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Prediction in M-complete Problems with
Limited Sample Size

Jennifer Lynn Clarke∗, Bertrand Clarke† and Chi-Wai Yu‡

Abstract. We define a new Bayesian predictor called the posterior weighted
median (PWM) and compare its performance to several other predictors includ-
ing the Bayes model average under squared error loss, the Barbieri-Berger me-
dian model predictor, the stacking predictor, and the model average predictor
based on Akaike’s information criterion. We argue that PWM generally gives
better performance than other predictors over a range of M-complete problems.
This range is between theM-closed-M-complete boundary and theM-complete-
M-open boundary. Indeed, as a problem gets closer to M-open, it seems that
M-complete predictive methods begin to break down. Our comparisons rest on
extensive simulations and real data examples.

As a separate issue, we introduce the concepts of the ‘Bail out effect’ and
the ‘Bail in effect’. These occur when a predictor gives not just poor results but
defaults to the simplest model (‘bails out’) or to the most complex model (‘bails in’)
on the model list. Either can occur inM-complete problems when the complexity
of the data generator is too high for the predictor scheme to accommodate.

Keywords: M-complete, prediction, ensemble methods, basis selection, model se-
lection, model list selection

1 Classes of Prediction Problems

Prediction problems naturally fall into three classes, namely M-closed, M-complete,
andM-open, based on the properties of the data generator (DG) (Bernardo and Smith
2000). Briefly, M-closed problems are those where it is reasonable to assume that the
true model is one of the models under consideration, i.e., the true model is actually on
the model list (at least in the sense that error due to model mis-specification is negligible
compared to any other source of error). This class of problems is comparatively simple
and well studied.

By contrast, M-complete problems are those where the DG has a true model that
can be imagined but is not identifiable in any closed form. Inability to write a model
explicitly may arise because the model is too complicated or because its constituent
pieces are not known. The key point for an M-complete problem is that it is plausible
to assume that a true model – also called a ‘belief model’ – exists because this enables
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its use in reasoning even if a prior cannot be meaningfully assigned in the usual way. For
instance, if a true model exists a bias-variance decomposition can be developed, at least
in principle, even when the true model is not explicitly known. Also, sometimes the
true model in anM-complete problem can be regarded as a limit point of models. That
is, sometimes one can find approximations to the true model that provide serviceable
inferences. If this approximation is good enough, the M-complete problem becomes
effectively M-closed.

The M-open class of problems is one step more elusive. M-open problems are those
in which the DG does not admit a true model. The DG is so complex (in some sense)
that there is no true model that we can even imagine. For instance, one can regard the
Collected Works of William Shakespeare as a sequence of letters. Unarguably this data
set had a DG (William Shakespeare), but it makes no sense to model the mechanism
by which the data was generated. One might try to use the first n letters to predict
the n+ 1 letter and do better than merely guessing, but one should not expect such a
predictor, or any model associated with it, to generate more great literature. The same
point applies to the nucleotide sequence in a chromosome, the purchases of a consumer
over time, and many other settings. In these cases, we are only able to compare different
predictors without reference to a true model.

It is reasonable to write

M-open �M-complete �M-closed, (1)

where � represents a decreasing complexity ordering. Bayes methods, in particular
Bayes model averaging under squared error loss (L2-BMA, or just BMA when no confu-
sion will result), are asymptotically optimal for M-closed problems. This follows from
the results in Section 7 of Skouras and Dawid (1998). More abstractly, this follows
by observing that (i) the complete class theorem ensures any risk optimal solution is
arbitrarily close to a Bayes solution for some prior, and (ii) observing that as sample
size increases the effect of the prior drops out. An information-theoretic perspective on
the optimality of L2-BMA is in Raftery and Zheng (2003) and Clarke et al. (2014).

At the other end of the complexity spectrum, no one really knows what techniques work
well forM-open problems. There is speculation that Frequentist techniques may have a
role to play since the formulation of a prior is so problematic (Bernardo and Smith 2000).
For instance, a model averaging technique called stacking finds model weights using
a cross-validation criterion, see Wolpert (1992). Stacking often outperforms BMA in
pseudo-M-open settings (Clarke 2003). Separately, Clyde (2012) observes that releasing
the usual stacking constraints (positive coefficients that sum to one) may be necessary
to get predictively good model averages for M-open problems. From a log-loss point
of view, the Shtarkov solution (Shtarkov 1987) has also been extensively studied in
the M-open case, see Cesa-Bianchi and Lugosi (2006), but has not caught on partially
because the conditions for it to exist are so narrow.

We focus on the intermediate case in (1), namely,M-complete problems, for two reasons.
First, this class of problems is the one most relevant to subject matter researchers. Most
investigators believe there is a true model for the phenomenon they are studying even if
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they are only able to approximate it under narrow circumstances. Indeed, one can argue
that the example used in Clyde (2012) is just a very complexM-complete problem and
not actually M-open. Second, the M-complete problem class seems to be relatively
unexplored apart from the simplest cases where a really usefulM-closed approximation
is available and possibly very complex cases as in Clyde (2012).

As suggested above, the class of M-complete problems has a range of difficulty. Some
M-complete problems are just barely M-complete in the sense that they can be ex-
tremely well approximated by models that can be written down conveniently. Essen-
tially, this means theM-complete problem is a limiting case ofM-closed problems and
hence on the boundary betweenM-closed andM-complete. At the other extreme, some
M-complete problems are almost M-open. The true model is so hard to approximate
or the DG is so hard to simplify that the existence per se of a true model for the DG
is no help. In this case one may attempt to reduce the mean squared error but the
tradeoff between the variance and bias is trivial: Any effort to reduce bias increases the
variance by a similar amount and any effort to reduce the variance increases the bias
by a similar amount. The Doppler example below, see Section 3.3, may be an instance
of this: Better modeling near zero costs as much in variance as it gains in reduced
bias for moderate sample sizes. This may also be the case when the DG is a mixture
of many subsidiary DGs (as in a mixture model) or when the factors influencing the
DG are numerous, high-variance, latent, or complex. In these cases, the M-complete
problem is on the boundary between M-complete and M-open. One of the effects of
the DG being too complex relative to the predictive scheme is that the predictors often
become trivial. We call this the ‘Bail-out effect’, see Sections 3.3, 4.2 and 5.2. The
‘Bail-in effect’ – where predictors default to the most complex possibility – is also seen,
see Section 4.2.

It is well known that the best predictors in a regression context are usually model
averages. Recall that, under squared error loss, the L2-BMA given by the posterior
mean of the predictors from the individual models on a model list is optimal, see Hoeting
et al. (1999). Likewise, the Barbieri-Berger median model (BB) is predictively optimal
in the sense that it provides an optimal approximation to the L2-BMA, see Barbieri
and Berger (2004). BB can be regarded as a model average because it is constructed by
including explanatory variables that have posterior probability at least one half when
all models that contain them are considered. Stacking is another model average based
on finding the weights for a model average by optimizing a cross-validation criterion
(Wolpert 1992; Smyth and Wolpert 1999); its optimality in a squared error sense is
given in Clyde (2012). Indeed, almost any model selection criterion can be converted
into a model average by normalizing the values of the criterion for evaluating the models.
This can be done with the Akaike information criterion yielding the AICMA (Johnson
and Omland 2004). Other examples of model average predictors include Wong and
Clarke (2004) for the M-closed case and Shtarkov (1987) for the M-open case, see
Cesa-Bianchi and Lugosi (2006).

The main contribution of this paper is to propose a new predictor for M-complete
problems and verify through extensive computational comparisons that it compares
favorably with four existing predictors given realistic sample sizes. The new predictor



650 M-complete Prediction

is called the posterior weighted median (PWM) and our evidence suggests that it can
outperform L2-BMA, BB, stacking, and the AICMA, as well as a few other predictors,
see Section 3.4. The degree of outperformance is slight in some cases and substantial
in others, but typically holds for nested problems with orthogonal regressors until the
difficulty of theM-complete prediction problem approaches that of anM-open problem.
At this point it is unclear if any method for M-complete problems is generally better
than another.

All our examples use basis expansions (mostly orthogonal) in the explanatory variables
to create predictors for a single random variable. We have chosen the specific examples
presented here because we think they are representative of a large class ofM-complete
problems where the models are naturally nested. One of the benefits of nesting is that
we can easily interpret histograms of predictor selection when the predictors are specific
models. We do this in Sections 4.2 and 5.1 for PWM and BB. Nesting can be achieved by
using any shrinkage criterion for variable inclusion as a function of the decay parameter.

As a final introductory point, our comparison of the predictors described in Section 2
is empirical. Our focus is on how well a predictor given, say, n data points is able to
predict the n+1 outcome; we call this the Final Predictive Error (FPE). The idea is that
a correct measure of the success of a predictor must take into account all the sources
of variability involved in the construction of the predictor and all of these sources are
implicitly built into the comparison of the predicted value with the actual n + 1 value
over many uses of the predictor.

The rest of the paper is organized as follows. In Section 2 we present our predictors.
In Section 3, we present computational results for these predictors in seven classes of
univariate functions with three different model lists based on polynomial, Sine, and
Fourier bases. We see that, in overall terms, PWM is the best method, closely followed
by BB. We also see a first example of the ‘Bail-out Effect’. In Section 4 we look inside
PWM and BB to examine which models each method chooses to make its predictions
for Yn+1(xn+1) and how the variance of the predictors depends on xn+1. This is a way
to ‘look inside the black box’ to understand what these predictors are doing, e.g., giving
useful results, ‘bailing out’, or ‘bailing in’. In Section 5 we compare the five predictive
methods on two multidimensional complex data sets. Finally, in Section 6, we discuss
several important issues relating to the use of predictors including model list selection
and complexity.

2 The Predictors

Assume we have data of the form Dn = (Y1,X1), ..., (Yn,Xn). Given Xn+1 = xn+1, a p-
dimensional explanatory variable, our task is to predict Yn+1(xn+1) by Ŷ = Ŷn+1(xn+1)
assuming a signal-plus-noise model of the form Yn+1(Xn+1) = f(Xn+1)+ ε, where ε is a
noise term. Often we write Xnew or xnewin place of Xn+1 or xn+1 to emphasize the fact
that it is an input value that has not been seen before. We consider a class of distinct
regression models Mk = {fk(X |βk)} for k = 1, . . . ,K where k indicates the selection of
explanatory variables from X used by model fk and βk is the parameter vector for the
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nonzero coefficients of model fk. Denote the model list by M = {M1, . . . ,MK}. Now,
for linear regression models, we have Mk : fk(X |βk) = X(f)Tβk where the argument
f indicates the selection of variables from X appearing in fk.

In this notation, L2-BMA can be approximated as follows. First assign a weight to each
model in M by using a Bayes information criterion (BIC) value. For model Mk, the
weight is

wk =
exp {−0.5BICk}∑
j∈M exp {−0.5BICj}

,

where BICj is the BIC value for model Mj . Following BB, the BIC is evaluated at the
MLE, which bears a close relationship to the usual least squares estimator. Also, as in
BB, the wk’s in (2) assume the prior over models is uniform. It is seen therefore that
the wk’s do not depend on the within-model priors on the βk’s. For xnew, we use

ŶBMA(xnew) =

K∑
k=1

wkfk(xnew | β̃k),

where (again following BB) β̃k is the posterior mean from Mk using the prior assigned
to βk.

By contrast, BB proposed a median based method for prediction by thresholding vari-
able posterior inclusion probabilities and ensuring the result is a model within M so
it can be used to give predictions. For k = 1, . . . ,K, if fk(X |βk) = X(f)Tβk the BB
median model includes a given coordinate in X if and only if the set of models Mk

including it has posterior probability at least one-half; the across-models posterior is
found using (2). In the special case that the fk’s are nested, i.e., increasing with K, a
prediction for Yn+1 at xnew is taken from the fk̂(xnew|β̃k̂) satisfying

k̂ = arg max{k :

K∑
j=k

wj ≥ .5, k = 1, . . . ,K}.

More generally, for the definition of the median model to give valid predictions, the
model list must have ‘graphical model structure’, i.e., any set of covariates that might
end up in the median model must give a model inM. We use ŶBB(xnew) to denote the
predicted value of the response for xnew by BB.

To define a third predictor, note that, being a sum, BMA can be unduly affected by
large or small values. Also, note that the BB median model makes predictions from
the same model regardless of the value of xnew. So, the new predictor we consider is
an effort to reduce the variance of BMA (see the graphs in Section 4.3) by dropping
terms that are too small or too large and to predict better than the BB median model
by ensuring any predicted value is in the midrange of the model predictions. Our new
predictor called the Posterior Weighted Median (PWM) will also have the benefit of
being optimal in a conditional sense (see (2)). To define the PWM, put the predictions
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in increasing order and then choose one by writing

ŶPWM(xnew) = med
k={1,...,K}

[wk♦fk(xnew | β̃k)].

The notation ♦ means that med
k=1,...,K

[wk♦fk] = f(r), where r = min{j :
∑

i≤j, i=1,...,K

w(i) ≥

1/2} and w(i) is the corresponding weight of the ith smallest value of the fk’s, not
wk’s, over k = 1, . . . ,K. As before, we follow BB in using the MLE’s to define the
BICk’s in the wk’s but use the posterior means β̃k to make predictions. It is seen that
PWM does not require ‘graphical model structure’. An alternative (that we have not
investigated) would be ŶFPWM = med

k=1,...,K
[fk(xnew | β̃k)], a Frequentist form of PWM.

However, FPWM should be slightly inferior to PWM as it does not use the information
in the posterior weights.

PWM comes from optimizing an L1 criterion using the across-model posterior. Specifi-
cally,

ŶPWM(xnew) = arg min
u

K∑
k=1

|u− fk(xnew|β̃)|wk

≈ arg min
u

K∑
k=1

|u− fk(xnew|β̃)|W (Mk|Dn) (2)

where W (·|Dn) is the (marginal) posterior distribution for the models inM. Note that
in (2) the optimum depends on xnew. That is, different models may be used to give
different predictions for different values of xnew – unlike BMA or BB. This heightened
adaptivity may help PWM outperform other predictors just as the heightened adaptivity
to the data improves the performance of the predictor in Wong and Clarke (2004).

By contrast, L2-BMA and BB both emerge from an L2 optimality criterion. Hoeting
et al. (1999) identifies the Bayes model average – literally an average of models in a
distributional sense – as a posterior mean. Indeed, treating xnew as a parameter leads
to the L2-BMA which is the familiar ‘across-model posterior times predictor from the
estimate of that model’ form in (2). The posterior mean conditions on Dn giving a
result independent of xnew.

The BB predictor can be regarded as derived from L2-BMA. Specicially, Lemma 1 in
Barbieri and Berger (2004) verifies that ŶBB(xnew) is the best single model L2 ap-
proximation to the L2-BMA. This optimality conditions on the y1, . . . , yn, involves an
integration over the explanatory variables, and is independent of xnew. The optimal-
ity also requires that the explanatory variables be orthogonal. Separately, Theorem 1
in Barbieri and Berger (2004) establishes the predictive optimality of the BB median
model, i.e., BB is not just the best approximation to the BMA, it is also the best
predictor in a squared error sense even though it is based on medians.

There is also an L1-BMA. Recall the BMA is an average of models which can be written
as p(Yn+1|Dn) =

∑
kW (k|Dn)p(Yn+1|k), see Hoeting et al. (1999). Just as L2-BMA is
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the posterior mean of p(Yn+1|D) and optimal in an L2 sense, L1-BMA is the median
of p(Yn+1|D) and optimal in an L1 sense. However, while L2-BMA can be expressed in
terms of the posterior means of the p(Yn+1|k)’s, L1-BMA can not be readily expressed in
terms of the posterior medians of the p(Yn+1|k)’s. Moreover, it is seen that the L1-BMA
depends on all terms in the BMA, making it different from BB and PWM which give
predictions at each xnew from one model only. We did not investigate the performance
of L1-BMA because we expected it to lose efficiency quickly as the model list increased
(even L2-BMA loses efficiency in a relative sense; see Section 4.3).

It is easy to see that the more the across-model posterior concentrates on a single model
the closer the predictions from PWM, BB, and PWM will be. In fact, PWM and BB
will coincide when there is a single model that has posterior probability at least one-half.
In such a case the model will dominate the terms in the L2-BMA and dominate the
distribution of the L1-BMA.

For the sake of completeness, we also examine the performance of two Frequentist model
averaging strategies. The first is a variation on L2-BMA formed by using the Akaike
Information Criterion (AIC) to form a model average (AICMA). Recall that the BIC
uses a c log n penalty where 2c is the number of parameters. For AICMA, we merely
replace the BIC weights in (2) with AIC weights (still using the MLE’s β̂k). Thus, for
model Mk, we set

w′k =
exp {−0.5AICk}∑
j∈M exp {−0.5AICj}

, (3)

where AICj is the AIC value for the model Mj . For a new observation xnew, we use

ŶAICMA(xnew) =

K∑
k=1

w′kfk(xnew | β̃k). (4)

The motivation for AIC in model selection is predictive, however, it is well known that
for M-closed model selection AIC is often unsuccessful, see Kashyap (1980), Shibata
(1983). However, Leung and Barron (2006) demonstrates desirable theoretical proper-
ties of the AIC (and AIC-like model selection procedures) for model averaging and the
usefulness of AIC forM-complete problems is noted in Shibata (1981) and Clarke et al.
(2014). Moreover, AICMA has been used to good effect in M-complete problems in
environmetrics (Johnson and Omland 2004; Symonds and Moussalli 2010).

The second Frequentist technique we include in our comparisons is stacking, a model
averaging procedure motivated by cross-validation. Let f̂−jk (x) denote the prediction
from model k evaluated at x where the coefficients in the fk are estimated using MLE’s
based on all the data outside a holdout set, say Dj . Using five-fold cross-validation,
i.e., j = 1, . . . , 5, the stacking weights λk,opt for the fk’s are obtained by a quadratic
minimization

min
λ1,...,λK

5∑
j=1

∑
i∈Dj

(yi −
∑

k=1,...,K

λkf̂
−i
k (xi))

2,
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where the λk’s are assumed positive and sum to one. For a new observation xnew

ŶSTK(xnew) =

K∑
k=1

λk,optfk(xnew | β̃k). (5)

Stacking was proposed in Wolpert (1992) and studied in Breiman (1996) and tends to do
well in problems where the DG is not near a model that can be readily conceptualized
from within the model list (Clarke 2003). It is likely that stacking will be optimal
whenever cross-validation is optimal. For instance, Shao (1997) shows an optimality
property of leave-one-out cross validation in the M-complete (‘Class I’) case.

3 Comparing the Methods

To understand the behavior of PWM, BB, AICMA, STK, and BMA for small to moder-
ate sample sizes we look at how they perform as a function of their inputs for randomly
generated target functions from well-defined classes with a variety of loss functions. We
do this in the context of a large scale computational comparison of their predictive per-
formance. The basic structure of the simulations is the following. Fix a function class
F on an interval [a, b]. Draw a function f from F at random and then draw n+1 values
x1,...,xn+1 of the single explanatory variable X from [a, b]. Find f(x1),...,f(xn+1) and
then let yi = f(xi) + εi for i = 1, . . . , n + 1 where the εi’s are IID outcomes of a noise
term ε ∼ N(0, σ2). We take σ = 1 unless specified otherwise. Then, using the first n
data points we form each of the five predictors, generate a prediction ŷn+1 for y+1 at
xn+1, and look at the differences (ŷn+1−yn+1) over repeated iterations. Apart from the
random selection from F , this is a standard simulation setting for regression problems.

In the next subsections we describe our seven function classes and the specifics of the
computational setting, and then proceed to present our results. We conclude this section
with a general interpretation of the results.

3.1 Nested Function Classes

To define the predictors, consider an ensemble of terms E = {e1, . . . , eK} to form K
nested linear regression models of the form

Y = f(X) + ε =

k∑
u=1

βueu(X) + ε

where k = 1, . . . ,K. Here, E will be the first K elements of one of three bases: Cheby-
shev polynomials, the sine basis, and the Fourier basis consisting of both sines and
cosines. That is, in all cases, we use a nested model list consisting of the first k ele-
ments of these three orthogonal bases in their usual order; when k is odd, the element
chosen from the Fourier basis is sin kx and when (k + 1) is odd the element chosen
from the Fourier basis is cos kx. Since we omit the constant term, K = 29 in all of our
simulations as was used in Barbieri and Berger (2004).
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For all five predictors and in all models the βu parameters are estimated by posterior
means under IID N(0, ua) priors where a = ±1,±3; the negative values correspond
to sparsity while the positive values correspond to diffuseness. Thus, the within-model
priors affect the non-Bayesian model averages via the β̃k’s; coupled with using MLE’s to
find the model weights in all five cases, this makes the predictors more comparable. For
the Bayesian predictors, we use a simple uniform prior across the models, invoking the
Principle of Insufficient Reason (Bernardo and Smith 2000). With these specifications
we can use the data (xi, yi) i = 1, . . . , n and xn+1 to obtain ŶPWM(·), ŶBB(·), ŶBMA(·),
ŶSTK(·), and ŶAICMA(·) for Yn+1.

We compare the performance of PWM, BB, BMA, AICMA, and STK on seven function
classes. They are as follows.

� Trigonometric (Trig): This class of functions is a collection of Fourier expansions
of varying length and coefficients. It is defined to be of the form

fa,b,d(x) = a0 +

d∑
j=1

aj sin(jx) + bj cos(jx) x ∈ [0, 1],

d ∼ DUnif[1, 20], aj ∼ Unif[0, 1] for j = 0, . . . , d, and bj ∼ Unif[0, 1] for j =
1, . . . , d. (Here, DUnif[a, b] means the discrete uniform on the integers a, a +
1, . . . , b− 1, b.)

� Neural Net (NN): This class of functions consists of single hidden layer neural
networks with varying numbers of nodes and varying coefficients at the nodes. It
is defined as follows:

fa,b,c,r = b0 +

r∑
j=1

aj
1 + ebj+cjx

x ∈ [0, 1],

where aj , bj , cj , b0 ∼ Unif[−10, 10] for j = 1, . . . , r, and r ∼ DUnif[2, 10].

� Bumps: This class of functions puts a random number of bumps at random lo-
cations with random heights. It is defined as follows, cf. Donoho and Johnstone
(1994). Let d ∼ DUnif[7, 15]:

fx,h,w,d(x) =

d∑
j=1

hj
(1 + |x− `j |/wj)4

x ∈ [0, 1]

`j ∼ Unif[0, 1], wj ∼ Unif[5/1000, 30/1000] and hj ∼ Unif[2, 6], for j = 1, . . . , d.

� Blocks: This class of functions is a collection of step functions with varying heights
and bin widths. It is defined as follows, cf. Donoho and Johnstone (1994). Let
d ∼ DUnif[2, 10] and

fh,b,d(x) =

d∑
j=1

hj(1 + sign(x− bj))/2 x ∈ [0, 1],

with hj ∼ Unif[−5, 5] for j = 1, . . . , d, and bj ∼ Unif[0, 1] for j = 1, . . . , d.
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� Treed: This class of functions is a generalization of the Block class. Treed consists
of one dimensional trees with varying leaves having polynomials of varying degrees:

f`,a,c0,c1,c2,d(x) =

d+1∑
j=1

χa(j−1),a(j)(x)

`j∑
u=0

cj,ux
u x ∈ [0, 1],

where d ∼ DUnif[2, 10], `j ∼ DUnif[0, 2] for j = 1, . . . , d, aj ∼ Unif[0, 1] for
j = 1, . . . , d (with a0 = 0 and ad+1 = 1), and all cj,u ∼ Unif[−5, 5]. The a(j)’s are
order statistics and χa(j−1),a(j)(·) is the indicator function for the region between
the percentiles a(j−1) and a(j)

� Logarithm (Log): This class of functions is defined to be of the form

fa,b(x) = −a log(b(1− x)) x ∈ (−1, 1),

where a ∼ Unif[−5, 5] and b ∼ Unif[1, 5], cf. Barbieri and Berger (2004).

� Doppler: This class of functions is of the form

fa,b(x) =
√
x(1− x) sin

bπ(1 + a)

x+ a
x ∈ [0, 1]

where a ∼ Unif[0, .5] and b ∼ Unif[−10, 10], cf. Donoho and Johnstone (1994).

The first three classes are smooth, with the first two having ‘nice’ appearances even
though NN’s are typically more complex than our Trigonometric functions. Bumps
functions are also ‘nice’ because they are well-behaved almost everywhere; the only
difficult points are the fourth order cusps at random locations. Representatives of these
function classes are shown in Figure 1.
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Figure 1: Typical representatives of the Trig, NN, and Bumps function classes each on
their own domain.

The last four classes are considered not ‘nice’. The Blocks and Treed classes are not
smooth because of jump discontinuities; in fact Treed functions are a generalization of
Block functions. The Log and Doppler function classes have regions (not just isolated
points) where they are difficult. Log has a region of extremely rapid increase and
an asymptote; Doppler has a region of rapid oscillations that converge to the origin.
Representative elements of these classes are plotted with data in Figure 2.
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Figure 2: Typical representatives of the Block and Treed (top) and Log and Doppler
(bottom) function classes each on their own domain.

3.2 Computational Setting

Using basis representations to predict outcomes from DG’s based on these seven classes
mimics M-complete problems. Aside from a few cases in which the Trig class is used
with the Sine or Fourier basis, the true DG is not accessible except in the limit of
increasing size of model lists, here presumed to be of the same form e.g., including more
basis elements. Indeed, for the not ‘nice’ functions there are entire regions on which
an approximation from the ensemble will likely be poor regardless of ensemble size.
This mimics believing the DG is not on the list and cannot be reliably approximated
everywhere, and loosely corresponds to having only the conceptual existence of a model
on a region.

In all our comparisons, the performance criterion is the final predictive error (FPE)

FPE =

R∑
u=1

|yu(xu,n+1)− ŷu(xu,n+1|(yu,1, ..yu,n, xu,1, ..., xu,n))|p (6)

where R is the number of iterations, n+ 1 is the sample size, and p defines the distance.
We select a function class and draw R random functions from this class. For the u-th
random function we randomly draw n data points (xu,i, yu,i) for i = 1, . . . , n (with
N(0, 1) error). The first n data points and the prior are used to form the predictor
ŷu(·), which we use to predict the (n + 1)-th value of the u-th function at xu,n+1.
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Clearly, (6) is a comprehensive measure of the predictive error for the last observation
because it is averaged over all the inputs to the predictive process (the DG, the random
‘design points’ x1, . . . , xn, and the error term). The FPE also depends on the priors
on the parameters in the models since the parameter estimates are required for all the
predictors. The Bayesian predictors also depend on the prior on the model list, but as
this is always uniform there is no basis for assessing its effect.

In this Section, we limit our attention to the case p = 1, n = 100, a = −1 and R = 2000.
First, to choose p = 1, we started by only looking at p = 1, 1.5, 2 on the grounds that
the optimality properties of the predictors only occurred in L1 or L2 and L1.5 was the
midpoint. Indeed, PWM is optimal in an L1 sense while BB, BMA, STK, and AICMA
have their optimality properties in L2. (AICMA actually has its optimality property in
terms of the relative entropy which is locally L2 and has other L2-like properties Clarke
et al. (2014).) Then we observed that over p = 1, 1.5, 2 the performance of the methods
as measured by the rankings of the FPE’s was constant for our simulations. That is,
if PWM did better than BB which did better than BMA for p = 1, the same ranking
was observed for p = 1.5 and p = 2. So, looking at any one value of p = 1, 1.5, 2 was
enough and p = 1 is a reasonable choice. Had we permitted p >> 2, the rankings of
the methods in terms of FPE might not have been constant since, as p grows, more
weight is put on large (but infrequent) deviations. Later, in Section 5.2, the choice of
loss function will be informative as data accumulate with the real data set Fires.

Second, to choose n = 100, note that the comparative performance of methods matters
most in small to moderate sample sizes. However, we wanted n large enough that
differences in the methods could be plausibly attributed to the methods rather than
random fluctuations. We did not consider large n because the Bayesian methods (BMA,
BB, PWM) are asymptotically predictively optimal in an FPE sense and there are
conditions under which AIC and probably STK (since it’s based on cross-validation) are
asymptotically consistent and hence may also give asymptotically optimal predictors. In
our testing with n = 30, 50, 100 we found that the relative performance of the methods
was mostly unaffected by n, but less stable when n = 30. Admittedly, there were a
few cases, mostly with small n, in which the priors on the parameters seemed to have a
small effect on the relative performance of the methods. Also, there were a few cases,
with both n = 30 and n = 100, mostly with the hardest function classes, in which one
or another of the non-PWM methods did best, usually only by a very small amount.
We regarded this either as random variation or as representing the approach of the
M-complete problem to an M-open problem, a different phenomenon. Thus, we set
n = 100 as it was the largest plausible pre-asymptotic value that gave clear comparisons
among the methods.

Third, at least for n = 100, it was enough to set a = −1, i.e., impose mild pressure
towards sparsity, for the purposes of presenting representative tables of the output. We
examined a = ±1,±3. The choices of a = −1,−3 were motivated by Barbieri and
Berger (2004) who chose negative values of a to impose sparsity. As a decreases, the
prior makes large values (positive or negative) of coefficients on higher order terms less
likely. This sparsity often gives better performance in practice when the target function
is well approximated by a finite series expansion. On the other hand, a larger value of
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a such as a = 1, 3 is a better representation of lack of knowledge about the coefficients.
The cost is that positive values of a make large coefficients on high order terms more
likely and hence there will be more instability associated with higher order terms, a
property that might be undesirable. Since we are only looking operationally at the
predictors, we ignore this issue apart from noting that the value of a matters more with
small n than large n. So, while PWM performs better than the other four methods (in
the sense of (6)) for n = 100, there are cases with smaller n where BB or BMA seems
slightly better than PWM, e.g., a = 3 and n = 30 with Log or Doppler and the Sine
basis. However, by the time n = 100 the effect of the priors on the relative performance
of the methods is negligible for the first six of the seven function classes; the behavior
of the predictors with the seventh class is more complex.

Fourth, we chose R = 2000 because this was essentially the largest number of iterates
that we could compute across cases when n = 100 in a relatively short time frame. In
fact, in the tables below for a = −1, the FPE’s are an average of five FPE’s over runs
of 2000 iterates, hence 10,000 iterations total. The standard error (SE) reported is the
SD of the five average FPE’s, each with R = 2000, divided by

√
5. We report SE’s for

the cases with a = −1 because the a = −1, n = 100 cases were generally representative
of the typical behavior of the predictors.

In the next subsection we present our simulation results. For six of the function classes
(Trig, NN, Bumps, Block, Treed, and Log) we argue that PWM outperforms BB slightly
and both PWM and BB outperform BMA, AICMA and STK (apart from two exceptions
with the Chebyshev basis). There are two steps to this. The first step is to see that
both PWM and BB outperform BMA, AICMA, and STK because in most cases the
differences between FPE’s for different predictor settings are large enough to be detected
by arguments based on confidence intervals. (In the present context, confidence interval
arguments are valid because simulation results are based on the repeated sampling
definition of probability.) For instance, we can form ±3SE intervals around mean
FPE’s (over five runs of 2000) of PWM or BB and see they are often separated from
the corresponding ±3SE intervals around mean FPE’s of BMA, AICMA, and STK. For
instance, we can compare PWM to AICMA for the Sine basis by observing[

FPE(PWM)± 3SE(FPE(PWM))
]

∩
[
FPE(AICMA)± 3SE(FPE(AICMA))

]
= φ, (7)

see Table 2. Expression (7) means that the true FPE for PWM is almost certainly
smaller than the true FPE for AICMA. This argument holds for all but a very few of
the comparisons of PWM or BB to BMA, AICMA, or STK as can be seen in the first
six tables in Section 3.3.

The second step is to see that PWM is slightly better than BB. These are generally
cases where the difference between mean FPE’s is too small to be revealed by (7). These
cases result, in our view, because we did not have the computing power to do enough
simulations to get small enough SE’s for use in (7). For these cases, we use a Bayes
testing argument. For example, let us compare PWM to BB even when the SE’s are not
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small enough to reveal a difference as in the case with the Sine basis, the Trig functions,
a = −1, n = 100, and p = 1; see Table 2. Consider testing

H0 : E(FPE(PWM)) ≥ E(FPE(BB))

vs. H1 : E(FPE(PWM)) < E(FPE(BB)), (8)

using the simulation data in Table 1 where in each run of 2000 both methods used the
same seed in the random number generator. Instead of (7), a de facto t-test, we can use
a Bayesian sign test by writing Zi = 1 for FPE(BB)− FPE(PWM) > 0 and Zi = 0

otherwise, for i = 1, . . . , 5. Regarding Z =
∑5
i=1 Zi ∼ Bin(5, π) and using a Beta(1, 1)

(uniform) prior on π, we find that the posterior probability is W (π > .5|Z = 5) = .89
and the Bayes factor is BF = 8.1, meaning that we have good evidence to reject the
null, i.e., we are led to conclude that PWM has a lower mean FPE than BB does. In
the case that only four of the Zi’s are one, W (π > .5|Z = 4) = .74 and the Bayes factor
is BF = 2.84. Bearing in mind that Z = 4, 5 holds for almost all the comparisons of
PWM to BB for the first six function classes and further runs would only reinforce this
pattern, it is safe to conclude quite generally that PWM has a lower FPE than BB
even when the SE’s are not small enough to show it. In fact, the patterns observed are
strong enough that even if one took the multiple comparisons issues into account, the
conclusions would be unchanged.

Run FPE(PWM) FPE(BB) Z
1 1.834 1.835 1
2 1.840 1.841 1
3 1.789 1.795 1
4 1.794 1.795 1
5 1.806 1.813 1

Table 1: Results from five runs of 2000 iterations using the Sine basis, Trig class, a = −1,
n = 100, and p = 1. These runs gave the (average) FPE’s and standard errors for the
Sine basis for PWM and BB in Table 2.

We comment that for the seventh function class, Doppler, the results are inconclusive.
We attribute this to Doppler being closer to the M-complete–M-open boundary than
are the other function classes. In Section 3.4 we discuss other methods and try to
summarize the overall findings from these simulations.

3.3 Presentation of Simulation Results

We consider seven function classes of which there are three ‘nice’ smooth classes (as
above); the remaining not ‘nice’ classes we divide into two classes with jump discon-
tinuities, and two ‘hard’ function classes. In the first five classes – ‘nice’ and jump
discontinuities – PWM generally does best. It also usually does best with the sixth
(Log) class. However, for the seventh (Doppler) class there is no consistent pattern.
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‘Nice’, Smooth Functions

Here we present our computational comparisons for the Trig, NN, and Bumps function
classes. For the sake of concision, for all five predictors we only show tables for the
three bases for n = 100, a = −1, p = 1, and the mean and SE of the FPE’s from five
runs of 2000 replications (SE(FPE) = SD(FPE)/

√
5 where SD(FPE) is the SD of

the five FPE values). As a practical matter, the very few runs in which there was a
(very small) prior effect can be ignored as negligible in contrast to random variation. In
all cases, the relative ordering of the five methods in terms of FPE’s is representative
of the other values of a, p and n.

Table 2 shows the FPE’s and their SE’s for the Chebyshev, Sine and Fourier basis
for PWM, BB, L2-BMA, AICMA, and STK using the Trig function class. Bold font
indicates the best performance in each row. It is seen that for the Chebyshev basis
STK is the clear winner, while for Sine and Fourier PWM and BB are the clear winners
even though their SE’s are too large to separate them. The appearance of STK with
Chebyshev as the overall winner in terms of low FPE’s, with PWM and Fourier second,
may seem surprising until one realizes that the Sine and Fourier bases are far more
capable of representing elements of the Trig function class so we expect more bias when
the Chebyshev basis is used. Hence, we expect STK to perform well since it is known
to work better than some methods in the presence of bias Clarke (2003). When the
bias is smaller, as it would be with Sine and Fourier, STK performs poorly as expected.
Note that when the basis has low bias, it is seen that PWM and BB are better than
BMA, even if not as good in terms of FPE as STK with Chebyshev. As the figures
in Section 4.3 show, L2-BMA performs poorly because it is less stable than PWM or
BB. This is typical when comparing mean-based to median-based methods. AICMA
performs similarly to L2-BMA in many cases, possibly because both are essentially the
result of L2 optimizations.

Trig. functions Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 1.01 1.013 2.697 2.682 .825
SE(FPE) .006 .005 .030 .022 .008
FPE Sin, a=-1, n=100 1.813 1.816 2.717 2.767 14.457
SE(FPE) .010 .010 .025 .025 .130
FPE Four, a=-1, n=100 1.228 1.229 2.683 2.686 14.53
SE(FPE) .012 .012 .030 .05 .143

Table 2: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Trig function class.

Table 3 shows the results for the NN function class. For each basis PWM is numerically
best, although BB is within one SE of PWM in all these cases. BMA, AICMA, and
STK have credible or confidence sets that are disjoint (or nearly so) from credible sets
for PWM and BB. The overall best method is PWM with Fourier and the worst basis
is clearly Sine, perhaps because it has relatively more rapid oscillations and therefore
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worse bias.

NN’s Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 .954 .957 8.676 8.559 2.871
SE(FPE) .007 .007 .068 .056 .024
FPE Sin, a=-1, n=100 8.526 8.528 8.655 8.814 8.769
SE(FPE) .063 .063 .063 .063 .063
FPE Four, a=-1, n=100 .939 .941 8.631 8.579 8.754
SE(FPE) .005 .005 .072 .063 .072

Table 3: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the NN function class.

Table 4 shows the FPE’s and their SE’s for the Chebyshev, Sine and Fourier basis for
PWM, BB, L2-BMA, AICMA, and STK using the Bumps function class. The results
are qualitatively similar to those for the NN class. However, (1) the Sine basis does not
perform as badly relative to the other two bases, (2) BB ties PWM for lowest FPE with
Sine, and (3) few of the FPE’s are distinguishable by using the SE’s. The smallest FPE
occurs for PWM and Fourier at 1.034 and the largest occurs for AICMA and Sin at 1.10;
these two are distinguishable by using the SE’s. The relatively small differences between
most approaches implies that none of the methods really do well – perhaps because they
try to capture the behavior of the functions away from the random bumps.

Bumps Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 1.042 1.044 1.078 1.064 1.090
SE(FPE) .009 .008 .013 .011 .008
FPE Sin, a=-1, n=100 1.050 1.050 1.078 1.1 1.084
SE(FPE) .008 .008 .011 .008 .006
FPE Four, a=-1, n=100 1.034 1.035 1.062 1.07 1.090
SE(FPE) .009 .009 .013 .008 .008

Table 4: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Bumps function class.

Jump Discontinuities

Here we present our computational comparisons for the Blocks and Treed function
classes. The tables we present are entirely analogous to those of the previous section.

In Table 5 it is seen that for each basis PWM does best, although its FPE cannot
be separated from the FPE’s for BB. However, L2-BMA, AICMA, and STK can be
separated by using confidence or credible sets based on the SE’s and perform worse than
PWM or BB. Moreover, the Sine basis is also seen to be the worst basis possibly for the
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Block Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 1.146 1.149 3.610 3.610 3.809
SE(FPE) .008 .008 .034 .034 .015
FPE Sin, a=-1, n=100 2.295 2.306 3.686 3.61 3.768
SE(FPE) .011 .012 .015 .025 .026
FPE Four, a=-1, n=100 1.256 1.261 3.656 3.629 3.768
SE(FPE) .007 .007 .034 .020 .026

Table 5: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Blocks function class.

same reason as given in Table 3. The Fourier basis is less oscillatory so its performance
is intermediate between Chebyshev and Sine. The Chebyshev basis may do better with
discontinuities because it has no regular oscillations and hence can better locate jumps
through shifts. The lowest numerical FPE occurs for PWM with Chebyshev. The
results in Table 6 for the Treed class are similar to those from Table 5.

Treed Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 1.015 1.018 3.809 2.735 2.873
SE(FPE) .022 .022 .055 .017 .025
FPE Sin, a=-1, n=100 2.536 2.536 2.802 2.807 2.863
SE(FPE) .008 .009 .010 .017 .022
FPE Four, a=-1, n=100 1.163 1.167 2.743 2.768 2.871
SE(FPE) .014 .014 .011 .008 .024

Table 6: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Treed function class.

Two Hard Function Classes

Here we present our computational comparisons for the Log and Doppler function
classes. The tables we present are entirely analogous to those of the previous section.

Table 7 shows that for n = 100, a = −1, Log, and the Chebyshev basis AICMA gives the
best results. AICMA puts a relatively small penalty on including more terms enabling it
to make predictions from a slightly larger and hence more accurate model (in the case of
mild sparsity, i.e., a = −1). In contrast to the Trig function class, where STK did best
with Chebyshev, it may be that the inclusion of more terms by AICMA permits more
weight on higher order terms. The resulting model could mimic the behavior of Log
near its asymptote as considering the Taylor expansion of Log would suggest. However,
for a = 1, 3, Log, n = 100, and Chebyshev, PWM does best and slightly better than
BB. (The difference persists over five runs.) In the case a = −3, BB does best and
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slightly better than PWM. For a 6= −1, the other three methods, AICMA, STK, and
BMA, the FPE’s differ more than could be explained by the SE’s.

For Log and the Sine basis with a = ±3,±1, BB and PWM are nearly equivalent; see
Table 7. However, in our runs PWM tended to have a lower FPE than BB overall, with
the other three methods performing significantly worse. The same pattern was observed
with the Fourier basis. Thus, for the Log class there may be a greater dependence on
the prior than in the earlier classes.

Log Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 3.144 3.327 3.464 2.824 4.313
SE(FPE) .313 .408 .028 .023 .028
FPE Sin, a=-1, n=100 2.462 2.465 2.904 2.909 3.883
SE(FPE) .012 .013 .026 .019 .021
FPE Four, a=-1, n=100 1.267 1.276 3.56 2.807 3.883
SE(FPE) .012 .006 .014 .018 .021

Table 7: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Log function class.

It is interesting that the FPE’s tend to decrease from Chebyshev, to Sine, to Fourier,
whereas for other function classes the Sine basis tended to do worst. It may be that for
Log, the oscillations of Sine are not as harmful because Log rises rapidly at its right end
point. This suggests that, even for Log, that PWM is overall a little better than BB.

Table 8 shows our results using the Doppler function class. The differences from one
method to another are small. The instability as to which method is best may require
many more iterations to resolve, and even so, the differences may remain small. PWM
with Fourier performed best; however, across all runs in the Doppler class there was
considerable variability in the relative performance of predictors. For the Chebyshev
basis, BMA does best, PWM places second, and BB places third for all values of a
although they are not formally distinguishable. For the Sine basis and a = −1 STK
is best for Doppler, but for other values of a AICMA does best with BMA, BB, and
PWM being indistinguishable. For the Fourier basis, PWM is best with a = −1;
however, AICMA again does best for a 6= −1.

Since BMA had not done well in previous simulations, we further investigated its per-
formance with the Chebyshev basis. Varying a and b in the generation of Doppler
functions made no difference, and neither did reducing the SD of the error distribu-
tion, so we studied examples of histograms of the selected models for the Doppler class.
They looked qualitatively like the upper left panel in Figure 5. Specifically, the smallest
models, consisting of the lowest order terms from the basis, were consistently receiving
85% of the posterior probability. This fact implied that BB and PWM were choosing
the same model most of the time, explaining why their errors were nearly equal. This
also explained the performance of BMA, namely, it would always be a nontrivial model
average putting 15% or so of the posterior probability on models with higher order
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Doppler Bayes Frequentist
Method PWM BB BMA AICMA STK

FPE Cheb, a=-1, n=100 .830 .831 .827 .831 .844
SE(FPE) .007 .007 .008 .004 .023
FPE Sin, a=-1, n=100 .834 .835 .832 .830 .824
SE(FPE) .004 .004 .004 .005 .007
FPE Four, a=-1, n=100 .788 .794 .794 .827 .845
SE(FPE) .005 .005 .005 .007 .000

Table 8: FPE’s and SE’s for five methods, three bases, a = −1, n = 100, and p = 1 for
the Doppler function class.

terms. Since BMA included higher order terms while and BB and PWM were devolving
to model selection, BMA did better.

The question remained as to why the predictors concentrated so heavily on low order
terms. This led us to identify the ‘Bail out Effect’, i.e., when a predictor chooses a very
simple model that is quite unlike the complex true model. We conjectured that the
symmetry around y = 0 may explain the success of BMA. That is, the oscillations of
the Doppler function class are so rapid relative to the sample size and bases that they
are ignored by the predictor, which ‘bails out’ to predicting essentially zero because
of the symmetry. To test this, we replaced the

√
x(1− x) factor in Doppler with 1/x

and (1 − x) but the results did not change as both functions have the same sign on
(0, 1]. However, when we broke the symmetry by using these versions of Doppler with
absolute value on the sine function, we saw the more typical ordering of PWM being
slightly better than BB being better than BMA for each basis across all values of a, p
and n. This confirms our intuition that when it is predictively good to ‘bail out’ to a
very simple model that is quite unlike the complex true model, BMA does well. That
is, when an M-complete problem can be well-approximated by an M-closed problem,
then BMA tends to do best.

3.4 Interpretation of Results

Our main point is that PWM and BB do demonstrably better in a predictive sense than
BMA, AICMA, and STK. While PWM and BB cannot be separated in terms of SE’s,
it is almost always the case that PWM has a slightly smaller predictive error than BB
taht can be detected as noted after (8).

The exceptions to this general behavior come in two forms. The first is in contexts where
a relationship exists between the DG and the inputs to the predictor that a predictive
method can exploit. This was seen with the Trig class and Chebyshev basis where the
bias-variance tradeoff achieved by STK does well, see Table 2. This was also seen with
Log class and the Chebyshev basis where AICMA does well, see Table 7.

However, a second exception is seen in another feature of the Log class that is important.
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Because the Log class has a region where the DG is hard to approximate, the Log class
may be regarded as closer to the high complexity end ofM-complete problems. AICMA
does well merely because it permits higher order terms more readily. One can argue that
the Doppler class is one step more complex than the Log class and hence even closer to
theM-complete-M-open boundary. This may explain the even greater instability of the
predictors for the Doppler class: BMA does best with Chebyshev (though poorly, due to
the ‘Bail-out effect’) while AICMA does best (though poorly) for Sine and Fourier. The
dependence on the prior also matters with Doppler although we have not discussed this.
Indeed, prior selection affects the parameter estimates and can affect which predictor is
better, perhaps because prediction for the Doppler class is so unstable.

The results in the earlier tables are surprising from a theoretical standpoint. First,
established theory suggests that BMA and BB are roughly comparable (Lee and Oh
2013) for M-closed problems with orthogonal regressors. However, in our simulations
with orthogonal regressors inM-complete problems where the degree of approximation
should in principle be very good (e.g., Trig and NN’s), BMA and BB generally perform
very differently. This suggests the problem class –M-closed vs. M-complete – matters
more than the possible degree of approximation suggests.

Second, although PWM, BB, and BMA have optimality properties they are conceptually
different. First observe that BMA is optimal in a squared error sense and in a logarithmic
sense; see Raftery and Zheng (2003). The squared error sense is a posterior risk, i.e.,
conditional on the data, whereas the logarithmic sense involves an integration over the
sample space, i.e., removing the expectation over the data in Theorem 4 of Raftery and
Zheng (2003) makes the result false. The optimality of BB is in a posterior sense; see
the reasoning in the proof of Theorem 1 in Barbieri and Berger (2004). By contrast, the
optimality of PWM, see (2), depends on all the available data including xnew. If the
expectation of the summation over k were taken first and then the minimizing action u
were found, the result would be the L1-BMA which we conjecture would have similar
properties to the L2-BMA. Thus, taking the minimum in the posterior gives a different
result when dependence on xnew is permitted. This may make the PWM more adaptive
than the BMA. The same logic implies that the BB is more adaptive than the BMA,
but not quite as adaptive as the PWM meaning the PWM is consistently a little better
than BB. The reverse may apply to the AICMA and STK: Both are so adaptive to
the data that it may harm their performance in M-complete problems – although this
might be good forM-open problems. We do not pursue this, but see Leung and Barron
(2006) and Clarke (2003).

It is worth remembering that the formal results showing optimality for BMA and BB are
in the M-closed case while the simulations here are generally in the M-complete case.
Even if BB or BMA outperformed PWM for large enough n in the M-complete case,
which seems unlikely, we would want to explain why PWM outperforms BB and BMA
(and the other methods) in small samples. To address the difference in performance
conceptually, observe that, in addition to representing M-complete DG’s, the seven
function classes are presented roughly in terms of the difficulty of the predictive task they
define, i.e., a sense of complexity. Once the difficulty is high enough, as it begins with
the Log and especially Doppler classes, it becomes unclear which method is superior.
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Indeed, as seen in Table 8 the various methods perform comparably. We interpret our
results as meaning that, aside from exceptional cases, PWM does best on M-complete
problems until the difficulty of the problem approaches that of an M-open problem,
at which point M-complete methods break down. Likewise, from the variations on the
Doppler class that we considered, it seems that methods that are M-closed optimal
like BMA become competitive with PWM when the DG approaches the M-closed-M-
complete boundary.

A separate issue is the absolute size of the FPE’s for different bases. We attribute this
not to a complexity interpretation, but rather to a bias-variance analysis. The Sine
basis often has elevated FPE’s and this may be due to its oscillatory nature. Even if the
coefficients of higher order basis elements decrease, the oscillations are roughly twice as
fast as for a Fourier basis of the same size (since half the terms are cosines) and the
Chebyshev basis does not have oscillations. Moreover, as a generality, the Fourier basis
tends to give better predictive performance than either the Chebyshev or Sine, perhaps
because the Fourier basis is more complex. So, it is no surprise that the best results are
usually achieved with the Fourier basis and PWM. Indeed, one can argue that Fourier
is the most complex basis since it has two sorts of terms, sines and cosines. Also, one
can argue that PWM is the most robust i.e., resistant to changing predictions unduly
as a function of the input data. These factors may explain why PWM with Fourier did
overall best.

The last point is that the inclusion of other predictors would likely have little impact
on our conclusions. Other possible predictors include (1) the mean of the models’
predictions, (2) the median of the models’ predictions, (3) a median form of stacking
formed by optimizing the median rather than the mean, and (4) the L1-BMA. We did
not investigate (1) or (2) because predictors that use the posterior should be better in
general. Regarding (3), we did not include a median form of stacking because in simple
cases (not shown here) it performed poorly. Finally, the L1-BMA is a nontrivial model
average that should be inefficient compared to L2-BMA, and inefficient compared to
BB and PWM since they select a model to make predictions. In addition, we expect
that L1-BMA would be too stable since it will entirely ignore tail behavior.

There are two other Frequentist techniques that we could have included. First, there is a
version of boosting for regression. Basically, the boosting principle is similar to gradient
fitting: Greedy fitting iteratively on residuals using weak learners can approximate a true
underlying model without too much overfitting. While established as a good technique
for classification (despite notable dissent, see Mease and Wyner (2008)), boosting has
not done so well for regression. For example, Park et al. (2008) obtains compelling
theoretical results but in practice boosted regression rarely out-performs other regression
techniques. This corroborates the equivocal findings of Ridgeway et al. (2008) and
Schonlau (2005). However, no systematic simulation study has been done. As an
intuition, it is unlikely that boosting will help much with regression because boosting
techniques for regression effectively turn a regression problem into a very large number
of classification problems (by partitioning the domain of the unknown function). Solving
these individually by pooling weak learners and then combining the resulting classifiers
is probably not going to be as effective as other methods that do not decompose the
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prediction task into a collection of disjoint tasks.

Second, there is bagging which uses bootstrap samples to improve the stability of a
good predictor. However, in each case one must have a base predictor to ‘bag’. Thus,
the limitation of this approach is that its computational demands were too high to
allow a timely and systematic examination. However, individual examples we have
done (but do not present here) suggest that bagging AICMA and BMA improves them
over their unbagged versions but not enough to outperform the best methods within our
comparisons. For some extremely complex real data sets that are probably M-open,
bagging or stacking relevance vector machines (that we have not used here) does seem
to give some improvement over other methods. We conjecture that when PWM or BB is
best, bagging may well make them worse since they are already relatively stable (being
based on medians). We did not investigate relevance vector machines or support vector
regression because kernel methods seem more appropriate for M-open problems than
M-complete problems.

4 Looking Inside PWM and BB

We examine PWM and BB in more detail since they emerged as the best two methods in
the simulations of Section 3. We begin by giving several graphs so that the curvefitting
approach taken by PWM and BB to generate predictions can be seen. Building on this
intuition we then look at the sampling distribution of the models from which PWM
and BB give their predictions. This helps us understand bailing out, bailing in, and the
‘nice’ cases. In the last part of this section, we turn to a localized assessment of variance
for PWM, BB, and BMA. We include BMA to understand why it performed so poorly.

4.1 Visualizing PWM and BB

As an aid to understanding the predictive performance of PWM and BB in the previous
section, we present several pictures of the curves used by PWM and BB to make point
predictions. Figure 3 shows four examples from different function classes, two with
n = 30 and two with n = 100, and two using the Chebyshev basis and two using the
Fourier basis since these bases are more common than the Sine basis.

As a generality, the curves found by PWM are a little closer to the true curves. The
variability is generally greater when n = 30 than when n = 100 and the curves with
n = 100 are closer to each other. In Figure 3, it is seen that the PWM curve is a little
rougher than the BB curve is, except for the lower left panel where they appear equally
smooth. This arises because PWM may use different models for different ranges of x’s
unlike BB.

It is interesting to note that the upper left panel with NN’s actually has the worst fit (for
both PWM and BB) even though PWM fits better than BB over almost the whole range
and NN’s are very smooth. The upper right plot shows that there is a tradeoff between
making accurate predictions between the bumps and making accurate predictions at the
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Figure 3: Examples of the curves (solid) fitted by BB (dashed) and PWM (dotted), all
cases are a = −1. Upper left: NN with the Fourier basis and n = 30. Upper right:
Bumps with the Chebyshev basis and n = 100. Lower left: Block with Chebyshev basis
and n = 100. Lower right: Treed with the Fourier basis and n = 30. In all cases, the
open circles indicate the values yi = f(xi) + ε, where f is the actual function plotted.
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bumps. PWM fits the flattish parts of the curves better but does about the same on the
bumps themselves, except at the right where PWM is a little higher than BB, although
it must be admitted that both methods miss most of the structure in the Bumps class.
The lower left plot shows the curves are very close even though PWM is a bit closer
to the true function on [.2, .6]. The lower right curve shows that PWM captures the
curvature to the left of .4 better than BB does. It must be admitted that these function
classes were chosen to represent the mid-range of difficulty of M-complete problems;
easier or harder classes might give different interpretations.

Overall, graphs like those in Figure 3 show that PWM predicts better not only because
it necessarily fits the curve better (although it usually does) but because the regions
where it fits well enable it to give predictions that are on average smaller than the
regions where BB fits well. Otherwise put, the regions where PWM fits poorly do not
lead, on average, to bigger errors than the regions where BB fits poorly.

4.2 Selection of the Predictors

Because the models are nested, the predictions from BB and PWM can always be
regarded as having come from one of the models on the list. This is not the case
for BMA, AICMA, or STK. So, in this subsection, we examine the selection of the
prediction-giving model for PWM, and for BB. We present histograms estimating the
sampling distributions for predictor selection over 2000 uses of PWM and BB, for a
fixed basis, a, and n. Each use of PWM and BB draws a function at random from a
class and a new set of n xi’s and n error terms to generate the data used to form the
PWM and BB predictors. Then, the PWM and BB predictors are evaluated at a new
xn+1 (drawn from the Unif[0,1], but other distributions would give analogous results)
to predict Yn+1(xn+1). Thus, we have made 2000 predictions for 2000 x-values, from
2000 predictors for 2000 data sets. The models from which PWM and BB make their
predictions are then recorded. Thus, in these histograms, the horizontal axis represents
the models in order of size and the vertical axis represents the proportion (as a frequency
out of 2000). As before we focus on the cases with a = −1 and n = 100; however, for
the sake of clarity, we occasionally present other cases. Our intuition is that for good
prediction a bias-variance tradeoff will lead to histograms that are unimodal around
some model in the interior of the model list, i.e., strictly between the smallest one term
model and the largest 29 term model. We expect tightly unimodal histograms for smooth
functions and loosely unimodal histograms for more complex functions. However, this
can fail in two ways – bailing out and bailing in – and these indicate different properties
of the prediction problem. So, we present three examples – the ‘nice’ case, bailing out,
and bailing in.

We begin with the ‘nice’ cases and see they may only be achieved with large enough n.
Detailed examination of the histograms reveals that the Blocks, Trig, and Log classes led
to qualitatively similar predictor selection behavior, so it is enough to present results for
the Log class for a = 1 in Figure 4. In this case, the qualitative behavior is essentially
independent of a but dependent on the basis and sample size. For the Chebyshev basis,
when n = 30, the histograms are essentially unimodal at the largest model (this is an
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Figure 4: Log class: The rows correspond to bases Chebyshev, Sine, Fourier with
a = 1. The columns correspond to n = 30 on the left and n = 100 on the right. The
horizontal axis indicates the 29 models in their natural order; the vertical axis indicates
the proportion of times a model of each size is used by BB and PWM over the 2000
iterations.
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instance of bailing in, see below) but for n = 100 the histogram has a very choppy
appearance with a heavy right tail and a weak mode around 4. If we increased the
sample size, it is unclear how the histogram would behave. Likely, for large enough n
the mode would gradually shift to the right. For Sine, when n = 30, the histogram
is bimodal with a large mode at 29 and a small mode at 1, much like for Chebyshev.
When n = 100, the mode centers on 3-4 (like Chebyshev) and the right tail is very light
(unlike Chebyshev). For the Fourier basis, when n = 30, there is a major mode around
4-5 and a small mode around 28. When n = 100, the mode has shifted to around 6 and
the right tail is quite light. The nice shapes of the panels in the lower right of Figure 4
reveal why PWM and BB with Fourier did better than any other method-basis pair.
Loosely, the histogram for the Fourier basis suggests a better variance bias tradeoff than
for Chebyshev or Sine.

In the Blocks, Trig, and Log classes only the Fourier basis achieves a nontrivial bias-
variance tradeoff, i.e., a nice unimodal histogram, as early as n = 30. A strong mode
around four/five suggests that smaller models give poor predictions due to bias while
larger models give poor predictions due to variance. (The smaller mode at model 29
indicates that when the bias-variance tradeoff is unsuccessful the methods favor the
higher variance models.) For Chebyshev and Sine, the larger sample size of 100 is
required to begin to see a useful bias-variance tradeoff, even though it remains weak
for the Chebyshev basis. As one passes from the Chebyshev to the Sine to the Fourier
bases, the histograms look increasingly ‘nice’, shifting from bimodal or weakly unimodel
to a more ‘normal’ appearance. Note that in Table 7, the Fourier basis gives the best
results (with PWM). Chebyshev gives better results (with PWM) for Blocks possibly
because of the long right tail in the top right panels, see Table 5, and Chebyshev gives
better results with STK for Trig even though PWM is second best (best among the
three Bayesian methods), again possibly because of the long right tail, see Table 2.

The histograms for the NN and Treed function classes exhibit different behavior from
Trig, Blocks, and Log, but are qualitatively similar to each other. The value of a makes
little difference so we present results for a = −1. Specifically, for Sine and NN, the
histograms in the upper left of Figure 5 put almost all their weight on the smallest
model even for n = 100. This is what is meant by bailing out. Bailing out may be
reflected in the outsized errors of all five methods in Table 3 and to a lesser extent in
Table 6. It may mean that no larger model using Sine basis elements achieves a better
bias-variance tradeoff.

The upper and lower right panels of Figure 5 show that when n = 100 the Fourier and
Chebyshev bases have similar histograms, reflecting only slightly different bias-variance
tradeoffs. The ‘nice’ tight shape of the histograms for NN’s is reflected in the good
performance of PWM and BB in Tables 3 and 6. However, the lower left panel shows
that Chebyshev gives a secondary mode at 29 when n = 30; no secondary mode is seen
in the corresponding histogram for Fourier (not shown). This means Chebyshev may
require a larger sample size to give results as good as Fourier for NN. (This is consistent
with the FPE’s for n = 30.) No bailing out is observed in these cases.

We see next that the histograms for the Bumps class indicate a third type of behavior –
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Figure 5: NN class and a = −1. Top left panel: results for the Sine basis and n = 100.
Top right panel: Fourier basis for n = 100. Bottom two panels: Chebyshev basis for
n = 30 and n = 100. The horizontal axis indicates the 29 models in their natural order;
the vertical axis indicates the proportion of times a model of each size is used by BB
and PWM over the 2000 iterations.
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bailing in, meaning a convergence to the most complicated model. Bailing in is closely
related to bailing out in that bailing in can result from incompletely fixing a bail out
problem. For instance, for the Bumps class, in the top row of Figure 6 we see that
for n = 100, the predictors bail out to a one-term model indicated by a mode at the
extreme left hand side and a light tail. The bail out is stronger for n = 100 than for
n = 30. This occurs for all values of a, not just a = −1. (The Doppler class shows
an even stronger tendency for PWM and BB to bail out.) If we change the prediction
problem by increasing the sample size to n = 350 and using the Fourier basis, we still
observe the bail in for all bases. An instance of this is seen in the bottom left panel of
Figure 6. Likewise, if n = 100 but we reduce σ to .1 we observe ‘bail out’ (for all bases).

However, when we both increase n and decrease σ we find different behavior. Fourier
and Chebyshev were qualitatively the same, with heavy emphasis on larger models; see
the lower right of Figure 6. This is bailing in: Defaulting to the largest possible model.
In the same setting, for Sine, we observed results as before: The histograms concentrated
at the left indicating bailed out behavior. Thus, even with more information (higher
n and lower σ) predictors using the Sine basis still bail out to the smallest model, but
predictors using the other two bases bail in to the most complex models. This means that
the bias-variance tradeoff for Sine reflects an inability of the predictors to encapsulate
the true function while the bias-variance tradeoff for Chebyshev and Fourier favors
larger models i.e., tolerates more variance for the sake of reduced bias. Since bailing
in is a better choice given the complexity of the DG, we see that Fourier and PWM
do best with Chebyshev and PWM second best in terms of FPE’s; see Table 4. Note
that bailing in is not what we want for predictive purposes: Ideally, we want the mode
of the histogram to be in the middle of the model list, not at either endpoint. Since
defaulting to the most complex model is often better than defaulting to the simplest
model, we suggest bailing in represents an incomplete solution (not enough complexity
in the models) to a bail out problem.

Overall, we suggest that the ‘nice’ cases indicate a good model list has been chosen for
prediction as the unimodal shape indicates a meaningful bias-variance tradeoff. How-
ever, both bailing out and bailing in mean that the model class is inappropriate. Bailing
out means that the complexity of the DG is so high relative to the predictor that the
predictor cannot mimic its output, i.e., the predictor defaults to the minimal variance
case and gives up on keeping the bias relatively small. In the present examples this
indicates the complete inadequacy of the model list. Bailing in is the reverse: The pre-
dictor defaults to the minimal bias case and gives up on keeping the variance relatively
small. In the present examples this indicates the model list is too small or otherwise
unable to provide a parsimonious representation of the DG.

4.3 Variability of FPE as a Function of xnew for PWM, BB, and BMA

It is not enough just to look at the mean FPE because the variability can depend on the
location at which the final prediction is made. So, for each function class we examined
the variance of prediction across the input domain, conditional on the other inputs
(noise term, a, n). Given (Y1,X1), ..., (Yn,Xn) we generated Yn+1(xn+1) and for a
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Figure 6: Bumps class and a = −1. Top row: Chebyshev basis for n = 30, 100. Bottom
row: n = 350 for Fourier with σ = 1 (left) and σ = .1 (right). The horizontal axis
indicates the 29 models in their natural order; the vertical axis indicates the proportion
of times a model of each size is used by BB and PWM over the 2000 iterations.
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given predictor we formed Ŷ (xn+1). This gives the residual rj = |Ŷ (xn+1)− Y (xn+1)|.
Over m iterations, we therefore get m residuals. Then for each value of cg = 0, .05, .1, . . .,
we found a ‘bin’ of values S(cg) = {rj(xn+1)|xn+1 ∈ (cg − .02, cg + .02), j = 1, . . . ,m}.
Since we used 2000 iterations, #S(c1)+. . .+#S(c20) ≤ 2000 because a range of x-values
of length .01 was omitted between any two successive cg’s. Then, for each g we found
the variance of the residuals in S(cg). This was done for PWM, BB, and BMA, giving
a ‘varFPE graph’ for each function class, basis, n, and value of a. This permits us to
localize the ‘variability’ of a predictor to a range of the domain. The varFPE graphs
shown here include all sources of variability except location, i.e., x. Thus, they differ
from the SE’s presented in Section 3 that average over all the random inputs.

We find that methods that perform poorly tend to have varFPE graphs with large
regions where the bin-wise residual variance is high, indicating regions where the bias-
variance tradeoff achieved by a predictor is likely poor. This is particularly the case
with BMA. As the figures will show there are two typical varFPE graphs, namely, cup-
shaped and decreasing to the right. (Decreasing to the left also occurs, but is the mirror
of decreasing to the right.) As before when n = 30 the graphs were choppier and in
some cases suggested an effect from the prior, while when n = 100 the prior had little
effect and the graphs were smoother.

As an example of a cup-shaped graph we consider the Log class used in Barbieri and
Berger (2004). The bottom of the cup indicates a region of x’s where the bias-variance
tradeoff achieved by a predictor is most successful. As indicated in Figure 7, there is a
tendency for the curves to rise rapidly at the right hand endpoint, due to the vertical
asymptote of the log function, and to rise at the left, possibly due to an edge effect
as the bases are not localized. The Sine basis tends to give higher variability, again
indicating that oscillations make achieving a good variance-bias tradeoff more difficult.
However, the curve for BMA is below those for PWM and BB for the Sine basis but
above those for PWM and BB for the Chebyshev and Fourier bases. Indeed, the curves
for BB and PWM are lowest for Fourier, consistent with Table 7. Indeed, the overall
poor performance of BMA may be reflected in the rapid rise at the right hand side and
lesser rise on the left hand side in the varFPE graphs.

As an example of a decreasing graph we consider the Trig class. In this case we get two
distinct behaviors when n = 100. For Fourier and Chebyshev, we find a dependence
on a but not on n. When a = 1, 3, i.e., the prior is diffuse, the graphs for PWM and
BB rise on the left; when a = −1,−3, the graphs are flat over the whole domain. This
is reasonable because sparsity priors will tend to eliminate higher order terms so they
contribute less to variability. Representative examples are shown in the two left panels
of Figure 8. For Sine the curves had a common shape: The BMA curve was above the
essentially coincident BB and PWM curves, and all curves decrease from left to right as
seen in the right panel of Figure 8. Thus, BB and PWM perform worse for the Sine basis
than for the Chebyshev and Fourier bases; this is seen in the FPE’s of Table 2. Indeed,
the ordering of the curves from highest to lowest corresponds to decreasing FPE’s, as
seen in each row of Table 2. Again, the poor performance of the Sine basis may be due
to the oscillations of the higher order terms giving a worse bias-variance tradeoff.
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similar to those for Chebyshev, but a little lower.

0.2 0.4 0.6 0.8

0
10

20
30

40
50

60
70

variance of FPE; Fourier random cheby; n=100; 2000 iterations

xval

va
rF
P
E

bma
PWM
bb

0.2 0.4 0.6 0.8

0
10

20
30

40
50

60
70

variance of FPE; Fourier random sin; n=30; 2000 iterations

xval

va
rF
P
E

bma
PWM
bb

Figure 8: Variance in the FPE for the Trig class as a function of x. Left: Chebyshev,
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We comment that the corresponding graphs for the Bumps, Block and Treed cases
exhibited a U-shape, somewhat like Figure 7, but without the rise at the left hand side.
Also, the graphs for Doppler and NN’s were too choppy to be informative apart from
showing that BMA was more variable than either BB or PWM.

In aggregate, we have seen that BMA tends to have a higher variance and therefore
probably a worse bias-variance tradeoff than PWM or BB, possibly because BMA in-
cludes all models without selection. The varFPE graphs support the view that PWM
with Fourier tends to do best in a bias-variance sense and hence in a predictive error
sense. The method-basis pairings PWM-Chebyshev and BB-Fourier tend to do second
best. Note also that decreasng (or increasing) varFPE graphs can be regarded as the
left (or right) sides of a cup shaped varFPE graph.

5 Real Data: Higher Dimensional Examples

In this section we apply the five predictive techniques to twoM-complete data sets, the
second more complex than the first, for which exact modeling is unlikely to be effective.
From the earlier sections, we expect that (i) the prior will make little difference for
sample sizes approaching 100 or larger, (ii) PWM will do a little better than BB and
both will outperform BMA and the Frequentist methods, (iii) the Fourier basis will
do better than the Chebyshev, which will outperform Sine, (iv) for the more complex
of the two data sets, the identification of the best method-basis pair will be like the
Doppler example, i.e., not very clear, and (v) STK and AICMA will not do well outside
relatively few special cases. These expectations are largely but not entirely borne out in
the FPE tables and in the histograms for term selection presented below. In particular,
Sine does unexpectedly well in the first data set (unlike (iv)) perhaps because the data
is more oscillatory than we thought. (We do not give varFPE graphs in these examples
because they are multidimensional in X, making the varFPE graphs for the individual
explanatory variables hard to interpret.)

5.1 Concrete Data

We consider the data set Concrete Compressive Strength publicly available from the
UC Irvine Machine Learning Repository. The sample size is n = 1030 and there are
eight explanatory variables related to the way concrete is manufactured denoted X1

through X8. The dependent variable Y is the compressive strength. Details and
references can be found at http://archive.ics.uci.edu/ml/datasets/Concrete+

Compressive+Strength .

To begin, we set the basis elements from which we construct models. Since it is quite
hard to work with the Chebyshev basis in eight dimensions, we chose instead a Poly-
nomial (poly) basis. The nonorthogonality of these basis elements might be a problem
in other examples, but here the results are in line with the previous simulations with
the orthogonal Chebyshev basis. We chose all terms of second order or less among the
eight covariates, i.e., all linear terms X1, . . . , X8, all squares X2

1 , . . . , X
2
8 , and all distinct

http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
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rectangular terms XjXk for j < k, for a total of 44 terms. We chose the same number
of terms for the Sine basis by taking Sine of the 44 terms from the polynomial basis but
using a factor of two in place of a square, i.e., sinX1, . . . , sinX8, sin 2X1, . . . , sin 2X8

and sinXjXk for j < k. For the Fourier basis we mirrored the polynomial and Sine
basis by starting with sinX1, . . . , sinX8, cosX1, . . . , cosX8, sin 2X1, . . . , sin 2X8, and
cos 2X1, . . . , cos 2X8, giving 32 terms. For the remaining 12 terms we chose the best six
of the cosXjXk’s and the best six of the sinXjXk’s based on the correlation with the
first hundred observations within each run.

This level of adaptivity may appear to give the Fourier basis a ‘head start’ over the
other bases but it is a reasonable way to ensure all model lists have the same size. We
also accounted for this by treating the prediction based on the 101st - 210th observations
under Fourier as de facto comparable with prediction after the 1st - 310th observations
with Polynomial or Sine. We limited attention to the cases a = ±1 since they would be
indicative of performance for a mildly sparse prior (a = −1) or a mildly diffuse prior
(a = 1). We continued using the uniform prior over the models using the 44 terms.

FPE’s

In Table 9 we present the FPE’s for PWM, BB, BMA, AICMA and STK at three stages
of data accumulation - 30% (n = 310), 70% (n = 720), and 100% (n = 1030). First,
note that the numbers are systematically largest for poly and smallest for Fourier, with
Sine in between. Second, within each ensemble, the errors decrease as the sample size
increases; this is what we expect. Third, the FPE’s for the sparsity prior a = −1 are
lower for Sine and Fourier bases than for the diffuse prior a = 1, but higher for poly
with a = −1 than for a = 1. We show the case a = 1 for poly and the case a = −1 for
Sine and Fourier. Fourth, as we expect, the errors increase as p increases.

PWM with Fourier gave the best predictive performance, and BB with Fourier was a
close second. This is consistent with the simulations that showed BB is usually a close
second to PWM when given the same inputs. As can be seen from the increase in
FPE’s, the third and fourth best methods - PWM with Sine or BB with Sine (although
for p = 2 and Sine, AICMA did best) - were not competitive. In fact, Table 9 shows that
over the scenarios the methods group into three classes: the best two (PWM and BB
with Fourier) with FPE’s between 15 to 18 (for p = 1), the worst two (PWM and BB
with poly) with FPE’s between 64 and 89 (for p = 1), and the rest with FPE’s between
36 and 37 (for p = 1). As a curiosity, we have included an extra column labelled MID to
represent the predictor taking the middle value as in median

k=1,...,K
[wkfk(xnew|β̃k)]. Although

lacking any formal justification, MID did best for the Polynomial basis, possibly because
all the wk’s are less than one providing some shrinkage.

Model Selection for PWM and BB

Here we examine the best two methods, PWM and BB, by looking at the selection of
models formed from the ensemble. First, recall from Table 9 that the FPE’s for the
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PWM BB BMA MID AICMA STK

Poly 88.744 88.749 36.442 36.13 36.636 35.863
n = 310 1107.93 1107.96 237.892 235.724 239.598 232.044
a = 1 15099.25 15099.42 1614.77 1601.34 1628.975 1560.935

n = 720 69.449 69.449 36.209 35.749 36.209 35.747
699.342 699.342 234.92 231.39 234.92 231.399
7609.837 7609.837 1584.722 1559.469 1584.722 1558.127

n = 1030 64.362 64.362 36.137 35.628 36.137 35.67
606.086 606.086 232.968 229.075 232.968 230.425
6046.485 6046.485 1557.481 1529.664 1557.481 1548.028

Sine 35.807 35.815 36.112 36.13 36.087 35.863
n = 310 239.416 239.503 235.542 235.724 235.296 232.044
a = −1 1680.176 1680.977 1599.719 1601.341 1597.407 1560.935

n = 720 34.586 34.586 35.719 35.749 35.677 35.747
226.482 226.482 231.091 231.39 230.695 231.399
1552.664 1552.664 1556.723 1559.469 1553.27 1558.127

n = 1030 34.583 34.583 35.599 35.628 35.559 35.669
225.659 225.659 228.793 229.075 228.42 230.425
1541.65 1541.65 1527.185 1529.664 1523.927 1548.028

Fourier 17.577 17.591 35.822 36.493 35.79 35.575
n = 210 89.209 89.308 232.226 238.374 231.944 229.949
a = −1 490.167 490.811 1565.76 1618.74 1563.333 1548.389

n = 620 15.99 15.996 36.123 36.824 36.119 35.217
76.942 76.977 234.828 241.256 234.773 225.911
400.9 401.05 1587.71 1643.24 1587.115 1507.914

n = 930 15.651 15.652 35.138 35.828 35.136 35.164
75.598 75.621 225.986 232.215 225.962 226.259
396.457 396.644 1512.814 1565.875 1512.526 1517.933

Table 9: FPE’s for Concrete for the three bases, two values of a, three loss functions
and various sample sizes. The three rows for each sample size and basis correspond to
p = 1, 1.5, 2. For Fourier the FPE’s represent the prediction of 210, 620, and 930 as 100
data points were used for term selection.
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poly basis were systematically higher than for all other cases. Figure 9 reflects this
by showing that PWM and BB bail in to the whole model list, i.e., the large errors
reflect the inability of either method to use the variables to mimic the response or even
discriminate well over the explanatory variables. Note that none of the other methods,
BMA, AICMA, and STK, performed as badly.
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Figure 9: BB and PWM model selection proportions for the Concrete data using the
poly basis with a = 1. On the left n = 310, on the right n = 515. The horizontal axis
indicates the 29 models in their natural order; the vertical axis indicates the proportion
of times a model of each size is used by BB and PWM

By contrast, Figure 10 shows that with the Sine basis BB and PWM (and BMA) put all
mass on a single model, model 17, consisting of sinX1, . . . , sinX8, sin 2X1, . . . , sin 2X8

and sinX1X2. In the limit, all five methods appear to default to model selection as
opposed to a nontrivial model average. This explains why the FPE’s with Sine are in
such a narrow range.
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Figure 10: BB and PWM model selection proportions for the Concrete data using the
Sine basis with a = 1. Left: n = 310. Right: n = 720. The horizontal axis indicates
the 29 models in their natural order; the vertical axis indicates the proportion of times
a model of each size is used by BB and PWM.

PWM and BB with the Fourier basis give the best results and the reason is seen in
Figure 11. Although we do not observe a ‘nice’ unimodal histogram at any stage of
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data accumulation, what we do see is a march toward richer models as n increases. It
appears that the predictors choose larger and larger models because the sample size can
support it. Throughout, nontrivial averaging takes place with all three methods, i.e.,
none of them default to model selection. This adaptivity is what may be making PWM
with Fourier (and a = −1) the best of the prediction strategies. That is, even though we
do not obtain a ‘nice’ unimodal histogram (except in a very approximate sense) as was
found in the well-behaved simulations, the model list is large enough to be predictively
useful even if it cannot provide a function close to the DG.
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Figure 11: BB and PWM model selection proportions for the Concrete data using the
Fourier basis with a = 1. Upper left: n = 210. Upper right: n = 415. Lower left:
n = 620. Lower right: n = 930. The horizontal axis indicates the 29 models in their
natural order; the vertical axis indicates the proportion of times a model of each size is
used by BB and PWM.

5.2 Forest Fires Data

As a second and more complexM-complete example, consider the Forest Fires data set
publicly available from the UC Irvine Machine Learning Repository. The sample size is
n = 517 and there are 12 explanatory variables related to the severity of a forest fire.
The 11th variable is virtually constant so we dropped it from our analysis, relabeling
the remaining variables X1 through X11. The dependent variable, Y , is the burn area
of the forest fire. Details and references can be found at http://archive.ics.uci.

edu/ml/datasets/Forest+Fires .

http://archive.ics.uci.edu/ml/datasets/Forest+Fires
http://archive.ics.uci.edu/ml/datasets/Forest+Fires
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As before, we set the basis elements from which we construct models. Defaulting to
a poly basis instead of a multidimensional Chebyshev basis, we chose 77 explanatory
variables: the 11 linear terms X1, . . . , X11, the 11 square terms X2

1 , . . . , X
2
11 plus all

the rectangular terms XjXk for j 6= k. For the Sine basis, we chose sinXj , sin 2Xj for
j = 1, . . . , 11 and sinXjXk for j 6= k. For the Fourier basis we started with sinXj ,
cosXj , sin 2Xj and cos 2Xj for j = 1, . . . , 11 giving 44 terms. To find 33 more terms
we used the 17 terms from sinXjXk j 6= k and the 16 terms from cosXjXk j 6= k with
the highest absolute correlation with the response for the first 100 data points within
each run. Again, we limited attention to a = ±1 and used a uniform prior over models.

FPE’s

In Table 10 we present the FPE’s for PWM, BB, BMA, AICMA, and STK at three
stages of data accumulation - 25% (n = 129), 50% (n = 259), and 100% (n = 517). As
before we have adjusted the Fourier sample sizes to reflect the 100 data point burn in
but we also used prediction at n = 189, as n = 129 left an insufficient amount of data
(only 29 points) for model estimation and selection.

Table 10 is different from Table 9 in seven ways. First, BMA and AICMA are almost
always best when p = 1 even though they are optimal under L2. Second, one of BB
and PWM always wins when p = 1.5, 2 even though medians are commonly associated
with p = 1. Third, the FPE’s do not always decrease as n increases except for PWM
and BB; for BMA, AICMA, and STK, they often increase before decreasing, e.g., STK
with each basis, or just increase, e.g., BMA and Sine. Fourth, although not shown,
sparsity or diffuseness in the prior makes essentially no difference for poly while sparsity
actually harms prediction overall for both Sine and Fourier. Fifth, the polynomial basis
frequently gives the smallest FPE’s while Sine and Fourier are roughly equivalent. Sixth,
for each p, the difference in performance across predictors seems small. Seventh, there
are scenarios in which each method is best but no obvious pattern in performance can
be seen. Six and seven are reminiscent of the results for the Doppler class in Section
3, consistent with the notion that Fires is more complex than Concrete. The natural
conclusion is that the DG is just too complex for the predictors to be effective; this is
borne out in the next subsection.

Model Selection

Again, we examine model selection for PWM and BB since they are the only methods
that make predictions from a specific model. Given the appearance of Table 10 the
model selection probabilities are not entirely unexpected; clearly something is amiss. In
fact, for n > 259, the model selection probabilities were only nonzero for a very narrow
range of functions of very small models. As can be seen in Figure 12, with the poly
basis the methods essentially selected the second model while with the Sine and Fourier
bases the methods selected the third or fourth model for both a = 1 and a = −1. That
is, the inference from the predictors is that the model containing X1 and X2 is best
when using the polynomial basis while a model using X1, X2, X3, and X4 is best when
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a = 1 Lp PWM BB BMA AICMA STK
Poly 1 1.147 1.149 1.086 1.086 1.088

n = 129 1.5 1.451 1.454 1.778 1.777 1.767
2 2.014 2.019 3.110 3.108 3.055

n = 259 1 1.153 1.153 1.117 1.117 1.105
1.5 1.458 1.458 1.839 1.839 1.779
2 2.027 2.026 3.237 3.237 3.043

n = 517 1 1.142 1.142 1.130 1.13 1.069
1.5 1.432 1.432 1.950 1.85 1.731
2 1.965 1.965 3.227 3.227 2.975

Sine 1 1.169 1.173 1.086 1.086 1.088
n = 129 1.5 1.581 1.588 1.782 1.781 1.767

2 2.387 2.402 3.119 3.117 3.055
n = 259 1 1.159 1.159 1.117 1.118 1.105

1.5 1.576 1.575 1.843 1.843 1.779
2 2.407 2.405 3.246 3.245 3.043

n = 517 1 1.160 1.160 1.131 1.131 1.069
1.5 1.542 1.542 1.854 1.853 1.731
2 2.290 2.290 3.235 3.233 2.975

Fourier 1 1.164 1.167 1.113 1.113 1.131
n = 89 1.5 1.582 1.589 1.805 1.803 1.859

2 2.392 2.406 3.106 3.102 3.262
n = 159 1 1.178 1.179 1.123 1.123 1.071

1.5 1.589 1.591 1.840 1.839 1.748
2 2.389 2.393 3.210 3.208 3.035

n = 417 1 1.157 1.157 1.087 1.087 1.127
1.5 1.533 1.533 1.793 1.792 1.854
2 2.268 2.268 3.150 3.148 3.228

Table 10: FPE’s for Fires for the three bases, a = 1, three loss functions and various
sample sizes. Note that the sample size is adjusted for the Fourier case to allow for term
selection. We did not include the MID predictor because it peformed poorly.
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using the Sine basis or Fourier basis. As indicated in Figure 12, the convergence to a
single model is essentially complete for all bases at some stage between n = 189 and
n = 259. However, these simple models are hardly ‘true’, and their predictions are
relatively poor.
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Figure 12: BB and PWM model selection proportions for the Fires data with a = 1.
Top: Polynomial basis. Left n = 129, right n = 259. Middle: Sine basis. Left n = 129,
right n = 259. Bottom: Fourier basis. Left n = 89, right n = 159. The horizontal axis
indicates the 29 models in their natural order; the vertical axis indicates the proportion
of times a model of each size is used by BB and PWM.

Taken together, the lack of any strong pattern in Table 10 and the high degree of
concentration of posterior probability on specific small models points to a version of the
bail out effect. In contrast to the Concrete data set, the model list is not large enough
to be predictively useful or to provide a function close to the DG.
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We tested this conjecture by clustering the data using the terms in the selected models.
If the data represent a single cluster this is evidence against the bail out effect; otherwise
this is circumstantial evidence for the bail out effect. We used partitioning around
medoids clustering on the four-dimensional data (Yi, X2,i, X3,i, X4,i) with two optimality
criteria. This is implemented in the R package fpc (function pamk) (Hennig 2013). The
first criterion was the Calinski-Harabasz index based on the ratio of the between-cluster
means and the within-cluster variances. The second criterion was the average silhouette
width. Built into the software is the Duda-Hart test for whether one cluster suffices.

The optimal clusterings under the two criteria are given in Figure 13. Using average
silhouette width two clusters are found to be optimal, while under Calinski-Harabasz we
find that five clusters are optimal. We conclude that the Fires data may be the mixture
of two or more populations. This suggests that the key features of this data set cannot
be readily summarized by the available model lists. If the data is an IID mixture of
populations then the structure of our predictors, treating the data as exchangeable, is
incorrect and a refinement of the procedure, e.g., partitioning the data into its sub-
populations, might be necessary. Indeed, one is led to suspect that while Fires is an
M-complete problem, it is near the boundary with M-open problems.
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Figure 13: Two clusterings of the Fires data under different optimality criteria for
choosing the number of clusters. In both cases, the graphs are planes in the first
two principal components (labeled component 1 and 2) which accounted for 59% of the
variability in the data. Left: average silhouette width (ASW). Right: Calinski-Harabasz
index (C-H). The numbers indicate data points.

6 Discussion

We have proposed a new technique PWM for Bayes prediction for theM-complete class
of problems and verified that it works better than other predictors for a large collection
of simulations. Admittedly, of the other predictors only AICMA was intended for M-
complete problems; BMA, BB, and STK were intended for M-closed problems even
though they are commonly used in M-complete settings. In particular, we have used
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three different classes of ensembles based on different bases. Within each predictive
problem there is a bias-variance interpretation, while, in aggregate, the patterns of
performance may be better explained by complexity considerations.

We posit that there is range of difficulty associated with the class ofM-complete prob-
lems. The simulated examples in this paper have been ordered roughly in terms of in-
creasing complexity of the DG as have the real data examples. Our new method seems to
work well, outside of special cases, onM-complete problems until the complexity of the
M-complete problem approaches that of an M-open problem or reduces to that of an
M-closed problem. Indeed, our results for very complexM-complete problems suggest
that methods for M-complete problems break down for M-open problems. (Methods
for M-open problems likely will do poorly for M-complete problems since they can
not use the information that a model exists.) One of the implications of this is that
adaptive methods, like PWM, will do better in limited sample size settings than other
less adaptive methods. Wong and Clarke (2004) is an example of this in the M-closed
case. Adaptivity in theM-open case does not seem to have been explored, but it is not
hard to imagine adaptivity will be helpful there, too.

On the topic of model list selection we have seen that good prediction is associated with
histograms for model selection that are ‘nice’, i.e., unimodal, light-ish tails, roughly
symmetric. Thus, when the histogram concentrates at the simplest models we are led
to a ‘bail out effect’ in which the predictor scheme gives up on controlling bias and
just chooses a predictor with the smallest possible variance. On the other hand, when
the histogram concentrates on the most complex models we are led to a ‘bail in effect’
meaning that the bias is being reduced so much that controlling the variance is not
possible. This is another version of the bias-variance tradeoff on the level of model lists
found in Fokoue and Clarke (2011). When the predictor bails out or bails in, we are
led to rechoose the model list so that models giving serviceable predictions will be in
the middle region of the list. One way to do this was used in Clarke and Clarke (2009);
however, it is infeasible for limited sample sizes.

In this paper we have not explored model list reselection. Because of the sequential
nature of our work we have implicitly permitted model reselection from time step to
time step but from the same ensemble. Tackling the more complex predictive problems
in the M-complete class of DG’s may require periodic reselection of the model list so
as to move it – or at least some of its members – closer to better predictors. As a
generality, the collection of models is so vast that merely choosing a large collection
of models will require more data than will generally be available. Thus, a search over
model lists, as well as over models on a list, will have to be done efficiently.

We conclude that prediction is likely to be unsuccessful when the predictive difficulty
of the DG is too high relative to the predictor. The concept of the predictive difficulty
of a DG is one of complexity and it is reasonable to imagine that there is an analogous
concept of complexity appropriate for predictors. Indeed, the bail in or bail out effects
may represent a mismatch of the complexity of the DG and predictor as much as a bias-
variance phenomenon. In these terms, our prescription that the histogram of model
selection be ‘nice’ can be regarded as complexity matching: For optimal performance
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the complexity of the predictor should match the complexity of the DG. The impediment
is how to formalize the complexity of a DG and the complexity of a predictor so that
they are useful and comparable. Outside M-open problems, codelength is one obvious
approach. A codelength can easily be defined for a DG, e.g., via the empirical entropy
or via two stage codes, see Barron and Cover (1991). Also, a codelength can easily
be defined for some predictors such as the BMA (merely code the models, priors, and
data with respect to classes of each). On the other hand, the number of terms in a
model provides a sort of complexity even if it does not include any assessment of the
complexity of the inputs to a predictor or the complexity with which a predictor uses
its inputs. That there should be a meaningful notion of complexity for predictors is not
controversial. Identifying such a notion formally, however, will be.
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