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THE EMPIRICAL COST OF OPTIMAL INCOMPLETE
TRANSPORTATION

BY EUSTASIO DEL BARRIO1 AND CARLOS MATRÁN1

IMUVA, Instituto de Matemáticas, Universidad de Valladolid

We consider the problem of optimal incomplete transportation between
the empirical measure on an i.i.d. uniform sample on the d-dimensional unit
cube [0,1]d and the true measure. This is a family of problems lying in be-
tween classical optimal transportation and nearest neighbor problems. We
show that the empirical cost of optimal incomplete transportation vanishes at
rate OP (n−1/d ), where n denotes the sample size. In dimension d ≥ 3 the
rate is the same as in classical optimal transportation, but in low dimension it
is (much) higher than the classical rate.

1. Introduction. Consider two probability measures on R
d , P and Q, and the

set T(P,Q) of maps transporting P to Q, that is, the set of all measurable maps
T : Rd → R

d such that, if the initial space is endowed with the probability P , then
the distribution of the random variable T is Q. Monge’s optimal transportation
problem consists of relocating a certain amount of mass from its original distribu-
tion to a different target distribution minimizing the transportation cost. In more
abstract terms, the problem consists of finding a transportation map T0 ∈ T(P,Q)

such that

T0 := arg min
T ∈T(P,Q)

∫
Rd

∥∥x − T (x)
∥∥p

P (dx).

Here, and throughout the paper, we assume p ≥ 1. Remarkably, under some
smoothness assumptions, Monge’s problem is intimately related to the Lp-
Wasserstein distance by

Wp(P,Q) = min
T ∈T(P,Q)

(∫
Rd

∥∥x − T (x)
∥∥p

P (dx)

)1/p

,

where the Lp-Wasserstein distance between P , Q is defined as

Wp(P,Q) :=
(

inf
τ∈M(P,Q)

{∫
‖x − y‖p dτ(x, y)

})1/p

,
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and M(P,Q) is the set of probability measures on R
d × R

d with marginals P

and Q. This functional is related to very important problems in mathematics, the
study of which has led to deep developments in several fields of research and ap-
plications, linked to such important names as Ampère, Kantorovich, Rubinstein,
Zolotarev and Dobrushin, among others. To avoid a huge number of references,
we refer to the books by Rachev and Rüschendorf [16] and by Villani [20, 21], for
an updated account of the interest and implications of the problem. However, we
emphasize the importance of the topic in the development of the theory of proba-
bility metrics and its implications in statistics, particularly in goodness of fit prob-
lems. Focusing on such kind of problems, the functional of interest is Wp(Pn,Q),
where Pn is the empirical measure associated to a sample X1, . . . ,Xn, of indepen-
dent identically distributed (i.i.d.) random vectors with law P , and Q is any target
probability measure on R

d , or Wp(Pn,Qn), where Qn stands for the empirical
measure on a second, independent i.i.d. random sample, Y1, . . . , Yn. These empir-
ical versions are connected to a combinatorial optimization problem, namely the
optimal matching problem. In fact, W p

p (Pn,Qn) = Tp(n), where

Tp(n) := min
π

1

n

n∑
i=1

‖Xi − Yπ(i)‖p(1.1)

and π ranges over the permutations of the set {1, . . . , n}. A lot of work has been
devoted to analyzing the rate and mode of convergence of (1.1) and several variants
of it, beginning with the seminal paper by Ajtai, Komlos and Tusnady [1] in the
case in which both samples come from the same underlying probability law P .
The problem can be equivalently formulated in terms of Wp(Pn,P ), the distance
between the empirical and true distributions. Further references will be provided
later, but now let us mention the series of papers authored by Talagrand [17, 18],
Talagrand and Yukich [19] and Dobrić and Yukich [10], which in the case when
P is the uniform distribution on the d-dimensional unit cube, [0,1]d , essentially
shows that

(
Tp(n)

)1/p =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

OP

(
n−1/2)

, if d = 1,

OP

((
logn

n

)1/2)
, if d = 2,

OP

(
n−1/d

)
, if d ≥ 3.

(1.2)

This paper deals with the empirical cost of optimal incomplete or partial trans-
portation. This is the case in which the amount of mass required in the target distri-
bution is smaller than that in the original one. Then, we do not have to move all the
original mass, but we can dismiss a fraction of it. Of course, we would like to com-
plete this task with a minimal cost. A more general version is possible if we admit
that we only have to fulfill a fraction of the target distribution. The general formu-
lation of this problem, with quadratic cost, has been introduced by Caffarelli and
McCann [7], relating it to a Monge–Ampère double obstacle problem. They obtain



3142 E. DEL BARRIO AND C. MATRÁN

remarkable results on the existence, uniqueness and regularity of the optimal so-
lutions in a well-separated situation. Figalli [11] improved the results covering the
case of nondisjoint supports for the involved probability measures. Independently,
Álvarez-Esteban et al. [2] introduced the problem in the context of similarity of
probabilities, obtaining a more general result of existence and uniqueness of the
optimal solution. Moreover [2] includes almost sure consistency of sample solu-
tions to the true ones. In a subsequent paper, Álvarez-Esteban et al. [3] noticed the
faster rate of decay of the cost of empirical incomplete transportation (in the L2
case) and introduced a procedure for testing similarity of probabilities based on
this fact.

A convenient mathematical formulation of this optimal incomplete transporta-
tion problem can be done with the help of the concept of trimmings of a probability.

DEFINITION 1.1. Given 0 ≤ α ≤ 1 and Borel probability measures P , R

on R
d , we say that R is an α-trimming of P if R is absolutely continuous with

respect to P , and the Radon–Nikodym derivative satisfies dR
dP

≤ 1
1−α

. The set of
all α-trimmings of P will be denoted by Rα(P ).

Note that in the extreme case α = 0, R0(P ) is just P , while R1(P ) is the set of
all probability measures absolutely continuous with respect to P . See [2] for useful
alternative characterizations of trimmings of a probability, as well as mathemati-
cal properties of the set Rα(P ). Turning back to the partial mass transportation
problem, we could represent the target distribution by the probability Q and the
initial distribution of mass by 1

1−α
P , P being another probability if the mass re-

quired in the target distribution is 1−α times the mass in the original locations. An
incomplete transportation plan is then a probability measure τ on R

d × R
d with

second marginal equal to Q and first marginal in Rα(P ), and the cost of optimal
incomplete transportation is

Wp

(
Rα(P ),Q

) := min
R∈Rα(P )

Wp(R,Q).

In the more general case, with slackness in the target distribution, the optimal
incomplete transportation cost would be Wp(Rα1(P ), Rα2(Q)), the minimal Wp

distance between trimmings of P and Q.
This paper gives exact rates of convergence for empirical versions of the optimal

incomplete transportation cost. As with classical optimal transportation, the results
can be considered in terms of a combinatorial optimization problem, that we call
optimal incomplete matching. To be precise, assume that we can trim (eliminate) a
fixed proportion α of X’s points and also of Y ’s points, and we should only search
for the best matching between the nontrimmed samples. Taking for simplicity m :=
n − αn to be an integer, the new functional of interest is

Tp,α(n) := min
X∗,Y ∗ min

π

1

m

m∑
j=1

∥∥X∗
j − Y ∗

π(j)

∥∥p
,(1.3)
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where π varies in the set of permutations of {1, . . . ,m}, {X∗
1, . . . ,X∗

m} ranges in
the subsets of size m of {X1, . . . ,Xn}, and similarly {Y ∗

1 , . . . , Y ∗
m} ranges in the

subsets of size m of {Y1, . . . , Yn}. It is easy to check that

Tp,α(n) = W p
p

(
Rα(Pn), Rα(Qn)

)
.(1.4)

In fact, W p
p (Rα(Pn), Rα(Qn)) equals the minimum [in (πi,j )] of the linear

function
∑n

i,j=1 ‖Xi − Yj‖pπi,j subject to the linear constraints
∑n

i=1 πi,j ≤
1

n(1−α)
= 1

m
,

∑n
j=1 πi,j ≤ 1

m
,

∑n
i,j=1 πi,j = 1, πi,j ≥ 0 [we are assuming m =

n(1 − α)]. Rescaling we see that mW p
p (Rα(Pn), Rα(Qn)) equals the minimum

[in (xi,j ), (ai), (bj )] of the linear function
∑n

i,j=1 ‖Xi − Yj‖pxi,j subject to
the linear constraints

∑n
i=1 xi,j = bj ,

∑n
j=1 πi,j = ai , 0 ≤ ai ≤ 1, 0 ≤ bj ≤ 1,∑n

i=1 ai = ∑n
j=1 bj = m, xi,j ≥ 0. The constraint matrix in this last linear pro-

gram is totally unimodular (see, e.g., Theorem 13.3 in [15]) and the right-hand
side is integer. Hence, the minimum is attained at some integer solution, that is,
satisfying ai, bj ∈ {0,1}, and this implies (1.4).

We will show the somewhat unexpected result that, independently of the value
of α ∈ (0,1), the rates in (1.2) change to(

Tp,α(n)
)1/p = OP

(
n−1/d)

(1.5)

for any dimension d ≥ 1. In fact, (1.5) follows from the triangle inequality and

Wp

(
Rα(Pn),P

) = OP

(
n−1/d)

,(1.6)

which is the formulation we choose for the results we prove. Our approach relies
only on elementary or rather classical tools. In particular, we do not use subadditiv-
ity arguments as in [10]. Subadditivity yields a.s. convergence to a constant, rather
than just a rate of convergence. On the other hand, the approach in [10] relies
on showing subadditivity of a certain Poissonization of the matching functional
(subadditivity does not hold for the original matching functional; see Remark 1.1
in [10]). We could also use that approach here, at least for p = 1 (otherwise dual-
ity for optimal matching, which is essential in the cited approach, becomes harder
to deal with) but the approximation rate for the Poissonization of the incomplete
matching functional would not allow us to recover the present result in dimension
d ≤ 2.

The study of the rate of convergence of D(Rα(Pn),P ) for α ∈ (0,1), for some
probability metrics D was started in del Barrio and Matrán [9]. In the case of the
Wasserstein metric and dimension d = 1, the results in [9] already show a very
different behavior with respect to the untrimmed case, namely

n

(logn)ν
Wp

(
Rα(Pn),P

) →P 0 for any ν > 1 and every α > 0.(1.7)

We close this Introduction mentioning the connection of empirical optimal in-
complete tranportation to another important problem in probability, that of ran-
dom quantization. Taking α = 1 (full trimming) we have that R1(Pn) is the set of
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all probability measures concentrated on the sample points, and Wp(R1(Pn),P )

is the minimal Lp-cost of relocating a mass distributed according to some prob-
ability measure P to a collection of randomly chosen spots X1, . . . ,Xn. When
X1, . . . ,Xn are R

d -valued i.i.d. random vectors and P is absolutely continuous,
the problem can be formulated, in Monge’s way, as the minimization of∫

Rd

∥∥x − ϕ(x)
∥∥p

dP (x),(1.8)

where ϕ varies in the set of all measurable functions with values in {X1, . . . ,Xn}.
Since, for a fixed x in the integrand in (1.8), the distance ‖x − ϕ(x)‖ is minimized
for ϕ(x) = arg mini ‖x − Xi‖, without any constraint on the capacity to be stored
at Xi , we obtain that the optimal ϕ is given by this last expression, and hence the
optimal cost equals

W p
p

(
R1(Pn),P

) =
∫

Rd
min

1≤i≤n
‖x − Xi‖p dP (x).(1.9)

Random quantization is a well-studied problem; see, for example, the Graf and
Luschgy monograph [12] or the more recent paper by Yukich [22]. In particular,
the asymptotic behavior of the Lp quantization error is known, hence the rate
at which Wp(Pn,1,P ) vanishes. A trivial consequence of Definition 1.1 is that
Rα1(P ) ⊂ Rα2(P ) if 0 ≤ α1 ≤ α2 ≤ 1. This implies

Wp(Pn,P ) = Wp

(
R0(Pn),P

) ≥ Wp

(
Rα(Pn),P

) ≥ Wp

(
R1(Pn),P

)
.(1.10)

Hence rates of convergence for the random quantization error are a lower bound
for rates of convergence of Wp(Rα(Pn),P ) for general α. In a first look, classical
optimal transportation is a global problem while random quantization is a local
one: a point x is mapped through the optimal map ϕ to a sample point which in the
case of random quantization, is determined just by sample points which are close
to x (the nearest neighbor in fact) while in the case of optimal transportation, two
samples with the same sample points in a neighborhood of x may result, however,
in very different destinations for x due to capacity constraints. It turns out though,
that this different character is only apparent, in terms of rates, in dimensions d = 1
or 2. The most relevant fact which we show in this paper is that, again in terms
of rates, optimal incomplete transportation shows the same local nature as random
quantization in any dimension.

The remainder of this paper is organized as follows. In Section 2 we give a quick
survey on known results about rates of convergence for optimal transportation and
random quantization. Section 3 contains new results for optimal incomplete trans-
portation. We consider first the case d = 1, and in this case we construct upper and
lower envelopes for the optimal solution to the incomplete transportation problem.
These are not optimal, but attain the correct rate. Finally, we construct a nearly
optimal solution in general dimension starting from the one-dimensional construc-
tion.
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We will use EX to denote the expected value of a random variable X. By P(·|B)

[resp., E(·|B), or even EB ] we refer to the conditional probability (resp., condi-
tional expectation) given the set B . The indicator function of B will be denoted
by IB , while the notation δx will be reserved for Dirac’s probability measure on
the point x. Unless otherwise stated, the random vectors will be assumed to be de-
fined on the same probability space (�,σ, ν). We write 
d for Lebesgue measure
on the space (Rd, β). Finally, convergence in probability (resp., weak convergence
of probabilities) will be denoted by →p (resp., by →w), and L(X) will denote the
law of the random vector X.

2. Preliminary results. The results on the asymptotic behavior of Lp-
Wasserstein distances between the empirical and parent distributions in the one-
dimensional case have been obtained through a quantile representation. If F and
G are the distribution functions of P and Q and F−1 and G−1 are the respective
quantile functions, then (see, e.g., Bickel and Freedman [5])

Wp(P,Q) =
[∫ 1

0

(
F−1(t) − G−1(t)

)p
dt

]1/p

(2.1)

[where F−1(t) = inf{s :F(s) ≥ t}]. In particular, when P is the uniform distribu-
tion on (0,1), this representation leads to

√
nWp(Pn,P ) →w

[∫ 1

0

(
B(t)

)p
dt

]1/p

(2.2)

with B(t) a Brownian Bridge on [0,1]; see, for example, [8].
For dimension d > 1, there are not explicit expressions for the optimal trans-

portation maps, and limit distribution results as in (2.2) are not available. Rates of
convergence to 0 of Wp(Pn,P ) can be given based on different approaches. The
case d = 2 is the most interesting from the point of view of the mass transportation
problem. Ajtai, Komlós and Tusnádi [1] showed that, with probability 1 − o(1),

C1

(
logn

n

)1/2

< W1(Pn,Qn) < C2

(
logn

n

)1/2

,

where Pn and Qn are the sample distributions corresponding to two independent
samples obtained from the uniform distribution on the unit square, U([0,1]2).
Their combinatorial partition scheme method was refined in Talagrand and Yukich
[19] to show [Theorem 1 and Remark (ii) there] that for some constant, C(p),

E
(

Wp

(
Pn,U

([0,1]2))) ≤ C(p)

(
logn

n

)1/2

.(2.3)

The case d ≥ 3 (and uniform distribution on the d-dimensional unit cube) is cov-
ered in Talagrand [18]. That paper uses a different approach, based on duality for
the optimal transportation problem to give a result (Theorem 1.1), formulated for
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a very general class of costs functions which includes exponential costs and, as a
consequence, implies

E
(

Wp

(
Pn,U

([0,1]d))) ≤ C(k,p)
1

n1/d
.(2.4)

Further results, dealing with distributions other than the uniform, possibly with
unbounded support, are given in Barthe and Bordenave [4].

As we already noted in the Introduction, the so-called random quantizers pro-
vide an easy way of giving a lower bound for the rates of convergence of our
interest. We give a simple version of the mean asymptotics for the random quan-
tizers, rewritten in terms of the Lp-Wasserstein distance between the set of “fully
trimmed” sample probabilities and the theoretical distribution, that suffices for our
purposes; this is a particular case of Theorem 9.1 in [12].

THEOREM 2.1. If X1, . . . ,Xn are i.i.d. random vectors uniformly distributed
on [0,1]d , then

np/dE
(

W p
p

(
R1(Pn),U

([0,1]d))) → �

(
1 + p

k

)
ω

−p/d
d as n → ∞,

where ωd = πd/2

�(1+d/2)
.

For optimal incomplete transportation, a first result on rates of convergence
is Theorem 5 in the Appendix of [3], for dimension 1, but it has been largely
improved in [9], in the terms expressed in (1.7). For dimension 2 our approach
was not successful in going beyond the characteristic “logn” term in the Ajtai–
Kómlos–Tusnády result (1.2). This task and the fundamental improvement in di-
mension 1 are the main goals in this paper. Moreover we notice del Barrio and
Matrán [9] also treat the improvement of the “in probability bounds” involved in
(1.6) to almost surely bounds. This follows Talagrand’s approach [17], continued
by Dobrić and Yukich [10], but, in our case, using a powerful concentration in-
equality of Boucheron et al. [6].

3. Rates of convergence. We focus first on the one-dimensional case. Let us
consider n distinct points x1 < · · · < xn ∈ (0,1) and set Pn = 1

n

∑n
i=1 δxi

, where
δx denotes Dirac’s measure on x. An α-trimming of Pn can be written, in terms
of a vector h = (h1, . . . , hn−1), as (Pn)h = ∑n

i=1 biδxi
with 0 ≤ bi = hi − hi−1 ≤

1
n(1−α)

(we set, for convenience, h0 = 0, hn = 1). We therefore write

Cα,n :=
{
h = (h1, . . . , hn−1) ∈ R

n−1 : 0 ≤ hi − hi−1 ≤ 1

n(1 − α)
,

(3.1)

i = 1, . . . , n

}
.

Our first result is an elementary, but useful, representation of Wp(Rα(Pn),P ).
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LEMMA 3.1. If x1 < · · · < xn ∈ (0,1), Pn = 1
n

∑n
i=1 δxi

, P is the uniform
distribution on [0,1], Cα,n is defined by (3.1) and p ≥ 1, then

W p
p

(
Rα(Pn),P

)
= 1

p + 1

(
x

p+1
1 + (1 − xn)

p+1)

+ 1

2p(p + 1)

n−1∑
i=1

(xi+1 − xi)
p+1

+ min
h∈Cα,n

1

p + 1

n−1∑
i=1

(
xi+1 − xi

2

)p+1

fp

(
hi − (xi+1 + xi)/2

(xi+1 − xi)/2

)
,

where fp(y) = (1+|y|)p+1 +(1−|y|)(p+1) −2 and t (p) denotes the odd extension
to (−∞,∞) of the function tp on [0,∞).

PROOF. We note first that the quantile function associated to (Pn)h takes the
value xi in the interval (hi−1, hi]. Hence, using (2.1), we see that W p

p (Rα(Pn),

P ) = minh∈Cα,n

∑n
i=1 Ai , where Ai = ∫ hi

hi−1
|xi − t |p dt . Since t (p+1)/(p + 1) is a

primitive of |t |p , we can write

Ai =
∫ xi

hi−1

|xi − t |p dt +
∫ hi

xi

|xi − t |p dt

= 1

p + 1

[
(xi − hi−1)

(p+1) + (hi − xi)
(p+1)].

From this, recalling that h0 = 0, h1 = 1, we get

n∑
i=1

Ai = 1

p + 1

[(
x

p+1
1 + (1 − xn)

p+1) + 1

2p

n−1∑
i=1

(xi+1 − xi)
p+1 +

n−1∑
i=1

Bi

]

with Bi = (xi+1 −hi)
(p+1) + (hi −xi)

(p+1) −2(
xi+1−xi

2 )p+1. Now it is easy to see

that Bi = (
xi+1−xi

2 )p+1fp(
hi−(xi+1+xi)/2

(xi+1−xi)/2 ), which completes the proof. �

The function fp in Lemma 3.1 is a piecewise polynomial for integer p. For in-
stance f1(y) = 2y2, |y| ≤ 1, f1(y) = 2(2|y|−1), |y| > 1; f2(y) = 6y2, y ∈ R. For
general p ≥ 1, fp is a nonnegative, even and convex function, strictly increasing
on [0,∞), which attains its minimum at y = 0, with fp(0) = 0. This suggests that
a good trimming vector h = (h1, . . . , hn−1) ∈ Cα,n should be as close as possible
to the midranks, xi+xi+1

2 . With this observation in mind, we denote

ĥ = arg min
h∈Cα,n

n−1∑
i=1

(
xi+1 − xi

2

)p+1

fp

(
hi − (xi+1 + xi)/2

(xi+1 − xi)/2

)
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and define

ui = max
i≤j≤n−1

(
xj + xj+1

2
− 1

1 − α

j

n

)
∨ −α

1 − α
, i = 1, . . . , n − 1,

un = − α
1−α

, f̄0 = 0, and f̄i = ui ∧ 0, i = 1, . . . , n. Finally, we set

h̄i = f̄i + 1

1 − α

i

n
, i = 0, . . . , n.

Note that, for any h = (h1, . . . , hn−1) ∈ Cα,n, hi − i
n(1−α)

is a sequence that de-

creases from 0 to − α
1−α

, while f̄i is the lowest decreasing sequence from 0 to

− α
1−α

which lies above the sequence xi+xi+1
2 − i

n(1−α)
. In the next result we see

that h̄i is a feasible trimming and that feasible solutions that exceed this one cannot
be optimal.

LEMMA 3.2. h̄0 = 0, h̄n = 1 and if h̄ = (h̄1, . . . , h̄n−1), then h̄ ∈ Cα,n. Fur-
thermore,

ĥi ≤ h̄i , i = 1, . . . , n − 1.

PROOF. h̄0 = 0 and h̄n = 1 are obvious. To prove h̄ ∈ Cα,n we check, equiv-
alently, that 0 ≥ f̄i − f̄i−1 ≥ − 1

1−α
1
n

, i = 1, . . . , n. Clearly, u1 ≥ · · · ≥ un and

f̄1 ≤ 0 = f̄0 and, consequently, f̄0 ≥ · · · ≥ f̄n. To see that f̄i − f̄i−1 ≥ − 1
n(1−α)

observe that ui = ui−1 unless ui−1 = xi−1+xi

2 − i−1
n(1−α)

, but then

ui − ui−1 ≥
(

xi + xi+1

2
− i

n(1 − α)

)
−

(
xi−1 + xi

2
− i − 1

n(1 − α)

)

= xi+1 − xi−1

2
− 1

n(1 − α)

≥ − 1

n(1 − α)

and the claim follows. We show now that f̂i ≤ f̄i , where f̂i = ĥi − 1
1−α

i
n

. Since

ui ≥ xi+xi+1
2 − 1

1−α
i
n

, we see that f̄i ≥ xi+xi+1
2 − 1

1−α
i
n

, provided xi+xi+1
2 − 1

1−α
i
n

≤
0. Now, if ui ≥ 0, then f̄i = 0 ≥ f̂i . Let us assume that ui < 0 (hence f̄i ≥
xi+xi+1

2 − 1
1−α

i
n

) and f̄j ≥ f̂j , j < i, but f̄i < f̂i . Let us write k for the small-

est integer k > i such that f̄k ≥ f̂k (observe that k ≤ n since f̄n = f̂n = − α
1−α

).

We define f̃j = f̂j if j < i or j ≥ k and f̃j = f̄j if i ≤ j < k. Also, write h̃j =
f̃j − 1

1−α
j
n

. Clearly, h̃ ∈ Cα,n. But for integer j ∈ [i, k) we have ĥj > h̃j ≥ xj+xj+1
2 ,
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which implies |ĥj − xj+xj+1
2 | > |h̃j − xj+xj+1

2 |. Consequently,

n−1∑
j=1

(xj+1 − xj )
p+1fp

(
h̃j − (xj + xj+1)/2

(xj+1 − xj )/2

)

<

n−1∑
j=1

(xj+1 − xj )
p+1fp

(
ĥj − (xj + xj+1)/2

(xj+1 − xj )/2

)
,

against optimality of ĥ. Hence, f̄i ≥ f̂i for all i, and the upper bound for ĥi follows.
�

A similar lower bound for ĥ can be obtained taking
¯
fi to be the greatest decreas-

ing sequence from 0 to − α
1−α

which lies below the sequence xi+xi+1
2 − i

n(1−α)
and

setting ¯hi =
¯
fi + i

n(1−α)
. We note also that Lemma 3.1, combined with Lemma 3.2,

gives the following useful lower and upper bounds for the incomplete transporta-
tion cost. To be precise,

Vn(p) ≤ W p
p

(
Rα(Pn),P

)
(3.2)

≤ Vn(p) + 1

p + 1

n−1∑
i=1

(
xi+1 − xi

2

)p+1

fp

(
h̄i − (xi+1 + xi)/2

(xi+1 − xi)/2

)
,

where Vn(p) = 1
p+1(x

p+1
1 + (1 − xn)

p+1) + 1
2p(p+1)

∑n−1
i=1 (xi+1 − xi)

p+1. We

could replace h̄i with ¯hi or h̃i = (h̄i + ¯hi)/2, but in terms of rates, the upper bound
above cannot be improved, as we will see later.

Next, we consider the case of a uniform random sample on the unit interval,
namely X1, . . . ,Xn are i.i.d. U(0,1) r.v.’s, (x1, . . . , xn) = (X(1), . . . ,X(n)) is the
order statistic and Pn the empirical distribution on the sample. We will use the
well-known fact

(X(1), . . . ,X(n))
d=

(
S1

Sn+1
, . . . ,

Sn

Sn+1

)
,(3.3)

where, Si = ξ1 + · · · + ξi and {ξi}∞i=1 are i.i.d. exponentials random variables with
unit mean. The following elementary lemma about the concentration of the Si ’s
around their means will be used repeatedly in the remainder of this section.

LEMMA 3.3. If t > 0, then

P(Si − i > t) ≤ e−t

(
1 + t

i

)i

,

while for 0 < t < i

P (i − Si > t) ≤ et

(
1 − t

i

)i

.
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PROOF. This is just Chernoff’s inequality; see, for example, [14], page 16.
�

We are ready now to give the rate of convergence of Wp(Rα(Pn),P ) in the
one-dimensional setup.

THEOREM 3.4. If P is the uniform distribution on [0,1], X1, . . . ,Xn are i.i.d.
random variables with common distribution P , Pn is the empirical measure on
X1, . . . ,Xn, α ∈ (0,1) and p ≥ 1, then there exist constants, Cp(α), depending
only on p and α, cp > 0 depending only on p, such that for every n ≥ 1,

cp

np
≤ E

(
W p

p

(
Rα(Pn),P

)) ≤ Cp(α)

np
.

PROOF. For the lower bound simply observe that E(np W p
p (Rα(Pn),P )) ≥

npE(Vn(p)), with Vn(p) as in (3.2). The spacing X(i+1) − X(i) follows a beta
distribution with parameters 1 and n + 1, and from this fact it follows that
npE(Vn(p)) = np�(n+1)�(p+2)

(p+1)�(n+p+2)
(2 + n−1

2p ). It is easy to check (using Stirling’s for-

mula, e.g.) that npE(Vn(p)) → �(p+2)
2p(p+1)

> 0 as n → ∞, and hence we can take
cp = minn≥1 npE(Vn(p)) > 0.

For the upper bound we use the representation (3.3), fix θ ∈ (1−α,1) and write
Z = W p

p (Rα(Pn),P )). Then we split E(Z),

E(Z) = E

(
ZI

(
Sn+1

n
< θ

))
+ E

(
ZI

(
Sn+1

n
≥ θ

))
:= E(Z1) + E(Z2)

and proceed to bound E(Zi), i = 1,2. To deal with E(Z1) we note that Z ≤
W p

p (Pn,P ) = ∫ 1
0 |G−1

n (t) − t |p dt , Gn being the distribution function asoci-
ated to Pn. A simple computation, similar to the proof of Lemma 3.1, shows∫ 1

0 |G−1
n (t) − t |p dt = ∫ 1

0 |Gn(t) − t |p dt , both terms equaling, in fact,

1

p + 1

n∑
i=1

[∣∣∣∣ in − X(i)

∣∣∣∣
(p+1)

−
∣∣∣∣ i − 1

n
− X(i)

∣∣∣∣
(p+1)]

.

Hence, from Schwarz’s inequality we get

E(Z1) ≤ (
E

(
Z2))1/2

P

(
Sn+1

n
< θ

)1/2

≤
(
E

((∫ 1

0

∣∣Gn(t) − t
∣∣p dt

))2)1/2

P

(
Sn+1

n
< θ

)1/2

≤
(∫ 1

0
E

∣∣Gn(t) − t
∣∣2p

dt

)1/2

P

(
Sn+1

n
< θ

)1/2

.
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Using the fact that P(|Gn(t) − t | > ε) ≤ 2e−2nε2
(this follows from Hoeffding’s

inequality applied to Bernoulli random variables), we see that E(|Gn(t) − t |2p) ≤
p21−p�(p)n−p . Also, from Lemma 3.3 we get P(

Sn+1
n

< θ) = P((n + 1) −
Sn+1 > n(1 − θ) + 1) ≤ en(1−θ)+1( nθ

n+1)n+1. Combining these two estimates we
get

E
(
npZ1

) ≤ (
p21−p�(p)θe

(
θe1−θ )n

np)1/2
.(3.4)

The last upper bound is a vanishing sequence (hence, bounded) since θe1−θ < 1.
Note that the bound depends on α through the choice of θ ∈ (1 − α,1).

We consider now E(Z2) and recall (3.2). We have E(npVn(p)I (
Sn+1

n
≥ θ)) ≤

E(npVn(p)) ≤ supm≥1 E(mpVm(p)) < ∞ since, as noted above, E(npVn(p)) is
a convergent sequence as n → ∞. Observe now that fp(y) ≤ 2p+1 − 2 if |y| ≤ 1,
while fp(y) ≤ 2p+1(p + 1)|y|p − 2 if |y| ≥ 1. Therefore fp(y) ≤ 2p+1(1 + (p +
1)|y|p), and it suffices to give an upper bound for

E

(
npI

(
Sn+1

n
≥ θ

) n−1∑
i=1

(X(i+1) − X(i))

∣∣∣∣h̄i − X(i) + X(i+1)

2

∣∣∣∣
p
)

≤ 1

θp+1

1

n

n−1∑
i=1

E

(
ξi+1

∣∣∣∣Fi −
(
Si + ξi+1

2
− 1

1 − α

Sn+1

n
i

)∣∣∣∣
p

I

(
Sn+1

n
≥ θ

))
,

where we are using representation (3.3) and

Fi =
((

max
i≤j≤n−1

(
Sj + ξj+1

2
− 1

1 − α

Sn+1

n
j

))
∨

(
− α

1 − α
Sn+1

))
∧ 0.

It only remains to find an upper bound for E(Un) with

Un := 1

n

n−1∑
i=1

ξi+1

∣∣∣∣Fi −
(
Si + ξi+1

2
− 1

1 − α

Sn+1

n
i

)∣∣∣∣
p

I

(
Sn+1

n
≥ θ

)
.

We split the sum in Un into three terms, Un = U
(1)
n + U

(2)
n + U

(3)
n , U

(1)
n collecting

the summands with Fi = 0, U
(3)
n those with Fi = − α

1−α
Sn+1 and U

(2)
n the others.

We bound first E(U
(1)
n ). We write K = θ

1−α
and note that K > 1. Now,

U(1)
n ≤ 1

n

n−1∑
i=1

ξi+1

∣∣∣∣Si + ξi+1

2
− 1

1 − α

Sn+1

n
i

∣∣∣∣
p

I
(

max
i≤j≤n−1

(Sj+1 − Kj) ≥ 0
)
.

Convexity implies that E(Si

i
)s ≤ Eξs

1 for s ≥ 1. From the Schwarz inequality and
the moment inequality E|X + Y |p ≤ 2p−1(E|X|p + E|Y |p), p ≥ 1, we get that
(E(ξi+1|Si + ξi+1

2 − 1
1−α

Sn+1
n

i|p)2)1/2 ≤ C1i
p for some absolute constant C1 (not

depending on i or n). On the other hand, using again Lemma 3.3 with i = j +1 and
t = Kj −(j +1) [which is positive for j > (1−α)/(θ −1+α)] we have P(Sj+1 −
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Kj ≥ 0) ≤ e−(K−1)j+1(
j (K−1)

j+1 )j+1 ≤ Keqj , where q = Ke−(K−1) < 1. Since
P(maxi≤j≤n−1(Sj+1 − Kj) ≥ 0) ≤ ∑

j≥i P (Sj+1 − Kj ≥ 0), we get, for some
constant, C2,

P
(

max
i≤j≤n−1

(Sj+1 − Kj) ≥ 0
)

≤ C2
qi

1 − q

[C2 = Ke suffices for i ≥ (1−α)/(θ −1+α); with a larger constant, if necessary,
the bound is true for all i]. Combining the last bounds and Schwarz’s inequality
we obtain, with a new constant C3,

E
(
U(1)

n

) ≤ C3√
1 − q

1

n

n−1∑
i=1

ipqi/2

and, again, the right-hand side is a vanishing sequence.
To deal with U

(3)
n we define ξ ′

i = ξn+2−i , S′
i = ξ ′

1 + · · · + ξ ′
i , i = 1, . . . , n + 1.

Observe that S′
i = Sn+1 − Sn+1−i , i = 1, . . . , n, and S′

n+1 = Sn+1. We also write

Ai = (
Sn+1

n
≥ θ,maxi≤j≤n−1(Sj + ξj+1

2 − 1
1−α

Sn+1
n

j) ≤ − α
1−α

Sn+1). Then

U(3)
n = 1

n

n−1∑
i=1

ξi+1

∣∣∣∣− α

1 − α
Sn+1 −

(
Si + ξi+1

2
− 1

1 − α

Sn+1

n
i

)∣∣∣∣
p

IAi

= 1

n

n−1∑
j=1

ξn+1−j

∣∣∣∣− α

1 − α
Sn+1

−
(
Sn−j + ξn+1−j

2
− 1

1 − α

Sn+1

n
(n − j)

)∣∣∣∣
p

IAn−j
.

With the above notation we see that − α
1−α

Sn+1 − (Sn−j + ξn+1−j

2 − 1
1−α

Sn+1
n

(n −
j)) = S′

j + ξ ′
j+1
2 − 1

1−α

S′
n+1
n

j , while An−j = (
S′

n+1
n

≥ θ,min1≤k≤j (S
′
k + ξ ′

k+1
2 −

1
1−α

S′
n+1
n

k) ≥ 0) ⊂ (
S′

n+1
n

≥ θ,maxj≤k≤n−1(S
′
k + ξ ′

k+1
2 − 1

1−α

S′
n+1
n

k) ≥ 0) := Bj .
These observations imply that

U(3)
n = 1

n

n−1∑
j=1

ξ ′
j+1

∣∣∣∣S′
j + ξ ′

j+1

2
− 1

1 − α

S′
n+1

n
j

∣∣∣∣
p

IAn−j

≤ 1

n

n−1∑
j=1

ξ ′
j+1

∣∣∣∣S′
j + ξ ′

j+1

2
− 1

1 − α

S′
n+1

n
j

∣∣∣∣
p

IBj
.

The last upper bound and U
(1)
n are equally distributed. Hence E(U

(3)
n ) ≤

E(U
(1)
n ) → 0.
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We turn now to the central part, U
(2)
n . Obviously

U(2)
n ≤ 1

n

n−1∑
i=1

ξi+1Z
p
i ,(3.5)

where Zi = supj≥i((Sj+1 − Si) − K(j − i))+. Once more we use Schwarz’s in-

equality to get E(ξi+1Z
p
i ) ≤ (Eξ2

i+1)
1/2(EZ

2p
i )1/2 ≤ √

2(EZ
2p
0 )1/2. Thus, it only

remains to show EZ
2p
0 < ∞. Chernoff’s inequality yields P(Si − Ki > t) ≤

e−(t+(K−1)i)(K + t
i
)i . From this and the fact

∫ ∞
0 e−t t l dt = l!, l ∈ N, we get, for

integer k ≥ 1,

∫ ∞
0

tkP (Si − Ki > t) dt ≤
∫ ∞

0
e−t e−(K−1)i

i∑
j=0

(
i

j

)
Kj ti−j+k

ii−j
dt

≤ eii!
ii

i∑
j=0

e−Ki(Ki)j

j ! (i + k − j)k

(3.6)

≤ (i + k)k
eii!
ii

i∑
j=0

e−Ki(Ki)j

j !

= (i + k)k
eii!
ii

P (NKi ≤ i),

where Nλ denotes a random variable having Poisson distribution with mean λ.
Chernoff’s inequality (for the left tail) gives

P(NKi ≤ i) = P
(
Ki − NKi ≥ (K − 1)i

) ≤ exp
(
−iKh

(
−K − 1

K

))
,

where h(u) = (1 + u) log(1 + u) − u, u ≥ −1; see, for example, [14], page 19.
This, (3.6) and the fact ei i!

ii
≤ C

√
i for some constant C, imply

E
(
Zk+1

0

) = (k + 1)

∫ ∞
0

tkP
(
sup
i≥1

(Si − Ki)+ > t
)
dt

≤ (k + 1)

∞∑
i=1

∫ ∞
0

tkP (Si − Ki > t) dt

≤ C′
∞∑
i=1

ik+1/2 exp
(
−iKh

(
−K − 1

K

))
< ∞

for some constant C′ (which depends on k), where we have used that h(−K−1
K

) >

0. This completes the proof. �
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Finally, we turn to general dimension. In our last result we combine the upper
bound in Theorem 3.4 with a combinatorial approach to give the exact rate of con-
vergence of the empirical cost of optimal incomplete transportation to the uniform
distribution on the d-dimensional unit cube. The result is not given in terms of ex-
pectations as in Theorem 3.4. Our approach allows also to get that type of result,
but we refrain from adding more technicalities.

THEOREM 3.5. If P is the uniform distribution on the unit cube [0,1]d ,
X1, . . . ,Xn are i.i.d. P , Pn is the empirical measure on X1, . . . ,Xn and α ∈ (0,1),
then

Wp

(
Rα(Pn),P

) = OP

(
n−1/d)

.

PROOF. For the sake of simplicity we consider the case d = 2. The idea car-
ries over smoothly to higher dimension. On the other hand, the case d ≥ 3 follows
from known results for the usual transport; recall (2.4). We write N = [√n] and
Xj = [Xj,1,Xj,2]T , j = 1, . . . , n. We denote also Bi = �{j ∈ {1, . . . , n} :Xj,1 ∈
( i−1

N
, i

N
]}, i = 1, . . . ,N . The random vector (B1, . . . ,BN) follows a multinomial

distribution with parameters n and ( 1
N

, . . . , 1
N

). Given Bi = ni > 0, we denote by
j i

1, . . . , j
i
ni

the indices k such that Xk,1 ∈ ( i−1
N

, i
N

]. Then Xji
1,2

, . . . ,Xji
ni

,2 are an

i.i.d. U(0,1) sample. We write P(α
2 , i) for the α

2 -trimming of the empirical distri-
bution on Xji

1,2
, . . . ,Xji

ni
,2 considered in the proof of Theorem 3.4. Then we have

E(n
p
i W p

p (P (α
2 , i),U(0,1))|Bi = ni) ≤ Cp(α/2). We write also ϕi for the opti-

mal transportation map from U(0,1) to P(α
2 , i). Then W p

p (P (α
2 , i),U(0,1)) =∫ 1

0 |x2 − ϕi(x2)|p dx2. We recall that ϕ takes values on the set {Xj1, . . . ,Xjni
}

and, with 
d denoting d-dimensional Lebesgue measure, 
1(x :ϕi(x) = Xjl,2) ≤
1

ni(1−α/2)
.

Next we define the map ϕ on (0,1] × (0,1] as follows. If x = [x1, x2]T is such
that x1 ∈ ( i−1

N
, i

N
] and ϕi(x2) = Xjl,2, then ϕ(x) = Xjl

. In other words, points on
the stripe ( i−1

N
, i

N
] × (0,1] are mapped to one of the observations on that stripe,

the precise one being determined by the α/2 trimming function on the second
coordinate. Clearly, for x ∈ ( i−1

N
, i

N
],

∥∥x − ϕ(x)
∥∥ ≤ 1

N
+ ∣∣x2 − ϕi(x2)

∣∣.
From this we get

∫
(0,1]×(0,1]

∥∥x − ϕ(x)
∥∥p

dx =
N∑

i=1

∫
((i−1)/N,i/N]×(0,1]

∥∥x − ϕ(x)
∥∥p

dx

≤ 2p−1

Np
+ 2p−1

N

N∑
i=1

∫ 1

0

∣∣x2 − ϕi(x2)
∣∣p dx2.
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Furthermore, 
2(x :ϕ(x) = Xj) ≤ 1
N

1
ni(1− α

2 )
if Xj ∈ ( i−1

N
, i

N
] × (0,1]. Thus, ϕ

maps P into an α-trimming of Pn if

1

N

1

ni(1 − α/2)
≤ 1

n(1 − α)
, i = 1, . . . ,N,

or, equivalently, if min1≤i≤N ni ≥ n
N

A, with A = 1−α
1−α/2 < 1. As a consequence,

on the set B = (min1≤i≤N ni ≥ n
N

A),

W p
p

(
Rα(Pn),P

) ≤ 2p−1

Np
+ 2p−1

N

N∑
i=1

∫ 1

0

∣∣x2 − ϕi(x2)
∣∣p dx2.

Now, we note that

E

(
IB

N∑
i=1

∫ 1

0

∣∣x2 − ϕi(x2)
∣∣p dx2

∣∣∣B1 = n1, . . . ,BN = nN

)

≤ Cp(α/2)IB

N∑
i=1

1

n
p
i

≤ C(α/2)
1

Ap

N∑
i=1

Np

np
.

But the last two displays imply that

E
(

W p
p

(
Rα(Pn),P

)
IB

) ≤ 2p−1

Np
+ Cp(α/2)

2p−1

Ap

Np

np
.

This, toghether with the fact that P(BC) → 0 as n → ∞ (see Theorem 7,
page 112, in [13]) implies that W p

p (Rα(Pn),P ) = OP (n−p/2) and completes the
proof. �
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