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QUANTITATIVE STABLE LIMIT THEOREMS ON
THE WIENER SPACE

BY IVAN NOURDIN!, DAVID NUALART? AND GIOVANNI PECCATI?
Université de Lorraine, Kansas University and Université du Luxembourg

We use Malliavin operators in order to prove quantitative stable limit
theorems on the Wiener space, where the target distribution is given by a pos-
sibly multidimensional mixture of Gaussian distributions. Our findings refine
and generalize previous works by Nourdin and Nualart [J. Theoret. Probab.
23 (2010) 39-64] and Harnett and Nualart [Stochastic Process. Appl. 122
(2012) 3460-3505], and provide a substantial contribution to a recent line of
research, focussing on limit theorems on the Wiener space, obtained by means
of the Malliavin calculus of variations. Applications are given to quadratic
functionals and weighted quadratic variations of a fractional Brownian mo-
tion.

1. Introduction and overview. Originally introduced by Rényi in the land-
mark paper [33], the notion of stable convergence for random variables (see Defi-
nition 2.2 below) is an intermediate concept, bridging convergence in distribution
(which is a weaker notion) and convergence in probability (which is stronger). One
crucial feature of stably converging sequences is that they can be naturally paired
with sequences converging in probability (see, e.g., the statement of Lemma 2.3
below), thus yielding a vast array of noncentral limit results—most notably con-
vergence toward mixtures of Gaussian distributions. This last feature makes indeed
stable convergence extremely useful for applications, in particular to the asymp-
totic analysis of functionals of semimartingales, such as power variations, empir-
ical covariances, and other objects of statistical relevance. See the classical refer-
ence [11], Chapter VIILS5, as well as the recent survey [31], for a discussion of
stable convergence results in a semimartingale context.

Outside the (semi)martingale setting, the problem of characterizing stably con-
verging sequences is for the time being much more delicate. Within the frame-
work of limit theorems for functionals of general Gaussian fields, a step in this
direction appears in the paper [28], by Peccati and Tudor, where it is shown that
central limit theorems (CLTs) involving sequences of multiple Wiener-Itd inte-
grals of order > 2 are always stable. Such a result is indeed an immediate conse-
quence of a general multidimensional CLT for chaotic random variables, and of
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the well-known fact that the first Wiener chaos of a Gaussian field coincides with
the L?-closed Gaussian space generated by the field itself (see [20], Chapter 6, for
a general discussion of multidimensional CLTs on the Wiener space). Some dis-
tinguished applications of the results in [28] appear, for example, in the two papers
[1, 4], respectively, by Corcuera et al. and by Barndorff-Nielsen et al., where the
authors establish stable limit theorems (toward a Gaussian mixture) for the power
variations of pathwise stochastic integrals with respect to a Gaussian process with
stationary increments. See [19] for applications to the weighted variations of an
iterated Brownian motion. See [2] for some quantitative analogues of the findings
of [28] for functionals of a Poisson measure.

Albeit useful for many applications, the results proved in [28] do not provide
any intrinsic criterion for stable convergence toward Gaussian mixtures. In particu-
lar, the applications developed in [1, 4, 19] basically require that one is able to rep-
resent a given sequence of functionals as the combination of three components—
one converging in probability to some nontrivial random element, one living in
a finite sum of Wiener chaoses and one vanishing in the limit—so that the results
from [28] can be directly applied. This is in general a highly nontrivial task, and
such a strategy is technically too demanding to be put into practice in several situ-
ations (e.g., when the chaotic decomposition of a given functional cannot be easily
computed or assessed).

The problem of finding effective intrinsic criteria for stable convergence on
the Wiener space toward mixtures of Gaussian distributions—without resorting to
chaotic decompositions—was eventually tackled by Nourdin and Nualart in [17],
where one can find general sufficient conditions ensuring that a sequence of mul-
tiple Skorohod integrals stably converges to a mixture of Gaussian distributions.
Multiple Skorohod integrals are a generalization of multiple Wiener—Itd integrals
(in particular, they allow for random integrands), and are formally defined in Sec-
tion 2.1 below. It is interesting to note that the main results of [17] are proved
by using a generalization of a characteristic function method, originally applied
by Nualart and Ortiz-Latorre in [25] to provide a Malliavin calculus proof of the
CLTs established in [26, 28]. In particular, when specialized to multiple Wiener—
Itd integrals, the results of [17] allow to recover the “fourth moment theorem”
by Nualart and Peccati [26]. A first application of these stable limit theorems ap-
pears in [17], Section 5, where one can find stable mixed Gaussian limit theorems
for the weighted quadratic variations of the fractional Brownian motion (fBm),
complementing some previous findings from [18]. Another class of remarkable
applications of the results of [17] are the so-called It6 formulae in law; see [8, 9,
22, 23]. Reference [9] also contains some multidimensional extensions of the ab-
stract results proved in [17] (with a proof again based on the characteristic function
method). Further applications of these techniques can be found in [34]. An alter-
native approach to stable convergence on the Wiener space, based on decoupling
techniques, has been developed by Peccati and Taqqu in [27].
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One evident limitation of the abstract results of [9, 17] is that they do not pro-
vide any information about rates of convergence. The aim of this paper is to prove
several quantitative versions of the abstract results proved in [9, 17], that is, state-
ments allowing one to explicitly assess quantities of the type

|E[@ (87" (uy), ..., 89 (uq))] — E[p(F)]

where ¢ is an appropriate test function on R¥, each 8% (u;) is a multiple Skorohod
integral of order ¢; > 1, and F is a d-dimensional mixture of Gaussian distribu-
tions. Most importantly, we shall show that our bounds also yield natural sufficient
conditions for stable convergence toward F. To do this, we must overcome a num-
ber of technical difficulties, in particular:

’

e We will work in a general framework and without any underlying semimartin-
gale structure, in such a way that the powerful theory of stable convergence for
semimartingales (see again [11]) cannot be applied.

e Although there are many versions of Stein’s method allowing one to deal with
general continuous non-Gaussian targets (see, e.g., [3, 5-7, 12, 13, 32]), it
seems that none of them can be reasonably applied to the limit theorems that
are studied in this paper. Indeed, the above quoted contributions fall mainly in
two categories: either those requiring that the density of the target distribution
is explicitly known (and in this case the so-called “density approach” can be
applied—see, e.g., [3, 5-7]), or those requiring that the target distribution is the
invariant measure of some diffusion process (so that the “generator approach”
can be used—see, e.g., [12, 13, 32]). In both instances, a detailed analytical de-
scription of the target distribution must be available. In contrast, in the present
paper we consider limit distributions given by the law of random elements of
the type S - n = (S1n1, ..., Sana), where n = (11, ..., ng) is a Gaussian vector,
and S = (81, ..., S4) is an independent random element that is suitably regular
in the sense of Malliavin calculus. In particular, in our framework no a priori
knowledge of the distribution of S (and therefore of S - 1) is required. One should
note that in [3] one can find an application of Stein’s method to the law of ran-
dom objects with the form Sn, where 7 is a one-dimensional Gaussian random
variable and S has a law with a two-point support (of course, in this case the
density of Sn can be directly computed by elementary arguments).

Our techniques rely on an interpolation procedure and on the use of Malliavin
operators. To our knowledge, the main bounds proved in this paper, that is, the
ones appearing in Proposition 3.1, Theorems 3.4 and 5.1, are first ever explicit
upper bounds for mixed normal approximations in a nonsemimartingale setting.

Note that, in our discussion, we shall separate the case of one-dimensional Sko-
rohod integrals of order 1 (discussed in Section 3) from the general case (discussed
in Section 5), since in the former setting one can exploit some useful simplifica-
tions, as well as obtain some effective bounds in the Wasserstein and Kolmogorov
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distances. As discussed below, our results can be seen as abstract versions of clas-
sic limit theorems for Brownian martingales, such as the ones discussed in [35],
Chapter VIIL.

Although our results deal only with Skorohod integrals, they can be applied
in the context of Stratonovich integrals. In fact, the Stratonovich integral can be
expressed as a Skorohod integral plus a complementary term and in many prob-
lems this complementary term does not contribute to the limit. Examples of this
situation are the Itd formulas in law for different types of Stratonovich integrals
obtained by Harnett and Nualart in [8, 9] and the weak convergence of weighted
variations established by Nourdin and Nualart in [17].

To illustrate our findings, we provide applications to quadratic functionals of
a fractional Brownian motion (Section 3.3) and to weighted quadratic variations
(Section 6). The results of Section 3.3 generalize some previous findings by Pec-
cati and Yor [29, 30], whereas those of Section 6 complement some findings by
Nourdin, Nualart and Tudor [18].

The paper is organized as follows. Section 2 contains some preliminaries on
Gaussian analysis and stable convergence. In Section 3, we first derive estimates
for the distance between the laws of a Skorohod integral of order 1 and of a mix-
ture of Gaussian distributions (see Proposition 3.1). As a corollary, we deduce
the stable limit theorem for a sequence of multiple Skorohod integrals of order 1
obtained in [9], and we obtain rates of convergence in the Wasserstein and Kol-
mogorov distances. We apply these results to a sequence of quadratic functionals
of the fractional Brownian motion. Section 4 contains some additional notation
and a technical lemma that are used in Section 5 to establish bounds in the mul-
tidimensional case for Skorohod integrals of general orders. Finally, in Section 6
we present the applications of these results to the case of weighted quadratic vari-
ations of the fractional Brownian motion. The Appendix contains some technical
lemmas needed in Section 6.

2. Gaussian analysis and stable convergence. In the next two subsections,
we discuss some basic notions of Gaussian analysis and Malliavin calculus. The
reader is referred to the monographs [24] and [20] for any unexplained definition
or result.

2.1. Elements of Gaussian analysis. Let $) be a real separable infinite-
dimensional Hilbert space. For any integer g > 1, we denote by $®¢ and $°9,
respectively, the gth tensor product and the gth symmetric tensor product of .
In what follows, we write X = {X (h) : h € $H} to indicate an isonormal Gaussian
process over §). This means that X is a centered Gaussian family, defined on some
probability space (2, F, P), with a covariance structure given by

2.1) E[X(WX(®)]=(h.8)s,  h,geHN.
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From now on, we assume that F is the P-completion of the o-field gener-
ated by X. For every integer ¢ > 1, we let H, be the gth Wiener chaos of X,
that is, the closed linear subspace of L?($2) generated by the random variables
{Hy(X(h)),h € 9, ||hlls =1}, where H, is the gth Hermite polynomial defined
by
44
dx1
We denote by H the space of constant random variables. For any g > 1, the map-
ping I, (h®1) = q'Hy (X (h)) provides a linear isometry between $H® (equipped
with the modified norm +/q!| - || #eq¢) and H, [equipped with the L%(Q) norm].
For g =0, we set by convention o = R and I equal to the identity map.

It is well known (Wiener chaos expansion) that L2(S2) can be decomposed into
the infinite orthogonal sum of the spaces H,, that is: any square integrable random
variable F € L?(Q2) admits the following chaotic expansion:

Hy(x) = (— 1)1 /2 5 (e72°12),

(2.2) F=> I,(fp,

q=0

where fo = E[F], and the f, € H®%, g > 1, are uniquely determined by F. For

every g > 0, we denote by J,; the orthogonal projection operator on the gth Wiener

chaos. In particular, if F € L?(2) is as in (2.2), then JgF = 1,(f,) forevery g > 0.

Let {ex, k > 1} be a complete orthonormal system in §). Given f € HOP g€

$H® and r € {0, ..., p A q}, the rth contraction of f and g is the element of
H®WP+T4=2r) defined by
o0

23) [f®rg= Z (frei ® - Qe )por (g, i, ® Qe )ger.

[T =1

Notice that f ®, g is not necessarily symmetric. We denote its symmetrization by
f Qg € HOWPHI=2") Moreover, f Qg = f @ g equals the tensor product of f
and g while, for p =g¢q, f ®,; g = (f, g) ¢e¢. Contraction operators are useful for
dealing with products of multiple Wiener—Itd integrals.

In the particular case where $5 = L%(A, A, u), with (A, A) is a measur-
able space and p is a o-finite and nonatomic measure, one has that §°9 =
L?(A‘f, A®4 1®4) is the space of symmetric and square integrable functions
on A?. Moreover, for every f € Ho, I, (f) coincides with the multiple Wiener—
Itd integral of order g of f with respect to X (as defined, e.g., in [24], Sec-
tion 1.1.2) and (2.3) can be written as

(f ®V g)(tl,---,tp-i-q—Zr)
:/;A’_f(tl,---,tp—r,slg---»sr)

X g(tp—r—H, ---vtp-f—q—ZVvSl’ »Sr)dﬂ(sl) dl’l’(sl")
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2.2. Malliavin calculus. Let us now introduce some elements of the Malliavin
calculus of variations with respect to the isonormal Gaussian process X. Let S be
the set of all smooth and cylindrical random variables of the form

2.4) F=g(X(¢0),.... X(dn)),

where n > 1, g:R"” — R is a infinitely differentiable function with compact sup-
port, and ¢; € $). The Malliavin derivative of F with respect to X is the element
of L2(§2, §) defined as

"9
DF =3 L(X@0)..... X(@)d.
i=1"""

By iteration, one can define the gth derivative DY F' for every g > 2, which is an
element of LZ(Q2, 7).

For g > 1 and p > 1, D?°? denotes the closure of S with respect to the norm
| - llpe.», defined by the relation

q
1F e = E(FIP]+ Y E(|D'Fge:)-
i=1
The Malliavin derivative D verifies the following chain rule. If ¢ : R" — R is con-
tinuously differentiable with bounded partial derivatives and if F = (Fy,..., Fy;)
is a vector of elements of D'-2, then o(F) e D2 and
Dy(F) =) ——(F)DF;.
i=y 9
We denote by § the adjoint of the operator D, also called the divergence oper-
ator or Skorohod integral (see, e.g., [24], Section 1.3.2, for an explanation of this
terminology). A random element u € L?(2, §) belongs to the domain of 8, noted
Dom§, if and only if it verifies

|[E((DF,u)g)| < cuy E(F?)

for any F € D!, where c, is a constant depending only on u. If u € Dom§, then
the random variable (1) is defined by the duality relationship (called “integration
by parts formula”):

(2.5) E(F§(u))=E((DF,u)g),

which holds for every F € D2, The formula (2.5) extends to the multiple Skoro-
hod integral §7, and we have

(2.6) E(F89(u)) = E((D?F, u>ﬁ®q),

for any element  in the domain of 9 and any random variable F € D9-2. More-

over, 87 (h) = I, (h) for any h € 9.
The following statement will be used in the paper, and is proved in [17].
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LEMMA 2.1. Let g > 1 be an integer. Suppose that F € D92, and let u
be a symmetric element in Domd?. Assume that, for any 0 <r + j < g,
(D'F, 8/ (u))qor € L*(2, 5®97"=J). Then, foranyr =0, ...,q—1, (D" F, u)ger
belongs to the domain of 17" and we have

q
q _ q\ cqg—r(Inr
2.7) Fiu)y=> (r)s ((D"F.u)ger).

r=0
[With the convention that 8°(v) = v, v € L?(2) and D°F = F, F € L%(Q).]

For any Hilbert space V, we denote by DXP (V) the corresponding Sobolev
space of V-valued random variables (see [24], page 31). The operator 67 is con-
tinuous from DX7 ($®9) to DK—4-7, for any p > 1 and any integers k > ¢ > 1, that
is, we have

(2.8) ||8q(u)||]D)k—q,p =< Ck,p”M”[D)kvp(g@q),

for all u € DK-P($H®7), and some constant ck,p > 0. These estimates are conse-
quences of Meyer inequalities (see [24], Proposition 1.5.7). In particular, these
estimates imply that D?-%($5®7) ¢ Dom 8¢ for any integer g > 1.

The following commutation relationship between the Malliavin derivative and
the Skorohod integral (see [24], Proposition 1.3.2) is also useful:

(2.9) Dé(u) =u + 5(Du),
for any u € D>2($)). By induction, we can show the following formula for any
symmetric element u in D/ 152(5®7)
JAk k J
ksi(y) = o j—i (k=i
(2.10) D*8/ (u) g(i><i)"5 (D*"u).
Also, we will make sometimes use of the following formula for the variance of

a multiple Skorohod integral. Let u, v € D??-2($®7) c Dom 8¢ be two symmetric
functions. Then

E(89(u)8 (v)) = E((u, D?(87(v)))504)

(‘l! >2i!E((u, $971 (D11 0)) )

Il
,MQ

Il
=

(2.11)

2
(‘j) iVE(DY ™ u®),; DY),

Il
.MQ

Il
=

1

with the notation
D17y ®2q—i D17y
0

= (DI (u, & ® n¢) sy04, Sk)5®q—i<Dq_i (v, & ® ne) o, &) goa—is
jik e=1
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where {&;, j > 1} and {ng, £ > 1} are complete orthonormal systems in $®4 ~ and
H®, respectively.

The operator L is defined on the Wiener chaos expansion as L = ZZOZO —qJq,
and is called the infinitesimal generator of the Ornstein—Uhlenbeck semigroup.
The domain of this operator in L2() is the set

[e¢}

DomL = {F e L*(Q): Zqszuniz(m < oo} =D?>2.
q=1

There is an important relationship between the operators D, § and L (see [24],

Proposition 1.4.3). A random variable F belongs to the domain of L if and only if
F eDom(éD) (ie., F € D2 and DF € Dom ), and in this case

(2.12) SDF = —LF.

Note also that a random variable F as in (2.2) is in D2 if and only if
302199 fyllfe, < 00, and, in this case, E(IDF[3) = 341991 f3ll5e,- If
$=L%*(A, A, p) (with © nonatomic), then the derivative of a random variable F
as in (2.2) can be identified with the element of L2(A x §2) given by

(2.13) DoF =Y qly_1(fy(,a)),  acA.
q=1

2.3. Stable convergence. The notion of stable convergence used in this paper
is provided in the next definition. Recall that the probability space (€2, F, P) is
such that F is the P-completion of the o-field generated by the isonormal pro-
cess X.

DEFINITION 2.2 (Stable convergence). Fix d > 1. Let {F,,} be a sequence of
random variables with values in R?, all defined on the probability space (2, F, P).
Let F be a R?-valued random variable defined on some extended probability space

(2, F', P’). We say that F,, converges stably to F, written F, % F,if
(2.14) lim E[Zei<A’F">Rd] = E/[ZeiO\’F)Rd]’
n—>oo

for every A € R and every bounded F-measurable random variable Z.

Choosing Z =1 in (2.14), we see that stable convergence implies convergence
in distribution. For future reference, we now list some useful properties of stable
convergence. The reader is referred, for example, to [11], Chapter 4, for proofs.

. P . .
From now on, we will use the symbol — to indicate convergence in probability
with respect to P.

LEMMA 2.3. Letd > 1, and let {F,} be a sequence of random variables with
values in R,
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1. F, L F if and only if (F,,Z) lay (F, Z), for every F-measurable random
variable Z.

2. F, XF if and only if (Fy, Z) lay (F, Z), for every random variable Z be-
longing to some set % = {Zy :a € A} such that the P-completion of o (%) coin-
cides with F.

3. IfF, X FandFis F -measurable, then necessarily F, £F

4. If F, X F and {Y,} is another sequence of random elements, defined on

(2. F. P) and such that Y, > Y, then (F,.Y,) > (F.Y).

The following statement (to which we will compare many results of the present
paper) contains criteria for the stable convergence of vectors of multiple Skorohod
integrals of the same order. The case d = 1 was proved in [17], Corollary 3.3,
whereas the case of a general d is dealt with in [9], Theorem 3.2. Given d > 1,
e R4 and a nonnegative definite d x d matrix C, we shall denote by Ny (i, C)
the law of a d-dimensional Gaussian vector with mean u and covariance matrix C.

THEOREM 2.4. Let q,d > 1 be integers, and suppose that F, is a sequence
of random variables in R? of the form F, = 87 (u,) = (8‘1(u,11), ce, Sq(uz)),for
a sequence of R -valued symmetric functions u,, in D*424($®9). Suppose that the
sequence F, is bounded in LY(Q) and that:

1. (u}, X, (D Fl® h)geq converges to zero in LY(Q) for all integers 1 <
Jsje <d,allintegers 1 <ay,...,an,r <q—1suchthata)+---+an+r=q,
and all h € H®". ‘

2. Foreach 1 <i,j <d, va D1 F,{)ﬁ@»q converges in L! (2) to a random vari-
able s;j, such that the random matrix ¥ := (s;j)axd IS nonnegative definite.

Then F, XF , where F is a random variable with values in R¢ and with condi-
tional Gaussian distribution N;(0, X) given X.

2.4. Distances. For future reference, we recall the definition of some useful
distances between the laws of two real-valued random variables F, G.

e The Wasserstein distance between the laws of F and G is defined by

dw(F.G)= sup |E[p(F)] - E[p(G)]
peLip(1)

’

where Lip(1) indicates the collection of all Lipschitz functions ¢ with Lipschitz
constant less than or equal to 1.
e The Kolmogorov distance is

dgol(F, G) = sup| P(F <x) — P(G <x)|.
xeR
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e The total variation distance is

drv(F,G)= sup |P(FeA)—P(GEeA)|
Ae#(R)

e The Fortet—Mourier distance is

dem(F, G) = sup |E[p(F)] — E[¢(G)]].
peLip(1),lpfloo<1
Plainly, dw > dpm and dtv > dkol. We recall that the topologies induced by
dw, dxol and dty, over the class of probability measures on the real line, are
strictly stronger than the topology of convergence in distribution, whereas dpym
metrizes convergence in distribution (see, e.g., [20], Appendix C, for a review of
these facts).

3. Quantitative stable convergence in dimension one. We start by focussing
on stable limits for one-dimensional Skorohod integrals of order one, that is, ran-
dom variables having the form F = §(u), where u € DL2(5). As already dis-
cussed, this framework permits some interesting simplifications that are not avail-
able for higher order integrals and higher dimensions. Notice that any random
variable F such that E[F] =0 and E[F?] < oo can be written as F = &(u) for
some u € Dom$. For example, we can take u = —DL™!'F, or in the context of
the standard Brownian motion, we can take u an adapted and square integrable
process.

3.1. Explicit estimates for smooth distances and stable CLTs. The following
estimate measures the distance between a Skorohod integral of order 1, and a (suit-
ably regular) mixture of Gaussian distributions. In order to deduce a stable conver-
gence result in the subsequent Corollary 3.2, we also consider an element /{(4) in
the first chaos of the isonormal process X.

PROPOSITION 3.1. Let F € DV2 be such that E[F] = 0. Assume F = §(u)
for some u € DY2(§). Let S > 0 be such that S* € D2, and let n~N(@,1)
indicate a standard Gaussian random variable independent of the underlying
isonormal Gaussian process X. Let h € $). Assume that ¢:R — R is C with
19" lloos 19" oo < 00. Then

E[p(F + ()] — E[¢(Sn + L(0))]|
310" | EL2[ (. o] + [(u. DF) g — 5°]
+ 319" | Elllu. DS?)g]]-

—_~

3.1

IA

PROOF. We proceed by interpolation. Fix ¢ > 0 and set S, = v/ S2+¢.
Clearly, S, € D2, Let g(r) = E[p(I1(h) + ~/TF + /T —1tSen)], t € [0, 1], and
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observe that E[¢(F + I; ()] — E[¢(Sen + 11(h))] = g(1) — g(0) = [y g'(1) dr.
Fort € (0, 1), integrating by parts yields

1 F Se
g/(l) = 5 (I](h)+JF+V Ss’?)( 1 )]

Vi oJ1—1
_ %E_go/(ll(h)“‘“/;F—"isn)(% - %)]

.
= JE|¢" (L) + ViF +VT=1S:n)

1 JT=1
x<7f(u,h)5+(u,DF)y)+ G n(u,DSg)ﬁ—SZ)]

Integrating again by parts with respect to the law of n yields
1
g0 =2 E[e" (L) + VIF + V1T =1Sen) (72w, h)s + (u, DF)s — S2)]

1—
+ VE[ " (I () + V1F + T —1Sn)(u, DS*)],

where we have used the fact that S, DS, = %DS? = %DSz. Therefore,
|E[p(Ii(h) + F)] = E[e(I1(h) + Sen) ]|

1
< S 10" o 21w, )s| + |, DF)g — 8% —&]]

Tl —1¢
+ " |  E[|(u, DS? / ——dt,
lo'" 1Ll %) | 7
and the conclusion follows letting & go to zero, because fol }1 «/% dt =

The following statement provides a stable limit theorem based on Proposi-
tion 3.1.

COROLLARY 3.2. Let S and n be as in the statement of Proposition 3.1. Let
{F,} be a sequence of random variables such that E[F,] =0 and F, = §(u,),
where u, € DV2($)). Assume that the following conditions hold as n — o0:

1. (un, DFy)g — S%in LY (Q);
2. (un, hye — 0in LY(Q), for every h € $;
3. (up, DS?)5 — 0in L'(Q).

Then F, L5 n, and selecting h = 0 in (3.1) provides an upper bound for the rate
of convergence of the difference |E[¢(F,)] — E[o(Sn)]|, for every ¢ of class C3
with bounded second and third derivatives.
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PROOF. Relation (3.1) implies that, if conditions 1-3 in the statement hold
true, then |E[@(F, + I1(h))] — E[¢(Sn + I1(h))]| — O for every h € $ and every
smooth test function ¢. Selecting ¢ to be a complex exponential and using point 2
of Lemma 2.3 yields the desired conclusion. [J

REMARK 3.3. (a) Corollary 3.2 should be compared with Theorem 2.4 in the
case d = g = 1 (which exactly corresponds to [17], Corollary 3.3). This result
states that, if (i) u, € D>2($) and (ii) {F,} is bounded in L'(Q), then it is suf-
ficient to check conditions 1-2 in the statement of Corollary 3.2 for some S in
L'(€2) in order to deduce the stable convergence of F; to Sn. The fact that Corol-
lary 3.2 requires more regularity on S2, as well as the additional condition 3, is
compensated by the less stringent assumptions on u,, as well as by the fact that
we obtain explicit rates of convergence for a large class of smooth functions.

(b) The statement of [17], Corollary 3.3, allows one also to recover a modifi-
cation of the so-called asymptotic Knight Theorem for Brownian martingales, as
stated in [35], Theorem VIII.2.3. To see this, assume that X is the isonormal Gaus-
sian process associated with a standard Brownian motion B = {B;:¢ > 0} [cor-
responding to the case $) = L>(R,., ds)] and also that the sequence {u, :n > 1}
is composed of square-integrable processes adapted to the natural filtration of B.
Then, F,, =6(u,) = f0°° u, (s) d By, where the stochastic integral is in the It0 sense,
and the aforementioned asymptotic Knight theorem yields that the stable conver-

gence of F, to Sn is implied by the following: (A) fé u,(s)ds il 0, uniformly in
t in compact sets and (B) fooo un(s)?ds — §%in L' ().

3.2. Wasserstein and Kolmogorov distances. The following statement pro-
vides a way to deduce rates of convergence in the Wasserstein and Kolmogorov
distance from the previous results.

THEOREM 3.4. Let F € D2 be such that E[F] = 0. Write F = §(u) for
some u € DV2($). Let S € D*, and let n ~ N0, 1) indicate a standard Gaussian
random variable independent of the isonormal process X. Set

1/3
A= 3(%15[{(14, DF)g — S?|] + ?E[f(u, DS2)5|]>
(3.2) xmax{\/;_nE[](u,DF)g—S2|]+?E[|<M,DSZ)5 ],

@(2 + E[S]) + E[|F|]}2/3.

Then dw (F, Sn) < A. Moreover, if there exists o € (0, 1] such that E[|S]™%] < oo,
then

(3.3) dol(F. Sn) < AY@FD(1 4 E[|S|7°]).
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REMARK 3.5. Theorem 3.4 is specifically relevant whenever one deals with
sequences of random variables living in a finite sum of Wiener chaoses. Indeed,
in [21], Theorem 3.1, the following fact is proved: let { F;, :n > 1} be a sequence of
random variables living in the subspace @{;0 ‘Hk, and assume that F, converges
in distribution to a nonzero random variable Fo; then, there exists a finite constant
¢ > 0 (independent of n) such that

drv(Fy, Foo) < edpm(Fy, Foo) /2P < cdw (Fy, Foo) /(2P
(3.4

n>1.

Exploiting this estimate, and in the framework of random variables with a finite
chaotic expansion, the bounds in the Wasserstein distance obtained in Theorem 3.4
can be used to deduce rates of convergence in total variation toward mixtures of
Gaussian distributions. The forthcoming Section 3.3 provides an explicit demon-
stration of this strategy, as applied to quadratic functionals of a (fractional) Brow-
nian motion.

PROOF OF THEOREM 3.4. It is divided into two steps.

Step 1: Wasserstein distance. Let ¢ : R — R be a function of class C? which is
bounded together with all its first three derivatives. For any ¢ € (0, 1), define

or(x) = / oWy +VT=1x) dy(y),

where dy (y) = Te_y 22 dy denotes the standard Gaussian measure. Then, we
may differentiate and integrate by parts to get

" _ l—1 / —
%(x)——ﬁ fRyso(«/?ervl tx)dy(y)
1—
= 02— ey +VT= iy )

and
" (1 B t)3/2 2 / \/_
r (x) = —"—" R(y —1)¢'(Viy + V1 —1x)dy(y).
Hence, for 0 < t < 1 we may bound

69 ez Sl [ blayor = [ 20

and

(1 _ t)3/2

2

wwm/bﬂ—udww

3.6)
||<p ||oo\// Y4 V2019 lloo
y(y) = —1%2,

t
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Taylor expansion gives that
Elo(P)] - Eloi(P)]| < [ Ellgiy +VT=1F) = g(/T=1P)[Jdy ()
+ E[|lo(VT=1F) — o(F)|]
<19/ |oaV7 [ 191470+ 16/l T=7 = LIETIFI]

2
swnwnm{/; +E[IF)|.
Here, we used that |/1 —t — 1| =1/(y/1 —t + 1) < /t. Similarly,
2
|E[e(Sn)] — E[@:(Sn)]| < ﬁ||<p/||oo{£+ E[|Sn|]}
2 /
=\/;J?||<p | oo {1+ ELST}.

Using (3.1) with (3.5)—(3.6) together with the triangle inequality and the previous
inequalities, we have

|E[p(F)] = E[p(Sn)]|

3.7) sﬁ||¢/||oo(@{2+E[S]}+E[|F|])

lolloo [ 1 V2
; {EE[|<M,DF>5—52|]+TE[|(”’D52)5|]}-
Set
@, =\/g{2+ E[S]}+ E[|FI]
and
0= —L_Ellie. DRy - 1+ Y Elle DS )

The function ¢ > /1P| + %Cbz attains its minimum at fy = (2%2)2/ 3. Then, if
to < 1 we choose t = 1y and if 79 > 1 we choose ¢t = 1. With these choices we
obtain

[E[p(F)] - E[p(sn)]|
< o'l ®; " max((2727 +2'7) @, 3037) < [¢'] oA

This inequality can be extended to all Lispchitz functions ¢, and this immediately
yields that dw (F, Sn) < A.

(3.8)
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Step 2: Kolmogorov distance. Fix z € R and h > 0. Consider the function
op : R — [0, 1] defined by

1, ifx <z,
on(x) =10, ifx>z+h,
linear, ifz<x<z+h,

and observe that ¢y, is Lipschitz with ||} [|oc = 1/h. Using that 1(_o ;] < @5 <
1(—co,z+n) as well as (3.8), we get

P[F <z]— P[Sn <Zz]
< E[gn(F)] — E[1(—00,21(SD)]
= E[on(F)] — E[en(S)] + E[@n(Sn)] — E[1(=00,21(S1)]

A
SE+P[z§Sn§z+h].
On the other hand, we can write

Plz<Sn=<z+h]
1
_E -

z/s

1 (/ (Z+h)/§‘ 42 2 42 2
R dPS(s)/ e/ dx—l—/ d Ps(s) e/ dx)
V2w \JR, z/s R_ (z+h)/s

<0 st apso)( [ e_xz/(z(l_“))dx)l_a
T 27 JR R
< |hI"E[}SI7],

.2
e P1p ym(sx) d Ps(s) dx

because ([ e~ QM=) gyyl—e — (/T o [p e’ /2 4y)1=% < /27, s0 that
A o —
P[F <z]-P[Sn=<z] < ot |h|“E[|S]7*].
Hence, by choosing 1 = A!/@+D we get that
P[F <z] - P[Sn <z] < A*D(1+ E[IS]7%]).
We prove similarly that
P[F <z]— P[Sn <z] > —A*“tD(1+ E[|5|7*]),

so the proof of (3.3) is done. [l
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3.3. Quadratic functionals of Brownian motion and fractional Brownian mo-
tion. We will now apply the results of the previous sections to some nonlinear
functionals of a fractional Brownian motion with Hurst parameter H > % Recall
that a fractional Brownian motion (fBm) with Hurst parameter H € (0, 1) is a cen-
tered Gaussian process B = {B; :t > 0} with covariance function

E(B,By) = 5(t* + 521 — |t — s|*).
Notice that for H = 4 the process B is a standard Brownian motion. We denote

by & the set of step functions on [0, 0o). Let §) be the Hilbert space defined as the
closure of £ with respect to the scalar product

(X10,11> Ljo,s1)5 = E(BsBy).

The mapping 1j9,; — B; can be extended to a linear isometry between the Hilbert
space $ and the Gaussian space spanned by B. We denote this isometry by ¢ —
B(¢). In this way, {B(¢):¢ € $} is an isonormal Gaussian process. In the case,
H > %, the space §) contains all measurable functions ¢ : R, — R such that

o0 o0
/ / lp()| @]l — s 2 dsdt < oo,
0 Jo
and in this case if ¢ and ¢ are functions satisfying this integrability condition,
o0 o0
69 tedls=HCH-D [ [T p@s0l - 5P 2dsar
0 Jo

Furthermore, L'/ ([0, 00)) is continuously embedded into §). In what follows, we
shall write

(3.10) cn=vHQH—DIQH—1), H>1/2,

— T _ 1
and also ¢y .'_hmH“/ch_\/—?. N . . o
The following statement contains explicit estimates in total variation for se-
quences of quadratic Brownian functionals converging to a mixture of Gaussian
distributions. It represents a significant refinement of [29], Proposition 2.1 and

[27], Proposition 18.

THEOREM 3.6. Let {B;:t > 0} be a fBm of Hurst index H > % For every
n > 1, define
ntH el 2
Ay, = "7 (By — Bf)dt.
n 2 0 ( 1 l‘)
As n — oo, the sequence A, converges stably to Sn, where 1 is a random vari-
able independent of B with law N (0,1) and S = cy|B1|. Moreover, there exists
a constant k (independent of n) such that

drv(Ay, Sn) < kn= 015, n>1.
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The proof of Theorem 3.6 is based on the forthcoming Proposition 3.7 and
Proposition 3.8, dealing with the stable convergence of some auxiliary stochas-
tic integrals, respectively in the cases H = 1/2 and H > 1/2. Notice that, since
limy 12cp=ci2= %, the statement of Proposition 3.7 can be regarded as the

limit of the statement of Proposition 3.8, as H | %

PROPOSITION 3.7. Let B ={B; :t > 0} be a standard Brownian motion. Con-
sider the sequence of Ité integrals

1
Fnzﬁ/ t"B; dB;, n>1.

Then the sequence F, converges stably to Sn as n — 0o, where 1 is a random
variable independent of B with law N (0, 1) and S = |51—‘ Furthermore, we have

the following bounds for the Wasserstein and Kolmogorov distances
diol (Fn, S1) < Cyn™7,

forany y < %, where C, is a constant depending on y, and
dw (Fy, Sn) < Cn~ 10,

where C is a finite constant independent of n.

PROOF. Taking into account that the Skorohod integral coincides with the Itd
integral, we can write F, = §(up,), where u,(t) = /nt" B;1j9.11(¢). In order to
apply Theorem 3.4, we need to estimate the quantities E(|(u,, DF,)g5 — S 2|) and
E(|{uy,, D52)5|). We recall that $ = L2(R+, ds). For s € [0, 1], we can write

1
D F, = «/ns" By +ﬁf " dB;.
N

As a consequence,

1 1 1
(un,DF”);j:n/ sanszds—i—n/ s”BS</ t”dB,)ds.
0 0 s

From the estimates,

U oonpo B} 0 2 2 n 1
E<n/(;s BYdS—T)SI’l‘/OS E(|BY_BI )ds+ 2]1——{-1_5
<2 "J1—sd
< n/ s s+2(2 Y
< —— \/fl (1 = s)ds +
—_— s —s)ds + ———
= VnriVl 220 +1)

1 +1
2n 4n
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o ([ [ ([ an)as

and

1
n
< — | s"TU2J1— g2+l g
)  V2n+1 /0

n 1
< < ,
T (m+3/V2n+1 7 /2n

we obtain
V2o

(3.11) E(\(un,DFn)g—S2|)§ﬁ+—n.
On the other hand,

1 N 1
3.12 ,DS?\.| = nE B/ "Byds|) < <.
612 fien DSy = VaE (|1 [ s Boas|) = S < -
Notice that

N/ 1
3.13 E(F,)) < —Y— < —.

Therefore, using (3.11), (3.12) and (3.13) and with the notation of Theorem 3.4,
for any constant C < Cp, where

(i ) (B )

there exists no such that for all n > ny we have A < Cn~V 6. Therefore,
dw(F,, Sn) < Cn~Y/® for n > ng. Moreover, E[|S|7%] < oo for any o < 1, which
implies that

dkol (Fp, S1) < Cyni)/,

for any y < ﬁ This completes the proof of the proposition. [

As announced, the next result is an extension of Proposition 3.7 to the case of
the fractional Brownian motion with Hurst parameter H > %

PROPOSITION 3.8. Let B ={B,:t > 0} be fractional Brownian motion with
Hurst parameter H > % Consider the sequence of random variables F,, = §(u,),
n>1, where

Mn(t) ant”Btl[o’l](t).

Then, the sequence Fy, converges stably to Sn as n — oo, where 1 is a random
variable independent of B with law N (0,1) and S = cy|B1|. Furthermore, we
have the following bounds for the Wasserstein and Kolmogorov distances

dkol (Fp, S1) < Cy,Hniy,
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forany y < I_TH, where C,, g is a constant depending on y and H, and
dw (Fy, Sm) < Cyn~ 17115,

where Cy is a constant depending on H .

PROOF. Let us compute

1
D, F, =n'ls" B, —i—nH/ t" dB;.

N

As a consequence,

1
(i DF s = lually 0¥ [ 17aB,)
: b))

As in the proof of Proposition 3.7, we need to estimate the following quantities:

en=E(|lulf — %))

1
e ron) )
. 9
1t
2n2H/ / sntnBSB,(t_s)ZH_zdsdt—F(2H—1)312D
0 Jo

)

1 pt
2n2H/ f s"t”(t—s)ZH_zdsdt—FQH—1)‘
0 JO

and

We have, using (3.9),

8n§H(2H—1)E(

1 pt
<HQH — 1)n2HE(’2/ / s"t"[BsB; — Bi|(t — s)* 12 ds dt
0 JO

+HQH - 1)

=an+by,.
We can write for any s <t
E(|BsB; — B}|) = E(|BsB; — B;B1 + BB — B}|)
<(1-n"+0-9" <200 -9

Using this estimate, we get

1 pt
an§4H(2H—1)n2H/ / st (1 — )2t — )P 2 ds dr.
0 JO

For any positive integers n, m set

b I'(n+ HIQH — 1
G149 o= [ [ "m0 -9 P asar= oo LV CI
070 T(n+2H)(n+m+2H)
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Then, by Holder’s inequality,

H
an <AHQ2H — ZHp;nH(/ / st (1 —s)(t — )2H—2dsdt>

=4HQ2H — Dn*" o) (onn — pus1.0)?
Taking into account that
C(n+ 1)(nQH + 1) + 4H?)
IF'(n+2H)2n+ H)(n +2H)(2n + 1 +2H)’

and using Stirling’s formula, we obtain that p, , is less than or equal to a constant
times n 2 and On.n — Pn+1,n 18 less than or equal to a constant times n2H-1
This implies that a, < Cyn~, for some constant C; depending on H.

For the term b,,, using (3.14) we can write

Pn.n — Pn+l.n =

20210 (n 4+ 1)
T(n+2H)2n+2H)
-1

’

b,=HQRH—-1)I'CH — 1)‘

which converges to zero, by Stirling’s formula, at the rate n
On the other hand,

1 p1 1
5n:H(2H—1)n2HE<‘/ f s”Bs<f r”dB,>|t—s|2H_2dsdtD
(3.15) 00 '
1,1 1 2\ 1172
5H(2H—1)n2H/ / s"+H[E</ " dB, )} it — s|2H 2 ds dt.
0 JO t

We can write, using the fact that L 1/H ([0, 00)) is continuously embedded into $),

1 2 1 JH 2H CH
"dB <C / /R ) <
[r r)-’%tr ") = w/H+ 1)

Substituting (6.13) into (6.14) we obtain §, < Cynf~1 for some constant Cp,
depending on H. Thus,

E(|(tn, DFn)g — 8%|) < Cpn® =1,

(3.16) E(

Finally,

E(|(un, DS?)g)) HE(‘/ / s" Byt —s|*H~ zdsdtD

<n ‘/[ ntH | g 2H - 2dsdl‘<CHn -1,

Notice that in this case E(|[(u,, DFy,)g — S?|) converges to zero faster than
E(|{uy, DS2)5§|). As a consequence, A < CHn(H_l)/3, for some constant C g and
we conclude the proof using Theorem 3.4. [
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PROOF OF THEOREM 3.6. Using It6’s formula (in its classical form for
H = 2,and in the form discussed, e.g., in [24], pages 293-294, for the case H > 2)

yields that
1(Bf — BY) =8(B1;r.11(-) + 5 (1 —1*)

[note that §(B.1};,13(+)) is a classical Itd integral in the case H = %]. Interchanging
deterministic and stochastic integration by means of a stochastic Fubini theorem
yields therefore that

nH

2H +n’
In view of Propositions 3.7 and 3.8, this implies that A,, converges in distribution
to Sn. The crucial point is now that each random variable A,, belongs to the direct

sum Ho @ Hj: it follows that one can exploit the estimate (3.4) in the case p =2
to deduce that there exists a constant ¢ such that

drv(An, Sn) < cdw(An, S)' < c(dw(Fy, Sn) + dw(Ay, Fy))

Ap,=F,+H

/s

where we have applied the triangle inequality. Since (trivially) dw(A,, F,) <
5 ;’I o < nf1=1 we deduce the desired conclusion by applying the estimates in

the Wasserstein distance stated in Propositions 3.7 and 3.8. [J

4. Further notation and a technical lemma.

4.1. A technical lemma. The following technical lemma is needed in the sub-
sequent sections.

LEMMA4.1. Letny,...,nq beacollection of i.i.d. N'(0, 1) random variables.
Fix ay,...,aq € R and integers ki, ..., kg > 0. Then, for every f:Rd — R of
class C%*K (where k = ky + - - - + kq) such that f and all its partial derivatives
have polynomial growth,

k k,
E[fani,...,cqana)ny" - n,']
ki/2) Lka/2) d

ki —27j,
=2 X H{mk T ﬂ}

j1=0  j4=0 I=1

|:ak1+~"+kd—2(j1+"'+jd)
X

f(alnl,---,otdnd)]

k1—2j ka—2]j,
axll J1 '”axdd Jd

PROOF. By independence and conditioning, it suffices to prove the claim for
d =1, and in this case we write n; = n, k1 = k, and so on. The decomposition of
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the random variable 1 in terms of Hermite polynomials is given by
[k/2] k!

k_ .
= jZ:;) 2k —2))!!

Hy_2j(n),

where Hi_2j(x) is the (k — 2j)th Hermite polynomial. Using the relation
E[f(an)Hi ;)] = ozk_sz[f(k_zj)(an)], we deduce the desired conclusion.
O

4.2. Notation. The following notation is needed in order to state our next re-
sults. For the rest of this section, we fix integers m > 0 and d > 1.

(1) In what follows, we shall consider smooth functions

A1) YR S R (Ve Y Xl oo es Xd) > WVl e ey Vs Xls e v s Xd)-

Here, the implicit convention is that, if m = 0, then ¢ does not depend on
(V1 -+-, Ym). We also write

a
= —VY, k == 1, ey d.
Y oe v
(ii) For every integer ¢ > 1, we write <7 (q) = <7 (q; m, d) (the dependence on
m, d is dropped whenever there is no risk of confusion) to indicate the collection
of all (m 4 g (1 4 d))-dimensional vectors with nonnegative integer entries of the
type
42) oD =(ky,....kgza1,...,amibiji=1,....q,j=1,...,d),
verifying the set of Diophantine equations
ki +2ky +---+qky =q,
ay+---+am +biy+ -+ by =k,
(4.3) byt + -+ by =ka,

bql+"'+qu:kq.

(iii) Given ¢ > 1 and «@ as in (4.2), we define

q!
(4.4) C(a'?):= . :
[T, i T e T, H?:I bij!

(iv) Given a smooth function v as in (4.1) and a vector oD e o (g) asin (4.2),
we set
8k1+"'+kd

()
(4.5) 0 Y= pl 2
8yi” e Dy Bch11+ g1 ---8x§ld+ +hya
The coefficients C(«?)) and the differential operators aa“”, defined respectively
in (4.4) and (4.5), enter the generalized Faa di Bruno formula (as proved, e.g.,
in [14]) that we will use in the proof of our main results.
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(v) For every integer ¢ > 1, the symbol #Z(g) = %B(q; m, d) indicates the class
of all (m 4 g (1 + 2d))-dimensional vectors with nonnegative integer entries of the
type

(4.6) ﬂ(CI):(kl,...,kq;al,...,am, U,bl’;,'z veesq j=1,...,d),

such that

@7 a(BP):=(ki.....kgiar,....am: bl + b i=1,....q.j=1,....d),

is an element of <7 (g), as defined at point (ii). Given 8 @ as in (4.6), we also adopt
the notation

1S5 5) ST TISS 3 '

(48) lql] 1 i=1j=1

bl =)"b j=1,....d.
i=1

(vi) For every B9 € %(q) as in (4.6) and every (I1,...,l;) such that [ €
{0,...,LIbL1/21}, s =1,...,d, we set

W(BD:1,..., 1)
(4.9)
|bgs !

q d ’ "
b —|—b !
(6]) o5
/3 1_[1_[( )Hzls(|b//|_2ls)!ls!’
i=1 : s=1 o5

where C(x (8 @)Y) is defined in (4.4), and

9t =2+ +la)

(/3(11) I,.. a(ﬁ("))
(4.10) 3 =9 CaE=T

beg=2la”
dx X1

s oxg "

where a(84) is given in (4.7), and 3%B“) is defined according to (4.5).
(viil) The Beta function B(u, v) is defined as

1
B(u,v):/ M = e, u,v>0.
0
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5. Bounds for general orders and dimensions.
5.1. A general statement. The following statement contains a general upper

bound, yielding stable limit theorems and associated explicit rates of convergence
on the Wiener space.

THEOREM 5.1. Fix integers m >0, d > 1 and q; > 1, j=1,...,d. Let
n=i,...,nq) be avector of i.i.d. A (0, 1) random variables independent of the
isonormal Gaussian process X . Define § =max;—1,. qq;. Forevery j=1,...,d,

consider a symmetric random element u j € D244 ($%41), and introduce the fol-
lowing notation:

o Ij:=8U(uj)and F := (Fy,..., Fy);
o (S1,...,82) is avector of real-valued elements of}D)‘}A‘}, and

S-n:=11,...,S8ana).

Assume that the function ¢ :R™*4 — R admits continuous and bounded partial
derivatives up to the order 2q + 1. Then, for every hy, ..., h,, € 9,

|E[o(X (h1), ..., X (hy); F)] — E[@(X(h1), ..., X (hm); S -n)]|
1 d
5.1) <§

52

2

Lbgi1/2) LIbgl/2]

d
Z S 3 W, )

55 k= ﬁ(qk)e%’o(qk) 11=0 14=0
©:2) (B3, 1)
x 8, g

d
¥ E [1—[ sl =2ls

s=1

Xk ”oo

qk d
: <”k’hi®“' ® - @ QR(D'F)*" @ (D's;)®" }>

i=1 j=I

|

where we have adopted the same notation as in Section 4.2, with the follow-
ing additional conventions: (a) %By(q) is the subset of B(q) composed of those

B(qr) as in (4.6) such that b,; =0 for j =1,...,d, (b) W(BW; 1y, ... 1) =
W(BY); 1y, ..., 15) x B(b'|/2+1/2; |b"|/2 + 1), where B is the Beta function.

554
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5.2. Case m =0,d = 1. Specializing Theorem 5.1 to the choice of parame-
tersm =0,d =1 and g > 1 yields the following estimate on the distance between
the laws of a (multiple) Skorohod integral and of a mixture of Gaussian distribu-
tions.

PROPOSITION 5.2. Suppose that u € D*-*($%) is symmetric. Let F =
89(u). Let S € D% and let n ~ N(0, 1) indicate a standard Gaussian ran-
dom variable, independent of the underlying isonormal process X. Assume that
¢ :R— Ris C2F with ||oW|| s < 00 forany k=0, ...,2q + 1. Then

|E[@(F)] — E[o(Sn)]|
1 Y
= 319"l Elllu, D! Fgeq — $?]

Lib"1/2]

+ Z Z Cab b H(p(l+|b/|+2|b”\—2j)HOO
(b'.b")eQ.b,=0 j=0

x E[sP'1=%
x |(u, (DF)®b'1 R ® (Dq—lp)@’b'q—l
® (DH @+ ® (D78)™1) s, ]

where Q is the set of all pairs of q-ples b’ = (b, b5, ..., by) and b" = (b{, ..., b))
of nonnegative integers satisfying the constraint by +2b3 +- - - +qby, + by +2b5 +
s qb/q/ = q. The constants cy py p,j are given by

1
Cq,b,,b”,j = EB(|b/|/2 + 1/2, b//|/2 + 1)

L (bi 1b"]! g!
XH b ij b 2-,~,X q b1’
i=1 \"i "1 =211 Tl it%b;!
where b=>b"+b".
In the particular case ¢ = 2 we obtain the following result.

PROPOSITION 5.3.  Suppose that u € D*8(H%) is symmetric. Let F = 82(u).
Let S € D%8, and let n ~ N (0, 1) indicate a standard Gaussian random variable,
independent of the underlying isonormal process X . Assume that ¢ :R — R is C?
with ||¢® ||eo < 00 for any k =0, ...,5. Then

|E[p(F)] = E[¢(Sn)]]

L0 | B[, D*F)ger — 2]

< _
2
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+ Co uax o] (E[fu, (DFYP)yeal) + E[S|{u, DF ® DS) ]

+ E[(S* + 1)|(u, (DS)®?) 2]
+ E[S|{u, D*S)e2[]).
where Co = 3B(3.3) + 3B, 1) + B(3.2).
Taking into account that DS? =2SDS and D*S> =2DS ® DS + 2SD>S, we

can write the above estimate in terms of the derivatives of S2, which is helpful in
the applications. In this way, we obtain

|E[e(F)] — E[o(Sn)]|
1 Vi
=< S 1e" o Ellfu, D?Fgen — §7]

63 +Comax [0 (E[lu, (D) )geal] + E[[lu, DF © DS )]

E[(57+ 1) (D52 gl
+ E[lju, D250 ).

Notice that a factor S~ appears in the right-hand side of the above inequality.

5.3. Case m >0,d =1. Fix g > 1. In the case m > 0, d = 1, the class A(q)
is the collection of all vectors with nonnegative integer entries of the type g4 =
(ar,...,am; by, by, ...,b;,b”) verifying

ap + -+ am + By + b))+ +q(b, +b)) =q

whereas %y(q) is the subset of A(q) verifying b;] = 0. Specializing Theorem 5.1
yields upper bounds for one-dimensional o (X)-stable convergence.

PROPOSITION 5.4. Suppose that u € D24-44 (5’_)2‘1) is symmetric, select hy, .. .,
hy € 9, and write X = (X (h1), ..., X(hp)). Let F = 89(u). Let S € D% and
let n ~ N (0, 1) indicate a standard Gaussian random variable, independent of the
underlying Gaussian field X . Assume that

(p:Rm XR%R:(YI»---yym,x)'_)§0(YI7---,Ym,x)

admits continuous and bounded partial derivatives up to the order 2q + 1. Then

|E[p(X, F)] = E[p(X, Sn)]|

|, DIF) 0, — S?]

—2‘ 8x2(pH
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LIB"1/2) H glal  GlHYH2"1-2)

1 @
5 X X W

oy 1+|b/|+2b”—2j‘/’H
p@DeAyq) =0 Oyn" 9% >

<] s

<u’h‘1®a1 K-

q / . '
® hiy Q{(D'F)®" @ (D'5)*" }>
58

i=l

|

5.4. Proof of Theorem 5.1. The proof is based on the use of an interpolation
argument. Write X = (X (h1), ..., X(hy)) and g(t) = E[o(X; V/tF + /1 —1S -
n], t € [0, 1], and observe that E[¢(X; F)] — E[p(X;Sn)] =g() — g(0) =
fol g'(t)dt. For t € (0, 1), by integrating by parts with respect either to F or to
n, we get

where lal =ay + -+ -+ ay,.

g/(;):%éE[%(X VIF+/1—1S- n)<J \/anfktﬂ

)]

1 d
EZE[cpxk(X;«/?FJr«/l—tS‘n)(

k=1

I
s
M=~

~
Il
—_

E[(D% @y (X; VIF +~1—1S 1), ut)gou ]

|
| =
M=

82
B[00 ViF 4+ VT=1s5 ms?],
k

k=1

Using the Faa di Bruno formula for the iterated derivative of the composition of
a function with a vector of functions (see [14], Theorem 2.1), we infer that, for
everyk=1,....,d,

(DQk(pXk X; VIF+J1—1tS- n), uk)ﬁ@‘]k
(54) = Z C(a(qk))a(“(qk))fpxk X; VtF+/1—15-n)

a9k et (qi)

qk d
x<h?a1®---®h%“’”®®(0’(ﬁFj+vl—ij”J'))®bij’uk> .
ﬁ®4k

i=1j=1
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Foreveryi =1,...,qx, every j =1,...,d and every symmetric v € H®bii | we
have

((Di(\/;Fj + 41— tSjnj))@)bij’ v)ﬁmij
bij b
(5.5) =) ( J ) 12(1 = 1) Gij=10/2) Bij—w)
u=0

< (D' F) @ (D752 o) o

9

Substituting (5.5) into (5.4), and taking into account the symmetry of uy, yields

E[(D% @y (X; VIF +~1—1S - 0), up)goq ]

=Y )l /21—[ H (b/ +b”>

BY e B (q) i=1j=1 L

//

x E[a“@”“)(pxk(x VIF+1—1S 1) ]‘[ J.,

L3

d
X <uk, WP @ @hS Q) X{(D Fj)®i @ (DlSj)®bij}> . :|
H®k

i=1j=1

Notice that if 8 @) does not belong to PBo(qxk), then b;kl > 1 for some index
I =1,...,d. Taking into account the relations (4.3) this implies that b;k[ =1,

b;k i= 0 for all j #1, kg, =1 and all the other entries of B must be equal to
zero. In this way, the above sum can be decomposed as follows:

Y a1 - )|b”|/21—“—[ (b/ +””>

BYK) e By (qr) i=1j=1 1

b//
% E|:8a(ﬂ(Qk))¢xk(X ViF ++/1—1S- 1) l_[

qk d 4 . i
g <”’<’ @@ hg QD) @ (D sj>®b~‘}> }
H®%k

i=1 j=1

+ZfE[

=D(k,t)+ F(k,1).

006 VIF VTS n)(D%Fz,mﬁ@qk]
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Since

2
ZF<’< - Z [ oo viF + yT=is st =6,

2= Xk
the theorem is proved once we show that

d 1 1
];/0 2—ﬁ\D(k,t)\dt

is less than the sum in (5.2). Using the independence of 1 and X, conditioning with
respect to X and applying Lemma 4.1 yields

d
16y
E|:8a(ﬂ(qk))¢xk (X \/;F ++1—=1§5-1n) H nj '
Jj=1

qr d , . "
x <uk,hi®a' ® - @h3 Q) X{(D’ Fj)®"i @ (D' Sj)®bij}> . i|
H®%k

i=1j=1

b2|:/2j leil:/ZJ ﬁ |b/./s !
= 205 (17| — 21) !

qk Y
R”k’h@“‘@ o5 @R(D'F) ff@(Dfsj>®bff}>
H®4%k

i=1j=1
d /" (gr)
x [ 8"l=2sp B Wity (X: JEF + T —1 —tS-n)]
s=1

).
Then, estimating the term a9l Wil (pxk(X VIF + J/1—1tS - ) by
@)
o nnl) @x, lloo» Which does not depend on 7, and using the equation
1 1 / i
/ — P20 =PV 2 = B(W' |2+ 172, B"]/2 4+ 1),
0 At

we obtain the desired estimate. [l

6. Application to weighted quadratic variations. In this section, we apply
the previous results to the case of weighted quadratic variations of fractional Brow-
nian motion. Let us introduce first some notation.
Given a measurable function f:R — R, an integer N > 0 and a real number
p > 1 we define the seminorm
N

(6.1) 1flIn,p = Zosup 1 oy
i=0

where y; is the normal distribution N (0, 7).
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We say that a function f:R — R has moderate growth if there exist positive
constants A, B and o < 2 such that for all x € R, |f(x)| < Aexp(B]|x|¥). Notice
that the seminorm (6.1) is finite if f and all its derivatives up to the order N have
moderate growth.

Consider a fractional Brownian motion B = {B;:t € [0, 1]} with Hurst pa-
rameter H € (0, 1). That is, B is a zero mean Gaussian process with covariance
E(B;By) = %(tZH + 527 — |t — s|*H). The process B can be extended to an
isonormal Gaussian process indexed by the Hilbert space §), which is the clo-
sure of the set of simple functions on [0, 1] with respect to the inner product
(110,11 10,51)5 = E(B;Bs). We refer the reader to the basic references [16, 24]
for a detailed account on this process. We denote by

(6.2) pu (k) =5(k+ 177 4k — 127 —20kPH),  keZ,

the covariance function of the stationary sequence {B(k + 1) — B(k) : k > 0}.

We consider the uniform partition of the interval [0, 1], and for any n > 1
and k =0,...,n — 1 we denote ABk/n = B(k+1)/n — Bk/nv 8](/,1 = 1[k/n,(k+l)/n]
and &, = 1j0,x/n)- We will also make use of the notation B; x = (8;/n, Sx/n)5 and
ajr=1{8j/n,1j0,n) 5, forany r € [0,1] and j,k=0,...,n — 1.

Given a function f:R — R, we define

n—1

up =" V2N 7 F(Bryn)S
k=0

We are interested in the asymptotic behavior of the weighted quadratic functionals

n—1

Fu=n* 7123 £(Biyn)[(ABiyn)* —n 1]
6.3) k=0

n—1

=212 3 f(Bk/n)Iz(zS}?fn).
k=0

It is known (see, e.g., [15, 17, 18]) that for % < H < %, F,, converges in law to a
mixture of Gaussian distributions. When the Hurst parameter H is not in this range,
a different phenomenon occurs, as it was observed by Nourdin in [15]. More pre-
cisely, for H < %, n2H-12p converges in L%(Q) to }‘fol f"(By) ds, whereas for
H > %, n3/2-2H converges in L2() to [01 f(Bs)dZs, where Z is the Rosen-
blatt process (see [15, 18]). In the critical case H = %, there is convergence in law
to a linear combination of the limits in the cases H < 411 and 411 < H < %, and in
the critical case H = % there is convergence in law with an additional logarithmic
factor (see [15, 18]).

In view of these results, we will focus on the case }‘ < H < %, although our

result could easily be extended to the limit case H = 3 Outside the interval [}1, %]
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the convergence is in L*(£2) and our methodology does not seem to be well suited
to study the rate of convergence. Applying the general approach developed in pre-
vious sections, we are able to show the following rate of convergence in the asymp-
totic behavior of Fj, in the case H € (%, %). This represents a quantitative version
of the convergence in law proved in [18].

PROPOSITION 6.1. Assume that the Hurst index H of B belongs to (%, %).
Consider a function f:R — R of class C* such that f and its first 4 derivatives
have moderate growth. Suppose in addition that E[( fol f2(By)ds)™] < oo for
some o > 1. Consider the sequence of random variables F, defined by (6.3). Set
S = \/O’H fol f2(By)ds, with 012{ = re o PH (k)?, where py is defined in (6.2).
Then, for any function ¢ :R — R of class C° with ||¢® || < oo for any k =
0,...,5we have

(6.4) |E[g0(Fn)] _ E[(p(Sn)]| < Cf,H 112;15)(5 ”(p(i)”Oon*(IZHfl/ZIAIZHfS/ZI)’

where 1 is a standard normal variable independent of B. The constant C ¢ g has
the form C gy = Cyrmax(1, | f1I3 4, (1 + |ELS™2 1Y £117 54)), where Cpy de-
pends on H and é + % =1.

PROOF. Along the proof C will denote a generic constant that might depend
on H.

Notice first that the random variable F,, does not coincide with 82 (u,,), except in
the case H = % For this reason, we define G, = 8%(u,,), and show the following
estimate for the difference F;,, — G,:

6.5) E[|Fy— Gul] < C”f”372n7(|2H71/2|/\|2H73/2|)'

To show (6.5), we first apply Lemma 2.1 and we obtain

n—1 n—1
Fy— G, =n*71/2 Z 28(f(Bijn)Sk /) oy +n* 12 Z f”(Bk/n)Ol;%,k/n-
k=0 k=0

Using the equality 8 (f'(Bk/n)8k/n) = f'(Bk/n) 11 Bk/n) — f" (Bk/n) k/n» yields

n—1 n—1
Fy—Gu=20"""123" f'(Byn) I Syt n — 0> =237 7 (Bymdeg g
k=0 k=0

:=2M,, — R,.
Point (a) of Lemma A.1 implies ot k5| < n~ @A and we can write

(6.6) E[|Ry|] < || fll1n!/>T2H - 4HA2)
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On the other hand,

n—1
E[MZ]=n*"1 Z E[f'Bj/n) f' (Biym) 118 j/n) 1 (Skyn) et j yn i ke
k=0

and using the relation
LB 1 (Sk/n) = 12(8j/n @ Sk/n) + (8j/n: Skyn)
the duality relationship (2.5) yields

n—1
E[M] <1520 Y (187l + Lty jymtickynl + 1ot im0t jnl]
Jok=0
X |otj, j/nk k/nl.
Finally, applying points (a) and (c) of Lemma A.1, we obtain,
(67) E[Mr%] S C”f”%!zn“H—l(n(l—ZH)VO + n2—(4H/\2))n—(4H/\2).

If H < %, we obtain a rate of the form n!~*# and if H > % we obtain the bound
n*"=3 Then the estimates (6.6) and (6.7) imply (6.5).

Taking into account the estimate (6.5), the estimate (6.4) will follow from (5.3),
provided we show the following inequalities for some constant C depending on H
and for any 8 > 1:

(6.8) E(|{un, Dan)yj®2 -5 < C||f||42‘72n_(|2H—1/2|/\|2H—3/2|)’
(6.9) E(|un, DG2?)gon|) < CII f113 3n~ RH-12INH=3/2D
®2 _ _ _
6.10)  J{un. D(SA)®) 502l sy < CUFIIS spn2H1/2NRH=3/2D,
(6.11) E(|(un, D*(S%))ge2|) < CIIf |3 30~ 12H-1/ANRH=3/2D,

6.12)  E(|{un, DG, ® D(S%))ge2]) < CII f13 g~ PH1/2NH=3/2D,

The derivatives S? are given by the following expressions:
1
D(SZ) =20y /(; (ff/)(Bs)l[o’S] ds,

1
D*(8%) =20y /0 (f2+ ff") (B p ds.
On the other hand, applying formula (2.10) we obtain the following expressions

for the derivatives of G,

DG = 8(uy) + 8*(Duy),
D?G, = uy + 28(Duy) + 8*(D?uy,).
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We are now ready to prove (6.8)—(6.12). The proof will be based on the estimates
obtained in Lemma A.2 of the Appendix. [J
PROOF OF (6.8). We have
’<un» Dan)gj@Z - S2’
< [llunlger = S|+ 2l{utn, 8(Dutn)) g2 | + |(1n, 8> (D*un)) 2]
=!|An| + 2[Bn| + |Cyl.
To estimate E[|A,|], we write

n—1
lunlGe =n*"=1 " F(Bjs) £ (Biyn) Bk
k=0

—_

n

F(Bjn) f(Biyn)pnk — j)?

S| =

k=0
1 n—1 m—-DAm—1-p)

=— 2 > FBim) fBapympr(p)

p=—n+1 j=0v—p

If we replace f(B(jt+p)/n) by f(Bj/») we make an error in expectation of
(p/m)*, so this produces a total error of n~ . On the other hand, the sequence
Y.ipl>n PH (p)? converges to zero at the rate n*7 3. As a consequence,

|

F2(Bin) — f2(By)]ds.

E[lA] < C(IfIIF 2~ 7 4+ 11 £15.om* )

+ 04 E lnijlfz(la )—/lfz(B)ds
H nk:o k/n 0 s

It remains to estimate
1 n—1 1 n—1
LY PGBy - [ fBods=Y [
i=o 0 =0’k

Using that E[| f(Bi/n) — f* (B < CIl f 11T 0" for s € [k/n, (k + 1)/n], we
obtain:
(6.13) E[lA] = C(If I an~ 7 + 1 £ 1520 7).

For the term B, we can write, using (A.2) and Meyer’s inequalities:

(k+1)/n

/n [

n—1
E[|By[] <n*7V2 3" E[| £ (Bin)8(Di/n(un ®1 8k/m))|]
k=0

(6.14) 2 2H—BHA3/2)
=Cllflzn .
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The term C, is handled in the same way, by using Meyer’s inequalities and
point (d) of Lemma A.1:

n—1

E[ICal] =n* V23" E[| £ (Biyn)8* (D7 jnthn) |]
(6.15) =0

n—1
<Cn®1V2) f15, Y0 B = Cn' P11 .
j-k=0
Then (6.8) follows from (6.13), (6.14) and (6.15). [

PROOF OF (6.9). We have
(tn, DGE)gan = (n, 8 () ® 8(un))gye2 + 2ttn, 8(un) ® 8*(Dtt))gye2

+ (., 8*(Dup) ® 8% (Duty))gia0
=: A, +2B, + C,.

For the term A,, we have, applying Holder’s and Meyer’s inequalities and the esti-
mate (A.1),

n—1
E[|Anl] < n® 7123 E[| £ (Biyn) (8t ®1 81/n))]
k=0

S C”f”:f 3n2H—1/2—(2H/\1).
Similarly, using Holder’s and Meyer’s inequalities and the estimates (A.1)
and (A.3) yields

n—1

E[|Bul] < n*#=V23 " E[| £ (Bijn)8(tn ®1 8k/n)8*(Dicsntn)|]
k=0

S C||f||%’3n2H_(3H/\3/2).

Finally, using again Holder’s and Meyer’s inequalities and the estimate (A.1) yields

n—1

E[ICal] < n®=Y2 3" E[| £ (Bt/n) (8*(Dijnun))’]
k=0

S C||f||%’3n2H_1/2_(2HM) I:l

PROOF OF (6.10). We have
2\®2
i, D(52) )

n—1 1 r1
= 16022 Y £ Biga) [ [ () BOS) Bk s ds dr.
k=0 0 JO
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Then, we can write, using points (a) and (b) of Lemma A.1,

n—1

E[|{un, D(5*)®)ge2]] < CIF 135502072 sup > ekt s
5,1€[0,1] =

S C”f”iSﬂnZH—l/z—(ZH/\l)’

forany 8 > 1. O

PROOF OF (6.11). We have

n—1 1
(. DA(S)gor = 421125 fBrga) [ (£2 4 1) (Bo)a ds.
k=0

As a consequence, applying points (a) and (b) of Lemma A.1 yields

n—1
E[[(un, D*(?))ge2]] < CILFI135n* 712 sup 3 e
S€[0,1]k:0

PROOF OF (6.12). We have
(tn, DG, ® D(S?))ge2 = {ttn: 8(un) ® D(5%))ge2 + (ttn. 8°(Dutp) ® D(S%))g62
=: A, + B,.

For the term A, we can write, applying Holder’s and Meyer’s inequalities and the
estimate (A.1),

n—1
E[|An]] <n®" V23" E[| £ (Biyn)8(n ®1 8k/n) Dijn(S?)|]
k=0

S C||f||‘1‘-’4n2H_1/2_(2HA1)

For the term A, we can write, applying Holder’s and Meyer’s inequalities and the
estimate (A.1),

n—1

E[|Anl] <n*7V2 3" E[| £ (Biyn)8*(Dicjnttn) Dicsn (S%)|]
k=0

4 2H+1/2—(4HA2
< C| f§ 42 @HAD),

This completes the proof of Proposition 6.1. [

REMARK 6.2. Note that the exponent in the rate § = —(|2H — %l A|12H —
%|) is minimum when H = % with § = —%. On the other hand, it becomes worst
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when H goes away from % either from below or from above, and it converges
to zero as H tends to Alf or %. This is natural in view of the limit results for the
weighted quadratic variations obtained in [15, 18]. This phenomenon has not been
observed in other asymptotic problems, such as the rate of convergence for Euler-
type numerical approximations of stochastic differential equations, where the rate
—(2H — %) improves when H increases from % up to % (see [10]).

REMARK 6.3. Inthecase H = %, the process B is a Brownian motion, and it
has independent increments. As consequence f; ; = 0 for j # k. Moreover, F),, =
G,. Therefore, the estimate (6.4) can be replaced by

|E[p(F)] — E[e(S)]| < C; 212?§5||‘P(”Hoo”_1/2’
where §% = 2/01 f(By)2ds.

REMARK 6.4. The extension to weighted power variations of any order or to
Euler numerical schemes for stochastic differential equations driven by a fractional
Brownian motion seems more involved. In the case of Euler numerical schemes,
the results that could be obtained applying the methodology developed in this pa-
per would lead to a precise analysis of the rate of convergence of the error to a
particular distribution, which is usually a mixture of Gaussian laws. That is, we
would be able to establish how close is the error to a limit distribution in terms of
a distance between probabilities defined by means of regular functions.

APPENDIX

In this section, we will show two technical lemmas that play a fundamental role
in the analysis of the asymptotic quadratic variation of the fractional Brownian
motion. The notation in both lemmas is taken from Section 6.

LEMMA A.1. LetO< H <1 andn > 1. We have, for some constant Cy:

@) log | <n~CHAD foranyt €[0,11 and k=0, ...,n — 1.
®) suprego.1 Yio lak < Cor.

(©) ij —olBj. k| < Cyn(1=21V0,

(d) IfH<4,thenij O,B]k§CHn —4H

(e) Zk] 0|ﬁk1,3j1|<CHn @GHAD) forany 1 =0,...,n— 1.

® If H < 2, then ij olBeis BiiBjkl < Cun=H1=CHAD for any | =
0,....,n—1.

PROOF. Parts (a), (c) and (d) are contained in Lemmas 5 and 6 of [18]. Part (b)
has been proved in Lemma 5.1 of [17] in the case H < % and the proof actually
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works for any H € (0, 1). Part (e) follows easily from

n—1 n—1
1 _ .
D Beibial=gn 3 louk = Dpu(j =D,
k,j=0 k,j=0
and the fact that the series }_,c7 |on (p)| is convergent if 0 < H < % and it di-

verges at the rate n??~1 if H > % Finally, to prove (f) we write, using Young’s
inequality,

n—1 n—1
1 _ . .
> |BriBjiBixl = gn BN otk — Do (G —Dpu(j — k)
k,j=0 k,j=0
1 _onm 2 -
=g" Y o) D leu(p)]
pEZ p=-n
< CHn—4H—(2H/\l)’

where we have exploited the fact that 3,7 pu ( p)? is convergent (because H <

%), together with the asymptotic behavior of the mapping n — " __ |pou(p)].
O

The next lemma provides some technical estimates.

LEMMA A.2. Forany integer M > 0 and any real number p > 1, there exists
a constant C depending on M, p and the Hurst parameter H such that:

@A ltn ®1 Sk/nllag.p < CIl fllag,pn~ /27 A2,
(A2 Dyl ®1 8w pg,p < ClLF lggr pn™ 127 CHAD,
(A3) I Dipmitnllag.p < CIlf laggr, pn~ GHAD,

where Dy F means (DF, 8 /n) s, for a given random variable F.
PROOF. In order to show the first estimate, we can write, for any integer 0 <
m<M,

n—1
D"y ®1 8pn) =n* V2N (B Br j8n ® T
j=0

Then, using points (a), (¢) and (f) of Lemma A.1 we obtain
(E[ID™ (n @1 86/ | Zeimin )"

2H—1/2
<Cn* 712 fllnp
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12
( Z {ﬁk jﬁk]( j/n®<9 /na j'/n Q¢ //n>5~j®(m+l)})

,j'=0

n—1 12
§C||f||m,pn2H—1/2< S 1B (1B + e /na,-/,j/n|))
JoJ'=0
< C|| fllm.pn2H =12 (n2H=(HA/2) 4 = @HA2))

< C|[ fllmpn~FHA2),
which shows (A.1).
To show the second estimate, we can write, for any integer 0 <m < M,

n—1

D" Dyjn(tn ®1 8xyn) =n* 123" £OEDB 0By otk jyndjn & 8?}";
=0

Then, using points (a), (e) and (f) of Lemma A.1 we obtain

(E[” Dka/n(Mn ®1 5k/n)||g®(m+1)])]/p
< Cn* 72 fllgp

n—1 12
x ( > !ﬁk,jOtk,j/nﬁk,_//ak,j//n(3_//n@8?}’,’1’,5j//n<§>8?;"n)ﬁ®<m+l>\>
J,J'=0

2H—1/2—2HA1
< CpPH=12=CHAD £

n-l 1/2
JJ'=0

< C|lflmy1, pn>A=12mCHAD (=2H=(HAL/2) 4y =(@HA2))

= Cllf lm+1.pn

and (A.2) follows.
Finally, for the estimate (A.3) we can write

—1/2—(HA3/2)

D" Dk/nunzl’IZH 1/ZX:f(m“)(Bj/n)ockj/n J/n®8[/n’
j=0

which implies, using points (a), (c) and (d) of Lemma A.1,

1
(E[| D™ Dinn ||g®<m+2)]) v

2H—1/2
< Cn* V2 g p
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n—1 12

®R2 =@ R2 = &

X ( Z {ak,j/nak,j’/n(aj/n®€j/r27Sj//n®8j/;nn)ﬁ®('"+2)|>
j,j'=0

2H—-1/2—2HA1
< CpPH=12=CHAD

n—1 1/2

2 2 2

x ( Y (B7 i +1Bi )@ jnl +aj,j’/naj/,j/n)>
j =0

2H—1/2—(2HA1
< C||fllmg1, pn* A1/ CHAD

< (n1/2—2H 1 pl(/2=H)V01-QHAD) +n—(4H/\2))‘
This shows (A.3) and the proof of the lemma is complete. [
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