim is to study the evolution of the P K -branching diffusion on the event of

survival. We will therefore develop a decomposition which identifies the particles
with infinite genealogical lines of descent, that is, particles which produce a family
of descendants which survives forever. To illustrate this, in a realisation of X, let us
colour blue all particles with an infinite line of descent and colour red all remaining
particles. Thus, on the event of survival, the resulting picture consists of a blue tree
“dressed” with red trees whereas, on the event of extinction, we see a red tree only.

For the moment, let us consider the binary branching case only in which each
particle splits into two. Suppose a particle dies and is replaced by two offspring
at position y. For each of the offspring, the probability that it has an infinite
genealogical line of descent is the survival probability pK(y), independent of
the other offspring particle. Thus each offspring particle is blue with probabil-
ity pK(y), and hence with probability pK(y)2 both offspring particles are blue.
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Therefore, given the parent particle is blue, it branches into two blue particles at

rate β
pK(y)2

pK(y)
= βpK(y). Similarly, given the parent particle is red, it branches into

two red particles at rate β(1 − pK(y)).
Further, with probability 2pK(y)(1 − pK(y)) one blue and one red particle are

born. Then, given a particle is blue, it branches into one blue and one red particle
at rate 2β(1 − pK(y)). We call such a branching event an immigration.

Intuitively speaking, as blue and red particles are so coloured as the result of
statistically biased selection, we would expect their respective associated motions
to be altered in a way that reflects this selection. The following two results, again
in the setting of binary branching, make precise this heuristic. They show that a
Doob h-transform of L using h = pK and h = 1 − pK , for blue and red particles,
respectively, describes the relevant motions and that the blue and red trees are, in
fact, branching diffusions.

PROPOSITION 2 (The red tree). Let K > K0. In the case of binary branching,
the red tree is a branching diffusion on (0,K) with single particle motion described
by the infinitesimal generator

LR,K = 1

2

d2

dy2 −
(
μ + p′

K(y)

1 − pK(y)

)
d

dy
on (0,K),

for u ∈ C2(0,K) with u(0+) = u(K−) = 0, and its particles branch at space-
dependent rate β(1 − pK(y)), y ∈ (0,K).

THEOREM 3 (The dressed blue tree). Let K > K0. In the case of binary
branching, the dressed blue tree is a branching diffusions on (0,K) starting from
an initial particle at x ∈ (0,K), which evolves as follows:

(i) From x, we run a blue branching diffusion XB , that is a branching diffusion
with single particle movement has infinitesimal generator

LB,K = 1

2

d2

dy2 −
(
μ − p′

K(y)

pK(y)

)
d

dy
on (0,K),

defined for all u ∈ C2(0,K), and each particle branches at space-dependent rate
βpK(y), y ∈ (0,K).

(ii) Conditionally on XB , along the trajectory of each particle in XB , an immi-
grant occurs at space-dependent rate 2β(1 −pK(y)), y ∈ (0,K). Each immigrant
initiates a red branching diffusion from the space–time position of its birth.

In view of Theorem 3, we will sometimes refer to the blue branching diffu-
sion XB as the backbone and the theorem itself together with Proposition 2 as the
backbone decomposition.

The corresponding results in the case of a general branching mechanism F are
given as Proposition 11 and Theorem 12 in Section 3. In particular, we will see
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that a general branching mechanism induces a second type of immigration at the
branching times of the backbone.

A significant convenience of these results is that the law of the P K -branching
diffusion conditioned on survival is the same as the law of the dressed blue
branching diffusion. For example, instead of studying the quasi-stationary limit
limK↓K0 P K

x (·|ζ = ∞) it suffices to study the evolution of the dressed blue branch-
ing diffusion as K ↓ K0.

To help understand the branching diffusion near criticality, we study the asymp-
totics of the survival probability pK as K ↓ K0. As a first asymptotic result note
that u = 1 − pK solves the differential equation Lu + F(u) = 0 on (0,K) with
boundary condition u(0) = u(K) = 1; cf. Remark 10. Near criticality we may as-
sume that pK(x) is very small for a fixed x, and neglecting all terms of order
(pK(x))2 and higher, we obtain the linearisation LpK + (m − 1)βpK = 0. This
suggests pK(x) ∼ CK sin(πx/K0)e

μx . In fact we have the following result.

THEOREM 4. Define

CK := (K − K0)
(K2

0μ2 + π2)(K2
0μ2 + 9π2)

12(m − 1)βπK3
0 (eμK0 + 1)

.

Then, as K ↓ K0, we have CK ↓ 0 and

pK(x) ∼ CK sin(πx/K0)e
μx,(1.2)

uniformly for all x ∈ (0,K0). That is, pK(x)/(CK sin(πx/K0)e
μx) converges to 1

uniformly for all x ∈ (0,K0), as K ↓ K0.

It is of particular note that we are able to determine CK here. In Section 4.1
we will prove the first part of Theorem 4, that is equation (1.2) but without iden-
tifying CK , in the fashion of [1] using spine techniques. In the sketch of the an-
alytic argument above, we used that pK asymptotically solves the linearisation
LpK + (m−1)βpK = 0. However, so does any multiple of pK . Therefore, it is not
possible to find the exact expression for CK by studying this linearisation only. On
the probabilistic side, using a spine approach is closely related to this linearised
differential equation approach, and similarly does not assist in establishing an ex-
pression for CK .

However, it turns out that the backbone decomposition in Theorem 3 captures
enough information about the evolution of (X,P K) on survival to derive the ex-
plicit expression for CK . A heuristic argument and an outline of the proof using
large deviation theory is given in Section 4.2.1, followed by a rigorous proof based
on computations of the growth rate of the expected number of particles in the
backbone in Section 4.2.2.

With Theorems 3 and 4 in hand we look for a quasi-stationary limit result for
the law of the dressed blue branching diffusion, which agrees with the law of
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(X,P K) conditioned on survival, as we approach criticality. In the case of a binary
branching mechanism as considered in Theorem 3, the blue branching rate βpK

drops down to 0 as K ↓ K0. At the same time the red branching rate β(1 − pK)

increases to β and the rate of immigration 2β(1 − pK) rises to 2β at criticality.
It is therefore reasonable to believe that, over a fixed time interval [0, T ], the blue
tree thins down to a single genealogical line of descent as K ↓ K0.

Let us formalise this idea by defining what we expect to be the limiting branch-
ing diffusion, now already for the case of a general branching mechanism, and
giving the quasi-stationary limit thereafter.

DEFINITION 5. Let x ∈ (0,K0). Let X∗ = (X∗
t , t ≥ 0) be a Ma(0,K0)-

valued process which is constructed as follows.
X∗ is initiated from a single particle at x performing a Brownian motion condi-

tioned to stay in (0,K0), that is, a strong Markov process with infinitesimal gener-
ator

LK0,∗ = 1

2

d2

dy2 + π/K0

tan(πy/K0)

d

dy
on (0,K0),(1.3)

defined for all u ∈ C2(0,K0). Along its path we immigrate Ã independent copies
of (X,P K0) at rate mβ where Ã has the size-biased offspring distribution (q̃k, k =
0,1, . . .) with

q̃k = qk+1
k + 1

m
, k ≥ 0.

Denote the law of X∗ by Q∗
x .

THEOREM 6. Let x ∈ (0,K0). Then, for any fixed time T > 0, the law of
(Xt ,0 ≤ t ≤ T ) under the measure limK↓K0 P K

x (·|ζ = ∞) is equal to (X∗
t ,0 ≤

t ≤ T ) under Q∗
x .

To conclude this study, we demonstrate the robustness of our approach by apply-
ing the results for the P K -branching diffusion to study the evolution of a supercrit-
ical super-Brownian motion with absorption at 0 and K near criticality. We outline
a backbone decomposition analogous to Theorem 3 in which we will see that the
backbone of the super-Brownian motion with absorption at 0 and K is the same
as the backbone of an associated P K -branching diffusion. This connection allows
us to deduce asymptotic results for the survival rate of the super-Brownian mo-
tion with absorption on (0,K) directly from the results on the survival probability
of the associated P K -branching diffusion. Further, we can find a quasi-stationary
limit result for the super-Brownian motion equivalent to Theorem 6.

Our paper is organised as follows. In Section 2 we introduce some useful spine
techniques along with the proof of Proposition 1. In Section 3 we establish the
results corresponding to Proposition 2 and Theorem 3 for the case of a general
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branching mechanism; see Proposition 11 and Theorem 12. In doing so, we show
that the red branching diffusion and the dressed blue branching diffusion arise
from martingale changes of measure which condition (X,P K) on extinction and
survival, respectively. In Section 4, we give a heuristic large deviation argument
for the constant CK (see Section 4.2.1), and we prove the asymptotic results for
the survival probability given in Theorem 4. The proof of the quasi-stationary limit
result in Theorem 6 follows in Section 5. Section 6 sketches the analogous results
for the super-Brownian motion on (0,K).

1.2. Literature overview. Branching Brownian motion with an absorbing bar-
rier was first studied by Kesten [25]. Our paper is particularly motivated by recent
results on the asymptotics of the survival probability of branching Brownian mo-
tion with absorption found in Berestycki et al. [2] as well as Aïdékon and Har-
ris [1]. A discussion of branching Brownian motion in the critical width strip can
be found in Berestycki et al. [3].

Spine techniques of the type used in the proof of Proposition 1 were developed
in Chauvin and Rouault [9], Lyons [32] and Lyons et al. [33] and are now a stan-
dard approach in the theory of branching processes. See, for example, Harris et al.
[23] and Kyprianou [27] for related applications in the setting of branching Brow-
nian motion with absorption at 0, respectively, absorption at a space–time barrier.

A backbone decomposition, similar in spirit to the one presented in Theo-
rem 3 but for supercritical superprocesses, is given in Berestycki et al. [4]. It ex-
tends the earlier work of Evans and O’Connell [20], Fleischmann and Swart [21]
and Engländer and Pinsky [17] as well as the corresponding decomposition for
continuous-state branching processes in Duquesne and Winkel [11].

The results for superprocesses are complemented by the decomposition in
Etheridge and Williams [18] which considers the (1 + β)-superprocess condi-
tioned on survival. This work is of particular interest in the current context since it
also presents the equivalent result for the approximating branching particle system.
However, we should point out that in their case the immigrants are conditioned to
become extinct up to a fixed time T whereas, in our setting, we condition on ex-
tinction in the strip (0,K). Thus the underlying transformations in [18] are time-
dependent in contrast to the space-dependent h-transforms we see in our setting.

Unlike all of the above mentioned backbone decompositions, the proof of the
one we address in this paper is based on a new technique using entirely martingale
changes of measure. This lends itself more favourably to the quasi-stationary limit
theorem later in the paper.

The equivalent result to Theorem 4 in the setting of branching Brownian mo-
tion with absorption at the origin was shown in Berestycki et al. [2] and Aïdékon
and Harris [1]. However, it has not been possible so far to give such an explicit
expression for the constant which plays the analogous role to CK for branching
Brownian motion with absorption at the origin.
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TABLE 1
Index of some notation

(ξ,PK) Brownian motion with drift −μ and killing
upon exiting (0,K)

(ξ,PR,K) “Red” diffusion in (0,K): drift −(μ + p′
K

1−pK
) Equation (3.4)

and killing upon exiting (0,K)

(ξ,PB,K) “Blue” diffusion in (0,K): drift −(μ − p′
K

pK
) Equation (3.10)

(X,PK) BBM with killing upon exiting (0,K)

(X,PR,K) Red branching diffusion in (0,K) Proposition 11
(X,PB,K) Blue branching diffusion in (0,K) Proposition 13
(X,PD,K) Dressed blue branching diffusion in (0,K) Theorem 12
(X,PK) Two-colour branching diffusion in (0,K) Corollary 14
(ξ,QK) Brownian motion conditioned to stay in (0,K) Equation (2.2)
(X,QK) BBM with a spine conditioned to stay in (0,K) Equation (2.3)
(Gt , t ≥ 0) Natural filtration of ξ

(Ft , t ≥ 0) Natural filtration of X

A similarly fashioned result to Theorem 6, albeit being temporal rather than
spatial quasi-stationarity, was obtained in the aforementioned work by Etheridge
and Williams [18]. Their result extends the Evans immortal particle representation
for superprocesses in [19] which is the equivalent of the spine representation for
branching processes.

1.3. Table of notation. Our results and proofs come with a number of changes
of measure. For the benefit of the reader we include in Table 1 an index of some of
the probability measures which will be used frequently throughout the paper.

2. Changes of measure and spine techniques: Proof of Proposition 1. Let
us begin this section by stating a general result on how martingale changes of
measure affect the drift of a Brownian motion. Recall that we denote by (ξ,PK

x )

a Brownian motion with drift −μ initiated from x ∈ (0,K) which is killed upon
exiting (0,K) and set Gt = σ(ξs : s ≤ t).

We remind the reader of the following classical result, which is adapted from
Revuz and Yor [34], Chapter VIII, Proposition 3.4 and the discussion preceding it,
since we will make use of it several times.

LEMMA 7. Let x ∈ (0,K). Let h ∈ C2(0,K), and suppose that

h(ξt )

h(x)
exp

{
−

∫ t

0

Lh(ξs)

h(ξs)
ds

}
, t ≥ 0,(2.1)

is a PK
x -martingale. Define P̂K

x to be the probability measure which has martingale
density (2.1) with respect to PK

x on Gt .
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Under P̂K
x , ξ has infinitesimal generator L + h′(y)

h(y)
dy for all functions u ∈

C2(0,K) with u(0+) = u(K−) = 0.

In this regard, a change of measure with a martingale of the form (2.1) is equiv-
alent to a h-transform of the infinitesimal generator L.

The proof of Proposition 1 uses classical spine techniques developed in Chauvin
and Rouault [9], Lyons et al. [33] and Lyons [32]; see, for example, Harris et
al. [23] and Kyprianou [27] for related applications in the setting of branching
Brownian motion with absorption at 0.

We will briefly recall the key steps in the spine construction. For a comprehen-
sive account we refer the reader to Hardy and Harris [22].

Recall that we characterised the Brownian motion conditioned to stay in (0,K)

via its infinitesimal generator LK,∗ given in (1.3) in Definition 5 (where K0 can be
replaced by a general K > 0). In view of Lemma 7, it is not difficult to see that its
law can be obtained from the law of (ξ,PK) by a martingale change measure. In
fact, note that the process

ϒK(t) = sin(πξt/K)eμξt+(μ2/2+π2/2K2)t , t ≥ 0(2.2)

is a PK -martingale, and define QK
x to be the probability measure which has mar-

tingale density ϒK(t) with respect to PK
x on Gt . Then, under QK

x , ξ is a Brownian
motion conditioned to stay in (0,K). By Lemma 7 with h(x) = sin(πx/K)eμx , its
infinitesimal generator is indeed given by LK,∗ as in (1.3).

This process was first introduced in Knight [26], Theorem 3.1 and referred to as
the taboo process. Let us note that (ξ,QK

x ) is positive recurrent and has invariant
density 2

K
sin2(πx/K), for x ∈ (0,K).

Using ideas in [22], we can use ϒK to construct a martingale with respect to
Ft = σ(Xs, s ≤ t), the filtration generated by the P K -branching diffusion up to
time t . For each u ∈ Nt , write ϒK

u (t) = sin(πxu(t)/K)eμxu(t)+(μ2/2+π2/2K2)t , t ≥
0. Define the process ZK = (ZK(t), t ≥ 0) as

ZK(t) = ∑
u∈Nt

e−(m−1)βtϒu(t) = ∑
u∈Nt

eμxu(t)−λ(K)t sin
(
πxu(t)/K

)
, t ≥ 0,

where we set λ(K) := (m − 1)β − μ2/2 − π2/2K2. Then Z is a nonnegative
(P K

x ,Ft )-martingale. For x ∈ (0,K), we define a martingale change of measure
on the probability space of the P K -branching diffusion via

dQK
x

dP K
x

∣∣∣∣
Ft

= ZK(t)

ZK(0)
.(2.3)

This change of measure induces the following spine construction for the path of X

under QK
x . From the initial position x, we run a QK

x -diffusion, that is a Brownian
motion conditioned to stay in (0,K), and we call it a spine. At times of a Poisson
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process with rate mβ we immigrate Ã independent copies of (X,P K) rooted at
the spatial position of the spine at this time. The number of immigrants Ã has the
size-biased offspring distribution

q̃k = 1 + k

m
qk+1, k ≥ 0.

From this description it is clear that the process (X,QK), survives a.s. since the
spine survives. In light of the change of measure (2.3), survival of X under QK

implies a positive probability of survival of X under P K if the martingale ZK is
uniformly integrable. For this reason, we will now the study the large time be-
haviour of ZK .

Since we assumed E(A log+ A) < ∞, the following proposition gives a neces-
sary and sufficient condition for the L1(P K

x )-convergence of ZK .

PROPOSITION 8. Recall that λ(K) = (m − 1)β − μ2/2 − π2/2K2, and let
0 < x < K .

(i) If λ(K) > 0, then the martingale ZK is L1(P K
x )-convergent and in partic-

ular uniformly integrable.
(ii) If λ(K) ≤ 0, then limt→∞ ZK(t) = 0 P K

x -a.s.

We refrain from giving the proof of Proposition 8 since it is a straightforward
adaptation of the proof of Theorem 13 in Kyprianou [27] which presents the L1-
convergence result in the case of a branching Brownian motion with absorption at
a space–time barrier; see also the proof of Theorem 1 therein, as well as the proof
in [32] and the proof of Theorem A in [33].

We will now show that the martingale limit ZK(∞) is zero if and only if
(X,P K) becomes extinct.

PROPOSITION 9. For x ∈ (0,K), the events {ZK(∞) = 0} and {ζ < ∞}
agree P K

x -a.s.

PROOF. Clearly {ζ < ∞} ⊂ {ZK(∞) = 0} and it remains to show that {ζ =
∞} ∩ {ZK(∞) = 0} has zero probability. We consider the cases λ(K) ≤ 0 and
λ(K) > 0 separately.

Assume λ(K) ≤ 0. Proposition 8 gives ZK(∞) = 0, P K -a.s. As ZK is the sum
of the nonnegative terms e−λ(K)t sin(πxu(t)/K)eμxu(t), ZK vanishes in the limit
if and only if all its terms do. On extinction, this is certainly the case. On the event
of survival, these terms can only vanish if all particles move arbitrarily close to the
killing boundary as sin(πx/K)eμx ≈ 0 for x close to 0 and K only. Let us show
that this particle behaviour cannot occur.

We suppose for a contradiction that ZK(∞) = 0 on the event of survival. This
assumption implies that, for any ε > 0, all particles leave the interval (ε,K − ε)
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eventually, and thus we may assume without loss of generality that the process
survives in the small strip (0, ε). We will now lead this argument to a contradiction
by showing that, for ε small enough, the P ε

x -branching diffusion, x ∈ (0, ε), will
become extinct a.s.

Denote by P
(−δ,ε+δ)
x the law under which X is our usual branching Brownian

motion but with killing upon exiting the interval (−δ, ε + δ), δ > 0. For any δ >

0, we can embed the P ε-branching diffusion in a P (−δ,ε+δ)-branching diffusion
according to the following procedure. Let us write v ≤ u if v is an ancestor of u (u
is considered to be an ancestor of itself), in accordance with the classical Ulam–
Harris notation; see, for instance, [22], page 290. Under P

(−δ,ε+δ)
x , we define

Nt |(0,ε) = {
u ∈ Nt :∀s ≤ t ∀v ∈ Ns s.t. v ≤ u we have xv(s) ∈ (0, ε)

}
,

which is the set of particles u ∈ Nt whose ancestors (not forgetting u itself) have
not exited (0, ε) up to time t . Now we can define the restriction of X to (0, ε) under
P

(−δ,ε+δ)
x by

Xt |(0,ε) = ∑
u∈Nt |(0,ε)

δxu(t), t ≥ 0.

Then we conclude immediately that, for an initial position in (0, ε), the restricted

process X|(0,ε) = (Xt |(0,ε), t ≥ 0) under P
(−δ,ε+δ)
x has the same law as (X,P ε

x ).
Now we choose δ and ε small enough such that λ(ε+2δ) := (m−1)β −μ2/2−

π2/2(ε + 2δ)2 < 0. Then, under P (−δ,ε+δ), the process

Z(−δ,ε+δ)(t)

:= ∑
u∈Nt

{
eμ(xu(t)+δ)−λ(ε+2δ)t sin

(
π

(
xu(t) + δ

)
/(ε + 2δ)

)}
, t ≥ 0

is a martingale of the form in Proposition 8. Considering now the contribution
coming from the particles in the set Nt |(0,ε) only, we first note that our assumption
of survival of the P ε-branching diffusion ensures that this set is nonempty for
any time t . Further, for particles u ∈ Nt |(0,ε), the terms eμ(xu(t)+δ) sin(π(xu(t) +
δ)/(ε + 2δ)) are uniformly bounded from below by a constant c > 0, and hence,
under P

(−δ,ε+δ)
x , we get

Z(−δ,ε+δ)(t) ≥ cNt |(0,ε)e
−λ(ε+2δ)t .

Since we have chosen δ and ε such that λ(ε + 2δ) < 0, we now conclude that
Z(−δ,ε+δ)(∞) = ∞, P

(−δ,ε+δ)
x -a.s. This is a contradiction since Z(−δ,ε+δ) is a

positive martingale and therefore has a finite limit. Hence, for λ(K) ≤ 0, the mar-
tingale limit ZK(∞) cannot be zero on survival.

Consider the case λ(K) > 0. Suppose for a contradiction that {ζ = ∞} ∩
{ZK(∞) = 0} has positive probability. Let zK(x) = P K

x (ZK(∞) = 0), for x ∈
(0,K). Define M∞ := 1{ZK(∞)=0}, and set

Mt := EK
x (M∞|Ft ) = ∏

u∈Nt

zK

(
xu(t)

)
,(2.4)
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where the second equality follows from the branching Markov property. Then the
process (Mt , t ≥ 0) defined through (2.4) is a uniformly integrable P K

x -martingale
with limit M∞ = 1{ZK(∞)=0}. On the event {ζ = ∞} ∩ {ZK(∞) = 0}, we clearly
have M∞ = 1, P K

x -a.s. This requires in turn that all particles xu(t), u ∈ Nt move
toward 0 and K as t → ∞, since we know from Proposition 8(i) that zK(x) < 1 for
x within (0,K). The previous part of this proof already showed that this leads to a
contradiction. Thus, for λ(K) > 0, the martingale limit cannot be zero on survival.
This completes the proof. �

PROOF OF PROPOSITION 1. Note that λ(K) ≥ 0 if and only if μ <√
2(m − 1)β and K > K0. The result follows now immediately from Proposi-

tions 8 and 9. �

REMARK 10. In the proof of Proposition 1, we saw that the function zK(x) =
P K

x (ZK(∞) = 0) generates the product martingale (Mt , t ≥ 0) in (2.4). We can
apply the same argument given there to show that

EK
x (1{ζK<∞}|Ft ) = ∏

u∈Nt

(
1 − pK

(
xu(t)

))
, t ≥ 0

is a uniformly integrable product martingale. Followed by a classical Feynman–
Kac argument (cf. Champneys et al. [7]), this gives that zK(x), respectively, 1 −
pK(x) solves

Lu + F(u) = 0 on (0,K),
(2.5)

u(0) = u(K) = 1.

3. Backbone decomposition via martingale changes of measure. In this
section we decompose the P K -branching diffusion into the blue and red branching
diffusions corresponding to the blue and red trees described in our intuitive picture,
for the binary branching case only, in Section 1.1. Recall that the blue tree consists
of all genealogical lines of descent that will never become extinct while the red
trees contain all remaining lines of descent. In Section 1.1, we only gave a char-
acterisation of the red, blue, and dressed blue branching diffusion in the case of a
binary branching mechanism (Proposition 2 and Theorem 3). For a general branch-
ing mechanism, the results will be presented in this section as Proposition 11 and
Theorem 12.

Let us refer to the process corresponding to the coloured tree as the two-colour
branching diffusion. The law PK of the two-colour branching diffusion is defined
by the law of X under P K and a subsequent colouring of the particles. Let c(u)

denote the colour of a particle u. We say a particle u is blue if it has an infi-
nite genealogical line of descent and we write c(u) = b; otherwise we say it is
red and write c(u) = r . Let us remark that the natural filtration of (X,PK) is
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σ(Ft , c(u)u∈Nt ), but this filtration will not play a role in the forthcoming analysis.
Given F∞, the colouring is deterministic.

Define c(Nt) = {(cu)u∈Nt : cu ∈ {b, r}} as the set of all possible colourings of Nt .
Trivially, for all t ≥ 0,

dPK
x

dP K
x

∣∣∣∣
F∞

= ∏
u∈Nt

(1{c(u)=b} + 1{c(u)=r}) = 1

and thus

dPK
x

dP K
x

∣∣∣∣
Ft

= EK
x

( ∏
u∈Nt

(1{c(u)=b} + 1{c(u)=r})
∣∣∣Ft

)

= ∑
c∈c(Nt )

∏
u∈Nt

P K
x

(
c(u) = cu|Ft

)

= ∑
c∈c(Nt )

∏
u∈Nt ,cu=b

pK

(
xu(t)

) ∏
u∈Nt ,cu=r

(
1 − pK

(
xu(t)

)) = 1,

where the sum is taking over all possible colourings c = (cu)u∈Nt in c(Nt ). In
particular, for A ∈Ft , we get

PK
x

(
A; c(u) = cu ∀u ∈ Nt |Ft

)
= 1A

∏
u∈Nt ,cu=b

pK

(
xu(t)

) ∏
u∈Nt ,cu=r

(
1 − pK

(
xu(t)

))
.

We can now derive the change of measure for the red branching diffusion. It is
sufficient to consider one initial particle and we suppose that this particle is red.
Let A ∈ Ft , and write c(∅) = r for the event that the initial particle is red. Then

PR,K
x (A) := PK

x

(
A|c(∅) = r

) = PK
x (A; c(u) = r ∀u ∈ Nt)

PK
x (c(∅) = r)

(3.1)

= EK
x (1A

∏
u∈Nt

(1 − pK(xu(t))))

1 − pK(x)
.

Clearly, conditioning the initial particle to be red is the same as conditioning the
process to become extinct, and therefore the law of X under PR,K agrees with
the law of X conditioned on extinction. The following proposition characterises X

under PR,K and generalises Proposition 2 in Section 1.1.
Throughout this section we will denote branching rates by β and offspring prob-

abilities by q with superscripts indicating whether they belong to the red or blue
branching diffusion or the immigration procedure.

PROPOSITION 11 (The red branching diffusion). For ν ∈ Ma(0,K), define
PR,K

ν via (3.1). Then (X,PR,K
ν ) is a branching process with single particle motion
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characterised by the infinitesimal generator

LR,K = 1

2

d2

dy2 −
(
μ + p′

K(y)

1 − pK(y)

)
d

dy
on (0,K),(3.2)

for u ∈ C2(0,K) with u(0+) = u(K−) = 0, and the branching activity is gov-
erned by the space-dependent branching mechanism

FR,K(s, y) = 1

1 − pK(y)

(
F

(
s
(
1 − pK(y)

)) − sF
(
1 − pK(y)

))
,

for s ∈ [0,1] and y ∈ (0,K). In particular, FR,K is of the form

FR,K(s, y) = βR(y)

(∑
k≥0

qR
k (y)sk − s

)
,

where βR is a space-dependent branching rate and (qR
k , k ≥ 0) a space-dependent

offspring distribution [expressions for βR and (qR
k , k ≥ 0) are given in (3.5)

and (3.6) below].

PROOF. The change of measure in (3.1) preserves the branching property in
the following sense. Let ν = ∑n

i=1 δxi
be an initial configuration at time 0 in (0,K)

and A ∈ Ft . Then

PR,K
ν (A) = EK

ν

(
1A

∏
u∈Nt

(1 − pK(xu(t)))∏n
i=1(1 − pK(xi))

)

=
n∏

i=1

EK
xi

(
1A

∏
u∈Ni

t
(1 − pK(xu(t)))

1 − pK(xi)

)

=
(

n⊗
i=1

PR,K
xi

)
(A),

where Ni
t is the set of descendants at time t of the ith initial particle.

The process (X,PR,K) is therefore completely characterised by its evolution
up to the first branching time S. Let us denote by ξ = {ξt ,0 ≤ t ≤ S} the path
of the initial particle up to time S, noting that it is a Brownian motion with drift
−μ, killed upon exiting (0,K) under P K and PK . Let H be a positive bounded
measurable functional of this path. We begin with considering the case t < S.
Using the change of measure in (3.1) and the fact that S is exponentially distributed
with parameter β , we have

ER,K
x

(
H(ξs, s ≤ t);S > t

)
= EK

x

(
H(ξs, s ≤ t)

1 − pK(ξt )

1 − pK(x)
;S > t

)
(3.3)
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= e−βtEK
x

(
H(ξs, s ≤ t)

1 − pK(ξt )

1 − pK(x)

)

= e−βtER,K
x

(
H(ξs, s ≤ t)e− ∫ t

0 F(1−pK(ξs))/(1−pK(ξs)) ds),
where PR,K

x is defined by the change of measure

dPR,K
x

dPK
x

∣∣∣∣
Gt

= 1 − pK(ξt )

1 − pK(x)
e

∫ t
0 F(1−pK(ξs))/(1−pK(ξs)) ds, t ≥ 0.(3.4)

Thus the initial particle performs a PR,K -motion. It follows from Lemma 7 using
h = 1 − pK and the fact that L(1 − pK) + F(1 − pK) = 0 (see Remark 10), that
the motion under PR,K is governed by the infinitesimal generator LR,K in (3.2).
Note that LR,K depends on the branching mechanism F through pK .

Taking H = 1 and differentiating in t at t = 0 in (3.3) above, we see that under
PR,K the branching rate changes to

βR(y) = F(1 − pK(y)) + β(1 − pK(y))

1 − pK(y)
(3.5)

= β
∑
k≥0

qk

(
1 − pK(y)

)k−1
,

for y ∈ (0,K).
It remains to identify the offspring distribution, and we therefore study the pro-

cess at its first branching time S. Using (3.1) in the first step, and then (3.4) together
with the definition of βR in (3.5) in the last, we get

ER,K
x

(
H(ξs, s ≤ S);S ∈ dt;NS = k

)
= EK

x

(
(1 − pK(ξS))NS

1 − pK(x)
H(ξs, s ≤ S);S ∈ dt;NS = k

)

= EK
x

(
(1 − pK(ξt ))

k

1 − pK(x)
H(ξs, s ≤ t)βe−βtqk

)
dt

= EK
x

(
1 − pK(ξt )

1 − pK(x)
e

∫ t
0 F(1−pK(ξs))/(1−pK(ξs)) dsH(ξs, s ≤ t)

× qkβe−βt e− ∫ t
0 F(1−pK(ξs))/(1−pK(ξs)) ds(1 − pK(ξt )

)k−1
)

dt

= ER,K
x

(
H(ξs, s ≤ t)βR(ξt )e

− ∫ t
0 βR(ξs) ds β

βR(ξt )
qk

(
1 − pK(ξt )

)k−1
)

dt.

We see that, in addition to the change in the motion and the branching rate, the
offspring distribution under PR,K becomes {qR

k , k ≥ 0} where, for y ∈ (0,K),

qR
k (y) = β

(
βR(y)

)−1
qk

(
1 − pK(y)

)k−1
, k ≥ 0.(3.6)
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A simple computation shows that FR,K(s, y) = βR(y)(
∑

k≥0 qR
k (y)sk − s) takes

the desired form. �

The natural next step is to condition the initial particle to be blue and study the
resulting law. Note that this will describe the evolution of a dressed blue branching
diffusion, corresponding to a blue tree dressed with red trees, and from this process
we will be able to recover the blue branching diffusion. We will give the change
of measure for the blue branching diffusion in Proposition 13 following the next
theorem.

Let us define the law of the dressed blue branching diffusion by

PD,K
x (A) := PK

x

(
A|c(∅) = b

)
= PK

x (A; c(u) = b for at least one u ∈ Nt)

PK
x (c(∅) = b)

(3.7)

= EK
x (1A(1 − ∏

u∈Nt
(1 − pK(xu(t)))))

pK(x)
.

Then (X,PD,K) is the same as (X,P K) conditioned on survival.

THEOREM 12 (The dressed blue branching diffusion). Let K > K0 and x ∈
(0,K). The process (X,PD,K

x ) evolves as follows.

(i) From x, we run a branching diffusion XB with single particle movement
according to the infinitesimal generator

LB,K = 1

2

d2

dy2 −
(
μ − p′

K(y)

pK(y)

)
d

dy
on (0,K),(3.8)

defined for all u ∈ C2(0,K), and space-dependent branching mechanism FB,K of
the form

FB,K(s, y) = βB(y)

(∑
k≥0

qB
k (y)sk − s

)
, s ∈ [0,1], y ∈ (0,K),

where, for a fixed y ∈ (0,K), the branching rate βB(y) and the offspring distribu-
tion (qB

k (y), k ≥ 2) are given by

βB(y) = β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(

1 − pK(y)
)n−k

,

qB
k (y) = ββB(y)−1

∑
n≥k

qn

(
n

k

)
pK(y)k−1(

1 − pK(y)
)n−k

.

In particular, FB,K(s, y) can be written as

1

pK(y)

(
F

(
spK(y) + (

1 − pK(y)
)) − (1 − s)F

(
1 − pK(y)

))
.
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(ii) Conditionally on the branching diffusion XB in (i), we have the following:

• (Immigration along the trajectories.) Along the trajectories of each particle in
XB , an immigration with n ≥ 1 immigrants occurs at rate

βI,1
n (y) = βqn+1(n + 1)

(
1 − pK(y)

)n
, y ∈ (0,K).

• (Branch point immigration.) At a branch point of XB at y ∈ (0,K) with some
fixed k ≥ 2 offspring, the number of immigrants is distributed according to
(q

I,2
n,k(y), n ≥ 0), in that we see an immigration of n immigrants with probability

q
I,2
n,k(y) = (

κk(y)
)−1

qn+k

(
n + k

k

)
pK(y)k−1(

1 − pK(y)
)n

,

with normalising constant κk(y) = qB
k (y)β−1βB(y).

Each immigrant initiates an independent copy of (X,PR,K) from the space–time
position of its birth.

PROOF. We use the same notation as in the proof of Proposition 11 and in
addition let T(0,K) denote the first time the initial particle exits (0,K). Consider
the change of measure in (3.7) and note that, for any time t < S and A ∈ Ft , it
becomes

PD,K
x (A) = EK

x

(
1A

pK(ξt )

pK(x)
, T(0,K) > t

)
,

where the term T(0,K) > t appears since the product in the enumerator in (3.7) is
empty if the initial particle gets killed before it reproduces. Then

ED,K
x

(
H(ξs, s ≤ t);S > t

)
= e−βtEK

x

(
H(ξs, s ≤ t)

pK(ξt )

pK(x)
, T(0,K) > t

)
(3.9)

= e−βtEB,K
x

(
H(ξs, s ≤ t)e

∫ t
0 F(1−pK(ξs))/(pK(ξs) ds)),

where PB,K
x is defined by the change of measure, for t ≥ 0,

dPB,K
x

dPK
x

∣∣∣∣
Gt

= pK(ξt )

pK(x)
exp

{
−

∫ t

0

F(1 − pK(ξs))

pK(ξs)
ds

}
1{T(0,K)>t}.(3.10)

By Lemma 7 using h = pK and LpK −F(1−pK) = 0 (cf. Remark 10), the motion
of ξ under PB,K

x is governed by the infinitesimal generator LB,K as in (3.8). Note
that LB,K depends on F through pK . Then, setting

βD(y) = −F(1 − pK(y)) − βpK(y)

pK(y)
(3.11)

= β
1 − ∑∞

k=0(1 − pK(y))kqk

pK(y)
for y ∈ (0,K),
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we see that (3.9) simplifies to

ED,K
x

(
H(ξs, s ≤ t), S > t

) = EB,K
x

(
H(ξs, s ≤ t)e− ∫ t

0 βD(ξs) ds).
We deduce from this that, under PD,K , the motion of the initial particle is given
by the change of measure in (3.10), and it branches at space-dependent rate βD as
in (3.11).

It remains to specify the offspring distribution. We begin with the expression
in (3.7) and then use (3.10) and the expression for βD in (3.11) to get

ED,K
x

(
H(ξs, s ≤ S);S ∈ dt;NS = k

)
= EK

x

(
H(ξs, s ≤ t)

1 − (1 − pK(ξt ))
NS

pK(x)
;S ∈ dt;NS = k

)

= EK
x

(
H(ξs, s ≤ t)βe−βtqk

1 − (1 − pK(ξt ))
k

pK(x)
dt

)

= EB,K
x

(
H(ξs, s ≤ t)βDe− ∫ t

0 βD(ξs) ds β

βD(ξt )
qk

1 − (1 − pK(ξt ))
k

pK(ξt )
dt

)
.

Again this reveals the evolution of the initial particle as described above, and we
further see that the offspring distribution of the initial particle under PD,K is given
by {qD

k , k ≥ 0} where

qD
k (y) ∝ qk

1 − (1 − pK(y))k

pK(y)
for y ∈ (0,K),

up to the normalising constant β(βD(y))−1. We note that q0(y) = 0 for all
y ∈ (0,K) which we expected to see since (X,PD,K) is equal in law to (X,P K)

conditioned on survival. However, we have so far neglected the fact that the initial
particle can give birth to particles of the same type, that is, blue particles (referred
to as branching) and red particles which evolve as under PR,K (referred to as immi-
gration). We will split up the rate βD and the offspring distribution qD

k into terms
corresponding to branching, respectively, immigration. Firstly, note that with the
help of the binomial theorem we can decompose the rate βD into

βD(y) = β
1 − ∑∞

k=0(1 − pK(y))kqk

pK(y)

= β
∑
k≥2

∑
n≥k

qn

(
n

k

)
pK(y)k−1(

1 − pK(y)
)n−k

(3.12)
+ β

∑
n≥1

qnn
(
1 − pK(y)

)n−1

=: βB(y) + ∑
n≥0

βI,1
n (y).

Then βI,1
n is the rate at which the initial particle gives birth to one blue particle

and n (red) immigrants while βB is the rate at which the initial particle gives birth
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to at least two particles of the blue type and a random number of (red) immigrants.
These rates agree with the immigration rates βI,1

n and βB as stated in (ii), respec-
tively, (i). Again using the binomial theorem, we can now rewrite the offspring
distribution qD

k , for each k ≥ 1, as

qD
k (y) ∝ qk

1 − (1 − pK(y))k

pK(y)

= qk

k∑
i=2

(
k

i

)
pK(y)i−1(

1 − pK(y)
)k−i(3.13)

+ qkk
(
1 − pK(y)

)k−1
, k ≥ 1.(3.14)

Then the term in (3.13) gives, up to normalisation, the sum of the probabilities that
the initial particle branches into i blue particles, and at the same branching time,
k − i red particles immigrate. This gives the immigrant distribution at branching
points, (q

I,2
n,k(y), k ≥ 2), as stated in (ii) as well as the offspring distribution of the

blue branching diffusion in (i). The term in (3.14) is the probability that k − 1
immigrants occur, again up to a normalising constant.

Note that (X,PD,K) inherits the branching Markov property from (X,P K)

by (3.7) in a similar spirit to the case of (X,PR,K); cf. the proof of Proposition 11.
Thus the description of the initial particle also characterises the evolution of all
particles of the blue type and together with the characterisation of the immigrating
PR,K -branching diffusions in Proposition 11 we have completely characterised the
evolution of X under PD,K . �

In light of Theorem 12, we call the blue branching diffusion XB in step (i) the
backbone. Let us give the change of measure under which X evolves like XB .
Using the classical Ulam–Harris notation (see, e.g., [22], page 290), we denote by
τv and σv the birth, respectively, death time of a particle v, by T v

(0,K) its first exit
time from (0,K) and by Av the random number of its offspring. Denote by T the
set of all particles in a realisation of X. Let Tt be the set of all v ∈ T with τv < t

and v is in Tt− if, in addition, σv < t .

PROPOSITION 13 (The backbone). For ν ∈ Ma(0,K) such that ν = ∑n
i=1 δxi

with xi ∈ (0,K), n ≥ 1, we define the measure PB,K
ν via the following change of

measure. For t ≥ 0,

dPB,K
ν

dP K
ν

∣∣∣∣
Ft

= ∏
v∈Tt

pK(xv(σv ∧ t))

pK(xv(τv))
1{t<T v

(0,K)}

× exp
{∫ σv∧t

τv

F ′(1 − pK

(
xv(s)

)) + β ds

}

× ∏
v∈Tt−

qB
Av

(xv(σv))

qAvβ(βB(xv(σv)))−1 .
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The branching diffusion (X,PB,K
ν ) has single particle movement according to the

infinitesimal generator LB,K and branching mechanism FB,K as given in step (i)
of Theorem 12.

PROOF. A simple computation, using (3.11) and (3.12), shows that

F ′(1 − pK(y)
) = −F(1 − pK(y))

pK(y)
− βB(y), y ∈ (0,K).

The result then follows from rewriting the change of measure up to the first branch-
ing time S as

dPB,K
x

dP K
x

∣∣∣∣
FS

= pK(ξS)

pK(x)
exp

{
−

∫ S

0

F(1 − pK(ξs))

pK(ξs)
ds

}
1{S<T(0,K)}

× 1

β
βB(ξS) exp

{
−

∫ S

0
βB(ξs) − β ds

}
× qB

NS
(ξS)

qNS

,

noting that the first line on the right-hand side accounts for the change of motion,
the first term in the second line for the change in the branching rate and the last
term in the second line for the change in the offspring distribution. �

COROLLARY 14 (The backbone decomposition). Let K > K0 and ν ∈
Ma(0,K) such that ν = ∑n

i=1 δxi
with xi ∈ (0,K), n ≥ 1.

Then (X,PK
ν ) has the same law as the process

n∑
i=1

(
YiX

D,i
t + (1 − Yi)X

R,i
t

)
, t ≥ 0,

where XR,i = (X
R,i
t , t ≥ 0) are independent copies of (X,PR,K

xi
), XD,i =

(X
D,i
t , t ≥ 0) are independent copies of (X,PD,K

xi
) and the Yi are independent

Bernoulli random variables with respective parameters pK(xi).

Intuitively speaking, we can describe the evolution under PK
ν and thus also un-

der P K
ν as follows. Independently for each initial particle i with position xi , we

flip a coin with probability pK(xi) of “heads”. If it lands “heads”, we initiate a
copy of (X,PD,K

xi
), and otherwise we initiate a copy of (X,PR,K

xi
).

COROLLARY 15. Given the number of particles of (X,P K
ν ) and their posi-

tions, say x1, . . . , xn for some n ∈ N, at a fixed time t , then the number of particles
of XB

t is the number of successes in a sequence of n independent Bernoulli trials,
each with success probability pK(x1), . . . , pK(xn).
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REMARK 16. With Theorem 12 in hand it can be shown that if the differen-
tial equation in (2.5) has a nontrivial, [0,1]-valued solution, then it is unique. We
sketch the argument here.

Assume that gK(x) is a nontrivial, (0,1)-valued solution to (2.5). By a
Feynman–Kac argument (cf. Champneys et al. [7]), it follows that

MK(t) = ∏
u∈Nt

gK

(
xu(t)

)
, t ≥ 0,

is a P K
x -product martingale. Since MK is uniformly integrable, its limit MK(∞)

exits P K
x -a.s. On the event of extinction, MK(∞) = 1. On the event of survival, it

follows from Theorem 12 that

MK(t) = ∏
u∈Nt

gK

(
xu(t)

) ≤ ∏
u∈NB

t

gK

(
xB
u (t)

)
,(3.15)

where NB
t is the set of particles in XB

t .
Clearly, |NB

t | → ∞ as t → ∞ since each particle in XB is replaced by at least
two offspring and there is no killing. Denote by ξB = (ξB

t , t ≥ 0) the path of an
arbitrary line of descent of particles in XB . Then ξB performs an ergodic motion
in (0,K) according to the infinitesimal generator LB,K in (3.2). By ergodicity,
P K -a.s., we have lim inft→∞ ξB

t = 0 and lim supt→∞ ξB
t = K which implies

lim inf
t→∞ gK

(
ξB
t

) = inf
y∈(0,K)

gK(y) < 1,(3.16)

since gK is nontrivial and (0,1)-valued. At any time t ≥ 0, we can choose |NB
t |

lines of descent, each of them containing the path of one of the particles in NB
t ,

and (3.16) holds true along these lines of descent. Loosely speaking, the right-hand
side of (3.15) then tends to an infinite product of terms with lim inf strictly smaller
than 1, and therefore it must converge to 0, that is,

lim inf
t→∞ MK(t) ≤ lim inf

t→∞
∏

u∈NB
t

gK

(
xB
u (t)

) = 0, P K -a.s.

Since the limit MK(∞) exists P K -a.s., we get MK(∞) = 0, on the event of sur-
vival.

We conclude that MK(∞) = 1{ζ<∞}. Taking expectations gives

gK(x) = EK
x

(
MK(∞)

) = P K
x (ζ < ∞), x ∈ (0,K).

As this is true for any nontrivial, [0,1]-valued solution to (2.5), we have established
uniqueness of these solutions.

In Remark 10, we saw that the function zK(x) = P K
x (ZK(∞) = 0) solves (2.5).

With Proposition 8, this yields that (2.5) has a nontrivial solution if and only if
μ <

√
2(m − 1)β and K > K0.

Again by Remark 10, 1 −pK(x) is also a solution to (2.5). Thus we may derive
again that the events {ZK(∞) = 0} and {ζ < ∞} agree P K

x -a.s.; cf. Proposition 9.
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4. Proof of Theorem 4. We break up Theorem 4 into two parts which will be
proved in the subsequent sections.

PROPOSITION 17. Uniformly for all x ∈ (0,K0),

pK(x) ∼ cK sin(πx/K0)e
μx as K ↓ K0,

where cK is independent of x and cK ↓ 0 as K ↓ K0.

PROPOSITION 18. The constant cK in Proposition 17 satisfies

cK ∼ (K − K0)
(K2

0μ2 + π2)(K2
0μ2 + 9π2)

12(m − 1)βπK3
0 (eμK0 + 1)

as K ↓ K0.(4.1)

Theorem 4 then follows by defining CK to be the expression on the right-hand
side in (4.1).

We will provide probabilistic proofs of the results above. We remark that, al-
though it would take some effort to make rigorous, it is also possible to recover
the asymptotics of pK and the explicit constant CK in an analytic approach us-
ing a careful asymptotic expansion of the nonlinear ODE Lu + F(u) = 0 with
u(0) = u(K) = 1, as shown to us by Derrida.

4.1. Proof of Proposition 17. We begin with a preliminary result which en-
sures that the survival probability pK is right-continuous at K0.

LEMMA 19. Let x ∈ (0,K0). Then limK↓K0 pK(x) = 0.

PROOF. We fix x ∈ (0,K0) throughout the proof and consider pK(x) as a
function in K . For t > 0, let us define the probability pK(x, t) := P K

x [survival in
(0,K) up to time t]. Since pK(x, t) is monotonically decreasing for K ↓ K0 and
t → ∞, we have

lim
K↓K0

lim
t→∞pK(x, t) = lim

t→∞ lim
K↓K0

pK(x, t).

Further, by monotonicity of measures, we have, for any K > 0,

lim
t→∞pK(x, t) = pK(x),

and, for t ≥ 0,

lim
K↓K0

pK(x, t) = P K
x

(
survival in [0,K0] up to time t

) = pK0(x, t),

where the last equality holds true as any particle that hits 0 or K will immediately
pass below 0, respectively, above K . Putting the pieces together, we get

lim
K↓K0

pK(x) = lim
K↓K0

lim
t→∞pK(x, t) = lim

t→∞ lim
K↓K0

pK(x, t)

= lim
t→∞pK0(x, t) = pK0(x).

By Proposition 1, pK0(x) = 0, and so we have limK↓K0 pK(x) = 0. �
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Recall that we denoted by T the set of all particles in a realisation of X and
v < u means that v is a strict ancestor of u. For y ∈ (0,K0), let L(0,y) be the set
containing all particles which are the first ones in their genealogical line to exit the
strip (0, y), that is,

L(0,y) = {
u ∈ T :∃s ∈ [τu, σu] s.t. xu(s) /∈ (0, y)

(4.2)
and xv(r) ∈ (0, y) for all v < u, r ∈ [τv, σv]}.

The random set L(0,y) is a stopping line in the sense of Biggins and Kyprianou [6];
see also Chauvin [8], which uses a slightly different definition though.

Let |L(0,y)| be the number of particles which are the first ones in their line of
descent to hit y (we do not count the ones exiting at 0), which can be written as

|L(0,y)| =
∑

u∈Ly

1{xu(T u
(0,y))=y},(4.3)

recalling that we denoted by T u
(0,y) the first exit time of a particle u from (0, y).

Likewise we can define the stopping line L(y,K0) as the set containing all particles
which are the first ones in their genealogical line to exit the strip (y,K0) and
|L(y,K0)| as the number of particles in L(y,K0) which have exited at y.

The quantity |L(0,y)| will turn out to be the essential ingredient in the proof of

Proposition 17. To begin with, let us show that E
K0
x (|L(0,y)|) is finite. In fact, we

can compute this expectation explicitly.

LEMMA 20. Let x, y ∈ (0,K0) with x ≤ y. We have

EK0
x

(|L(0,y)|) = sin(πx/K0)

sin(πy/K0)
eμ(x−y),(4.4)

where |L(0,y)| is defined in (4.3). For x, y ∈ (0,K0) with x ≥ y, (4.4) holds true
with |L(0,y)| replaced by |L(y,K0)|.

PROOF. To begin with, we note that a stopping line is called dissecting if there
exists a P K -a.s. finite time such that each particle alive at this time has descended
from a particle in the stopping line; cf. [27]. Since we choose y ∈ (0,K0), the
width of the strip (0, y) is subcritical and hence, for any initial position x ∈ (0, y),
all particles will exit it eventually. This ensures that the stopping line L(0,y) de-
fined in (4.2) is a dissecting stopping line. Since L(0,y) is dissecting it follows
from Theorem 6 in [27] that we can apply the many-to-one lemma (see, e.g., [22],
Theorem 8.5) for the stopping line L(0,y). Let T(0,y) again be the first time ξ ex-

ists (0, y), and recall the definition of QK0
x via the martingale change of measure

in (2.2). Then we get

EK0
x

(|L(0,y)|)
= EK0

x

(
e(m−1)βT(0,y)1(ξT(0,y)

=y)

)
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= QK0
x

(
e(m−1)βT(0,y)

sin(πx/K0)e
μ(x−ξT(0,y)

)

sin(πξT(0,y)
/K0)e

(μ2/2+π2/2K2
0 )T(0,y)

1(ξT(0,y)
=y)

)

= sin(πx/K0)

sin(πy/K0)
eμ(x−y)QK0

x (ξT(0,y)
= y),

where we have used that (m − 1)β − μ2/2 − π2/2K2
0 = 0 (and Q

K0
x is used as

an expectation operator). Under QK0
x , ξ will never hit 0 since it is conditioned to

stay in (0,K0). However as ξ is positive recurrent it will eventually cross y and
therefore Q

K0
x (ξT(0,y)

= y) = 1. This gives (4.4). The case x ≥ y follows in the
same way. �

The following lemma is the essential part in the proof of Proposition 17.

LEMMA 21. Let x, y ∈ (0,K0) with x ≤ y. Let |L(0,y)| be as defined in (4.3).
Then we have

lim
K↓K0

pK(x)

pK(y)
= EK0

x

(|L(0,y)|).(4.5)

For x, y ∈ (0,K0) with x ≥ y, (4.5) holds true with |L(0,y)| replaced by |L(y,K0)|.

PROOF. Fix y ∈ (0,K0). We begin with the case 0 < x ≤ y.
We recall from Remark 10 that (

∏
u∈Nt

(1 − pK(xu(t))), t ≥ 0) is a P K
x -

martingale. Since L(0,y) is dissecting, as noted in the proof of Lemma 20, it follows
from [8] that we can stop the martingale at L(0,y) and obtain, for x ∈ (0, y),

1 − pK(x) = EK
x

( ∏
u∈L(0,y)

1 − pK

(
xu

(
T u

(0,y)

)))
(4.6)

= EK
x

((
1 − pK(y)

)|L(0,y)|),
where we have used that the process started at zero becomes extinct immediately,
that is, pK(0) = 0. Further |L(0,y)| has the same distribution under P K

x and P
K0
x

since we consider particles stopped at level y below K0, and thus we can replace
EK

x by E
K0
x on the right-hand side above. Now, using first (4.6) and then the geo-

metric sum
∑n−1

j=0 aj = 1−an

1−a
, we get

pK(x)

pK(y)
= EK0

x

(
1 − (1 − pK(y))|L(0,y)|

1 − (1 − pK(y))

)
(4.7)

= EK0
x

(|L(0,y)|−1∑
j=0

(
1 − pK(y)

)j)
.
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The sum on the right-hand side is dominated by |L(0,y)| which does not depend on
K and has finite expectation; see Lemma 20. We can therefore apply the dominated
convergence theorem to the right-hand side in (4.7), and we conclude that

lim
K↓K0

EK0
x

(|L(0,y)|−1∑
j=0

(
1 − pK(y)

)j)
(4.8)

= EK0
x

(|L(0,y)|−1∑
j=0

lim
K↓K0

(
1 − pK(y)

)j)
= EK0

x

(|L(0,y)|),
where the convergence holds point-wise in x ∈ (0, y). Combining (4.7) and (4.8)
we get (4.5) for x ∈ (0, y).

It remains to show that (4.5) also holds for x ∈ (y,K0). Instead of approaching
criticality by taking the limit in K we can now fix a K > K0 and consider a (super-
critical) strip (z,K) and let z ↑ z0 where z0 := K − K0. Denote by p(z,K)(x + z)

the probability of survival in the strip (z,K) when starting from x + z. We then
have

lim
K↓K0

pK(x)

pK(y)
= lim

z↑z0

p(z,K)(x + z)

p(z,K)(y + z)
.

Hence (4.5) is equivalent to showing that

lim
z↑z0

p(z,K)(x + z)

p(z,K)(y + z)
= EK

x+z0

(|L(y+z0,K)|) = EK0
x

(|L(y,K0)|
)
.

Here |L(y+z0,K)| denotes the number of particles which are the first in their ge-
nealogical line to exit the strip (y + z0,K) at y + z0. Noting that this has the same
law under P

z,K
x+z and P

z0,K
x+z , we can then repeat the argument in the first part. �

The next step is to show that the convergence in Lemma 21 holds uniformly in
x on (0,K0).

LEMMA 22. Let y ∈ (0,K0). Then we have

lim
K↓K0

pK(x)

pK(y)
= sin(πx/K0)

sin(πy/K0)
eμ(x−y),(4.9)

uniformly for all x ∈ (0,K0).

PROOF. With Lemmas 21 and 20, it remains to show that, for fixed y ∈
(0,K0), the convergence in equation (4.5) of Lemma 21 holds uniformly for all
x ∈ (0,K0). Taking a look back at the proof of Lemma 21, we see that it suffices
to show that the convergence in (4.8) holds uniformly for all x ∈ (0,K0).
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Let us fix a y ∈ (0,K0), and let x ∈ (0, y). We set

ϕ(x,K) = EK0
x

(|Ly |−1∑
j=0

(
1 − pK(y)

)j)
for x ∈ [0, y]

(with the convention that the P K -branching diffusion becomes extinct imme-
diately for the initial position x = 0, resp., stopped for x = y) and denote by
ϕ(x) = E

K0
x (|Ly |) its point-wise limit. Since 1−pK(y) ≤ 1−pK ′(y), for K ≥ K ′,

we have ϕ(x,K) ≤ ϕ(x,K ′), and thus for any x ∈ [0, y], the sequence ϕ(x,K) is
monotone increasing as K ↓ K0. Moreover the functions ϕ(x,K) and ϕ(x) are
continuous in x, for any K . In conclusion, we have an increasing sequence of
continuous functions on a compact set with a continuous point-wise limit, and
therefore the convergence in (4.8) also holds uniformly in x ∈ [0, y]; see, for ex-
ample, [36], Theorem 7.13. This implies now that, for fixed y ∈ (0,K0), (4.5), and
thus (4.9) holds uniformly in x ∈ (0, y).

As outlined in the proof of Lemma 21, we can adapt the argument to the case
x ∈ (y,K0) to complete the proof. �

PROOF OF PROPOSITION 17. Choose a y ∈ (0,K0). Then an application of
Lemma 22 gives, as K ↓ K0,

pK(x) = pK(y)
pK(x)

pK(y)
∼ pK(y)

sin(πx/K0)

sin(πy/K0)
eμ(x−y) = cK sin(πx/K0)e

μx,

uniformly for all x ∈ (0,K0), where cK := pK(y)
sin(πy/K0)

e−μy . By Proposition 19,
cK ↓ 0 as K ↓ K0 which completes the proof. �

4.2. Proof of Proposition 18. In this section we will present the proof of
Proposition 18 which gives an explicit asymptotic expression for the constant cK

appearing in the asymptotics for the survival probability in Proposition 17 and
Theorem 4. We begin with a heuristic that guides our proof.

4.2.1. Heuristic argument. The starting point for the proof of Proposition 18
is the following idea: By Corollary 14, at time t , given the spatial positions xu(t)

of all particles u ∈ Nt , the number of blue particles is the number of successes in a
sequence of Bernoulli trials with success probabilities pK(xu(t)). As this holds at
any time t , we would expect that the proportion of blue particles, as a proportion of
the whole population, roughly stays constant over time. This suggests that the blue
particles (the backbone) grows at the same rate as the whole process on survival.
Further, the immigrating red trees are conditioned to become extinct which sug-
gests that they do not contribute to the survival of the process. Loosely speaking,
we do not expect to lose too much information about the evolution of (X,P K) on
survival if we simply study the growth of the blue tree and ignore the contribution
of the immigrating red trees.
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We break up the heuristic argument into four steps.
Step (i) (The growth rate of the backbone). In this step, we derive an expression

for the expected growth rate of the number of blue particles. The following heuris-
tic argument is based on Donsker–Varadhan large deviation theory for occupation
measures; for precise formulations, see, for instance, Deuschel and Stroock [10]
or Chapter 5 in Stroock [37].

Consider a process YB = (YB
t , t ≥ 0) performing the single particle motion of

the backbone, that is according to the infinitesimal generator LB,K which is given
in (3.8) in Theorem 12 as

LB,K = 1

2

d2

dy2 −
(
μ − p′

K

pK

)
d

dy
on (0,K),

with domain C2(0,K). Let �B,K be the invariant density for LB,K , that is, the
positive solution of L̃B,K�B,K = 0 where L̃B,K is the formal adjoint of LB,K .
Then we find

�B,K(y) ∝ pK(y)2e−2μy, y ∈ (0,K).

For t ≥ 0 and a set A ⊂ [0,K], we define

�(t,A) =
∫ t

0
1{YB

s ∈A} ds

to be the occupation time up to time t of YB in the set A. Then large deviation
theory tells us that the probability that the occupation measure t−1�(t, ·) is “close”
to the measure

∫ K
0 1{·}(y)f 2(y)�B,K(y) dy is roughly

exp
{
−t

∫ K

0

1

2

(
f ′(y)

)2
�B,K(y) dy

}
.(4.10)

Recall that each particle in the backbone moves according to LB,K and that the
branching mechanism of the backbone is FB,K as defined in Theorem 12. For
y ∈ (0,K),

FB,K ′
(1, y) := d

ds
FB,K(s, y)|s=1 = (m − 1)β + F(1 − pK(y))

pK(y)

represents the branching rate multiplied by the mean increment in population (the
meath growth rate) for particles at location y. Then from (4.10), we would guess
that the expected number of particles with occupation densities “close to” f 2�B,K

at time t is very roughly

exp
{
t

∫ K

0

{
FB,K ′

(1, y)f (y)2 − 1

2

(
f ′(y)

)2
}
�B,K(y) dy

}
.

By Laplace–Varadhan asymptotics, the expected growth rate of the blue tree
should then be

sup
f

{∫ K

0

{
FB,K ′

(1, y)f (y)2 − 1

2

(
f ′(y)

)2
}
�B,K(y) dy

}
(4.11)
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with the supremum taken over a suitable class of functions f with the normalisa-
tion

∫ K
0 f 2(y)�B,K(y) dy = 1.

We assume henceforth that the supremum in (4.11) is taken over all functions f

which satisfy, in addition the boundary condition,

lim
y↓0

f (y)f ′(y)�B,K(y) = lim
y↑K

f (y)f ′(y)�B,K(y) = 0.(4.12)

Then an integration by parts shows that∫ K

0

{
LB,Kf (y)

}
f (y)�B,K(y) dy

(4.13)

= −1

2

∫ K

0

(
f ′(y)

)2
�B,K(y) dy.

Thus with (4.13), variational problem (4.11) can be written as

sup
f

{∫ K

0

{[
LB,K + FB,K ′

(1, y)
]
f (y)

}
f (y)�B,K(y) dy

}
.(4.14)

Now set h(y) = pK(y)e−μyf (y). Then h satisfies the normalisation∫ K
0 h(y)2 dy = 1 and h(0) = 0 = h(K). An elementary computation shows that,

instead of (4.14), we can consider the equivalent problem

sup
h

{∫ K

0

{
1

2
h′′(y) +

(
(m − 1)β − μ2

2

)
h(y)

}
h(y) dy

}
.(4.15)

Equivalence means that the optimal solutions f ∗ and h∗ of (4.14) and (4.15), re-
spectively, satisfy h∗(y) = pK(y)e−μyf ∗(y). If we take the supremum in (4.15)
over all functions h ∈ L2[0,K] with h(0) = 0 = h(K) and

∫ K
0 h(y)2 dy = 1,

then (4.15) is a classical Sturm–Liouville eigenvalue problem. For this case, the
optimal solution is h∗(y) ∝ sin(πy/K), y ∈ (0,K). Moreover, we get

f ∗(y) = h∗(y)

pK(y)
eμy ∝ sin(πy/K)

pK(y)
eμy, y ∈ (0,K),(4.16)

up to a normalising constant. Further, f ∗ solves[
LB,K + FB,K ′

(1, y)
]
f ∗(y) = λ(K)f ∗(y) in (0,K),(4.17)

where λ(K) = (m − 1)β − μ2/2 − π2/2K2.
In conclusion, under the assumption that f ∗ satisfies (4.12), we get from (4.17)

and (4.13)

λ(K) =
∫ K

0

{[
LB,K + FB,K ′

(1, y)
]
f ∗(y)

}
f ∗(y)�B,K(y) dy

=
∫ K

0

{
FB,K ′

(1, y)f ∗(y)2 − 1

2

(
f ∗(y)′

)2
}
�B,K(y) dy(4.18)

= sup
f

{∫ K

0

{
FB,K ′

(1, y)f (y)2 − 1

2

(
f ′(y)

)2
}
�B,K(y) dy

}
.
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Heuristically, this indicates that λ(K) is the expected growth rate of the blue tree
and this growth rate is attained by particles proportioning their time according
to the optimal occupation density (f ∗)2�B,K , as opposed to the single particle
occupation density �B,K .

Step (ii) [Lower bound on λ(K)]. Since f ∗ maximises the expression in (4.18),
we get a lower bound on λ(K) by taking f = 1, that is,∫ K

0
FB,K ′

(1, y)�B,K(y) dy ≤ λ(K).

Step (iii) [Upper bound on λ(K)]. Let us define the “optimal” occupation den-
sity as

�B,K∗ (y) := (
f ∗(y)

)2
�B,K(y) = 2

K
sin2(πy/K), y ∈ (0,K).

Omitting the nonpositive term −1
2(f ∗(y)′)2 in the second equality of (4.18) gives

the upper bound

λ(K) ≤
∫ K

0
FB,K ′

(1, y)�B,K∗ (y) dy.

Step (iv) (Asymptotics). By Theorem 4, pK(y) ∼ cK sin(πy/K0)e
μy , as K ↓

K0, and we can easily deduce that

�B,K(y) ∼ �
B,∗
K0

(y) as K ↓ K0.

We will make rigorous later that FB,K ′
(1, y) ∼ (m − 1)βcK sin(πy/K0)e

μy as
K ↓ K0. Our conjecture is therefore that

λ(K) ∼ cK

2(m − 1)β

K0

∫ K0

0
sin3(πy/K0)e

μy dy as K ↓ K0.

Since we can calculate the integral explicitly this gives an exact asymptotic for cK

which agrees with the one given in Proposition 18 and Theorem 4. Intuitively, as
we approach criticality, the single particle invariant measure, �B,K , becomes the
optimal way for particles to proportion their time in order to maximise the growth
of the blue tree, that is, f ∗ → 1.

4.2.2. Proof of Proposition 18. We briefly recall some key quantities. Recall
from equation (3.8) that the motion of the backbone particles is given by

LB,K = 1

2

d2

dy2 −
(
μ − p′

K

pK

)
d

dy
on (0,K),

which has invariant density �B,K satisfiying

�B,K(y) = pK(y)2e−2μy∫ K
0 pK(z)2e−2μz dz

, y ∈ (0,K).
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Recall from (4.11), the mean growth rate at position y ∈ (0,K) is

FB,K ′
(1, y) = (m − 1)β + F(1 − pK(y))

pK(y)
.

Throughout this section, let f ∗ be such that

f ∗(y) ∝ sin(πy/K)

pK(y)
eμy, y ∈ (0,K),(4.19)

with the normalisation
∫ K

0 f ∗(y)2�B,K(y) dy = 1. Finally we set �B,K∗ (y) :=
(f ∗(y))2�B,K(y), so that

�B,K∗ (y) = 2

K
sin2(πy/K), y ∈ (0,K).

Let us now come to the proof of Proposition 18. First, we want to confirm the
conjecture that the expected number of particles of (X,PB,K) grows at rate λ(K),
which initiated the heuristic step (i).

PROPOSITION 23. For x ∈ (0,K), we have

lim
t→∞

1

t
log EB,K

x

(|Nt |) = λ(K).

PROOF. Let x ∈ (0,K) and t ≥ 0. We apply the many-to-one lemma (see, e.g.,
[23]), then the change of measure in (3.10) together with

FB,K ′
(1, y) − F(1 − pK(y))

pK(y)
= (m − 1)β,

and finally the change of measure using (2.2), to get

EB,K
x

(|Nt |) = EB,K
x

(
e

∫ t
0 FB,K ′

(1,ξs ) ds)
= e(m−1)βtEx

(
p(ξt )

p(x)
1{ξt<T(0,K)}

)
(4.20)

= eλ(K)tQK
x

(
p(ξt )

sin(πξt/K)
e−μξt

)
sin(πx/K)

p(x)
eμx.

Since (ξ,QK
x ) is an ergodic diffusion, whose transition density is explicitly known

(cf. page 188 of [30]), with invariant distribution 2
K

sin2(πx/K)dx, it is easy to
check that

QK
x

(
pK(ξt )

sin(πξt/K)
e−μξt

)
→

∫ K

0
pK(y)e−μy 2

π
sin

(
πy

K

)
dy as t → ∞.

Thus, after taking logarithms in (4.20), dividing by t and taking t → ∞, the result
follows. �

It is worth remarking at this point that, using ideas from [24], the following
stronger version of the above proposition can be proved.
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PROPOSITION 24. For x ∈ (0,K),

lim
t→∞

1

t
log |Nt | = λ(K), PB,K

x -a.s.

The details are left to the reader.
We now give a short proof of the inequality in step (ii) of the heuristic by using

a lower bound on the growth rate of the expected number of blue particles.

LEMMA 25. For x ∈ (0,K), we have

λ(K) ≥
∫ K

0
FB,K ′

(1, y)�B,K(y) dy.

PROOF. Using the many-to-one lemma (cf., e.g., [22]) and Jensen’s inequality,
we get for x ∈ (0,K), t ≥ 0,

EB,K
x

(|Nt |) = EB,K
x

(
e

∫ t
0 FB

K

′
(1,ξs) ds) ≥ exp

{
EB,K

x

(∫ t

0
FB

K

′
(1, ξs) ds

)}
.

Under PB,K
x , ξ has invariant distribution �B,K(y) dy. Therefore we can apply an

ergodic theorem for diffusions [see, e.g., Rogers and Williams [35], Chapter V.53,
Theorem (53.1) and Exercise (53.6)] which gives

lim
t→∞

1

t

(∫ t

0
FB,K ′

(1, ξs) ds

)
=

∫ K

0
FB

K

′
(1, y)�B,K(y) dy, PB,K

x -a.s.

Since FB,K ′
(1, y) is bounded for y ∈ (0,K) [cf. the argument following (4.26) in

the proof of Proposition 18], the bounded convergence theorem gives

lim
t→∞EB,K

x

(
1

t

∫ t

0
FB,K ′

(1, ξs) ds

)
=

∫ K

0
FB

K

′
(1, y)�B,K(y) dy,

which, together with Proposition 23, gives the desired lower bound on λ(K). �

Next we give the proof of the upper bound for λ(K), again based on the discus-
sion in the heuristic.

LEMMA 26. For K > K0, we have

λ(K) ≤
∫ K

0
FB,K ′

(1, y)�B,K∗ (y) dy.

PROOF. The upper bound is described in part (iii) of the heuristic. The only
part of the explanation there that is not rigorous is the need to verify condi-
tion (4.12), that is,

lim
y↓0

(
f ∗(y)

)′
f ∗(y)�B,K(y) = lim

y↑K

(
f ∗(y)

)′
f ∗(y)�B,K(y) = 0,(4.21)
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in order to justify the integration by parts that leads to the second equality in (4.18).
To this end, we begin by showing that f ∗ is uniformly bounded in (0,K). Recall

from (4.19) that

f ∗(y) ∝ sin(πy/K)

pK(y)
eμy, y ∈ (0,K).

Since f ∗ is continuous in (0,K) it is sufficient to show that lim supx↓0 f ∗(x) and
lim supx↑K f ∗(x) are bounded.

An application of L’Hôpital’s rule gives

lim
x↓0

sin(πx/K)eμx

(π/(2Kμ))(1 − e−2μx)
= 1.(4.22)

To conclude that lim supx↓0 f ∗(x) < ∞, it therefore suffices to show that there
exists a constant c > 0 such that

c
(
1 − e2μx) ≤ pK(x) for all x sufficiently close to zero.

By Remark 10, (
∏

u∈Nt
(1 − pK(xu(t))), t ≥ 0) is a P K

x -martingale, and it follows
then by a standard Feynman–Kac argument that 1 − pK(x) satisfies

1 − pK(x) = 1 +EK
x

∫ T(0,K)

0
F

(
1 − pK(ξs)

)
ds, x ∈ (0,K),

where T(0,K) is the first time ξ exists the interval (0,K). To compute the expecta-
tion above we use the potential density of ξ (see, e.g., Theorem 8.7 in [28]), and
we get

−pK(x) = EK
x

∫ T(0,K)

0
F

(
1 − pK(ξs)

)
ds

= 1

μ

(
1 − e−2μx) ∫ K

0
F

(
1 − pK(y)

)(1 − e−2μ(K−y))

(1 − e−2μK)
dy(4.23)

− 1

μ

∫ K

0
F

(
1 − pK(y)

)(
1 − e−2μ(x−y))dy.

Since F(s) < 0 for 0 < s < 1, the first integral in the last equality on the right-hand
side of (4.23) is strictly negative and bounded. Hence we can set

c := − 1

μ

∫ K

0
F

(
1 − pK(y)

)(1 − e−2μ(K−y))

(1 − e−2μK)
dy > 0.

The second integral on the right-hand side of (4.23) is nonnegative, for x close
to 0, since the term 1 − e−2μ(x−y) is nonpositive for x ≤ y. Therefore, we get

pK(x) ≥ c
(
1 − e−2μx)

for all x sufficiently close to zero,

which, together with (4.22), gives the desired result.
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To establish boundedness as x approaches K , we observe that pK(x) =
p̄K(K − x), where p̄K denotes the survival probability for a branching diffu-
sion which evolves as under P K

x but with positive drift μ. Similarly to the pre-
vious argument we can then show that there exists a constant c > 0 such that
cp̄K(K − x) ≥ sin(πx/K)eμx , for x sufficiently close to K .

We can now show (4.21). Since f ∗ takes finite values at 0 and K , it suffices to
show that (f ∗(y))′�B,K(y) evaluated at 0 and K is zero. Differentiating f ∗ and
recalling that �B,K(y) ∝ pK(y)2e−2μy gives(

f ∗(y)
)′
�B,K(y)

∝ e−μy

((
μ sin(πy/K) + π

K
cos(πy/K)

)
pK(y) − sin(πy/K)p′

K(y)

)
.

Differentiating both sides of equation (4.23) with respect to x, it is easily seen that
p′

K(x) is bounded for all x ∈ [0,K]. Therefore (f ∗(y))′�B,K(y) is equal to 0 at
0 and K which completes the proof. �

We complete the proof of Proposition 18 by making step (iv) rigorous.

PROOF OF PROPOSITION 18. By Lemmas 25 and 26, we get the following
bounds on λ(K):∫ K

0
FB,K ′

(1, y)�B,K(y) dy ≤ λ(K) ≤
∫ K

0
FB,K ′

(1, y)�B,K∗ (y) dy.(4.24)

Recall that �B,K and �B,K∗ were defined as

�B,K(y) = pK(y)2e−2μy∫ K
0 pK(z)2e−2μz dz

and �B,K∗ (y) = 2

K
sin2(πy/K),

for y ∈ (0,K). By Proposition 17, we have, as K ↓ K0,

�B,K(y) = pK(y)2e−2μy∫ K
0 pK(z)2e−2μz dz

∼ 2

K0
sin2(πy/K) = �

B,∗
K0

(y),(4.25)

where we have used that the asymptotics in Proposition 17 hold uniformly to deal
with the integral in the denominator. The uniformity in Proposition 17 also ensures
that (4.25) holds uniformly for all y ∈ (0,K0). Further, we have

lim
s↑1

F(s)

s(s − 1)
= lim

s↑1

F ′(s)
2s − 1

= (m − 1)β,

where we applied L’Hôpital’s rule in the first equality above. We apply this for
s = 1 − pK(y) and K ↓ K0. Then, together with the definition of FB,K ′

(1, y) in
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(4.11) and the asymptotics in Proposition 17, we obtain

FB,K ′
(1, y) = (m − 1)β + F(1 − pK(y))

pK(y)

∼ (m − 1)β − (m − 1)β
(
1 − pK(y)

)
(4.26)

∼ (m − 1)βcK sin(πy/K0)e
μy as K ↓ K0.

Moreover, we note that for all y ∈ (0,K),∣∣∣∣F(1 − pK(y))

pK(y)

∣∣∣∣ =
∣∣∣∣F(1) − F(1 − pK(y))

1 − (1 − pK(y))

∣∣∣∣ ≤ max
s∈[0,1]F

′(s).

Convexity of F yields that the maximum above is attained at either 0 or 1, and
we know that F ′(0) and F ′(1) are both finite. Hence, by (4.26), |FB,K ′

(1, y)| is
bounded in (0,K), and we can therefore appeal to bounded convergence as we
take the limit in (4.24). With (4.25) and (4.26) we get

λ(K) ∼ cK

2(m − 1)β

K0

∫ K0

0
sin3(πy/K0)e

μy dy as K ↓ K0.

Evaluating the integral gives

λ(K) ∼ cK

12(m − 1)βπ3(eμK0 + 1)

(K2
0μ2 + π2)(K2

0μ2 + 9π2)
as K ↓ K0.

Finally, λ(K) ∼ π2(K − K0)K
−3
0 as K ↓ K0 which follows from the linearisation

λ(K) = (m − 1)β − μ2

2
− π2

2K2

= (m − 1)β − μ2

2
− π2

2K2
0︸ ︷︷ ︸

=0

+ π2

2K2
0

− π2

2K2

= π2K2

2K2
0K2

− π2

2K2

= π2[(K − K0)
2 + 2(K − K0)K0 + K2

0 ]
2K2

0K2
− π2

2K2

= π2(K − K0)
2

2K2
0K2

+ π2(K − K0)

K0K2

and noting that the second term in the last line is the leading order term as K ↓ K0.
This completes the proof. �
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5. Proof of Theorem 6. Recall that (X,PD,K) was defined as the process
(X,P K) conditioned on the event of survival and characterised via the change of
measure in (3.7) and Theorem 12.

Fix a K ′ > K0 and further denote by Nt |(0,K) the set of particles whose an-
cestors (including themselves) have not exited (0,K) up to time t . Then, for
0 ≤ K ≤ K ′, and for x ∈ (0,K0) and A ∈Ft , we can write

lim
K↓K0

PD,K
x (A) = lim

K↓K0
EK ′

x

(
1A

1 − ∏
u∈Nt |(0,K)

(1 − pK(xu(t)))

pK(x)

)
,

since Nt |(0,K) has the same law under P K and P K ′
. Suppose the particles in

Nt |(0,K) are ordered, for instance, according to their spatial positions, and we write
u1, . . . , uNt |(0,K)

. We can now expand the term within the expectation on the right-
hand side as

1 − ∏
u∈Nt |(0,K)

(1 − pK(xu(t)))

pK(x)
(5.1)

=
|Nt |(0,K)|∑

i=1

pK(xui
(t))

pK(x)

∏
j<i

(
1 − p

(
xuj

(t)
))

.

By Lemma 22, for each ui , we have

lim
K↓K0

pK(xui
(t))

pK(x)
= sin(πxui

(t)/K0)

sin(πx/K0)
eμ(xui

(t)−x)1{xui
(t)∈(0,K0)}.

Further, |Nt |(0,K)| has finite expectation. Therefore, we can apply the dominated
convergence theorem twice to get

lim
K↓K0

PD,K
x (A) = EK ′

x

(
1A lim

K↓K0

|Nt |(0,K)|∑
i=1

pK(xui
(t))

pK(x)

∏
j<i

(
1 − p

(
xuj

(t)
)))

= EK0
x

(
1A

|Nt |(0,K0)|∑
i=1

sin(πxui
(t)/K0)e

μxui
(t)

sin(πx/K0)eμx

)

= EK0
x

(
1A

ZK0(t)

ZK0(0)

)
,

where ZK0 is the martingale used in the change of measure in (2.3) in Section 2.
The evolution under this change of measure is described in the paragraph follow-
ing (2.3) and agrees with that of (X∗,Q∗

x) as defined in Definition 5.

6. Super-Brownian motion in a strip. Recall from (1.1) that the infinitesi-
mal generator L is defined for all functions u ∈ C2(0,K) with u(0+) = u(K−) =
0. Change the domain to u ∈ C2(0,K) with u′′(0+) = u′′(K−) = 0. Then L cor-
responds to Brownian motion with absorption (instead of killing) at 0 and K . For
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technical reasons, we consider the absorption case from now on and denote by
PK = {PK

t , t ≥ 0} the corresponding conservative diffusion semi-group. The re-
sults for branching Brownian motion with killing at 0 and K also hold in the ab-
sorption setting if we restrict the process with absorption to particles within (0,K),
in particular when defining Nt as the number of particles alive at time t who have
not been absorbed.

Suppose Y = (Yt , t ≥ 0) is a super-Brownian motion with associated semi-
group PK and branching mechanism ψ of the form

ψ(λ) = −aλ + bλ2 +
∫ ∞

0

(
e−λy − 1 + λy

)
�(dy), λ ≥ 0,

where a = −ψ ′(0+) ∈ (0,∞), b > 0, and � is a measure concentrated on (0,∞)

satisfying
∫
(0,∞)(x ∧ x2)�(dx) < ∞. For an initial configuration η ∈ Mf (0,K),

the space of finite measures supported on (0,K), we denote the law of Y by P̃ K
η .

The existence of this class of superprocesses follows from [12].
Since a = −ψ ′(0+) > 0, the function ψ is the branching mechanism of a super-

critical continuous-state branching process (CSBP), say Z. We assume henceforth
that ψ satisfies the nonexplosion condition

∫
0+ |ψ(s)|−1 ds = ∞ and further that

ψ(∞) = ∞. The last condition, together with ψ ′(0+) < 0, ensures that ψ has a
unique positive root λ∗. The parameter λ∗ is the survival rate of Z in the sense that
the probability of the event of becoming extinguished, namely {limt→∞ Zt = 0},
given Z0 = x is e−λ∗x , which is strictly positive. We further assume from now
on that

∫ +∞
(ψ(s))−1 ds < ∞, which guarantees that the event of becoming ex-

tinguished agrees with the event of extinction, that is, {∃t > 0 :Zt = 0} a.s. This
implies in turn that, for the super-Brownian motion Y , the event of becoming extin-
guished and the event of extinction agree P̃ K -a.s. We denote the event of extinction
of Y by E = {∃t > 0 :Yt (0,K) = 0}, where Yt (0,K) is the total mass within (0,K)

at time t .
We define the survival rate wK of the P̃ K -superdiffusion as the function satis-

fying

− log P̃ K
η (E) = 〈wK,η〉 for η ∈ Mf [0,K].

It can be shown (see, e.g., [13]) that wK is a solution to

Lu − ψ(u) = 0 with u(0) = u(K) = 0.(6.1)

Analogously to Proposition 1, and assuming henceforth in addition that the con-
dition

∫ ∞
1 x logx�(dx) < ∞ is satisfied, it is possible to give a necessary and

sufficient condition for a positive survival rate. This follows from a spine change
of measure argument in the spirit of Section 2 and of Kyprianou et al. [29], now
using the PK

x -martingale

Z̃K(t) =
∫ K

0
sin(πx/K)eμx−λ(K)tYt (dx), t ≥ 0,(6.2)
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where here λ(K) = −ψ ′(0+) − μ2/2 − π2/2K2. One can then show that wK is
positive if Z̃K is an L1(PK

x )-martingale and the latter holds if and only if λ(K) > 0
and

∫ ∞
1 x logx�(dx) < ∞.

Let us now establish the connection between the P̃ K -superdiffusion and a P K -
branching diffusion via the following relations. Set

F(s) = 1

λ∗ ψ
(
λ∗(1 − s)

)
, s ∈ (0,1),(6.3)

w̄K(x) = λ∗pK(x), x ∈ (0,K),(6.4)

where pK is the survival probability of the P K -branching diffusion with branching
mechanism F of (6.3). Bertoin et al. [5] show that (6.3) is the branching mecha-
nism of a Galton–Watson process which they identify as the backbone of the CSBP
with branching mechanism ψ .

THEOREM 27. (i) If μ <
√−2ψ ′(0+) and K > K0 where K0 :=

π(
√−2ψ ′(0+))−1, then wK(x) > 0 for all x ∈ (0,K); otherwise wK(x) = 0 for

all x ∈ [0,K].
(ii) Uniformly for x ∈ (0,K0), as K ↓ K0,

wK(x) ∼ λ∗(K − K0)
(K2

0μ2 + π2)(K2
0μ2 + 9π2)

12ψ ′(0+)πK3
0 (eμK0 + 1)

sin(πx/K0)e
μx.

PROOF. The relation in (6.3) gives (m − 1)β = −ψ ′(0+). Hence, the K0 and
the λ(K) defined in this section are the same as the ones in Propositions 1 and 8.

Suppose μ <
√−2ψ ′(0+) and K > K0. By Remark 16, pK is the unique non-

trivial solution to Lu−F(1−u) = 0 on (0,K) with u(0) = u(K) = 0. Using (6.3)
it follows then that w̄K given by (6.4) solves (6.1). We can further deduce from this
transformation that (6.1) has a unique nontrivial solution. On the other hand, we
know that wK solves (6.1), and by the spine argument we mentioned after (6.2), we
know that wK is positive within (0,K). By uniqueness, we thus have w̄K = wK .

Suppose μ ≥ √−2ψ ′(0+) or K ≤ K0. Then pK is identically zero, and (2.5)
does not have a nontrivial solution. By the transformation in (6.3), the same holds
true for (6.1). Since wK is always a solution to (6.1), it must therefore be equal to
zero.

The result is now a consequence of Proposition 1 and Theorem 4. �

Let us outline the backbone decomposition for the P̃ K
η -superdiffusion. We begin

by studying (Y, P̃ K) conditioned on becoming extinct.

PROPOSITION 28. For η ∈ Mf [0,K] and t ≥ 0, we define

dP̃R,K
η

dP̃ K
η

∣∣∣∣
F̃t

= e−〈wK,Yt 〉

e−〈wK,η〉 ,(6.5)



BRANCHING BROWNIAN MOTION IN A STRIP 271

where (F̃t , t ≥ 0) is the natural filtration generated by (Y, P̃ K
η ). Then (Y, P̃R,K

η ) is

equal in law to (Y, P̃ K
η (·|E)). Further (Y, P̃R,K

η ) has spatially dependent branching
mechanism

ψR,K(s, x) = ψ
(
s + wK(x)

) − ψ
(
wK(x)

)
, s ≥ 0 and x ∈ [0,K]

and diffusion semigroup PK .

The proof of Proposition 28 is just a straightforward adaptation of the proof of
Lemma 2 in [4] and is thus omitted. We point out that the motion of the P̃R,K -
superdiffusion remains unchanged, and it therefore differs from the motion of the
analogous object for the P K -branching diffusion, that is, the PR,K -branching dif-
fusion in Proposition 11.

Let us introduce some notation before we proceed with the backbone decom-
position. Associated to the laws {P̃R,K

δx
, x ∈ [0,K]} is the family of the so-called

excursion measures {NR,K
x , x ∈ [0,K]}, defined on the same measurable space,

which satisfy

NR,K
x

(
1 − exp

{−〈f,Yt 〉}) = − log ẼR,K
δx

(
exp

{−〈f,Yt 〉}),
for any f ∈ B+[0,K] and t ≥ 0. These measures are formally defined and studied
in Dynkin and Kuznetov [14]. Further, we define

ρn(dy, x) = bwK(x)2δ0(dy)1{n=2} + wK(x)n(yn/n!)ewK(x)y�(dy)

q
B,K
n (x)wK(x)βB,K(x)

,

for n ≥ 2, x ∈ (0,K).

DEFINITION 29. Let K > K0 and ν ∈Ma(0,K). Let XB = (XB
t , t ≥ 0) be a

PB,K
ν -branching diffusion [which is the backbone of the P K -branching diffusion

with branching mechanism F given by (6.3)].
Dress the trajectories of XB in such a way that a particle at space–time position

(x, t) ∈ Rd ×[0,∞) has an independent Mf (0,K)-valued process grafted on with
rate

2b dt × dNR
x +

∫ ∞
0

y exp
{−wK(x)y

}
�(dy) × dP

R,K
yδx

.

Moreover, when an individual in XB gives birth to n ≥ 2 offspring, then an addi-
tional independent copy of (Y, P̃R,K) with initial mass y ≥ 0 is grafted on to the
space–time branch point (x, t) with probability ρn(dy, x).

For t ≥ 0, let YD
t consists of the total dressed mass present at time t . We define

the process YD := (YD
t , t ≥ 0) and denote its law by P̃D,K

ν .
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THEOREM 30 (Backbone decomposition). Let K > K0 and η ∈ Mf [0,K].
Suppose that ν is a Poisson random measure on (0,K) with intensity wK(x)η(dx).
Let YR = (YR

t , t ≥ 0) be an independent copy of (Y, P̃R,K
η ), and let (YD, P̃D,K

ν )

be the process constructed in Definition 29. Define the process Ỹ = (Ỹt , t ≥ 0) by

Ỹt = YR
t + YD

t , t ≥ 0,

and denote its law by P̃K
η . Then the process (Ỹ , P̃K

η ) is Markovian and equal in

law to (Y, P̃ K
η ).

The proof of Theorem 30 is a simple adaptation of the proofs of Theorem 1
and 2 in [4] and is therefore omitted.

Conditioning (Y, P̃ K
η ) on nonextinction is the same as conditioning the Poisson

random measure ν in Theorem 30 on having at least one atom from which a copy
of (YD, P̃D,K) is then issued. In principle it should be possible to give a proof
analogous to the ones presented in Section 3, using that (Y, P̃ K

η ) conditioned on
nonextinction arises from a change of measure using the martingale

1 − e−〈wK,Yt 〉, t ≥ 0,(6.6)

together with the martingale change of measure in (6.5) which conditions (Y, P̃ K
η )

on extinction.
The analogy between the P K -branching diffusion and the P̃ K -super-diffusion

indicates that there is a quasi-stationary limit result equivalent to Theorem 6.
We begin with constructing the limiting process. To this end, define the family

of excursion-measures {NK0
x , x ∈ [0,K0]}, now associated with the laws (P̃

K0
δx

, x ∈
[0,K0]), satisfying

NK0
x

(
1 − exp 〈f,Yt 〉) = − log Ẽ

K0
δx

(
e−〈f,Yt 〉) for f ∈ B+(0,K), t ≥ 0.

DEFINITION 31. Let η ∈ Mf (0,K). Suppose ξ∗ = (ξ∗
t , t ≥ 0) is a Brownian

motion conditioned to stay in (0,K0) with initial position x distributed according
to

sin(πx/K0)e
μx∫

(0,K0)
sin(πz/K0)eμzη(dz)

η(dx), x ∈ (0,K0).

Along the space–time trajectory {(ξ∗
s , s) : s ≥ 0}, we immigrate Mf (0,K)-valued

processes at rate

2b ds × dN
K0
ξ∗
s

+
∫ ∞

0
y�(dy) × P̃

K0
yδξ∗

s

.

Then let Y ∗ = (Y ∗
t , t ≥ 0) be such that Y ∗

t consists of the total immigrated mass
present at time t together with the mass present at time t of an independent copy
of (Y, P̃K0

ν ) issued at time zero. We denote the law of Y ∗ by P̃ ∗
η .
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The evolution of Y ∗ under P̃ ∗ can thus be seen as a path-wise description of
Evans’s immortal particle picture in [19] for the critical width K0; for a similar
construction of Evans’s immortal particle picture see Kyprianou et al. [29].

Further, we note that (Y ∗, P̃ K0
η ) has the same law as Y under the measure which

has martingale density Z̃K0(t) of (6.2) with respect to P̃
K0
η ; for similar results

see, for instance, Engländer and Kyprianou [16], Kyprianou et al. [29] and Liu et
al. [31].

THEOREM 32. Let K > K0 and η ∈ Mf [0,K0]. For a fixed time t ≥ 0, the
law of Yt under the measure limK↓K0 P̃ K

η (·| limt→∞ ‖Yt‖ > 0) is equal to Y ∗
t un-

der P̃ ∗
η .

To prove Theorem 32 it suffices to show that the P̃ K
η -martingale in (6.6) con-

verges to the martingale Z̃K0 in (6.2). This is a straightforward adaption of the
proof of Theorem 6.
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