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We show that the convex hull of a large i.i.d. sample from an absolutely
continuous log-concave distribution approximates a predetermined convex
body in the logarithmic Hausdorff distance and in the Banach–Mazur dis-
tance. For log-concave distributions that decay super-exponentially, we also
have approximation in the Hausdorff distance. These results are multivariate
versions of the Gnedenko law of large numbers, which guarantees concentra-
tion of the maximum and minimum in the one-dimensional case.

We provide quantitative bounds in terms of the number of points and the
dimension of the ambient space.

1. Introduction. The Gnedenko law of large numbers [11] states that if F is
the cumulative distribution of a probability measure μ on R such that for all ε > 0

lim
t→∞

F(t + ε) − F(t)

1 − F(t + ε)
= ∞,(1)

then there are functions δ, T and P defined on N with

lim
n→∞ δn = 0,(2)

lim
n→∞ Pn = 1(3)

such that for any n ∈ N and any i.i.d. sample (γi)
n
1 from μ, with probability Pn,

we have ∣∣max{γi}n1 − Tn

∣∣ < δn.

We define 0/0 = ∞ to allow for the trivial case when μ has bounded support. The
condition (1) implies super-exponential decay of the tail probabilities 1 − F(t),
that is, for all c > 0,

lim
t→∞ ect (1 − F(t)

) = 0.

The converse is almost true and can be achieved if we impose some sort of regular-
ity on F . One such regularity condition is log-concavity; see Section 3. Of course
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all of this can be re-worded in multiplicative form. Provided 1 − F(t) is regular
enough and decays super-polynomially, that is, for any m ∈ N,

lim
t→∞ tm

(
1 − F(t)

) = 0,

then (2) and (3) hold, and with probability Pn,∣∣∣∣max{γi}n1
Tn

− 1
∣∣∣∣ ≤ δn.

Note that rapid decay of the left-hand tail provides concentration of min{γi}n1, and
that [min{γi}n1,max{γi}n1] = conv{γi}n1.

In this paper we extend the Gnedenko law of large numbers to the multivariate
setting. We consider a large collection of i.i.d. random vectors {xi}n1 in R

d that
follow a log-concave distribution μ with density function f . The object of interest
is the convex hull Pn = conv{xi}n1, which is called a random polytope. It is shown
that with high probability, Pn approximates a deterministic body F1/n called the
floating body, which is what remains of R

d after deleting all open half-spaces
H such that μ(H) < 1/n. As in the one-dimensional case, the way in which Pn

approximates F1/n depends on how rapidly μ decays. Of primary interest is a
quantitative analysis in terms of the number of points, and in this regard our results
are essentially optimal; see Section 8.

The fact that the floating body can be used in order to model random polytopes
is well known in the setting where μ is the uniform distribution on a convex body;
see, for example, [4] and [3]. Our main contribution is to study this approximation
in the more general setting of log-concave measures. Unlike the former case, the
objects that we study can have many different shapes as n → ∞ and are not limited
to lie within a bounded region of space.

The notion of a multivariate Gnedenko law of large numbers has also been con-
sidered by Goodman [12] in the setting of Gaussian measures on separable Banach
spaces. In his paper he shows that with probability 1, the Hausdorff distance be-
tween the sample {xi}n1 and the ellipsoid

√
2 lognE converges to zero as n → ∞,

where E is the unit ball of the reproducing kernel Hilbert space associated to μ.

2. Main results. Let d ≥ 1, n ≥ d + 1 and let μ be a log-concave probability
measure on R

d with a density function f = dμ/dx. This means that f is of the
form f (x) = exp(−g(x)) where g is convex. Let (xi)

n
1 denote a sequence of i.i.d.

random vectors in R
d with distribution μ, and consider the random polytope Pn =

conv{xi}n1. For any x ∈ R
d , define

f̃ (x) = inf
H

μ(H),

where H runs through the collection of all open half-spaces that contain x. For any
δ > 0, the floating body is defined as

Fδ = {
x ∈ R

d : f̃ (x) ≥ δ
}
.(4)
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Note that Fδ is the intersection of all closed half-spaces H such that μ(H) ≥ 1 − δ,
and is therefore convex. If H is any open half-space that contains the centroid
of μ, then μ(H) ≥ e−1 (see Lemma 5.12 in [16] or Lemma 3.3 in [8]); hence Fδ is
nonempty provided that δ ≤ e−1. Such a floating body was defined by Schütt and
Werner [24] in the case where μ is the uniform distribution on a convex body. We
define the logarithmic Hausdorff distance between convex bodies K,L ⊂ R

d as

dL(K,L) = inf
{
λ ≥ 1 :∃x ∈ int(K ∩ L),λ−1(L − x) + x ⊂ K ⊂ λ(L − x) + x

}
,

where we use the convention that inf(∅) = ∞. The main result of the paper is as
follows:

THEOREM 1. There exist universal constants c, c′, c̃ > 0 with the following
property. Let q ≥ 1, d ∈ N and n ≥ c exp exp(5d) + c′ exp(q3). Let μ be a prob-
ability measure on R

d with a log-concave density function, (xi)
n
1 an i.i.d. sample

from μ, Pn = conv{xi}n1 and F1/n the floating body as in (4). With probability at
least 1 − 3d+3(logn)−q ,

dL(Pn,F1/n) ≤ 1 + c̃d(d + q)
log logn

logn
.(5)

The strategy of the proof is to use quantitative bounds in the one-dimensional
case to analyze the dual Minkowski functional of Pn in different directions. The
idea is simple; however, there are some subtle complications. The lack of symme-
try is a complicating factor, and the fact that the half-spaces of mass 1/n do not
necessarily touch F1/n adds to the intricacy of the proof.

We define f to be p-log-concave if it is of the form f (x) = c exp(−g(x)p)

where g is a nonnegative convex function and c > 0.

THEOREM 2. For all q > 0, p > 1 and d ∈ N, and any probability measure μ

on R
d with a p-log-concave density function, there exist c, c̃ > 0 such that for all

n ∈ N with n ≥ d + 2, if (xi)
n
1 is an i.i.d. sample from μ, Pn = conv{xi}n1 and F1/n

is the floating body as in (4), then with probability at least 1 − c̃(logn)−q we have

dH(Pn,F1/n) ≤ c
log logn

(logn)1−1/p
.(6)

Theorem 2 can easily be extended to a much larger class of log-concave distribu-
tions. Using Theorem 1, any bound on the growth rate of diam(F1/n) automatically
transfers to a bound on dH(Pn,F1/n).

Our prototypical example is the class of distributions introduced by Schecht-
man and Zinn [22] of the form f (x) = cd

p exp(−‖x‖p
p), where 1 ≤ p < ∞ and

cp = p/(2�(p−1)). For these distributions, Pn ≈ (log(cd
pn))1/pBd

p . Of particu-
lar interest is the Gaussian distribution, where p = 2. In this case (actually for



3054 D. FRESEN

the standard Gaussian distribution), Bárány and Vu [5] obtained a similar approx-
imation (see Remark 9.6 in their paper) and showed that there exist two radii,
R and r , both functions of n and d , such that for any fixed d ≥ 2 both r,R =
(2 logn)1/2(1 + o(1)) as n → ∞, and with “high probability” rBd

2 ⊂ Pn ⊂ RBd
2 .

Their sandwiching result served as a key step in their proof of the central limit
theorem for Gaussian polytopes (asymptotic normality of various functionals such
as the volume and the number of faces).

In the setting where μ is the uniform distribution on a convex body, the floating
body is usually denoted by Kδ . In this context it is trivial that limn→∞ dH(Pn,

K) = 0 (almost surely), and the phenomenon of interest is the rate at which Pn

approached the boundary of K . Bárány and Larman [4] proved that for n ≥ n0(d),

c′ vold(K \ K1/n) ≤ Evold(K \ Pn) ≤ c′′(d)vold(K \ K1/n).

The reader may be interested to contrast our results with the results in [9]. The
results presented here require a very large sample size and guarantee a precise ap-
proximation, somewhat in the spirit of the “almost-isometric” theory of convex
bodies. On the other hand, the results presented in [9] describe a type of approx-
imation in the spirit of the “isomorphic” theory, and are most interesting, specifi-
cally in high-dimensional spaces.

We also study two other deterministic bodies that serve as approximants to the
random body. Define

f �(x) = inf
H

∫
H

f (y) dH(y),

where H runs through the collection of all hyperplanes that contain x, and dH
stands for Lebesgue measure on H. For any δ > 0, define the bodies

Dδ = Cl
{
x ∈ R

d :f (x) ≥ δ
}
,

Rδ = Cl
{
x ∈ R

d :f �(x) ≥ δ
}
,

where Cl(E) denotes the closure of a set E. By log-concavity of f , both Dδ and
Rδ are convex.

THEOREM 3. Let d ∈ N, and let μ be a probability measure on R
d with a

continuous nonvanishing log-concave density function. Then we have

lim
δ→0

dL(Fδ,Dδ) = 1,(7)

lim
δ→0

dL(Fδ,Rδ) = 1.(8)

Similar results hold in the Hausdorff distance for log-concave distributions that
decay super-exponentially.
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Let X ∈ R
d be a random vector with distribution μ. The random variable

− logf (X) is a type of differential information content; see [7]. The differential
entropy of μ is defined as

h(μ) = −E logf (X)

= −
∫

Rd
f (x) logf (x) dx

and the entropy power defined as N(μ) = exp(2d−1h(μ)). Note that the distribu-
tion of − logf (X) can be expressed in terms of the function δ �→ μ(Dδ),

P
{− logf (X) ≤ t

} = μ(Dδ) : δ = e−t .

Because of the rapid decay of f , the body Dδ acts as an essential support for
the measure μ. For δ = e−d , this was studied by Klartag and Milman [14]; see
Lemma 2.2 and Corollary 2.4 in their paper. Bobkov and Madiman later provided
a more precise description. In [7] they show that the variance of − logf (X) is at
most Cd , where C > 0 is a universal constant, and that in high-dimensional spaces,
f (X)2/d is strongly concentrated around N(μ). Theorem 1.1 in their paper can be
written as

μ
{
x ∈ R

d :N(μ)−d/2δ < f (x) < N(μ)−d/2δ−1}
> 1 − 2δp(d)

provided δ ∈ (0,1), where p(d) = 16−1d−1/2. In Lemma 16 we show that if μ is
isotropic and has a continuous density function, then for all δ < exp(−10d logd −
7),

μ
{
x ∈ R

d :f (x) ≥ δ
} ≥ 1 − αdδ

(
log δ−1)d

,(9)

where αd = c1 exp(3d2 logd). In a fixed dimension, inequality (9) displays the
natural quantitative behavior of μ(Dδ) as δ → 0 and is sharp up to a factor of
log δ−1.

Let Kd denote the collection of all convex bodies in R
d . For all K,L ∈ Kd ,

define

dBM(K,L) = inf
{
λ ≥ 1 :∃x ∈ R

d,∃T ,K ⊂ T L ⊂ λ(K − x) + x
}
,(10)

where T represents any affine transformation of R
d . This is a modification of the

classical Banach–Mazur distance between normed spaces (origin symmetric bod-
ies).

THEOREM 4. For all d ∈ N, there exists a probability measure μ on R
d with

the following universality property. Let (xi)
∞
1 be an i.i.d. sample from μ, and for

each n ∈ N with n ≥ d + 1, let Pn = conv{xi}n1. Then with probability 1, the se-
quence (Pn)

∞
d+1 is dense in Kd with respect to dBM.
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Throughout the paper we will make use of variables c, c̃, c1, c2, n0, m, etc.
At times they represent universal constants, and at other times they depend on
parameters such as the dimension d or the measure μ. Such dependence will al-
ways be clear from the context, and will either be indicated explicitly as cd , c(d),
n0(d), etc., or implicitly as in Theorem 2, where c and c̃ depend on q , p, d and μ.
Half-spaces shall be indexed as Hθ,t = {x ∈ R

d : 〈x, θ〉 ≥ t} and hyperplanes as
Hθ,t = {x ∈ R

d : 〈x, θ〉 = t}, where θ ∈ Sd−1 and t ∈ R.

3. Background. Most of the material in this section is discussed in [1, 2, 17]
and [18]. We denote the standard Euclidean norm on R

d by ‖·‖2. For any ε > 0, an
ε-net in Sd−1 is a subset N such that for any distinct ω1,ω2 ⊂ N , ‖ω1 −ω2‖2 > ε,
and for all θ ∈ Sd−1 there exists ω ∈ N such that ‖θ − ω‖2 ≤ ε. Such a subset can
easily be constructed using induction. By a standard volumetric argument, we have

|N | ≤
(

3

ε

)d

.(11)

By induction, any θ ∈ Sd−1 can be expressed as a series

θ = ω0 +
∞∑
i=1

εiωi,(12)

where each ωi ∈ N and 0 ≤ εi ≤ εi . To see this, express θ = ω0 + r0, where
ω0 ∈ N and ‖r0‖2 ≤ ε. Then express ‖r0‖−1r0 ∈ Sd−1 in a similar fashion, and
iterate this procedure.

Define the functional

‖x‖N = max
{〈x,ω〉 :ω ∈ N

}
.

As an easy consequence of the Cauchy–Schwarz inequality, provided ε ∈ (0,1)

we have

(1 − ε)‖x‖2 ≤ ‖x‖N ≤ ‖x‖2,(13)

which implies that

Bd
2 ⊂ BN ⊂ (1 − ε)−1Bd

2 ,(14)

where BN = {x : ‖x‖N ≤ 1}. The body BN is what remains if one deletes all open
half-spaces that are tangent to Bd

2 at points in N .
A convex body is a compact convex subset of Euclidean space with nonempty

interior. For a convex body K ⊂ R
d that contains the origin as an interior point, its

Minkowski functional is defined as

‖x‖K = inf{λ > 0 :x ∈ λK}
for all x ∈ R

d . By convexity of K , one can easily show that ‖·‖K obeys the triangle
inequality. The dual Minkowski functional is defined as

‖y‖K◦ = sup
{〈x, y〉 :x ∈ K

}
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for all y ∈ R
d , and the polar of K is

K◦ = {
y ∈ R

d :‖y‖K◦ ≤ 1
}
.

By the Hahn–Banach theorem, K◦◦ = K .
The Hausdorff distance dH between K and L is defined as

dH(K,L) = max
{
max
k∈K

d(k,L);max
l∈L

d(K, l)
}
.

By convexity this reduces to

dH(K,L) = sup
θ∈Sd−1

∣∣∣sup
k∈K

〈k, θ〉 − sup
l∈L

〈l, θ〉
∣∣∣

= sup
θ∈Sd−1

∣∣(‖θ‖K◦ − ‖θ‖L◦
)∣∣.

We define the logarithmic Hausdorff distance between K and L about a point
x ∈ int(K ∩ L) as

dL(K,L,x) = inf
{
λ ≥ 1 :λ−1(L − x) + x ⊂ K ⊂ λ(L − x) + x

}
provided int(K ∩ L) �= ∅, and

dL(K,L) = inf
{
dL(K,L,x) :x ∈ int(K ∩ L)

}
.

Note that

logdL(K,L,0) = sup
θ∈Sd−1

∣∣log‖θ‖K − log‖θ‖L

∣∣.
The following relations follow from the definitions above,

dL(K,L,0) = dL

(
K◦,L◦,0

)
,

(15)
dL(T K,T L) = dL(K,L),

where T is any invertible affine transformation. In addition, one can check that

dBM(K,L) ≤ dL(K,L)2,
(16)

dH(K,L) ≤ diam(K)
(
dL(K,L) − 1

);
hence all of our bounds in terms of dL apply equally well to dBM. For large bodies,
dH is more sensitive than dL. More precisely, if r ≥ 1 and rBd

2 + x ⊂ K for some
x ∈ R

d , and if dH(K,L) ≤ 1/2, then

dL(K,L) ≤ 1 + 2r−1dH(K,L).(17)

By a simple compactness argument, there is an ellipsoid of maximal volume
EK ⊂ K . This ellipsoid is called the John ellipsoid [1] associated to K . It can be
shown that Ek is unique and has the property that K ⊂ d(Ek − x) + x, where x is
the center of Ek . In particular, dL(Ek,K) ≤ d .
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In [10] it is shown that provided λ < 8−d , we have

dL(K,Kλ, x) ≤ 1 + 8λ1/d,(18)

where x is the centroid of K and Kδ is the floating body inside K .
The cone measure on ∂K is defined as

μK(E) = vold
({

rθ : θ ∈ E, r ∈ [0,1]})
for all measurable E ⊂ ∂K . The significance of the cone measure is that it leads to
a natural polar integration formula (see [19]); for all f ∈ L1(R

d),∫
Rd

f (x) dx = d

∫ ∞
0

∫
∂K

rd−1f (rθ) dμK(θ) dr.(19)

A probability measure μ is called isotropic if its centroid lies at the origin and
its covariance matrix is the d × d identity matrix.

A function f : Rd → [0,∞) is called log-concave (see [14]) if

f
(
λx + (1 − λ)y

) ≥ f (x)λf (y)1−λ

for all x, y ∈ R
d and all λ ∈ (0,1). Any such function can be written in the form

f (x) = e−g(x) where g : Rd → (−∞,∞] is convex. If f is the density of a proba-
bility measure μ, then it must decay exponentially to zero. In this case g lies above
a cone, that is,

g(x) ≥ m‖x‖2 − c(20)

with m,c > 0. As a consequence of the Prékopa–Leindler inequality [2], if x is a
random vector with log-concave density, and y is any fixed vector, then 〈x, y〉 has a
log-concave density in R. Log-concave functions are very rigid. One such example
of this rigidity (see Lemma 5.12 in [16]) is the fact that if H is any half-space con-
taining the centroid of μ, then μ(H) ≥ e−1. Another example (see Theorem 5.14
in [16]) is that if μ is isotropic, then

2−7d ≤ f (0) ≤ d(20d)d/2,(21)

(4πe)−d/2 ≤ ‖f ‖∞ ≤ 28ddd/2,(22)

and if ‖x‖2 ≤ 1/9, then

2−8d ≤ f (x) ≤ d2d(20d)d/2.(23)

Let 1 ≤ p < ∞. If g : Rd → [0,∞] is convex and limx→∞ g(x) = ∞, then the
probability measure with density given by

f (x) = ce−g(x)p

will be called p-log-concave. This is a natural generalization of the normal distri-
bution. If f is p-log-concave, then it is also p′-log-concave for all 1 ≤ p′ ≤ p.
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Let Hd denote the collection of all (d − 1)-dimensional affine subspaces (hy-
perplanes) of R

d . The Radon transform of an integrable log-concave function
f : Rd → [0,∞) is the function Rf : Hd → [0,∞) defined by

Rf (H) =
∫

H
f (y) dH(y),(24)

where dH is Lebesgue measure on H. The Radon transform is closely related to
the Fourier transform. See [15] for a discussion of these operators and their con-
nections to convex geometry.

4. The one-dimensional case. Let f be a nonvanishing log-concave proba-
bility density function on R associated to a probability measure μ. In particular,
f (t) = e−g(t) where g : R → R is convex. For t ∈ R, define

J (t) =
∫ t

−∞
f (s) ds,

u(t) = − log
(
1 − J (t)

)
.

The cumulative distribution function J is a strictly increasing bijection between R

and (0,1). The following lemma is a standard result; see, for example, Theorem 5.1
in [16] for the statement, and the references given there. However, we include a
short proof here for completeness.

LEMMA 5. u is convex.

PROOF. Assume momentarily that g ∈ C2(R). For t ∈ (0,1) define

ψ(t) = f
(
J−1(1 − t)

)
.

Note that

ψ ′′(t) = −g′′(J−1(1 − t))

ψ(t)
≤ 0.

Hence ψ is concave. In addition, limt→0 ψ(t) = limt→1 ψ(t) = 0. Hence, the
function κ(t) = ψ(t)/t is nonincreasing on (0,1), and the function f (t)/(1 −
J (t)) = κ(1 − J (t)) is nondecreasing on R. Since u′(t) = f (t)/(1 − J (t)), u is
convex.

If g /∈ C2(R), then the result follows by approximation (convolve μ with a
Gaussian). �

LEMMA 6. If T ≥ 1 and x > 2T logT , then (logx)/x < T −1.

PROOF. Since the function y = e−1x is tangent to the strictly concave func-
tion y = logx, the function y = (logx)/x has a global maximum of e−1 and is
decreasing on [e,∞). We now consider two cases. In case 1, T < e and therefore



3060 D. FRESEN

(logx)/x ≤ e−1 < T −1. In case 2, T ≥ e. Since (logT )/T < 2−1, it follows that
log(2 logT ) < logT . For x′ = 2T logT ,

logx′

x′ = logT + log(2 logT )

2T logT
<

1

T
.

Since x > x′ > e, (logx)/x < (logx′)/x′ and the result follows. �

The following lemma is a quantitative version of the Gnedenko law of large
numbers for log-concave probability measures on R.

LEMMA 7. Let q ≥ 1 and n ≥ 120q2(2 + logq)2. Let μ be a probability mea-
sure on R with a nonvanishing log-concave density function and cumulative dis-
tribution function J , and let (γi)

n
1 be an i.i.d. sample from μ. With probability at

least 1 − 2(logn)−q ,

|γ(n) − J−1(1 − 1/n)|
J−1(1 − 1/n) − Eμ

≤ 6q
log logn

logn
,(25)

where γ(n) = max{γi}n1 and Eμ denotes the centroid of μ.

PROOF. We shall implicitly make use of Lemma 6 several times throughout
the proof. Let a = (logn)−q and b = q logn. It follows that 0 < a < b < ne−1. Set
s = J−1(1 − b/n) and t = J−1(1 − a/n). As mentioned in the preliminaries (see
also Lemma 3.3 in [8]), 1 − J (Eμ) ≥ e−1, hence u(Eμ) ≤ 1. Since b/n < e−1,
we have Eμ < s < t . By convexity of u we have the inequality (s −Eμ)−1(u(s)−
u(Eμ)) ≤ (t − s)−1(u(t) − u(s)) which can be rewritten as

J−1(1 − a/n) − J−1(1 − b/n)

J−1(1 − b/n) − Eμ
≤ logb − loga

logn − logb − 1
.(26)

Since 2qe log
√

n ≤ √
n, it follows that log(qe logn) ≤ 1

2 logn which implies that

logb − loga

logn − logb − 1
≤ 3q log logn

logn − log(qe logn)
≤ 6q

log logn

logn
.

By independence,

P
{
J−1(1 − b/n) ≤ γ(n) ≤ J−1(1 − a/n)

}
=

(
1 − a

n

)n

−
(

1 − b

n

)n

≥ 1 − a − e−b

≥ 1 − 2(logn)−q.

If the event {J−1(1 − b/n) ≤ γ(n) ≤ J−1(1 − a/n)} occurs, then the event defined
by inequality (25) also occurs. �
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Although Lemma 7 applies to the multiplicative version of the Gnedenko law
of large numbers, it also recovers the additive version as long as

J−1(1 − 1/n) = o

(
logn

log logn

)
.(27)

If, in the proof, we take a−1 = b = log(m) n (the mth iterate of the logarithm), then
the probability bound becomes 1 − 2(log(m) n)−1, and the right-hand side of (25)
becomes

4 log(m+1) n

logn

provided n > n0(m).

5. Main proofs. Since Lebesgue measure depends on the underlying Eu-
clidean structure of R

d , so does the definition of f = dμ/dx, and therefore also
the definition of Dδ = Cl{x :f (x) ≥ δ}. A natural variation of the body Dδ which
does not depend on Euclidean structure is the body

D
�
δ = Cl

{
x ∈ R

d :f (x) ≥ τ−1
d 9d

∣∣det cov(μ)
∣∣−1/2

δ
}
,

where the quantity

τd = vold−1
(
Bd−1

2

) ∫ 1

1/2

(
1 − t2)(d−1)/2

dt(28)

represents the volume of the set {x ∈ R
d :‖x‖2 ≤ 1, x1 ≥ 1/2}. Associated to D

�
δ

are three ellipsoids that play a central role in our proof. The John ellipsoid of D
�
δ

is denoted E
D

�
δ

and the centroid of E
D

�
δ

will be denoted Oδ . We also consider

E �
δ = 3d(E

D
�
δ
− Oδ) + Oδ(29)

and

E �
δ = 1

2(E
D

�
δ
− Oδ) + Oδ.(30)

The advantage of using D
�
δ is that we may place μ in different positions at various

stages of our analysis. We first position μ to be isotropic and then position it so
that E

D
�
δ
= Bd

2 . We include the proofs of Lemmas 8 and 9 in Section 6.

LEMMA 8. There exists a universal constant c > 0 with the following property.
Let d ∈ N, let μ be a log-concave probability measure with a continuous density
function f , and let δ < c exp(−8d2 logd). Let H be a half-space (either open or
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closed) with μ(H) = δ, and let E �
δ and E �

δ be defined by (29) and (30), respectively.
Then

H ∩ E �
δ �= ∅,(31)

H ∩ E �
δ = ∅.(32)

Consequently,

E �
δ ⊂ Fδ ⊂ E �

δ .

We shall use the Euclidean structure corresponding to E
D

�
δ

in order to compare

F1/n and Pn. The following lemma together with Lemma 8 allows us to do so.

LEMMA 9. Let d ∈ N and let K and L be convex bodies in R
d such that

0 ∈ int(L) and rBd
2 ⊂ K ⊂ RBd

2 for some r,R > 0. Let 0 < ρ < 1/2 and 0 < ε <

(16R/r)−1, and let N be an ε-net in Sd−1. Suppose that for each ω ∈ N ,

(1 − ρ)‖ω‖L ≤ ‖ω‖K ≤ (1 + ρ)‖ω‖L.(33)

Then for all x ∈ R
d we have(

1 + 2ρ + 28Rr−1ε
)−1‖x‖L ≤ ‖x‖K ≤ (

1 + 2ρ + 28Rr−1ε
)‖x‖L.(34)

In particular,

dL(K,L) ≤ dL(K,L,0) ≤ 1 + 2ρ + 28Rr−1ε.(35)

PROOF OF THEOREM 1. By convolving μ with a Gaussian measure of the
form

φλ,d(x) = λ−dφd

(
λ−1x

)
,

where φd(x) = (2π)−d exp(−2−1‖x‖2
2) is the standard normal density function,

and taking λ → 0, we may assume that the density of μ is continuous and nonva-
nishing. This is possible because the bounds in the theorem do not depend on μ.
The condition n ≥ c exp exp(5d) + c′ exp(q3) (with sufficiently large c and c′) in-
sures that the probability bound is nontrivial. It is also sufficiently large so that we
may use Lemma 8 with δ = 1/n and Lemma 7 with q ′ = d +q . In fact we will im-
plicitly make use of this bound repeatedly throughout the proof. Let ε = (logn)−1.
By applying a suitable affine transformation, we may assume that E

D
�
1/n

= Bd
2 . By

Lemma 8, if Hθ,t is a half-space with μ(Hθ,t ) = 1/n, then

1/2 ≤ t ≤ 3d.(36)

This implies that 1/2Bd
2 ⊂ F1/n ⊂ 3dBd

2 . For each θ ∈ Sd−1, the function fθ (t) =
− d

dt
μ(Hθ,t ) is the density of a log-concave probability measure μθ on R with

cumulative distribution function Jθ (t) = 1 − μ(Hθ,t ). Furthermore, the sequence
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(〈θ, xi〉)ni=1 is an i.i.d. sample from this distribution. Recalling the definition of the
dual Minkowski functional, for any y ∈ R

d ,

‖y‖P ◦
n

= sup
{〈x, y〉 :x ∈ Pn

}
= max

i=1,...,n
〈xi, y〉.

We use this notation even when 0 /∈ int(Pn). Let N denote a generic ε-net in Sd−1,
and consider the function

f̃N (x) = inf
{
μ(Hω,t ) :ω ∈ N , t = 〈ω,x〉}.

For all δ > 0, define the discrete floating body

F N
δ = {

x ∈ R
d : f̃N (x) ≥ δ

}
.

Note that f̃ (x) = infN f̃N (x) and Fδ = ⋂
N F N

δ , where N runs through the col-
lection of all ε-nets in Sd−1. By (36), 1

2Bd
2 ⊂ F N

1/n ⊂ 3dBN , and by (14) we have

1/2Bd
2 ⊂ F N

1/n ⊂ 4dBd
2 which implies that (4d)−1Bd

2 ⊂ (F N
1/n)

◦ ⊂ 2Bd
2 . For each

θ ∈ Sd−1, we have

Eμθ ≥ J−1
θ

(
e−1)

≥ J−1
θ (1/n).

Combining this and (25), with probability at least 1 − 2(logn)−d−q we have that

|‖θ‖P ◦
n

− J−1
θ (1 − 1/n)|

J−1
θ (1 − 1/n) − J−1

θ (1/n)
≤ 6(d + q)

log logn

logn
.

Since both −J−1
θ (1/n) and J−1

θ (1 − 1/n) lie in the interval [1/2,3d], both have
roughly the same order of magnitude, and we have

(1 − ρ)J−1
θ (1 − 1/n) ≤ ‖θ‖P ◦

n
≤ (1 + ρ)J−1

θ (1 − 1/n),

where

ρ = 42d(d + q)
log logn

logn
< 1/8.

With probability at least 1 − ε−d3d+1(logn)−d−q = 1 − 3d+1(logn)−q , this holds
for all ω ∈ N . Hence,

(1 + ρ)−1Pn ⊂ F N
1/n,

which implies that

(1 − ρ)‖θ‖P ◦
n

≤ ‖θ‖
(F N

1/n)◦
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for all θ ∈ Sd−1. On the other hand, for all ω ∈ N we have

‖ω‖P ◦
n

≥ (1 − ρ)J−1
ω (1 − 1/n)

(37)
≥ (1 − ρ)‖ω‖

(F N
1/n)◦

As ‖ · ‖P ◦
n

is the supremum of Lipschitz functions, Lip(‖ · ‖P ◦
n
) ≤ sup{‖x‖2 :x ∈

Pn} < 8d . Since (37) implies that ‖ω‖P ◦
n

> 1/4 (simultaneously for all ω ∈ N with
high probability), for all θ ∈ Sd−1 we have ‖θ‖P ◦

n
> 1/8. Using the Hahn–Banach

theorem, 0 ∈ int(Pn). This also implies that 0 ∈ int(P ◦
n ). By (34),

(1 + 4ρ + 224dε)−1‖x‖P ◦
n

≤ ‖x‖
(F N

1/n)◦ ≤ (1 + 4ρ + 224dε)‖x‖P ◦
n

(38)

for all x ∈ R
d . Let M be any other ε-net in Sd−1. By the calculations above, with

probability at least 1 − 3d+1(logn)−q ,

(1 + 4ρ + 224dε)−1‖x‖P ◦
n

≤ ‖x‖
(F M

1/n)◦ ≤ (1 + 4ρ + 224dε)‖x‖P ◦
n

(39)

for all x ∈ R
d . By the union bound, with probability at least 1−3d+2(logn)−q > 0,

both (38) and (39) hold, which implies that

(1 + 4ρ + 224dε)−2F N
1/n ⊂ F M

1/n ⊂ (1 + 4ρ + 224dε)2F N
1/n.(40)

However both F N
1/n and F M

1/n are deterministic bodies, and (40) therefore holds

unconditionally. Since F1/n = ⋂
M F M

1/n, where the intersection is taken over all

ε-nets in Sd−1, we have

(1 + 4ρ + 224dε)−2F N
1/n ⊂ F1/n ⊂ (1 + 4ρ + 224dε)2F N

1/n.

Combining this with the polar of (38) gives that with probability at least 1 −
3d+1(logn)−q , we have

(1 + 4ρ + 224dε)−3Pn ⊂ F1/n ⊂ (1 + 4ρ + 224dε)3Pn

from which the result follows by the inequality (1 + ε′)3 ≤ 1 + 12ε′, valid if 0 ≤
ε′ ≤ 1. �

LEMMA 10. Let g : Rd → [0,∞] be convex with limx→∞ g(x) = ∞, let K ⊂
R

d be a convex body containing 0 in its interior and let p > 1. Then there exist
c1, c2 > 0 such that for all x ∈ R

d ,

g(x)p ≥ c1‖x‖p
K − c2.(41)

PROOF. We leave the easy proof of this to the reader. �

LEMMA 11. Let p > 1, d ∈ N and let μ be a p-log-concave probability mea-
sure on R

d . Then there exist c1, c2, t0 > 0 such that for all θ ∈ Sd−1 and all t ≥ t0,

μ(Hθ,t ) ≤ c1t
1−pe−c2t

p

,(42)

where Hθ,t = {x ∈ R
d : 〈x, θ〉 ≥ t}.
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PROOF. For all t ≥ 1 we have

e−tp ≤ − d

dt

(
p−1t1−pe−tp)

= p−1(p − 1)t−pe−tp + e−tp

≤ p−1(2p − 1)e−tp .

Hence, by the fundamental theorem of calculus,

(2p − 1)−1t1−pe−tp ≤
∫ ∞
t

e−sp

ds ≤ p−1t1−pe−tp .(43)

Since the image of a p-log-concave probability measure under an orthogonal
transformation is p-log-concave, we may assume without loss of generality that
θ = e1 = (1,0,0,0, . . .). By (41), there exist c1, c2 > 0 such that for all x ∈ R

d ,

f (x) ≤ c1e
−c2‖x‖p

p ,

where ‖x‖p
p = ∑d

i=1 |xi |p . Hence,

μ(Hθ,t ) ≤
∫
Hθ,t

c1e
−c2‖x‖p

p dx

(44)
=

∫ ∞
t

c3e
−c2s

p

ds.

The result now follows from a change of variables, (44) and (43). �

PROOF OF THEOREM 2. Let c1, c2 and t0 be the constants appearing in
Lemma 11. Let n0 > c1 + exp(2−1c2t

p
0 ). Without loss of generality, t0 > 1 and

n > n0. Set α = (2c−1
2 logn)1/p and consider any x ∈ R

d with ‖x‖2 > α. Let
θ = ‖x‖−1

2 x and t = (α + ‖x‖2)/2. Since t > α > t0 and n > c1, Lemma 11 im-
plies that

μ(Hθ,t ) < c1n
−2 < n−1.

Since ‖x‖2 > t , x ∈ int(Hθ,t ). By definition of the floating body, x /∈ F1/n. Since
this is true for all such x, diam(F1/n) ≤ 2α = c4(logn)1/p . The result now fol-
lows from Theorem 1 and relation (16) between the Hausdorff and the logarithmic
Hausdorff distances. �

6. Technical lemmas. This section contains some technical results on the
rigidity of log-concave functions that enable us to obtain a lower bound on the
sample size.

LEMMA 12. There exist universal constants c1, c2 > 0 such that for all d ∈ N,

cd
1d−d/2 ≤ vold

(
Bd

2
) ≤ cd

2d−d/2.
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PROOF. This follows from Stirling’s formula and the expression vold(Bd
2 ) =

πd/2(�(1 + d/2))−1; see Corollary 2.20 in [15] or page 11 in [20]. �

LEMMA 13. There exists a universal constant c > 0 with the following prop-
erty. Let d ∈ N and let μ be an isotropic log-concave probability measure on R

d

with density function f . For all x ∈ R
d ,

f (x) ≤ e−αd‖x‖2+βd ,

where αd = cdd−d/2 and βd = 10d log(d) + 7.

PROOF. We first consider the case d ≥ 2. The volume of a cone in R
d

with height h and base radius r is d−1rd−1hvold−1(B
d−1
2 ). For any x ∈ R

d ,
let Ax be the cone with vertex x and base (1/9)Bd

2 ∩ x⊥. Then vold(Ax) =
d−19−d+1‖x‖2 vold−1(B

d−1
2 ) > e−4d+3‖x‖2 vold−1(B

d−1
2 ). By log-concavity of

f and inequality (23), for all y ∈ Ax ,

f (y) ≥ min
{
f (x),2−8d}

.(45)

If f (x) ≥ 2−8d , then

1 ≥
∫
Ax

f (y) dy ≥ 2−8d vold(Ax) > e−10d+3‖x‖2 vold−1
(
Bd−1

2

)
,

and it follows that

‖x‖2 <
e10d−3

vold−1(B
d−1
2 )

.

Hence, if ‖x‖2 ≥ e10d−3/vold−1(B
d−1
2 ), then

f (x) < 2−8d .(46)

For any such x we have the convex combination

e10d−3

vold−1(B
d−1
2 )

x

‖x‖2
= e10d−3

‖x‖2 vold−1(B
d−1
2 )

x +
(

1 − e10d−3

‖x‖2 vold−1(B
d−1
2 )

)
0.

Set

x̃ = e10d−3

vold−1(B
d−1
2 )

x

‖x‖2
.

Using concavity of logf and inequality (46),

−8d ln 2 ≥
(

e10d−3

‖x‖2vold−1(B
d−1
2 )

)
logf (x)+

(
1− e10d−3

‖x‖2 vold−1(B
d−1
2 )

)
logf (0).

After some simplification, and using inequality (21), we get

f (x) ≤ exp
(−de−10d+3vold−1

(
Bd−1

2

)‖x‖2 ln 2 − 7d ln 2
)
.
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If, on the other hand, ‖x‖2 < e10d−3/vold−1(B
d−1
2 ), then by (22)

f (x) ≤ ‖f ‖∞ ≤ dd/228d

= exp
(
2−1d lnd + 8d ln 2

)
.

Using Lemma 12, it follows that for all x ∈ R
d ,

f (x) ≤ exp
(−de−10d+3 vold−1

(
Bd−1

2

)
ln 2‖x‖2 + 9d ln 2 + 2−1d lnd

)
≤ exp

(−cd
3d−d/2‖x‖2 + 10d lnd

)
.

The case d = 1 is simpler, and we leave the details to the reader. First show
that f (28) ≤ 2−8, and then proceed as in the case d ≥ 2 to obtain f (x) ≤
exp(−2−9|x| + 7) for all x ∈ R. �

COROLLARY 14. There exist universal constants c1, c2 > 0 with the following
property. Let d ∈ N, and let μ be an absolutely continuous isotropic log-concave
probability measure. For all δ < e−10d logd−7,

Dδ ⊂ cd
1dd/2(

log δ−1)
Bd

2 .

In particular, vold(Dδ) ≤ c2 exp(d2 logd)(log δ−1)d .

PROOF. By (21), Dδ �= ∅. By the bounds on δ, it follows that 10d logd + 7 ≤
log δ−1. The result now follows from Lemmas 13 and 12. �

LEMMA 15. There exists a universal constant c > 0 with the following prop-
erty. Let d ∈ N, and let μ be an isotropic log-concave probability measure with
density f . Let r > 1 and x ∈ R

d . If f (x) < 2−8d , then

f (rx) ≤ f (x) exp
(−cdd−d/2(r − 1)‖x‖2

)
.(47)

PROOF. Let g = − logf . By Lemmas 13 and 12, there exists a universal con-
stant c2 > 0 such that f (x̃) ≤ 2−8d for all x̃ with ‖x̃‖2 ≥ cd

2dd/2; see in partic-
ular (46). Let x ∈ R

d be the point specified in the statement of the lemma. We
consider two cases. In the first case ‖x‖2 ≥ cd

2dd/2. Let x̃ = cd
2dd/2‖x‖−1

2 x. By
inequality (21), f (0) ≥ 2−7d . By convexity of g and the definition of c2,

g(rx) − g(x)

(r − 1)‖x‖2
≥ g(x̃) − g(0)

‖x̃‖2
= ‖x̃‖−1

2 ln
f (0)

f (x̃)
≥ c−d

2 d1−d/2 ln 2.

In the second case, ‖x‖2 < cd
2dd/2. Recall that, by hypothesis, f (x) < 2−8d .

Therefore,

g(rx) − g(x)

(r − 1)‖x‖2
≥ g(x) − g(0)

‖x‖2
≥ ‖x‖−1

2 ln
f (0)

f (x)
≥ c−d

2 d1−d/2 ln(2)

from which the result follows with c = (2c2)
−1. �
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LEMMA 16. There exists a universal constant c1 > 0 with the following prop-
erty. Let d ∈ N, and let μ be an isotropic log-concave probability measure with a
continuous density function f . For all δ < e−10d logd−7,

μ
(
R

d \ Dδ

) ≤ αdδ
(
log δ−1)d

,(48)

where αd = c1 exp(3d2 logd).

PROOF. Since f is continuous, for all θ ∈ ∂Dδ we have f (θ) = δ. By the
polar integration formula (19) and inequality (47),

μ
(
R

d \ Dδ

) =
∫

Rd\Dδ

f (x) dx

= d

∫ ∞
1

∫
∂Dδ

rd−1f (rθ) dμDδ(θ) dr

≤ d

∫ ∞
1

∫
∂Dδ

rd−1δ exp
(−cdd−d/2(r − 1)‖θ‖2

)
dμDδ(θ) dr.

By (23) and the fact that δ < 2−8d , we have 1/9Bd
2 ⊂ Dδ . By Corollary 14,

μ
(
R

d \ Dδ

) ≤ d

∫ ∞
1

∫
∂Dδ

rd−1δ exp
(−cdd−d/2(r − 1)9−1)

dμDδ(θ) dr

≤ δ vold(Dδ)d

∫ ∞
1

rd−1 exp
(−cd

2d−d/2(r − 1)
)
dr

≤ βdδ
(
log δ−1)d

d exp
(
d2 logd + c3

)
,

where

βd =
∫ ∞

1
rd−1 exp

(−cd
2d−d/2(r − 1)

)
dr.

Set ωd = cd
2d−d/2 and t = ωdr . Recall the definition of the gamma function

�(z) = ∫ ∞
0 e−r rz−1 dr . By a change of variables and Stirling’s formula,

βd ≤ exp(ωd)

∫ ∞
0

rd−1 exp(−ωdr) dr

≤ c4ω
−d
d

∫ ∞
0

td−1e−t dt

≤ c5 exp
(
d2 logd

)
from which the result follows. �

Lemma 16 is optimal in δ up to a factor log δ−1 as can be seen from the ex-
ample f (x) = c̃d exp(−‖x‖2), in which case μ(Rd \ Dδ) ≥ cdδ(log δ−1)d−1 for
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δ < δ0(d). To see this, apply the polar integration formula as in the proof of
Lemma 16 and use the equation∫ ∞

R
rd−1e−r dr = (

1 + od(1)
)
Rd−1e−R

with d fixed and R → ∞.

LEMMA 17. There exists a universal constant c > 0 such that for all d ∈ N, if
t > d5d , then

√
t ≥ c(log t)d .

Note that the inequality fails for t = d2d .

PROOF OF LEMMA 17. First, consider any d > 16. For any such d , (2d)4d <

d5d . Set T = 2d and x = log t . Since (2d)4d < d5d < t , it follows that 2T logT <

x. By Lemma 6, (logx)/x < T −1, or equivalently

log log t

log t
<

1

2d
,

which is in turn equivalent to
√

t > (log t)d . By elementary analysis, the number

c′ = inf
{
t1/2(log t)−d :d ≤ 16, t > d5d}

is strictly positive. The result now follows for all d ∈ N with c = min{c′,1}. �

LEMMA 18. There exists a universal constant c̃ > 0 with the following prop-
erty. Let d ∈ N and let μ be an isotropic log-concave probability measure with a
continuous density function f . For all δ < c̃ exp(−8d2 logd),

μ
(
R

d \ 2Dτ−19dδ

)
< δ,

where τ = τd = vold−1(B
d−1
2 )

∫ 1
1/2(1 − t2)(d−1)/2 dt .

PROOF. Consider the quantity αd = c1 exp(3d2 logd) from Lemma 16. By
concavity, 1 − t2 ≥ 3(1 − t)/2 for all 1/2 ≤ t ≤ 3/4. By a change of variables and
Lemma 12, one sees that τ > cd

2d−d/2. Let κ = τ−19dδ. Consider any y ∈ ∂(2Dκ).
Then x = y/2 ∈ ∂Dκ , and we have the convex combination x = 1

20 + 1
2y. By log-

concavity, f (x) ≥ f (0)1/2f (y)1/2 and by inequality (21),

f (y) ≤ f (x)2

f (0)
< 28dκ2

and y /∈ Dε with ε = 28dκ2. Since this is true for all y ∈ ∂(2Dκ), Dε ⊂ 2Dκ . For
a sufficiently small choice of c̃ (chosen independently of d), ε < e−10d logd−7. By



3070 D. FRESEN

Lemma 16 and the inequality e9d ≤ 28d92d ≤ e10d ,

μ
(
R

d \ 2Dκ

) ≤ μ
(
R

d \ Dε

) ≤ αdε
(
log ε−1)d

≤ e10dαdτ−2δ2(
2 log δ−1 + log

(
e−8dτ 2))d

≤ δ
(
c−1δ1/2αd2de10dτ−2)

cδ1/2(
log δ−1)d

,

where c is the constant from Lemma 17. By the bound imposed on δ,
c−1δ1/2αd2de10dτ−2 < 1. The result now follows from Lemma 17. �

Recall that EK denotes the John ellipsoid of a convex body K and that EK ⊂
K ⊂ d(EK − x0) + x0, where x0 is the center of EK .

LEMMA 19. Let K ⊂ R
d be a convex body with 0 ∈ K . Then 2K ⊂ 3d(EK −

x0) + x0.

PROOF. By applying a suitable linear transformation, we may assume that
EK = Bd

2 + x0. Take any x ∈ K . Since max{‖x0 − x‖2,‖x0‖2} ≤ d , it follows that
‖x‖2 ≤ ‖x0‖2 + ‖x − x0‖2 ≤ 2d and that ‖x0 − 2x‖2 ≤ ‖x0 − x‖2 + ‖x − 2x‖2 ≤
3d . �

LEMMA 20. Let E be an ellipsoid with centroid O, and let H be a half-space
with vold(H∩ E )×vold(Bd

2 ) < τd vold(E ). Then H and 1
2(E − O)+ O are disjoint.

PROOF. The truth of the lemma is invariant under affine transformations of E ,
and we may therefore assume that E = Bd

2 . The result now follows from the def-
inition of τd [see equation (28)] and the fact that τd = vold{x ∈ R

d :‖x‖2 ≤ 1,
x1 ≥ 1/2}. �

PROOF OF LEMMA 8. Consider τ = τd defined by (28). We may assume that
μ is in isotropic position, which implies that D

�
δ = Dτ−19dδ . Lemmas 18 and 19

together imply that H ∩ E �
δ �= ∅. For each x ∈ D

�
δ , f (x) ≥ τ−19dδ. Therefore δ ≥

μ(H ∩ E
D

�
δ
) ≥ τ−19dδ vold(H ∩ E

D
�
δ
) which implies that vold(H ∩ E

D
�
δ
) ≤ τ9−d .

Since the density function f is continuous and τ−19dδ < 2−8d , inequality (23) im-
plies that (9−1 + κ)Bd

2 ⊂ D
�
δ for some κ > 0. Since E

D
�
δ

is the unique ellipsoid of

maximal volume inside D
�
δ , we have vold(E

D
�
δ
) > 9−d vold(Bd

2 ). From the defini-

tion of E �
δ and Lemma 20, we see that H ∩ E �

δ = ∅. Finally, the claim that E �
δ ⊂ Fδ

follows from the definition of Fδ while the claim that Fδ ⊂ E �
δ follows from the

Hahn–Banach theorem [any x /∈ E �
δ lies in an open half-space H with H ∩ E �

δ = ∅

and therefore μ(H) < δ and x /∈ Fδ]. �



LAW OF LARGE NUMBERS 3071

PROOF OF LEMMA 9. Note that 1 + ρ ≤ (1 − ρ)−1 ≤ 1 + 2ρ and 1 − ρ ≤
(1+ρ)−1 ≤ 1−ρ/2, and the same inequalities hold for ε. Since rBd

2 ⊂ K ⊂ RBd
2 ,

we have that

R−1‖x‖2 ≤ ‖x‖K ≤ r−1‖x‖2

for all x ∈ R
d . Combining this with (33) gives

R−1(1 + ρ)−1 ≤ ‖ω‖L ≤ r−1(1 − ρ)−1

for all ω ∈ N . Consider any θ ∈ Sd−1. Let ω0 be the element of N that minimizes
‖θ − ω0‖2, and consider the series representation (12). By the triangle inequality,

‖θ‖L ≤ r−1(1 − ρ)−1(1 − ε)−1.

Hence ‖x‖L ≤ r−1(1 − ρ)−1(1 − ε)−1‖x‖2 for all x ∈ R
d . Using the triangle in-

equality in a bit of a different way,

‖θ‖L ≥ ‖ω0‖L −
∞∑
i=1

εi‖ωi‖L

≥ R−1(1 + ρ)−1 − r−1ε(1 − ε)−1(1 − ρ)−1

≥ R−1/2 − 4r−1ε

= R−1(
1 − 8Rr−1ε

)
/2

≥ (4R)−1,

which holds since 8Rr−1ε ≤ 1/2. Thus

‖θ‖L ≤ ‖ω0‖L + ‖θ − ω0‖L

≤ (1 − ρ)−1‖ω0‖K + r−1(1 − ρ)−1(1 − ε)−1ε

≤ (1 − ρ)−1(‖θ‖K + ‖ω0 − θ‖K

) + r−1(1 − ρ)−1(1 − ε)−1ε

≤ (1 − ρ)−1‖θ‖K + r−1(1 − ρ)−1ε
(
1 + (1 − ε)−1)

≤ (1 − ρ)−1‖θ‖K + Rr−1(1 − ρ)−1ε
(
1 + (1 − ε)−1)‖θ‖K

≤ (1 + 2ρ)
(
1 + 3Rr−1ε

)‖θ‖K

≤ (
1 + 2ρ + 6Rr−1ε

)‖θ‖K.

On the other hand,

‖θ‖K ≤ ‖ω0‖K + ‖θ − ω0‖K

≤ (1 + ρ)‖ω0‖L + r−1ε

≤ (1 + ρ)
(‖θ‖L + ‖ω0 − θ‖L

) + r−1ε

≤ (1 + ρ)‖θ‖L + r−1(1 + ρ)(1 − ρ)−1(1 − ε)−1ε + r−1ε
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≤ (1 + ρ)‖θ‖L + 7r−1ε · 4R‖θ‖L

≤ (
1 + ρ + 28Rr−1ε

)‖θ‖L.

The result follows by positive homogeneity. �

7. Proof of Theorem 3. Fix μ and d as in the statement of Theorem 3. Let f

be the density of μ, and let g = − logf . All variables in this section depend on
both d and μ.

LEMMA 21. There exist c, ε0 > 0 such that for all ε ∈ (0, ε0),

μ
(
R

d \ Dε

)
< cε

(
log ε−1)d

.(49)

PROOF. Since μ has a log-concave density, it necessarily has a nonsingular
covariance matrix, and there exists an affine map T such that μ′ = T μ is isotropic.
The density of μ′ is

f̃ (x) = det
(
T −1)

f
(
T −1x

)
and Dε = T −1D̃ε̃ , where ε̃ = ε detT −1 and D̃ε̃ = {x : f̃ (x) ≥ ε̃}. Since μ′ is
isotropic, we may use Lemma 16, which gives

μ
(
R

d \ Dε

) = μ′(
R

d \ D̃ε̃

)
≤ c′̃ε

(
log ε̃−1)d

< cε
(
log ε−1)d

. �

LEMMA 22. For any x ∈ R
d there exist c′, δ0 > 0 and a function p : (0, δ0) →

(0,∞) such that for all δ ∈ (0, δ0),

p(δ) ≤ c′ log log δ−1

log δ−1(50)

and

Fδ ⊂ (1 + p)(Dδ − x) + x.(51)

PROOF. Let c > 0 be the constant in (49). A brief analysis of the function
t �→ ct (log t−1)d shows that there exists δ0 > 0 and a function ε = ε(δ) defined
implicitly for all δ ∈ (0, δ0) by the equation δ = cε(log ε−1)d . We can take δ0
small enough to ensure that ε < δ and that log δ−1 < log ε−1 < 2 log δ−1. If we
define

p(δ) = 3
log ε−1 − log δ−1

log δ−1 ,
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then δ1+p/2 < ε, and (50) holds. Since Dε is both compact and convex, for any
point y /∈ Dε there exists (by the Hahn–Banach theorem), a closed half-space H

with y ∈ H and H ∩ Dε = ∅. Since H ⊂ R
d \ Dε , (49) implies that μ(H) < δ

and by definition of Fδ , y /∈ Fδ . This goes to show that Fδ ⊂ Dε . Let x ∈ R
d .

For any θ ∈ Sd−1, consider the function fθ (t) = f (x + tθ) = e−gθ (t), t ∈ R.
This notation differs slightly from that in the proof of Theorem 1. By continu-
ity and log-concavity, if ε is small enough, then for all θ ∈ Sd−1 there is a unique
v > 0 such that fθ (v) = ε; we denote this number by f −1

θ (ε). We may assume
that δ0 < min{1, f (x)2}. Note that 1 < δ/ε < δ−p/2 and log δ−1 + logf (x) ≥
1/2 log δ−1. By convexity of gθ , for any 0 < s < v we have s−1(gθ (s) − gθ (0)) ≤
(v − s)−1(gθ (v) − gθ (s)). Taking v = f −1

θ (ε) and s = f −1
θ (δ), this becomes

f −1
θ (ε) − f −1

θ (δ)

f −1
θ (δ)

≤ log ε−1 − log δ−1

log δ−1 + logf (x)
.

(52)
< p.

Inequality (52) reduces to f −1
θ (ε) ≤ (1 + p)f −1

θ (δ). Since this holds for any θ ∈
Sd−1, Dε ⊂ (1 + p)(Dδ − x) + x, and (51) follows. �

LEMMA 23. There exists δ0 > 0 such that for all δ ∈ (0, δ0) we have the rela-
tion (

1 + 8λ1/d)−1(
Dδ − x′) + x′ ⊂ Fδ,(53)

where λ = vold(Dδ)
−1, and x′ is the centroid of Dδ .

PROOF. Let δ0 be such that vold(Dδ0) > 8d . We use the notation (Dδ)λ for the
convex floating body with parameter λ > 0 corresponding to the uniform probabil-
ity measure on Dδ . If H is any half-space with μ(H) < δ, then vold(H ∩ Dδ) < 1.
Hence (Dδ)λ ⊂ Fδ , where λ = vold(Dδ)

−1. The result now follows from inequal-
ity (18). �

LEMMA 24. Let K,L ⊂ R
d be convex bodies such that there exist x, x′ ∈

int(K ∩ L) and 0 < r < (8d)−1 for which

(1 + r)−1(K − x) + x ⊂ L ⊂ (1 + r)
(
K − x′) + x′.(54)

Then

dL(K,L) ≤ 1 + 8dr.(55)

PROOF. Since the statement of the lemma is invariant under affine transforma-
tions that act simultaneously on K and L, we may assume without loss of general-
ity that the John ellipsoid of K is Bd

2 . Hence Bd
2 ⊂ K ⊂ dBd

2 and ‖x‖2,‖x′‖2 ≤ d .
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Note also that L ⊂ 3dBd
2 . Using these facts and manipulating (54) in the obvious

way, we see that both of the following relations hold:

L ⊂ K + 2drBd
2 ,

K ⊂ L + 4drBd
2 .

By definition of the Hausdorff distance, dH(K,L) ≤ 4dr < 1/2. Since Bd
2 ⊂ K ,

inequality (17) implies that dL(K,L) ≤ 1 + 8dr . �

PROOF OF EQUATION (7). Since limδ→0 p(δ) = limδ→0 λ(δ) = 0, equa-
tion (7) now follows from (51), (53) and (55). �

REMARK 25. There is no lower bound on the growth rate of vold(Dδ); indeed
the function could grow arbitrarily slowly. However in the case of the Schechtman–
Zinn distributions, vold(Dδ) = (log(cd

p/δ))d/p vold(Bd
p), and we leave it to the

reader to combine this with (51), (50) and (53) to obtain a quantitative upper bound
on dL(Fδ,Dδ).

PROOF OF EQUATION (8). Let ε > 0 be given. Using the notation from the
proof of Theorem 1, for any θ ∈ Sd−1 we define

fθ(t) = − d

dt
μ(Hθ,t ).

This function is the density of a log-concave probability measure on R with cu-
mulative distribution function Jθ (t) = 1 − μ(Hθ,t ). Using Fubini’s theorem we
have

fθ (t) = Rf (Hθ,t ),

where Rf is the Radon transform of f as defined by (24). For all t ∈ R, the func-
tion θ �→ fθ (t) is continuous and nonvanishing on Sd−1. This follows using the
properties imposed on f , together with Lebesgue’s dominated convergence the-
orem and (20). Define α = inf{fθ (0) : θ ∈ Sd−1}, and note that α > 0. By (20)
there exists t0 > 0 such that if β = sup{fθ (t0) : θ ∈ Sd−1}, then β < α. Define
gθ (t) = − logfθ (t), and let λ = t−1

0 (logα − logβ) and � = max{1, λ−1 logλ−1}.
By definition of α, β and λ, for all θ ∈ Sd−1 we have t−1

0 (gθ (t0) − gθ (0)) ≥ λ.
By convexity of gθ , if u > v ≥ t0, then gθ (u) ≥ gθ (v) + λ(u − v), which trans-
lates into fθ (u) ≤ fθ (v)e−λ(u−v). Let δ0 < inf{fθ (t0 + 1) : θ ∈ Sd−1} be such that
�ε−1Bd

2 ⊂ Fδ0 . Consider any δ < δ0, and momentarily fix θ ∈ Sd−1. By definition
of α and β ,

0 < fθ(t0) ≤ β < α ≤ fθ (0).
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Since fθ is log-concave, it must be strictly decreasing on [t0,∞). Let s = J−1
θ (1−

δ) and denote by t = f −1
θ (δ) the unique positive number such that fθ (t) = δ. Con-

sider the hyperplane Hθ,t and the half-space Hθ,s . Note that

μ(Hθ,s) = Rf (Hθ,t ) = δ.

By definition of δ0 and the equation fθ (−u) = f−θ (u), we have min{fθ (t0 +
1), fθ (−t0 − 1)} > δ0. By log-concavity we have fθ(u) ≥ δ0 for all −t0 − 1 <

u < t0 + 1, hence t > t0 + 1. By the fundamental theorem of calculus and the fact
that fθ (u) ≥ δ, for all u ∈ [t − 1, t], we have

μ(Hθ,t−1) > μ
{
x ∈ R

d : t − 1 ≤ 〈θ, x〉 ≤ t
}

=
∫ t

t−1
fθ(u) du

≥ δ.

Hence Hθ,s ⊂ Hθ,t−1 and s > t − 1 > t0. Thus, if s ≤ t , then |s − t | ≤ 1. If s > t ,
then

δ =
∫ ∞
s

fθ (u) du

≤ fθ (s)

∫ ∞
s

e−λ(u−s) du

≤ δe−λ(s−t)λ−1

from which it follows that s − t ≤ λ−1 logλ−1. Either way, |s − t | ≤ max{1,

λ−1 logλ−1} = �. Since �ε−1Bd
2 ⊂ Fδ0 , it follows that s ≥ �ε−1 and (1 − ε)s ≤

t ≤ (1 + ε)s. Since this holds for all θ ∈ Sd−1, and recalling the definitions of Fδ

and Rδ , we have

(1 − ε)Fδ ≤ Rδ ≤ (1 + ε)Fδ. �

8. Optimality. Let � denote the cumulative standard normal distribution
on R,

�(t) = (2π)−1/2
∫ t

−∞
e−(1/2)s2

ds.

By (43) there exists c > 0 such that for all n ≥ 3,

�−1(1 − 1/n) ≥ c(logn)1/2.(56)

LEMMA 26. For all q > 0 and all d ∈ N, there exists c, c̃ > 0 such that for all
n ≥ d + 1, if (xi)

n
1 is an i.i.d. sample from the standard normal distribution on R

d
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and Pn = conv{xi}n1, then with probability at least 1 − c̃(logn)−q(d−1)/2 both of
the following events occur:

dH(Pn,F1/n) ≥ c(logn)−(1/2)−q,(57)

dL(Pn,F1/n) ≥ 1 + c(logn)−1−q .(58)

PROOF. The probability bound is trivial when d = 1 and we may assume that
d ≥ 2. It follows from a result of Schneider [23] (see also [13], page 326) that for
any polytope Km ⊂ R

d with at most m vertices,

dH
(
Km,Bd

2
)
> cd

(
1

m

)2/(d−1)

.(59)

Since F1/n = �−1(1 − 1/n)Bd
2 , inequality (56) implies that

dH(Km,F1/n) > cd(logn)1/2
(

1

m

)2/(d−1)

.

By a result of Baryshnikov and Vitale [6] (see also [1]), the number of vertices
of Pn, denoted by f0(Pn), obeys the inequality Ef0(Pn) < c̃d(logn)(d−1)/2. By
Chebyshev’s inequality we have

P
{
f0(Pn) > (logn)(d−1)(q+1)/2} ≤ Ef0(Pn)

(logn)(d−1)(q+1)/2 < c̃d(logn)−q(d−1)/2,

and if the complement of this event occurs, then so does (57). By (59) and (16),
we get

dL

(
Km,Bd

2
)
> 1 + cd

(
1

m

)2/(d−1)

.

Since dL is preserved by invertible affine transformations [as per (15)], the same
inequality holds for all Euclidean balls. This gives (58). �

We can choose q to be arbitrarily small, in which case (57) and (58) complement
Theorems 1 and 2.

9. Proof of Theorem 4. Let Kd denote the collection of all convex bodies
in R

d (compact convex sets with nonempty interior), and let K�
d = Kd ∪ {{0}}. If

� is a convex subset of a real vector space, then we define a function κ :� → K�
d

to be concave if for all x, y ∈ � and all λ ∈ (0,1), we have

λκ(x) + (1 − λ)κ(y) ⊂ κ
(
λx + (1 − λ)y

)
.

If � has an ordering, then we define κ to be nondecreasing if for all x, y ∈ � with
x ≤ y, we have κ(x) ⊂ κ(y).
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LEMMA 27. If κ : [0,∞) → K�
d is concave, nondecreasing and⋃

t∈[0,∞) κ(t) = R
d , then the function g : Rd → [0,∞) defined by

g(x) = inf
{
t ≥ 0 :x ∈ κ(t)

}
(60)

is convex. Furthermore, κ is continuous on (0,∞) with respect to the Hausdorff
distance, and for all t > 0,

κ(t) = {
x ∈ R

d :g(x) ≤ t
}
.(61)

PROOF. By hypothesis, κ(0) �= ∅. If 0 /∈ κ(0), then we define κ�(t) = κ(t) −
x0, where x0 ∈ κ(0). The function κ� enjoys all of the properties that κ does, and
the function

g�(x) = inf
{
t ≥ 0 :x ∈ κ�(t)

}
is related to g by the equation g�(x) = g(x + x0). Note that 0 ∈ κ�(0). If the
lemma holds for the functions κ� and g�, it will necessarily hold for κ and g. We
may therefore, without loss of generality, assume that 0 ∈ κ(0). For any 0 < ε < t ,
we have the convex combination

t = ε

t + ε
0 + t

t + ε
(t + ε).

Exploiting the concavity of κ , this leads to

κ(t + ε) ⊂ t + ε

t
κ(t).

Similarly,

t − ε

t
κ(t) ⊂ κ(t − ε).

Hence κ is continuous with respect to the Hausdorff distance. By definition of g,
κ(t) ⊂ {x ∈ R

d :g(x) ≤ t}. Since κ(t) is a closed set, if x /∈ κ(t), then d(x, κ(t)) >

0 and by continuity of κ , g(x) > t . This implies (61). Consider any x, y ∈ R
d and

λ ∈ (0,1). Let t = g(x) and s = g(y). For all t ′ > t and s′ > s, x ∈ κ(t ′) and
y ∈ κ(s′). Therefore

λx + (1 − λ)y ∈ λκ
(
t ′

) + (1 − λ)κ
(
s′)

⊂ κ
(
λt ′ + (1 + λ)s′)

This implies that g(λx + (1−λ)y) ≤ λt ′ + (1−λ)s′. Since this holds for all such t ′
and s′, it follows that g is convex. �

Note that the function g is a generalization of the Minkowski functional of a
convex body K , in which case κ(t) = tK . The converse of the preceding lemma
also holds; if we are given a convex function g and define κ via (61), then κ is
concave.
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If (Kn)
∞
n=1 is a sequence of convex bodies such that the partial Minkowski sums

SN = ∑N
n=1 Kn converge in the Hausdorff distance to a convex body S, then we

write S = ∑∞
n=1 Kn and refer to this as a Minkowski series. Note that S can also

be defined by the equation

‖x‖S◦ =
∞∑

n=1

‖x‖K◦
n
.

Basic properties of a Minkowski series are easy to prove, and we leave such an
investigation to the reader. The following lemma is also fairly straightforward.

LEMMA 28. For each n ∈ N, let αn : [0,∞) → [0,∞) be a concave function,
and let Kn be a convex body with 0 ∈ Kn. Provided that

∞∑
n=1

αn(t)diam(Kn) < ∞

for all t ≥ 0, then the function κ : [0,∞) → K�
d defined by

κ(t) =
∞∑

n=1

αn(t)Kn

is concave.

The space Kd is separable with respect to dBM, and we shall use a sequence
(Kn)

∞
n=1 that is dense in Kd . Since dBM is blind to affine transformations, we can

assume that the John ellipsoid of each Kn is Bd
2 . As coefficients, we shall use the

functions

αn(t) =
{

2−n2
t, 0 ≤ t ≤ 22n2

,

2n2
, 22n2

< t < ∞.

Note that for large values of n, the dominant coefficient at the value t = 22n2
is αn.

In fact
∑

j �=n αj (22n2
) is much smaller than αn(22n2

),

∑
j �=n

αj

(
22n2) =

n−1∑
j=1

2j2 + 22n2
∞∑

j=n+1

2−j2

≤
n−1∑
j=1

2nj + 22n2
∞∑

j=n+1

2−nj

≤ 2n2−n+2

= 2−n+2αn

(
22n2)

.
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Hence,

dBM
(
κ
(
22n2)

,Kn

) ≤ 1 + 2−n+2d.

Thus the sequence (κ(n))∞n=1 is dense in Kd . Since each coefficient αn is nonde-
creasing and concave, κ is concave and the function g as defined by (60) is convex.
Clearly, limx→∞ g(x) = ∞. For some c > 0, the function

f (x) = 2−g(cx)

is the density of a log-concave probability measure μ on R
d . For each n ∈ N,

D2−n = {x ∈ R
d :f (x) ≥ 2−n} = {x ∈ R

d :g(cx) ≤ n} = c−1κ(n). Hence the se-
quence (D1/n)

∞
n=2 is dense in Kd . By (7), the sequence (F1/n)

∞
n=3 is also dense

in Kd .
We now use Theorem 1 with q = 1. Let K̃d denote a countably dense subset of

Kd , and let K ∈ K̃d . For any ε > 0, there exists an increasing sequence of natural
numbers (kn)

∞
1 such that limn→∞ dBM(F1/kn,K) = 1 and

∑∞
n=1 3d+3(log kn)

−1 <

ε. By (5),

lim
n→∞dBM(Pkn,K) = 1

with probability at least 1 − ε. Since this holds for all ε > 0, K ∈ clBM{Pn :n ∈ N,
n ≥ d + 1} almost surely, where clBM denotes closure in Kd with respect to dBM.
Since this holds for all K ∈ K̃d and K̃d is countable, K̃d ⊂ clBM{Pn :n ∈ N, n ≥
d + 1} almost surely. The result now follows since K̃d is dense in Kd .
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