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Christine B. Peterson ˚ and Francesco C. Stingo :

We congratulate the author for a well-written article on a problem of clear and increasing
scientific relevance. The approach taken here is not only relevant for prior specification
and analysis of posterior distributions in graphical models, but has a much wider breadth
as explained below.

In his work on Bayesian inference of graphical models, the author adopts a novel focus
on prior formulations over binary or trinary indicators of edge inclusion in undirected
or directed graphs, and examines relevant properties of these distributions including
entropy and variability. The insights of this paper provide a valuable starting point for
further exploration of the proposed priors both in terms of theoretical properties and
practical application to real or simulated data.

Although we do not see how the proposed parametrization reduces the dimension of
the parameter space, we consider the approach taken in this work a novel point of view
both in terms of defining prior distributions over a set of dependent binary and trinary
random variables and in terms of analyzing the posterior distributions of those variables.

1 Generalization beyond graphical models

Since multivariate Bernoulli and trinomial distributions can be applied to any setting
where the parameters of interest are binary or trinary, the theoretical properties ex-
plored in this paper are not limited to the framework of graph inference and can be
considered in more general settings. In the context of Bayesian variable selection, the
latent indicators of variable inclusion are modeled as multivariate binary random vari-
ables. While binary variables are more common in statistical modeling, a number of
recent papers on modeling gene and protein expression rely on trinary variables to cap-
ture states of underexpression, normal expression, and overexpression (Parmigiani et al.
2002; Telesca et al. 2012; Xu et al. 2012).

2 Choice of prior parameters

Treatment of the Bernoulli or trinomial prior parameters warrants further discussion.
Although the author expresses a preference for priors favoring sparsity, he does not
directly address the issue of multiple testing. Scott and Berger (2010) argue that fixing
the prior probability of inclusion in the context of variable selection fails to account for
multiplicity, and that it is preferable to place a prior distribution on the inclusion prob-
abilities. Because the edge selection problem resembles the variable selection problem in
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many respects, literature on prior formulations in this context are relevant, particularly
when dealing with the multivariate Bernoulli distribution. For example, several recent
papers have explored the use of Ising priors to model dependency among the Bernoulli
indicators of inclusion in the setting of Bayesian variable selection (Li and Zhang 2010;
Stingo and Vannucci 2011). While this class of prior only describes first and second
order moments, for many practical problems this level of detail is sufficient.

3 Impact of entropy on model selection

In many applications, we would like to identify a single “best” model. One option is
the maximum a posteriori (MAP) estimate, which is the graph with highest posterior
probability. For undirected graphs, another common choice is the median model, which
consists of all edges with marginal posterior probability greater than 0.5 (Barbieri and
Berger 2004). It would be interesting to explore how the entropy of the posterior
distribution of the binary and trinary indicators relates to the choice of the MAP and
median model. In particular, it would be nice to determine if lower posterior entropy
results in sharper selection under these approaches.

4 Applicability

We look forward to seeing applications of the proposed approach to real problems and
data. Our understanding is that, in order to assess features of the posterior distributions
such as entropy and variability, a large enough number of samples needs to be drawn
from the posterior distribution. The proposed approach will then suffer from the same
restrictions in terms of scalability as most Bayesian approaches for large networks. For
example, these computational restrictions make it hard to use this approach to obtain
the optimal tuning parameter value τ˚ of Section 4 when the analyzed network becomes
large. Moreover, we would like to understand how to interpret the variability measures
introduced in equation (16). While these measures can provide a ranking of posterior
distributions, it’s very hard to give a practical interpretation of the distance between
two distributions.
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