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RANDOM WALKS IN DYNAMIC RANDOM ENVIRONMENTS:
A TRANSFERENCE PRINCIPLE1

BY FRANK REDIG AND FLORIAN VÖLLERING

Delft University of Technology and Georg-August-Universität Göttingen

We study a general class of random walks driven by a uniquely ergodic
Markovian environment. Under a coupling condition on the environment we
obtain strong ergodicity properties for the environment as seen from the po-
sition of the walker, that is, the environment process. We can transfer the rate
of mixing in time of the environment to the rate of mixing of the environment
process with a loss of at most polynomial order. Therefore the method is ap-
plicable to environments with sufficiently fast polynomial mixing. We obtain
unique ergodicity of the environment process. Moreover, the unique invariant
measure of the environment process depends continuously on the jump rates
of the walker.

As a consequence we obtain the law of large numbers and a central limit
theorem with nondegenerate variance for the position of the walk.

1. Introduction. In recent days random walks in dynamic random environ-
ments have been studied by several authors. Motivation comes among others from
nonequilibrium statistical mechanics—derivation of Fourier law—[Dolgopyat and
Liverani (2008)] and large deviation theory [Rassoul-Agha, Seppäläinen and Yil-
maz (2013)]. In principle, random walks in dynamic random environments con-
tain, as a particular case, a random walk in a static random environment. However,
mostly, in turning to dynamic environments, authors concentrate more on environ-
ments with sufficient mixing properties. In that case the fact that the environment
is dynamic helps to obtain self-averaging properties that ensure standard limiting
behavior of the walk, that is, the law of large numbers and the central limit theo-
rem.

In the study of the limiting behavior of the walker, the environment process,
that is, the environment as seen from the position of the walker plays a crucial
role. See also Joseph and Rassoul-Agha (2011), Rassoul-Agha (2003) for the use
of the environment process in related context. In a translation invariant setting,
the environment process is a Markov process and its ergodic properties fully de-
termine corresponding ergodic properties of the walk, since the position of the
walker equals an additive function of the environment process plus a controllable
martingale.
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The main theme of this paper is the following natural question: if the envi-
ronment is uniquely ergodic, with a sufficient speed of mixing, then the environ-
ment process shares similar properties. In several works [Boldrighini et al. (1992),
Bandyopadhyay and Zeitouni (2006), Boldrigini, Minlos and Pellegrinotti (2007),
Avena, den Hollander and Redig (2011)] this transfer of “good properties of the
environment” to “similar properties of the environment process” is made via a
perturbative argument, and therefore holds only in a regime where the environ-
ment and the walker are weakly coupled. Some nonperturbative results also exist,
but those require strong mixing properties of the environment in space and time
[Dolgopyat, Keller and Liverani (2008), Dolgopyat and Liverani (2009), Bricmont
and Kupiainen (2009)].

In this paper we consider the context of general Markovian uniquely ergodic
environments, which are such that the semigroup contracts at a minimal speed in a
norm of variation type. Examples of such environments include interacting particle
systems in “the M < ε regime” [Liggett (1985)] and weakly interacting diffusion
processes on a compact manifold. Our conditions on the environment are formu-
lated in the language of coupling. More precisely, we impose that for the environ-
ment there exists a coupling such that the distance between every pair of initial
configurations in this coupling decays fast enough so that multiplied with td it is
still integrable in time. As a result we then obtain that for the environment process
there exists a coupling such that the distance between every pair of initial configu-
rations in this coupling decays at a speed which is at least integrable in time. In fact
we show more, namely in going from the environment to the environment process,
we essentially loose a factor td in the rate of decay to equilibrium. For example,
if for the environment there is a coupling where the distance decays exponentially,
then the same holds for the environment process (with possibly another rate).

Once we have controllable coupling properties of the environment process, we
can draw strong conclusions for the position of the walker, for example, a law of
large numbers with an asymptotic speed that depends continuously on the rates,
and a central limit theorem. We also prove recurrence in d = 1 under condition of
zero speed.

Our paper is organized as follows. The model and necessary notation are intro-
duced in Section 2. Section 3 is dedicated to lift properties of the environment to
the environment process. The focus is on Theorem 3.1 and its refinements. Based
on these results consequences for the walker are summarized in Section 3.5. In
Section 4 we give examples for environments to which the results are applicable
and present one example which has polynomial mixing in space and time. Sec-
tion 5 is devoted to proofs.

2. The model.

2.1. Environment. A random walk in dynamic random environment is a pro-
cess (Xt)t≥0 on the lattice Z

d which is driven by a second process (ηt )t≥0 on EZ
d
,
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the (dynamic) environment. This is interpreted as a random walk moving through
the environment, with time-dependent transition rates being determined by the lo-
cal environment around the random walk.

To become more precise, the environment (ηt )t≥0 we assume to be a Feller pro-
cess on the state space � := EZ

d
, where (E,ρ) is a compact metric space (exam-

ples in mind are E = {0,1} or E = [0,1]). We assume (without loss of generality)
that the distance ρ on E is bounded from above by 1. The generator of the Markov
process (ηt )t≥0 is denoted by LE and its semigroup by SE

t , both considered on
the space of continuous functions C(�;R). We assume that the environment is
translation invariant, that is,

P
E
η (θxηt ∈ ·) = P

E
θxη(ηt ∈ ·)

with θx denoting the shift operator θxη(y) = η(y − x) and P
E
η the path space mea-

sure of the process (ηt )t≥0 starting from η.

2.2. Lipschitz functions. Denote, for x ∈ Z
d ,

(� × �)x := {
(η, ξ) ∈ �2 :η(x) �= ξ(x) and η(y) = ξ(y) ∀y ∈ Z

d \ {x}},
x ∈ Z

d .

DEFINITION 2.1. For any f :� → R, we denote by δf (x) the Lipschitz-
constant of f w.r.t. the variable η(x),

δf (x) := sup
(η,ξ)∈(�×�)x

f (η) − f (ξ)

ρ(η(x), ξ(x))
.

We write

‖|f ‖| := ∑
x∈Zd

δf (x).(1)

Note that ‖|f ‖| < ∞ implies that f is bounded and continuous, and the value of
f is uniformly weakly dependent on sites far away. A weaker semi-norm we also
use is the oscillation (semi)-norm

‖f ‖osc := sup
η,ξ∈�

(
f (η) − f (ξ)

)
.

From telescoping over single site changes one sees ‖f ‖osc ≤ ‖|f ‖|.

2.3. The random walker and assumption on rates. The random walk Xt is a
process on Z

d , whose transition rates depend on the state of the environment as
seen from the walker. More precisely, the rate to jump from site x to site x + z

given that the environment is in state η is α(θ−xη, z). We make two assumptions



3160 F. REDIG AND F. VÖLLERING

on these jump rates α. First, we guarantee that the position of the walker Xt has a
first moment by assuming

‖α‖1 := ∑
z∈Zd

‖z‖ sup
η∈�

∣∣α(η, z)
∣∣ < ∞.(2)

More generally, as sometimes higher moments are necessary, we write

‖α‖p
p := ∑

z∈Zd

‖z‖p sup
η∈�

∣∣α(η, z)
∣∣, p ≥ 1.

Second, we limit the sensitivity of the rates to small changes in the environment
by assuming that

‖|α‖| := ∑
z∈Zd

∥∥∣∣α(·, z)∥∥∣∣ < ∞.(3)

Finally, sometimes we will have to assume the stronger estimate

‖|α‖|1 := ∑
z∈Zd

|z|∥∥∣∣α(·, z)∥∥∣∣ < ∞.(4)

2.4. Environment process. While the random walker Xt itself is not a Markov
process due to the dependence on the environment, the pair (ηt ,Xt) is a Markov
process with generator

Lf (η, x) = LEf (·, x)(η) + ∑
z∈Zd

α(θ−xη, z)
[
f (η, x + z) − f (η, x)

]
,

corresponding semigroup St (considered on the space of functions continuous in
η ∈ � and Lipschitz continuous in x ∈ Z

d ) and path space measure Pη,x .
The environment as seen from the walker is of crucial importance to under-

stand the asymptotic behavior of the walker itself. This process, (θ−Xt ηt )t≥0, is
called the environment process (not to be confused with the environment ηt ). It is
a Markov process with generator

LEPf (η) = LEf (η) + ∑
z∈Zd

α(η, z)
[
f (θ−zη) − f (η)

]
,

corresponding semigroup SEP
t [on C(�)] and path space measure P

EP
η . Notice that

this process is meaningful only in the translation invariant context.

2.5. Coupling of the environment. In the remainder of the paper we will need
a coupling P̂

E
η,ξ , η, ξ ∈ �, of the environment. For η, ξ the coupled pair (η1

t , η
2
t )t≥0

consists of two copies of the environment, started in η and ξ . By definition, a cou-
pling has the marginals P̂

E
η,ξ (η

1 ∈ ·) = Pη(ηt ∈ ·) and P̂
E
η,ξ (η

2 ∈ ·) = Pξ (ηt ∈ ·).
Let (Ft )t≥0 be the canonical filtration in the path space of coupled processes. We
say such a coupling satisfies the marginal Markov property if, for any f :� → R,

Ê
E
η,ξ

[
f

(
ηi

t

)|Fs

] = SE
t−sf

(
ηi

s

)
, i = 1,2; t ≥ s ≥ 0.(5)
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We say it satisfies the strong marginal Markov property if, for any f :� → R and
any stopping time τ ,

Ê
E
η,ξ

[
1t≥τ f

(
ηi

t

)|Fτ

] = 1t≥τ S
E
t−τ f

(
ηi

τ

)
, i = 1,2.(6)

Note that the (strong) Markov property for the coupling implies the (strong)
marginal Markov property.

3. Ergodicity of the environment process.

3.1. Assumptions on the environment. In order to conclude results for the ran-
dom walk, we need to have sufficient control on the environment. To this end
we assume there exists a translation invariant coupling P̂

E
η,ξ of the environment,

which satisfies the strong marginal Markov property (6). In this coupling we look
at Ê

E
η,ξρ(η1

t , η
2), measuring the distance of the states at the origin. If this decays

sufficiently fast we will be able to obtain ergodicity properties of the environment.

ASSUMPTION 1a. The coupling P̂
E satisfies∫ ∞

0
td sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt < ∞.

This assumption is already sufficient to obtain the law of large numbers for the
position of the walker and unique ergodicity of the environment process, but it
does not give quite enough control on local fluctuations. The following stronger
assumption remedies that.

ASSUMPTION 1b. The coupling P̂
E satisfies∫ ∞

0
td

∑
x∈Zd

sup
(η,ξ)∈(�×�)0

Ê
E
η,ξρ

(
η1

t (x), η2
t (x)

)
dt < ∞.

REMARK. Typically, a coupling which satisfies Assumption 1b also satisfies
Assumption 1a. It is, however, not automatic. But given a translation invariant
coupling P̂

E which satisfies Assumption 1b it is possible to construct from P̂
E

a new coupling P̃
E via a telescoping argument so that P̃ satisfies both Assumptions

1b and 1a.

In Section 4 we will discuss some examples which satisfy those assumptions.
Beside natural examples where Ê

E
η,ξρ(η1

t (0), η2
t (0)) decays exponentially fast, we

give an example where other decay rates like polynomial decay are obtained.
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3.2. Statement of the main theorem. The main result of this section is the fol-
lowing theorem, which tells us how the coupling property of the environment lifts
to the environment process.

THEOREM 3.1. Let f :� → R with ‖|f ‖| < ∞.

(a) Under Assumption 1a, there exists a constant Ca > 0 so that

sup
η,ξ∈�

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt ≤ Ca‖|f ‖|.

(b) Under Assumption 1b, there exists a constant Cb > 0 so that∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt ≤ Cb‖|f ‖|.

This theorem is the key to understanding the limiting behavior of the random
walk, that is, the law of large numbers, as well as for the central limit theorem.
Section 5 is devoted the proof of Theorem 3.1. In Section 3.4 we generalize this
result to give more information about decay in time. Here we continue with results
we can obtain using Theorem 3.1. Most results about the environment process just
use part (a) of the theorem; part (b) shows how more sophisticated properties lift
from the environment to the environment process as well. Those can be necessary
to obtain more precise results on the walker, like how likely atypical excursions
from the expected trajectory are.

It is possible to lift other properties from the environment to the environment
process as well. For example, if Assumption 1b is modified to state∫ ∞

0
td

∑
x∈Zd

sup
(η,ξ)∈(�×�)0

Ê
E
η,ξ

ρ(η1
t (x), η2

t (x))

ρ(η(0), ξ(0))
dt < ∞,

then that implies for the environment process

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

|SEP
t f (η) − SEP

t f (ξ)|
ρ(η(x), ξ(x))

dt ≤ Cb′‖|f ‖|.

This kind of condition can be relevant in the context of diffusive environments to
show that small changes in the environment are causing only small changes in the
environment process.

3.3. Existence of a unique ergodic measure and continuity in the rates. First,
the environment process, that is, the environment as seen from the walker, is er-
godic.

LEMMA 3.2. Under Assumption 1a the environment process has a unique er-
godic probability measure μEP.
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PROOF. As E is compact, so is �, and therefore the space of stationary mea-
sures is nonempty. So we must just prove uniqueness.

Assume μ,ν are both stationary measures. Choose an arbitrary f :� → R with
‖|f ‖| < ∞. By Theorem 3.1(a), for any T > 0,

T
∣∣μ(f ) − ν(f )

∣∣ ≤
∫ ∫ ∫ T

0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt μ(dη)ν(dξ)

≤ sup
η,ξ∈�

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt < ∞.

As T is arbitrary, μ(f ) = ν(f ). As functions f with ‖|f ‖| < ∞ are dense in C(�),
there is at most one stationary probability measure. �

It is of interest not only to know that the environment process has a unique
ergodic measure μEP, but also to know how this measure depends on the rates α.

THEOREM 3.3. Under Assumption 1a, the unique ergodic measure μEP
α de-

pends continuously on the rates α. For two transition rate functions α,α′, we have
the following estimate:

∣∣μEP
α (f ) − μEP

α′ (f )
∣∣ ≤ C(α)

p(α)

∥∥α − α′∥∥
0‖|f ‖|,

that is,

(α,f ) �→ μEP
α (f )

is continuous in ‖ · ‖0 × ‖| · ‖|. The functions C(α),p(α) satisfy C(α) > 0,p(α) ∈
]0,1[. In the case that the rates α do not depend on the environment, that is,
α(η, z) = α(z), they are given by p(α) = 1,

C(α) =
∫ ∞

0
sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt.

As the proof is a variation of the proof of Theorem 3.1, it is delayed to the end
of Section 5.

3.4. Speed of convergence to equilibrium in the environment process. We al-
ready know that under Assumption 1a the environment process has a unique er-
godic distribution. However, we do not know at what speed this process converges
to its unique stationary measure. Given the speed of convergence for the environ-
ment it is natural to believe that the environment process inherits that speed with
some form of slowdown due to the additional self-interaction which is induced
from the random walk. For example, if the original speed of convergence were
exponential, then the environment process would also converge exponentially fast.
This is indeed the case.
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THEOREM 3.4. Let φ : [0,∞[ → R be a monotone increasing and continuous
function satisfying φ(0) = 1 and φ(s + t) ≤ φ(s)φ(t).

(a) Suppose the coupling P̂
E satisfies∫ ∞

0
φ(t)td sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt < ∞.

Then there exists a constant K0 > 0 and a decreasing function Ca : ]K0,∞[ →
[0,∞[ so that for any K > K0 and any f :� → R with ‖|f ‖| < ∞,

sup
η,ξ∈�

∫ ∞
0

φ

(
t

K

)∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt ≤ Ca(K)‖|f ‖|.

(b) Suppose the coupling P̂
E satisfies∫ ∞

0
φ(t)td

∑
x∈Zd

sup
(η,ξ)∈(�×�)0

Ê
E
η,ξρ

(
η1

t (x), η2
t (x)

)
dt < ∞.

Then there exists a constant K0 > 0 and a decreasing function Cb : ]K0,∞[ →
[0,∞[ so that for any K > K0 and any f :� → R with ‖|f ‖| < ∞,

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

φ

(
t

K

)∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt ≤ Cb(K)‖|f ‖|.

Canonical choices for φ are φ(t) = exp(βtα),0 < α ≤ 1 or φ(t) = (1 + t)β ,
β > 0. This leads to the following transfer of convergence speed to equilibrium
from the environment to the environment process:

• exponential decay: e−λt −→ e−λt/(K0+ε),
• stretched exponential decay: e−λtα −→ e−λtα/(K0+ε)α ,
• polynomial decay: t−λ −→ t−(λ−d−ε),

with ε > 0 arbitrary, and in the case of polynomial decay, λ > d + 1.

3.5. Consequences for the walker. The strong convergence of the environment
process to its stationary measure obtained in Theorem 3.1 implies various facts for
the random walker. The most basic fact is that the random walker has a limiting
speed.

PROPOSITION 3.5. For any η ∈ �,x ∈ Z
d ,

v := lim
t→∞

Xt

t
=

∫ ∑
z∈Zd

zα(η, z)μEP(dη)

in L1 and almost surely w.r.t. Pη,x . The L1-convergence is also uniform w.r.t. η for
a given x.
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The convergence under PμEP,0 is a direct consequence of ergodicity. For the ex-
tension to Pη,x some ingredients of the proofs in Section 5 are required. Therefore
the proof is situated at the end of Section 5.

In the following theorem we prove the functional central limit theorem for the
position of the walker. The convergence to Brownian motion via martingales is a
rather straightforward consequence of the ergodicity given by Theorem 3.1. The
issue of nondegeneracy of the variance is less standard and hence we give a proof.

THEOREM 3.6. Assume Assumption 1a, ‖α‖2 < ∞, ‖|α‖|1 < ∞. Then the
scaling limit of the random walk is a Brownian motion with drift v, that is,

XtT − vtT√
T

−→
T →∞WD(t),

where WD is a Brownian motion with covariance matrix D.
Let e ∈ R

d be a unit vector. Assume that either:

(a) there exists a z ∈ Z
d, 〈e, z〉 �= 0, so that for all t > 0 and η ∈ � the proba-

bility Pη(α(ηt , z) > 0) is positive;
(b) μEP(α(·, z)) > 0 for z ∈ Z

d with 〈e, z〉 arbitrary large.

Then limT →∞ 1
T

Var(〈XT , e〉) > 0. In particular, if (a) or (b) is satisfied for all e,
then the covariance matrix D is nondegenerate.

PROOF. Notice that
∑

z∈Zd zα(·, z) − v is in the domain of (LEP)−1 because
of Theorem 3.1. Decompose

Xt − vt =
(
Xt −

∫ t

0

∑
z∈Zd

zα(θ−Xsηs, z) ds

)

+
(∫ t

0

∑
z∈Zd

z
[
α(θ−Xsηs, z) − μEP(

α(·, z))]ds

)
.

The first term on the right-hand side is a martingale, and the second one is one as
well, up to a uniformly bounded error. Both converge to Brownian motion with
finite variance by standard arguments when ‖α‖2 < ∞. However, as the two terms
are not independent, an argument is needed to prove that they do not annihilate.
To prove that we show that 1

T
Var(〈XT , e〉) is bounded away from 0 under the

assumed conditions. Assume T > 0 integer, and let (Ft )t≥0 be the canonical filtra-
tion. Introduce the discrete-time martingale

MT
n := E

[〈XT , e〉|Fn

] − E
[〈XT , e〉|F0

] = Xn + �T −n(θ−Xnηn) − �t(η0),

�S(η) := E0,η

∫ S

0

∑
z∈Zd

〈z, e〉α(θ−Xt ηt , z) dt =
∫ S

0
SEP

t φ(η) dt;

φ(η) := ∑
z∈Zd

〈z, e〉α(η, z).
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With this, by stationarity of the environment process started from μEP,

VarμEP
(〈XT , e〉) ≥ EμEP

(〈XT , e〉 − E
[〈XT , e〉|F0

])2

=
T∑

n=1

EμEP(Mn − Mn−1)
2

=
T∑

n=1

EμEP
(〈Xn, e〉 − 〈Xn−1, e〉 + �T −n(θ−Xnηn)

− �T −(n−1)(θ−Xn−1ηn−1)
)2

=
T∑

n=1

EμEP
(〈X1, e〉 + �T −n(θ−X1η1) − �T −(n−1)(η0)

)2
.

What has to be shown is that the above term is not 0. By Theorem 3.1 and ‖φ‖∞ ≤
‖|α‖|1 < ∞,

sup
η,ξ∈�

sup
T ≥0

∣∣�T (ξ) − �T +1(η)
∣∣ =: C < ∞.

Therefore, using |a + b| ≥ ||a| − |b||,
VarμEP

(〈XT , e〉) ≥ T EμEP1|〈X1,e〉|>C

(∣∣〈X1, e〉
∣∣ − C

)2
.

What remains to show is that PμEP(|〈X1, e〉| > C) > 0. If (b) is satisfied, this is
immediate. If (a) is satisfied, then there is a positive probability that Xt performs
sufficiently many jumps of size z (and no other jumps) up to time 1. �

REMARK. The convergence to Brownian motion with a nondegenerate vari-
ance also provides information about the recurrence behavior of the walker. If
v = 0, supposing d = 1 (in higher dimensions, project onto a line), the limiting
Brownian motion is centered. Hence there exists an infinite sequence t1 < t2 < · · ·
of times with Xt2n

< 0 and Xt2n+1 > 0, n ∈ N. Supposing the walker has only
jumps of size 1, it will traverse the origin between tn, tn+1 for any n ∈ N; that is,
it is recurrent. (If the walker also has larger jumps, then one needs an argument to
actually hit the origin with some positive probability in [tn, tn+1].) Particularly, the
recurrence implies that there exists no regime where the random walk is transient
but with 0 speed.

4. Examples: Layered environments. There are many examples of environ-
ments which satisfy both Assumptions 1a and 1b. Naturally, exponential conver-
gence to the ergodic measure is sufficient, independent of the dimension d . There-
fore interacting particle systems in the so-called M < ε-regime or weakly inter-
acting diffusions on a compact manifold belong to the environments to which this
method is applicable.
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To exploit the fact that only sufficient polynomial decay of correlations is re-
quired, we will construct a class of environments which we call layered environ-
ments. One can think of layered environments as a weighted superposition of a
sequence of (independent) environments.

Those kind of environments are fairly natural objects to study. One area where
they can appear is an idealization of molecular motors. In molecular motors the
walker moves (e.g.) in a potential, where the potential randomly switches between
various global states [e.g., related to chemical transitions in the example of kine-
sine; see Ambaye and Kehr (1999), Donato and Piatnitski (2005), Jarzynski and
Mazonka (1999), Jülicher, Ajdari and Prost (1997), Magnasco (1994) for more
motivation]. Here each layer is representing the interaction with the environment
for one global state. In many realistic situations there are many such states. If the
global state changes very quickly compared to the movement of the random walk,
what is observed is a weighted superposition with weights given by the relative
frequencies of the appearance of the individual global states.

Layered environments could also appear from a multi-scale analysis of a com-
plicated environment, where the layers with a high index represent the long-range
interactions. Besides, layered environments are a useful tool because they form a
class of environments which are uniformly mixing with arbitrary mixing speed.
There are plenty of examples where one has polynomial or stretched exponential
mixing, for example, in the context of diffusion processes. However, those exam-
ples are not uniformly mixing, in the context of diffusion processes because of an
unbounded state space.

Here we focus on layers which still have exponential decay of correlations, but
each layer does converge to its stationary measure at a layer specific rate αn, with
n being the index of the layer. When αn tends to 0 as n → ∞ this introduces some
form of arbitrary slow decay of correlations. We counterbalance this by weighting
the superposition in such a way that the individual influence of a layer goes to 0 as
well. Note that such a counterbalancing is only possible because of the Lipschitz
nature of the assumptions. A uniform decay estimate does not hold because of the
arbitrary slow decay in deep layers.

More formally, for each n ∈ N let (ηn)t≥0 be a Markov process on �0 :=
{0,1}Z

d
, the environment on layer n. This process should have a coupling P̂

n
η,ξ

with

sup
η,ξ∈�0

Ê
n
η,ξ

∣∣ηn,1
t (0) − η

n,2
t (0)

∣∣ ≤ 2e−αnt , αn > 0.(7)

The layered environment (ηt )t≥0 then consists of the stack of independent layers
(ηn

t )t≥0. The single site state space is E = {0,1}N and space of all configurations

� = EZ
d
.

The superposition of the environments is weighted by the distance ρ on E,
which we choose in the following way. Fix a sequence γ1 > γ2 > · · · > 0 with
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∑
n∈N γn = 1. For (an)n∈N, (bn)n∈N ∈ E the distance is

ρ
(
(an), (bn)

) := ∑
n∈N

γn|an − bn|.(8)

The coupling P̂
E of the layered environments is simply the independent coupling

of the individual layer couplings P̂
n. The layer decay (7) and the choice of dis-

tance (8) then provide the following decay of coupling distance for the layered
environment:

sup
η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

) ≤ 2
∑
n∈N

γne
−αnt .(9)

The sum on the right-hand side of (9) can have arbitrary slow decay depending
on αn, γn. For example, if one fixes αn = n−1, then γn = n−γ−1 leads to decay of
order t−γ .

We did not specify the exact nature of the individual layers, as those did not
matter for the construction. A natural example is when individual layers consist
of Ising model Glauber dynamics at inverse temperature βn < βc, and βn → βc as
n → ∞.

5. Proofs. In this section we always assume that Assumption 1a holds.
We start with an outline of the idea of the proofs. We have a coupling of the

environments (η1
t , η

2
t ), which we extend to include two random walkers (X1

t ,X
2
t ),

driven by their corresponding environment. We maximize the probability of both
walkers performing the same jumps. Then Assumption 1a is sufficient to obtain
a positive probability of both walkers staying together forever. If the walkers stay
together, one just has to account for the difference in environments, but not the
walkers as well. When the walkers split, the translation invariance allows for ev-
erything to shift so that both walkers are back at the origin, and one can try again.
After a geometric number of trials it is then guaranteed that the walkers stay to-
gether.

PROPOSITION 5.1 (Coupling construction). Given the coupling P̂
E
η,ξ of the

environments, we extend it to a coupling P̂η,x;ξ,y . This coupling has the following
properties:

(a) (Marginals) The coupling supports two environments and corresponding ran-
dom walkers:
(1) P̂η,x;ξ,y((η

1
t ,X

1
t ) ∈ ·) = Pη,x((ηt ,Xt) ∈ ·);

(2) P̂η,x;ξ,y((η
2
t ,X

2
t ) ∈ ·) = Pξ,y((ηt ,Xt) ∈ ·);
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(b) (Extension of P̂
E
η,ξ ) The environments behave as under P̂

E ,

P̂η,x;ξ,y

((
η1

t , η
2
t

) ∈ ·) = P̂
E
η,ξ

((
η1

t , η
2
t

) ∈ ·);
(c) (Coupling of the walkers) X1

t and X2
t perform identical jumps as much as

possible, and the rate of performing a different jump is
∑

z∈Zd |α(θ−X1
t
η1

t , z)−
α(θ−X2

t
η2

t , z)|;
(d) (Minimal and maximal walkers) In addition to the environments η1

t and η2
t

and random walkers X1
t and X2

t , the coupling supports minimal and maximal
walkers Y+

t , Y−
t as well. These two walkers have the following properties:

(1) Y−
t ≤ X1

t − x,X2
t − y ≤ Y+

t P̂η,x;ξ,y -a.s. (in dimension d > 1, this is to be
interpreted coordinate-wise);

(2) Y+
t , Y−

t are independent of η1
t , η

2
t ;

(3) Êη,x;ξ,yY
+
t = tγ + for some γ + ∈ R

d ;
(4) Êη,x;ξ,yY

−
t = tγ − for some γ − ∈ R

d .

PROOF. The construction of this coupling P̂η,x;ξ,y is done in the following
way: we extend the original coupling P̂

E
η,ξ to contain an independent sequence

of Poisson processes Nz, z ∈ Z
d , with rates λz := supη α(η, z), as well as a suf-

ficient supply of independent uniform [0,1] variables. The walkers X1,X2 then
start from x (resp., y) and exclusively (but not necessarily) jump when one of the
Poisson clocks Nz rings. When the clock Nz rings the walkers jumps from Xi

t to
Xi

t + z only if a uniform [0,1] variable U satisfies U < α(θ−Xi
t
ηi

t , z)/λz, i = 1,2.
Note that both walkers share the same U , but U ’s for different rings of the Poisson
clocks are independent.

The upper and lower walkers Y+
t , Y−

t are constructed from the same Poisson
clocks Nz. They always jump on these clocks; however, they jump by max(z,0)

or min(z,0), respectively.
The properties of the coupling arise directly from the construction plus the fact

that ‖α‖1 < ∞. �

To ease notation we will call P̂η,0;ξ,0 simply P̂η,ξ and the law of Y+
t , Y−

t P̂

whenever there is no fear of confusion.
Now we show how suitable estimates on the coupling speed of the environment

translate to properties of the extended coupling.

LEMMA 5.2.

Êη,x;ξ,yρ
(
η1

t

(
X1

t

)
, η2

t

(
X1

t

))
<

(∥∥γ + − γ −∥∥∞t + 1
)d sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
.
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PROOF. Denote with Rt ⊂ Z
d the set of sites z ∈ Z

d with Y−
t ≤ z ≤ Y+

t

(coordinate-wise). Then

sup
η,ξ,x,y

Êη,x;ξ,yρ
(
η1

t

(
X1

t

)
, η2

t

(
X1

t

))
≤ sup

η,ξ,x,y

Êη,x;ξ,y

∑
z∈Rt

ρ
(
η1

t (x + z), η2
t (x + z)

)

≤ Ê

[ ∑
z∈Rt

1
]

sup
η,ξ,z

Ê
E
η,ξρ

(
η1

t (z), η
2
t (z)

)

≤ (∥∥γ + − γ −∥∥∞t + 1
)d sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
. �

LEMMA 5.3. Denote by τ := inf{t ≥ 0 :X1
t �= X2

t } the first time the two walk-
ers are not at the same position. Under Assumption 1a,

inf
η,ξ∈�

P̂η;ξ (τ = ∞) > 0,

that is, the walkers X1 and X2 never decouple with strictly positive probability.

PROOF. Both walkers start in the origin, therefore τ > 0. The probability that
a Poisson clock with time dependent rate λt is has not yet rung by time T is
exp(− ∫ T

0 λt dt). As the rate of decoupling is given by Proposition 5.1(c), we ob-
tain

P̂η,ξ (τ > T ) = Êη,ξ exp
(
−

∫ T

0

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt

)
(10)

≥ exp
(
−Êη,ξ

∫ T

0

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt

)
.

By telescoping over single site changes,

Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣

≤ Êη,ξ

∑
z∈Zd

∑
x∈Zd

ρ
(
η1

t

(
X1

t + x
)
, η2

t

(
X1

t + x
))

δα(·,z)(x)

≤ sup
x∈Zd

Êη,ξρ
(
η1

t

(
X1

t + x
)
, η2

t

(
X1

t + x
))‖|α‖|

≤ ‖|α‖|(∥∥γ + − γ −∥∥∞t + 1
)d sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
,
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where the last line follows from Lemma 5.2. With this estimate and Assumption 1a
we obtain

P̂η,ξ (τ = ∞)

≥ exp
(
−‖|α‖|

∫ ∞
0

(∥∥γ + − γ −∥∥∞t + 1
)d sup

η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt

)

> 0 uniformly in η, ξ . �

PROOF OF THEOREM 3.1, PART (a). The idea of the proof is to use the cou-
pling of Proposition 5.1: we wait until the walkers X1

t and X2
t , which are initially

at the same position, decouple, and then restart everything and try again. By Lem-
ma 5.3 there is a positive probability of never decoupling, so this scheme is suc-
cessful. Using the time of decoupling τ (as in Lemma 5.3) and the strong marginal
Markov property (6),∫ T

0

∣∣Êη,0;ξ,01t≥τ

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

))∣∣dt

=
∫ T

0

∣∣Êη0;ξ,01t≥τE
[
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

)|Fτ

]∣∣dt

≤
∫ T

0
Êη,0;ξ,01t≥τ

∣∣SEP
t−τ f

(
θ−X1

τ
η1

τ

) − SEP
t−τ f

(
θ−X2

τ
η2

τ

)∣∣dt

= Êη,0;ξ,0

∫ (T −τ)∨0

0

∣∣SEP
t f

(
θ−X1

τ
η1

τ

) − SEP
t f

(
θ−X2

τ
η2

τ

)∣∣dt(11)

≤ P̂η,0;ξ,0(τ < ∞) sup
η,ξ∈�

∫ T

0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt.(12)

And therefore∫ T

0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt

=
∫ T

0

∣∣Êη,ξ f
(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

)∣∣dt

≤
∫ T

0
Êη,ξ1t<τ

∣∣f (
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)∣∣dt

+ P̂η,ξ (τ < ∞) sup
η,ξ∈�

∫ T

0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt(13)

≤
∫ ∞

0
Êη,ξ

∣∣f (
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)∣∣dt

+ P̂η,ξ (τ < ∞) sup
η,ξ∈�

∫ T

0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt,(14)
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which gives us the upper bound

sup
η,ξ∈�

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt

≤
(

inf
η,ξ∈�

P̂η,ξ (τ = ∞)
)−1

(15)

× sup
η,ξ∈�

∫ ∞
0

Êη,ξ

∣∣f (
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)∣∣dt.

To show that the last integral is finite, we telescope over single site changes, and
get ∫ ∞

0
Êη,ξ

∣∣f (
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)∣∣dt

≤
∫ ∞

0
Êη,ξ

∑
x∈Zd

ρ
(
η1

t

(
x + X1

t

)
, η2

t

(
x + X1

t

))
δf (x) dt

≤ ‖|f ‖| sup
η,ξ,x

∫ ∞
0

Êη,ξρ
(
η1

t

(
x + X1

t

)
, η2

t

(
x + X1

t

))
dt,

which is finite by Lemma 5.2 and Assumption 1a. Choosing

Ca =
(

inf
η,ξ∈�

P̂η,ξ (τ = ∞)
)−1

sup
η,ξ,x

∫ ∞
0

Êη,ξρ
(
η1

t

(
x + X1

t

)
, η2

t

(
x + X1

t

))
dt(16)

completes the proof. �

To prove part (b) of the theorem, we need the following analogue to Lemma 5.3
using Assumption 1b.

LEMMA 5.4. Under Assumption 1b, for every site-weight function w : Zd →
[0,∞[ with ‖w‖1 := ∑

x w(x) < ∞, we have∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∑
y∈Zd

w(y)Êη,ξ ρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt

≤ const · ‖w‖1.

PROOF. Denote with Rt ⊂ Z
d the set of sites whose j th coordinate lies be-

tween Y
j,−
t and Y

j,+
t . Then∑

y∈Zd

w(y)Êη,ξ ρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))

= ∑
y∈Zd

Êη,ξw
(
y − X1

t

)
ρ

(
η1

t (y), η2
t (y)

)
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≤ ∑
y∈Zd

Êη,ξ

∑
z∈Rt

w(y − z)ρ
(
η1

t (y), η2
t (y)

)

= ∑
y∈Zd

Ê

[ ∑
z∈Rt

w(y − z)

]
Ê

E
η,ξρ

(
η1

t (y), η2
t (y)

)

by independence of Rt and (η1
t , η

2
t ). Therewith,

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∑
y∈Zd

w(y)Êη,ξρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt

≤
∫ ∞

0

∑
y∈Zd

Ê

[ ∑
z∈Rt

w(y − z)

] ∑
x∈Zd

sup
(η,ξ)∈(�×�)x

Ê
E
η,ξρ

(
η1

t (y), η2
t (y)

)
dt.

Note that by translation invariance the right-hand side is equal to∑
x∈Zd

sup
(η,ξ)∈(�×�)0

Ê
E
η,ξρ

(
η1

t (x), η2
t (x)

)
.

By construction of Rt and Proposition 5.1(d),

∑
y∈Zd

Ê

[ ∑
z∈Rt

w(y − z)

]
= Ê

[ ∑
z∈Rt

1
]
‖w‖1 =

d∏
j=1

(
γ j,+t − γ j,−t + 1

)‖w‖1

≤ c
(
td + 1

)‖w‖1

for some suitable c > 0. Therefore Assumption 1b completes the proof. �

PROOF OF THEOREM 3.1, PART (b). Let τ := inf{t ≥ 0 :X1
t �= X2

t }. Then we
split the integration at τ ,

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt

≤ ∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∣∣Êη,ξ1τ>t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

))∣∣dt

+ ∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∣∣Êη,ξ1τ≤t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

))∣∣dt.

We estimate the first term by moving the expectation out of the absolute value and
forgetting the restriction to τ > t ,

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∑
y∈Zd

δf (y)Êη,ξρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt.
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By Lemma 5.4 with w = δf , this is bounded by some constant times ‖|f ‖|. For the
second term we start by using the strong marginal Markov property (6),∫ ∞

0

∣∣Êη,ξ1τ≤t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

))∣∣dt

=
∫ ∞

0

∣∣Êη,ξ1τ≤t

(
SEP

t−τ f
(
θ−X1

τ
η1

τ

) − SEP
t−τ f

(
θ−X2

τ
η2

τ

))∣∣dt

≤ Êη,ξ1τ<∞
∫ ∞
τ

∣∣(SEP
t−τ f

(
θ−X1

τ
η1

τ

) − SEP
t−τ f

(
θ−X2

τ
η2

τ

))∣∣dt(17)

≤ P̂η,ξ (τ < ∞) sup
η,ξ∈�

∫ ∞
0

∣∣SEP
t f (η) − SEP

t f (ξ)
∣∣dt.(18)

By part (a) of Theorem 3.1 the integral part is uniformly bounded by Ca‖|f ‖|. So
what remains to complete the proof is to show that∑

x∈Zd

sup
(η,ξ)∈(�×�)x

P̂η,ξ (τ < ∞) < ∞.(19)

To do so we first use the same idea as in the proof of Lemma 5.3 to obtain

P̂η,ξ (τ < ∞)

= 1 − exp
(
−

∫ ∞
0

Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt

)

≤
∫ ∞

0
Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt

≤
∫ ∞

0

∑
y∈Zd

wα(y)Êη,ξρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt

with

wα(x) := sup
(η,ξ)∈(�×�)x

∑
z∈Zd

∣∣α(η, z) − α(ξ, z)
∣∣

and
∑

x∈Zd wα(x) < ∞. So we get∑
x∈Zd

sup
(η,ξ)∈(�×�)x

P̂η,ξ (τ < ∞)

≤ ∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

∑
y∈Zd

wα(y)Êη,ξρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt,

and Lemma 5.4 completes the proof, where Cb is the combination of the various
factors in front of ‖|f ‖|. �
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PROOF OF THEOREM 3.3. Let α,α′ be two different transition rates. The goal
is to show that ∣∣μEP

α (f ) − μEP
α′ (f )

∣∣ ≤ C‖|f ‖|
for all f :� → R with ‖|f ‖| < ∞.

The idea is now to use a coupling P̂ similar to the one in Proposition 5.1.
The coupling contains as objects two copies of the environment, η1 and η2, and
three random walks, X1,X12 and X2. The random walk X1 moves on the en-
vironment η1 with rates α, and correspondingly the random walk X2 moves
on η2 with rates α′. The mixed walker X12 moves on the environment η2 as
well, but according to the rates α. The walkers X1,X2 will perform the same
jumps as X12 with maximal probability. This can be achieved with the same
construction as in Proposition 5.1, but with Poisson clocks Nz which have rates
λz = supη∈� α(η, z) ∨ α′(η, z).

We only consider the case where all three walkers start at the origin. We denote
by S

EP,1
t , S

EP,2
t the semigroups of the environment process which correspond to

the rates α and α′. Let τ := inf{t ≥ 0 :X1
t �= X12

t or X12
t �= X2

t }.
S

EP,1
t f (η) − S

EP,2
t f (ξ)

= Êη,ξ

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

))
= Êη,ξ1τ>t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

))
+ Êη,ξ1τ≤t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X2

t
η2

t

))
= Êη,ξ1τ>t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

))
+ Êη,ξ1τ≤t

(
S

EP,1
t−τ f

(
θ−X1

τ
η1

τ

) − S
EP,2
t−τ f

(
θ−X2

τ
η2

τ

))
.

Therefore,

�(T ) := sup
0≤T ′≤T

sup
η,ξ∈�

∫ T ′

0
S

EP,1
t f (η) − S

EP,2
t f (ξ) dt

≤ sup
0≤T ′≤T

sup
η,ξ∈�

∫ T ′

0
Êη,ξ1τ>t

(
f

(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

))
+ Êη,ξ1τ≤t sup

η,ξ∈�

(
S

EP,1
t−τ f (η) − S

EP,2
t−τ f (ξ)

)
dt(20)

≤ sup
0≤T ′≤T

sup
η,ξ∈�

(
Êη,ξ

∫ τ

0
f

(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)
dt + 1τ≤T ′�

(
T ′ − τ

))

≤ sup
η,ξ∈�

Êη,ξ

(∫ ∞
0

f
(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)
dt + 1τ≤T �(T − τ)

)
.

We will now exploit this recursive bound on � .
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LEMMA 5.5. Let τ1 := inf{t ≥ 0 :X1
t �= X12

t } and τ2 := inf{t ≥ 0 :X12
t �= X2

t }.
Set

β := ∑
z∈Zd

sup
η∈Zd

∣∣α(η, z) − α′(η, z)
∣∣,

p(α) := inf
η,ξ∈�

P̂η,ξ (τ1 = ∞),

C(α) :=
∫ ∞

0

(∥∥γ +(α) − γ −(α)
∥∥∞t + 1

)d sup
η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt,

where γ +(α), γ −(α) are as in Proposition 5.1 for the rates α.
Let Y ∈ {0,1} be Bernoulli with parameter p(α) and Y ′ exponentially dis-

tributed with parameter β . Let Y1, Y2, . . . be i.i.d. copies of Y · Y ′ and N(T ) :=
inf{N ≥ 0 :

∑N
n=1 Yn > T }. Then

�(T ) ≤ C(α)‖|f ‖|EN(T ).

PROOF. By construction of the coupling, τ2 stochastically dominates Y ′. As
we have τ = τ1 ∧ τ2 it follows that τ � Y1. Using this fact together with the mono-
tonicity of � in (20),

�(T ) ≤ sup
η,ξ∈�

(
Êη,ξ

∫ ∞
0

f
(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)
dt + 1τ≤T �(T − τ)

)

≤ sup
η,ξ∈�

Êη,ξ

∫ ∞
0

f
(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)
dt + E1Y1≤T �(T − Y1).

As p(α) > 0 by Lemma 5.3 we can iterate this estimate until it terminates after
N(T ) steps. Therefore we obtain

�(T ) ≤ EN(T ) sup
η,ξ∈�

Êη,ξ

∫ ∞
0

f
(
θ−X1

t
η1

t

) − f
(
θ−X1

t
η2

t

)
dt.

The integral is estimated by telescoping over single site changes and Lemma 5.2
in the usual way, yielding

�(T ) ≤ C(α)‖|f ‖|EN(T ). �

To finally come back to the original question of continuity,

∣∣μEP
α (f ) − μEP

α′ (f )
∣∣ = 1

T

∣∣∣∣
∫ ∫ ∫ T

0
S

EP,1
t f (η) − S

EP,2
t f (ξ) dt μEP

α (dη)μEP
α′ (dξ)

∣∣∣∣
≤ 1

T
�(T ) ≤ 1

T
EN(T )C(α)‖|f ‖| −→

T →∞
1

EYY ′ C(α)‖|f ‖|

= C(α)

p(α)

∑
z∈Zd

sup
η∈Zd

∣∣α(η, z) − α′(η, z)
∣∣‖|f ‖|.
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By sending α′ to α, the right-hand side tends to 0 so that the ergodic measure of
the environment process is indeed continuous in the rates α. It is also interesting
to note that both p(α) and C(α) are rather explicit given the original coupling of
the environment. Notably when α(η, z) = α(z), that is, the rates do not depend on
the environment, p(α) = 1 and C(α) = ∫ ∞

0 supη,ξ∈� Ê
E
η,ξρ(η1

t (0), η2
t (0)) dt . �

PROOF OF THEOREM 3.4. The proof of this theorem is mostly identical to
the proof of Theorem 3.1. Hence instead of copying the proof, we just state where
details differ.

A first fact is that the conditions for (a) and (b) imply Assumptions 1a and 1b.
In the adaptation of the proof for part (a), in most lines it suffices to add a φ( t

K
) to

the integrals. However, in line (11), we use

φ

(
t

K

)
≤ φ

(
t − τ

K

)
φ

(
τ

K

)
(21)

to obtain the estimate

Êη,ξφ

(
τ

K

)∫ (T −τ)∨0

0
φ

(
t

K

)∣∣SEP
t f

(
θ−X1

τ
η1

τ

) − SEP
t f

(
θ−X2

τ
η2

τ

)∣∣dt

instead. Thereby in lines (12), (13) and (14) we have to change P̂η,ξ (τ < ∞) to
Êη,ξφ( τ

K
)1τ<∞. This change then leads to the replacement of

inf
η,ξ∈�

P̂η,ξ (τ = ∞)

by the term

1 − sup
η,ξ∈�

Êη,ξφ

(
τ

K

)
1τ<∞

in the lines (15) and (16) [where naturally Ca becomes Ca(K)]. So all we have to
prove that for sufficiently big K ,

sup
η,ξ∈�

Êη,ξφ

(
τ

K

)
1τ<∞ < 1.

In a first step, we show that

sup
η,ξ∈�

Êη,ξφ(τ )1τ<∞ < ∞.

As we already saw in the proof of Lemma 5.3, we can view the event of decou-
pling as the first jump of a Poisson process with time-dependent and random rates
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[equation (10)]. Hence we have

Êη,ξφ(τ )1τ<∞

=
∫ ∞

0
φ(t) dP̂η,ξ (τ > t)

=
∫ ∞

0
φ(t)Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣

× exp
(
−

∫ t

0

∑
z∈Zd

∣∣α(
θ−X1

s
η1

s , z
) − α

(
θ−X1

s
η2

s , z
)∣∣ds

)
dt

≤
∫ ∞

0
φ(t)Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt.

By telescoping over single site discrepancies and using Lemma 5.2, this is less
than ∫ ∞

0
φ(t)

(∥∥γ + − γ −∥∥∞ + 1
)d

td sup
η,ξ∈�

Ê
E
η,ξρ

(
η1

t (0), η2
t (0)

)
dt < ∞

by assumption. Since φ(t/K) decreases to 1 as K → ∞, monotone convergence
implies

lim
K→∞ Êη,ξφ

(
τ

K

)
1τ<∞ = Êη,ξ1τ<∞ < 1

by Lemma 5.3. Consequently, there exists a K0 ≥ 0 such that for all K > K0,

Êη,ξφ

(
τ

K

)
1τ<∞ < 1.

This completes the adaptation of part (a).
The adaptation of the proof of part (b) follows the same scheme, where we add

the term φ( t
K

) to all integrals. Note that this gives a version of Lemma 5.4 as well.
Then, in line (17) we use (21) again and then have to replace P̂η,ξ (τ < ∞) by
Êη,ξφ( τ

K
)1τ<∞ in lines (18) and (19). To estimate (19), we use

Êη,ξφ

(
τ

K

)
1τ<∞

≤
∫ ∞

0
φ

(
t

K

)
Êη,ξ

∑
z∈Zd

∣∣α(
θ−X1

t
η1

t , z
) − α

(
θ−X1

t
η2

t , z
)∣∣dt

≤
∫ ∞

0
φ

(
t

K

) ∑
y∈Zd

wαÊη,ξρ
(
η1

t

(
y + X1

t

)
, η2

t

(
y + X1

t

))
dt
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with wα as in the original proof. Therefore

∑
x∈Zd

sup
(η,ξ)∈(�×�)x

Êη,ξφ

(
τ

K

)
1τ<∞

≤ ∑
x∈Zd

sup
(η,ξ)∈(�×�)x

∫ ∞
0

φ

(
t

K

) ∑
y∈Zd

wα(y)Êη,ξρ
(
η1

t

(
y + X1

t

)
,

η2
t

(
y + X1

t

))
dt,

which is finite by Lemma 5.4. �

PROOF OF PROPOSITION 3.5. The LLN for PμEP,0 follows directly by ergod-
icity. To prove the LLN for Pη,x we use a slight modification of the coupling P̂ in
Proposition 5.1.

Suppose w.l.o.g. that x = 0 (otherwise look at Pθ−xη,0). In the construction of
the modified coupling P̃ we look at X1

T − X2
T . Jump events of X1

T − X2
T we call

decoupling events, which are events when one walker jumps but the other does
not. Up to the first decoupling the coupling P̃η,0;μEP,0 is identical to P̂η,0;μEP,0. By
Lemma 5.3, there is at least probability p > 0 uniformly in η to never decouple. At
the instant τ of a decoupling event we restart the coupling P̂

E of the environment.
This is done in the configuration θ−X1

τ
η1

τ , θ−X2
τ
η2

τ . That is, instead of coupling

η1
t (x) with η2

t (x), we match η1
t (x + X1

τ ) with η2
t (x + X2

τ ). This allows us to apply
Lemma 5.3 a second time, since for the purpose of decoupling events, both walkers
start at the origin at time τ . Iterating, we then have at most a geometric number N

of decoupling events at τ1, . . . , τN . Hence

∣∣X1
T − X2

T

∣∣ ≤
N∑

n=1

(∣∣X1
τn

− X1
τn−

∣∣ + ∣∣X2
τn

− X2
τn−

∣∣),
which when divided by T converges to 0 in L1 and almost surely w.r.t. P̃η,0;μEP,0.

Therefore XT /T converges in L1(Pη,x), for given x uniformly in η ∈ �, and
Pη,x almost surely to the same limit, limT →∞ 1

T
EμEP,0(XT ). �
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