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CHARACTERIZATION OF TALAGRAND’S TRANSPORT-ENTROPY
INEQUALITIES IN METRIC SPACES1

BY N. GOZLAN, C. ROBERTO2 AND P.-M. SAMSON

Université Paris Est Marne la Vallée, Université Paris Est Marne la Vallée and
Université Paris Ouest Nanterre la Défense, and Université Paris Est Marne la

Vallée

We give a characterization of transport-entropy inequalities in metric
spaces. As an application we deduce that such inequalities are stable under
bounded perturbation (Holley–Stroock perturbation lemma).

1. Introduction. In their celebrated paper [24], Otto and Villani proved that,
in a smooth Riemannian setting, the log-Sobolev inequality implies the Talagrand
transport-entropy inequality T2. Later, Bobkov, Gentil and Ledoux [3] proposed
an alternative proof of this result. Both approaches are based on semi-group argu-
ments. More recently, the first named author of this paper gave a new proof, based
on large deviation theory, valid on metric spaces [11].

In this paper, on the one hand, we give yet another proof of Otto and Villani’s
theorem. This proof does not use any semi-group arguments nor large deviations,
and it requires very few structures on the space. We are thus able to recover and
extend the result of [11] in a general metric space framework.

On the other hand, we recently introduced in [15] a new family of func-
tional inequalities, called inf-convolution log-Sobolev inequalities. In a Eu-
clidean framework, we proved that these inequalities are equivalent to Talagrand
transport-entropy inequalities Tα , associated to cost functions α between linear
and quadratic. This led to a new characterization of T2 and other transport-entropy
inequalities. The present paper establishes that this equivalence is true in a gen-
eral metric space framework and for general cost functions α. As a byproduct,
we prove that the inequalities Tα are stable under bounded perturbation (Holley–
Stroock perturbation lemma).

Our strategy is very general and applies to a very large class of transport-entropy
inequalities.

In order to present our results, we need first to fix some notation.
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1.1. Notation and definitions. We first introduce the notion of optimal trans-
port cost. Then we give the definition of the transport-entropy inequality and of the
(τ )-log-Sobolev inequality.

General assumption. Throughout this paper, (X,d) will always be a complete,
separable metric space such that closed balls are compact.

1.1.1. Optimal transport cost and transport-entropy inequality. Let α : R →
R

+ be a continuous function. Given two probability measures ν and μ on X, the
optimal transport cost between ν and μ (with respect to the cost function α) is
defined by

Tα(ν,μ) := inf
π

{∫∫
α

(
d(x, y)

)
dπ(x, y)

}
,

where the infimum runs over all the probability measures π on X × X with
marginals ν and μ. The notion of optimal transport cost is very old (it goes back
to Monge [23]). It has been intensively studied and it is used in a wide class of
problems running from geometry, PDE theory, probability and statistics; see [31].
Here we focus on the following transport-entropy inequality.

Throughout this paper, the cost functions α will be assumed to belong to the
class of Young functions.

DEFINITION 1.1 (Young functions3). A function α : R → R
+ is a Young func-

tion if α is an even, convex, increasing function on R
+ such that α(0) = 0 and

α′(0) = 0.

DEFINITION 1.2 (Transport-entropy inequality Tα). Let α be a Young func-
tion; a probability measure μ on X is said to satisfy the transport-entropy inequal-
ity (Tα(C)), for some C > 0 if

Tα(ν,μ) ≤ CH(ν|μ) ∀ν ∈ P(X),(Tα(C))

where

H(ν|μ) =
⎧⎨⎩

∫
log

dν

dμ
dν, if ν � μ,

+∞, otherwise,

is the relative entropy of ν with respect to μ, and P(X) is the set of all probability
measures on X.

3Note that, contrary to the definition of some authors, for us, a Young function cannot take infinite
values.
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REMARK 1.3. It can be shown that if α : R → R
+ is an even convex func-

tion such that lim supx→0
α(x)

x2 = +∞, then the only probability measures that sat-
isfy the transport inequality Tα are Dirac masses; see, for example, [12], Propo-
sition 2. This is the reason why, in our definition of Young functions, we impose
that α′(0) = 0.

Popular Young functions appearing in the literature, as cost functions in
transport-entropy inequalities, are the functions αp1,p2 , defined by

αp1,p2(x) :=
⎧⎨⎩

|x|p1, if |x| ≤ 1,
p1

p2
|x|p2 + 1 − p1

p2
, if |x| > 1,

p1 ≥ 2, p2 ≥ 1(1.1)

(the case p1 < 2 can be discarded according to the remark above). When p1 =
p2 = p, we use the notation αp instead of αp,p.

Transport-entropy inequalities imply concentration results as shown by Mar-
ton [21]; see also [4, 19], and [13] for a full introduction to this notion.

The transport-entropy inequality related to the quadratic cost α2(x) = x2 is the
most studied in the literature. In this case, the transport-entropy inequality is often
referred to as the Talagrand transport-entropy inequality and is denoted by T2. Ta-
lagrand [30] proved that, on (Rn, | · |2) (where | · |2 stands for the Euclidean norm),
the standard Gaussian measure satisfies T2 with the optimal constant C = 2.

1.1.2. Log-Sobolev-type inequalities. The second inequality of interest for us
is the log-Sobolev inequality and, more generally, modified log-Sobolev inequali-
ties. To define these inequalities properly, we need to introduce additional notation.

Recall that the Fenchel–Legendre transform α∗ of a Young function α is defined
by

α∗(y) = sup
x∈R

{
xy − α(x)

} ∈ R
+ ∪ {∞} ∀y ∈ R.

A function f :X → R is said to be locally Lipschitz if for all x ∈ X, there exists a
ball B centered at point x such that

sup
y,z∈B, y �=z

|f (y) − f (z)|
d(y, z)

< ∞.

When f is locally Lipschitz, we define

∣∣∇+f
∣∣(x) =

⎧⎨⎩ lim sup
y→x

[f (y) − f (x)]+
d(y, x)

, if x is not an isolated point,

0, otherwise,

and

∣∣∇−f
∣∣(x) =

⎧⎨⎩ lim sup
y→x

[f (y) − f (x)]−
d(y, x)

, if x is not an isolated point,

0, otherwise,
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where [a]+ = max(a;0) and [a]− = max(−a;0). Note that |∇+f |(x) and
|∇−f |(x) are finite for all x ∈ X. When f is a smooth function on a smooth
manifold, |∇+f | and |∇−f | equal the norm of the gradient of f .

Finally, if μ is a probability measure on X, recall that the entropy functional
Entμ(·) is defined by

Entμ(g) =
∫

g log
g∫

g dμ
dμ ∀g > 0.

DEFINITION 1.4 (Modified log-Sobolev inequality LSI±
α ). Let α be a Young

function; a probability measure μ on X is said to satisfy the modified log-Sobolev
inequality plus (LSI+

α (A)) for some A > 0 if

Entμ
(
ef ) ≤ A

∫
α∗(∣∣∇+f

∣∣)ef dμ(LSI+
α (A))

for all locally Lipschitz bounded functions f :X → R.
It verifies the modified log-Sobolev inequality minus (LSI−

α (A)) for some A > 0
if

Entμ
(
ef ) ≤ A

∫
α∗(∣∣∇−f

∣∣)ef dμ(LSI−
α (A))

for all locally Lipschitz bounded functions f :X → R.

Again, the quadratic cost α2(x) = x2 plays a special role since in this case we
recognize the usual log-Sobolev inequality introduced by Gross [16]; see also [28].
In this case, we will use the notation LSI±.

Bobkov and Ledoux [5] introduced first the modified log-Sobolev inequality
with the function α2,1, in order to recover the celebrated result by Talagrand [29]
on the concentration phenomenon for products of exponential measures. In par-
ticular these authors proved that, with this special choice of function, the modi-
fied log-Sobolev inequality is actually equivalent to the Poincaré inequality. Af-
ter them, Gentil, Guillin and Miclo [8] established that the probability measure
dνp(x) = e−|x|p/Zp , x ∈ R and p ∈ (1,2) verifies the modified log-Sobolev in-
equality associated with the function α2,p . In a subsequent paper [9], they gener-
alized their results to a large class of measures with tails between exponential and
Gaussian; see also [2, 7, 10] and [25].

Finally, let us introduce the notion of inf-convolution log-Sobolev inequality. In
a previous work [15], we proposed the following inequality:

Entμ
(
ef ) ≤ 1

1 − λC

∫ (
f − Qλ

αf
)
ef dμ ∀f :X → R,∀λ ∈ (0,1/C),(1.2)

where

Qλ
αf (x) = inf

y∈X

{
f (y) + λα

(
d(x, y)

)} ∀x ∈ X.
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We called it inf-convolution log-Sobolev inequality, and we proved that it is
equivalent—in a Euclidean setting—to the transport-entropy inequality Tα(C′),
for Young functions α such that α′ is concave. Also, we get an explicit comparison
between the constants C and C′, namely C ≤ C′ ≤ 8C. Our proof relies in part
on the Hamilton–Jacobi semi-group approach developed by Bobkov, Gentil and
Ledoux [3].

Inequality (1.2) is actually a family of inequalities, with a constant having a
specific form [i.e., 1/(1 − λC)] on the right-hand side. In this paper, in order
to broaden this notion, we will say (τ )-log-Sobolev inequality, rather than inf-
convolution log-Sobolev inequality, in the following inequality.

DEFINITION 1.5 [(τ )-log-Sobolev inequality]. Let α be a Young function;
a probability measure μ on X is said to satisfy the (τ )-log-Sobolev inequality
((τ ) − LSIα(λ,A)) for some λ,A > 0 if

Entμ
(
ef ) ≤ A

∫ (
f − Qλ

αf
)
ef dμ((τ ) − LSIα(λ,A))

for all bounded locally Lipschitz functions f :X → R, where the inf-convolution
operator Qλ

α is defined by

Qλ
αf (x) = inf

y∈X

{
f (y) + λα

(
d(x, y)

)} ∀x ∈ X.(1.3)

When λ = 1, we use the notation Qα instead of Q1
α.

The notation (τ ) − LSIα refers to the celebrated (τ )-Property introduced by
Maurey [22] (that uses the inf-convolution operator Qα and that is also closely
related to the transport-entropy inequality; see [13], Section 8.1).

Of course (1.2) implies (τ ) − LSIα(λ,1/(1 − λC)), for any λ ∈ (0,1/C). The
other direction is not clear, a priori (it would trivially be true if A = 1), even if the
two inequalities have the same flavor. Thanks to Theorem 1.8 below, they appear
to be equivalent, under mild assumptions on α.

1.1.3. �2-condition. In the next sections, our objective will be to relate the
log-Sobolev inequalities LSIα and (τ ) − LSIα to the transport-entropy inequal-
ity Tα . This program works well if we suppose that α verifies the classical doubling
condition �2. Recall that a Young function α is said to satisfy the �2-condition if
there exists some positive constant K (that must be greater than or equal to 2) such
that

α(2x) ≤ Kα(x) ∀x ∈ R.

The classical functions αp1,p2 introduced in (1.1) enjoy this condition.
The following observation will be very useful in the sequel.
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LEMMA 1.6. If α is a Young function satisfying the �2-condition, then

rα := inf
x>0

xα′−(x)

α(x)
≥ 1 and 1 < pα := sup

x>0

xα′+(x)

α(x)
< +∞,(1.4)

where α′+ (resp., α′−) denotes the right (resp., left) derivative of α.

The proof of this lemma is in the Appendix. To understand these exponents rα
and pα , observe that for the function α = αp1,p2 , defined by (1.1), we have rα =
min(p1,p2) and pα = max(p1,p2). Moreover, if 1 ≤ r ≤ p are given numbers,
and α is a Young function such that rα = r and pα = p, then it is not difficult to
check that

α(1)αp,r ≤ α ≤ α(1)αr,p.

1.2. Main results. Our first result states that the modified log-Sobolev inequal-
ity (plus or minus) implies the transport-entropy inequality associated with the
same α (Otto–Villani theorem).

THEOREM 1.7. Let μ be a probability measure on X and α a Young function
satisfying the �2-condition.

(i) If μ satisfies (LSI+
α (A)) for some A > 0, then μ satisfies Tα(C+) with

C+ = max
((

(pα − 1)A
)rα−1; (

(pα − 1)A
)pα−1)

.

(ii) If μ satisfies (LSI−
α (A)) for some A > 0, then μ satisfies Tα(C−) with

C− = (
1 + (pα − 1)A

)pα−rα
(
(pα − 1)A

)rα−1
.

The numbers 1 ≤ rα ≤ pα , pα > 1 are defined by (1.4).

Let us comment on this theorem. First observe that C+ and C− are of the same
order since

C+ ≤ C− ≤ 2pα−rαC+.

For the quadratic case α2(x) = x2, the constants reduce to C+ = C− = A. This
corresponds (when X is a smooth Riemannian manifold) to the usual Otto–Villani
theorem [24]; see also [3]. Let us mention that Lott and Villani [20] generalized the
result from Riemannian manifolds to length spaces, for α2(x) = x2, with an adap-
tation of the Hamilton–Jacobi semigroup approach developed by Bobkov, Gentil
and Ledoux [3]. But their statement requires additional assumptions, such as a
local Poincaré inequality, which are not needed in Theorem 1.7.

Also, in [8] the authors prove that the modified log-Sobolev inequality, in Eu-
clidean setting and with α = α2,p , with 1 ≤ p ≤ 2, implies the corresponding trans-
port inequality Tα , again using the Hamilton–Jacobi approach [3].
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More recently, in [11], the first named author proved that LSI+(A) implies
T2(A) in the quadratic case α2(x) = x2 and on an arbitrary complete and separa-
ble metric space. His proof can be easily extended to more general functions such
as αp(x) = xp . The scheme of proof is the following. Talagrand’s inequality T2 is
first shown to be equivalent to dimension-free Gaussian concentration. According
to the well-known Herbst argument (see, e.g., [19]), LSI+ implies dimension-free
Gaussian concentration, so it also implies T2.

Finally, as shown by Cattiaux and Guillin [6], we mention that the Talagrand
transport-entropy inequality T2 does not imply, in general, the log-Sobolev in-
equality. Hence, there is no hope to get an equivalence in the above theorem.

However, the (τ )-log-Sobolev inequality appears to be equivalent to the
transport-entropy inequality. This is the main result of this paper.

THEOREM 1.8. Let μ be a probability measure on X, and α a Young function
satisfying the �2-condition, and let pα > 1 be defined by (1.4). The following
statements are equivalent:

(1) there exists C such that μ satisfies Tα(C);
(2) there exist λ, A > 0 such that μ satisfies ((τ ) − LSIα(λ,A)).

Moreover, the constants are related in the following way:

(1) ⇒ (2) for any λ ∈ (0,1/C) and A = 1

1 − λC
;

(2) ⇒ (1) with C = 1

λ
κpα max(A;1)pα−1,

where κpα = p
pα(pα−1)
α

(pα−1)(pα−1)2
.

Such a characterization appeared for the first time in [15], in a Euclidean setting
and with α between linear and quadratic. Here our result is valid, not only for a
wider family of Young functions α, but also on very general metric spaces.

Due to its functional form, it is easy to prove a perturbation lemma for the
inequality (τ ) − LSIα . This leads to the following general Holley–Stroock pertur-
bation result for transport-entropy inequalities whose proof is given in Section 5.

THEOREM 1.9. Let μ be a probability measure on X and α a Young function
satisfying the �2-condition, and let pα > 1 be defined by (1.4). Assume that μ

satisfies Tα(C) for some constant C > 0. Then, for any bounded function ϕ :X →
R, the measure dμ̃ = 1

Z
eϕ dμ (where Z is the normalization constant) satisfies

Tα(C̃), with

C̃ = κ̃pαCe(pα−1)Osc(ϕ),

where Osc(ϕ) := supϕ − infϕ, and κ̃pα = p
p2
α

α

(pα−1)pα(pα−1) .
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This theorem fully extends the previous perturbation result [15], Corollary 1.8,
obtained in a Euclidean setting and for a Young function α such that α′ is concave.
Namely, for such an α, the function α(x)/x2 is nonincreasing [15], Lemma 5.6,
and so pα ≤ 2.

The paper is divided into five sections and one Appendix. Section 2 is dedicated
to some preliminaries. In particular we will give a characterization of transport-
entropy inequalities (close from Bobkov and Götze one) that might be of indepen-
dent interest, and that is one of the main ingredients in our proofs. For the sake of
completeness, we also recall how the transport-entropy inequality Tα implies the
(τ )-log-Sololev inequality (1) ⇒ (2) of Theorem 1.8; this argument had been first
used in [27] and then in [15]. In Section 4, we prove the other direction: the (τ )-
log-Sololev inequality implies the transport-entropy inequality Tα . In Section 3,
we give the proof of the generalized Otto–Villani result, Theorem 1.7. The proof
of the Holley–Stroock perturbation result is given in Section 5. Finally, most of the
technical results needed on Young functions are proved in the Appendix.

2. Preliminaries. In this section, we first recall the proof of the first half of
Theorem 1.8, namely Tα ⇒ (τ ) − LSIα . In a second part, we give a useful “di-
mensional” refinement of the characterization of transport-entropy inequalities by
Bobkov and Götze [4]. This characterization provides sufficient conditions for the
transport-entropy inequality to hold. These are the same conditions as those ob-
tained in the proofs of LSI±

α ⇒ Tα and (τ ) − LSIα ⇒ Tα .

2.1. From transport entropy to (τ )-log-Sobolev inequality. In [15], Theo-
rem 2.1, we proved the following result which is the first half [(1) ⇒ (2)] of
Theorem 1.8. For the sake of completeness, its short proof is recalled below.

THEOREM 2.1 ([15]). Let μ be a probability measure on X and α a Young
function. If μ satisfies Tα(C) for some constant C > 0, then, for all λ ∈ (0,1/C),
μ satisfies (τ ) − LSIα(λ, 1

1−λC
).

PROOF. Take f :X → R a locally Lipschitz function such that
∫

ef dμ = 1,
and consider the probability νf defined by νf = ef μ. Jensen’s inequality implies
that

∫
f dμ ≤ 0. So, if π is an optimal coupling between νf (dx) and μ(dy), then

it holds

H(νf |μ) =
∫

f dνf ≤
∫

f dνf −
∫

f dμ =
∫

f (x) − f (y)π(dx dy).

By definition of Qλ
αf ,

f (x) − f (y) ≤ f (x) − Qλ
αf (x) + λα

(
d(x, y)

)
.

Since π is optimal, it holds

H(νf |μ) ≤
∫ (

f − Qλ
αf

)
dνf + λTα(νf ,μ).
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Plugging the inequality Tα(νf ,μ) ≤ CH(νf |μ) into the inequality above with
λ < 1/C immediately gives (τ ) − LSIα(λ, 1

1−λC
). �

2.2. Sufficient conditions for transport-entropy inequality. In this section, we
show that bounds on the exponential moment of the tensorized inf-convolution
or sup-convolution operator allow us to recover the transport-entropy inequality;
see Proposition 2.3 and Corollary 2.5 below. These results are a key argument
to recover the transport-entropy inequality, either from a modified log-Sobolev or
from a (τ )-log-Sobolev inequality.

It is known, since the work by Bobkov and Götze [4] (see also [13, 31]), that
transport-entropy inequalities have the following dual formulation.

PROPOSITION 2.2 ([4]). Let μ be a probability measure on a complete and
separable metric space (X,d). Then the following are equivalent:

(i) the probability measure μ satisfies Tα(1/c);
(ii) for any bounded continuous function f :X → R, it holds∫

ecQαf dμ ≤ ecμ(f ).

In the next proposition we show, using the law of large numbers, that the bound
in point (ii) can be relaxed as soon as it holds in any dimension.

PROPOSITION 2.3. Let μ be a probability measure on a complete and sepa-
rable metric space (X,d). Then the following are equivalent:

(i) the probability measure μ satisfies Tα(1/c);
(ii) there exist three constants a, b, c > 0 such that for any n ∈ N

∗, for any
bounded continuous function f :Xn → R

+, it holds∫
ecQα,nf dμn ≤ aebμn(f ),

where

Qα,nf (x) = inf
y∈Xn

{
f (y) +

n∑
i=1

α
(
d(xi, yi)

)} ∀x = (x1, . . . , xn) ∈ Xn.(2.1)

REMARK 2.4. Note that the constants a and b do not play any role. On the
other hand, notice that f is only assumed to be nonnegative.

PROOF. Observe that the transport-entropy inequality Tα(1/c) naturally ten-
sorises; see, e.g., [13]. Applying Bobkov and Götze result above, we see that (i)
implies (ii) with a = 1 and b = c.
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Now let us prove that (ii) implies (i). For that purpose, fix a bounded continuous
function f :X → R with mean 0 under μ and, following [14] (see also [11]),
define g on Xn as g(x) = ∑n

i=1 f (xi), x = (x1, . . . , xn) ∈ Xn. Then,(∫
ecQαf dμ

)n

=
∫

ecQα,ng dμn ≤
∫

ecQα,ng+ dμn ≤ aebμn(g+),

where, as usual, g+ = max(g,0). It follows that∫
ecQαf dμ ≤ a1/nebμn(g+)/n.

Now, according to the strong law of large numbers, 1
n

∑n
i=1 f (Xi) → 0 in L

1,
where the Xi’s are i.i.d. random variables with common law μ. Hence,

μn

(
g+
n

)
≤ E

(∣∣∣∣∣1

n

n∑
i=1

f (Xi)

∣∣∣∣∣
)

→ 0

when n tends to infinity. We conclude that∫
ecQαf dμ ≤ 1 = ecμ(f ).(2.2)

Since the latter is invariant by changing f into f + e for any constant e, we can
remove the assumption μ(f ) = 0. This ends the proof. �

The next corollary will be used in the proofs of Theorems 1.7 and 1.8. It gives
a sufficient condition for the transport-entropy inequality Tα to hold.

COROLLARY 2.5. Let μ be a probability measure on a complete and separa-
ble metric space (X,d). Define, for all f :Xn → R,

Pα,nf (x) = sup
y∈Xn

{
f (y) −

n∑
i=1

α
(
d(xi, yi)

)} ∀x = (x1, . . . , xn) ∈ Xn.(2.3)

Assume that there exist some constants τ , a, b > 0 and c ∈ [0,1) such that, for all
integer n ∈ N

∗ and all bounded continuous functions f :Xn → R
+, it holds∫

eτPα,nf dμn ≤ aebμn(Pα,nf )eτc‖f ‖∞ .

Then μ satisfies Tα( 1
τ(1−c)

).

PROOF. Let n ∈ N
∗ and take a bounded continuous function g :Xn → R

+.
In order to apply Proposition 2.3, we need to remove the spurious term ‖f ‖∞.
Observe on the one hand that for any β ∈ (0, τ (1 − c)), one has∫

eβQα,ng dμn = 1 + β

∫ +∞
0

eβrμn(Qα,ng ≥ r) dr

= 1 + β

∫ +∞
0

eβrμn(
min(Qα,ng, r) ≥ r

)
dr.
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On the other hand, set f = min(Qα,ng, r). It is bounded, nonnegative and satisfies
‖f ‖∞ ≤ r . Moreover, we have Pα,n(Qα,ng) ≤ g. Indeed,

Pα,n(Qα,ng)(x) = sup
y∈Xn

inf
z∈Xn

{
f (z) +

n∑
i=1

α
(
d(yi, zi)

) −
n∑

i=1

α
(
d(xi, yi)

)}
,

and the inequality follows by taking z = x. Hence μn(Pα,nf ) =
μn(Pα,n(Qα,ng)) ≤ μn(g). Therefore, since Pα,nf ≥ f , by Chebyshev’s inequal-
ity and the assumption, we have

μn(
min(Qα,ng, r) ≥ r

) ≤ μn(Pα,nf ≥ r) ≤ e−τr
∫

eτPα,nf dμn

≤ aebμn(Pα,nf )e−τ(1−c)r

≤ aebμn(g)e−τ(1−c)r .

Consequently, we get∫
eβQα,ng dμn ≤ 1 + βaebμn(g)

∫ +∞
0

e−(τ (1−c)−β)r dr

= 1 + βa

τ(1 − c) − β
ebμn(g)

≤ τ(1 − c) + β(a − 1)

τ (1 − c) − β
ebμn(g).

Finally, Proposition 2.3 provides that μ satisfies Tα(1/β). Optimizing over β leads
to the expected result. �

3. From modified log-Sobolev inequality to transport-entropy inequality.
In this section we prove Theorem 1.7. We have to distinguish between the modified
log-Sobolev inequalities plus and minus. As in [11], the proofs of Theorems 1.7
and 1.8 use as a main ingredient the stability of log-Sobolev-type inequalities under
tensor products.

Let us recall this tensorisation property. The entropy functional enjoys the fol-
lowing well-known sub-additivity property (see, e.g., [1], Chapter 1): if h :Xn →
R

+,

Entμn(h) ≤
n∑

i=1

∫
Entμ(hi,x) dμn(x),(3.1)

where, for all x ∈ Xn, the application hi,x is the ith partial application defined by

hi,x(u) = h(x1, . . . , xi−1, u, xi+1, . . . , xn) ∀u ∈ X.

Let us say that h :Xn → R
+ is separately locally Lipschitz, if all the partial ap-

plications hi,x 1 ≤ i ≤ n, x ∈ Xn are locally Lipschitz on X. Now, suppose that
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a probability μ on X verifies (LSI+
α (A)) for some A > 0. Then, using (3.1), we

easily conclude that μn enjoys the following inequality:

Entμn

(
ef ) ≤ A

∫ n∑
i=1

α∗(∣∣∇+
i f

∣∣)ef dμn(3.2)

for all functions f :Xn → R separately locally Lipschitz, where |∇+
i f |(x) is de-

fined by∣∣∇+
i f

∣∣(x) = ∣∣∇+fi,x

∣∣(xi) = lim sup
y→xi

[f (x1, . . . , xi−1, y, xi+1, . . . , xn) − f (x)]+
d(y, xi)

.

The same property holds for LSI−
α .

3.1. Modified log-Sobolev inequality plus. The first part of Theorem 1.7, that
we restate below, says that the modified log-Sobolev inequality LSI+

α implies
the transport-entropy inequality Tα . In fact we shall prove the following, slightly
stronger, result. To any Young function α, we associate a function ξα defined by

ξα(x) := sup
u>0

α∗(xα′+(u))

xα(u)
, x > 0,(3.3)

where α′+ is the right derivative of α. Note that ξα is nondecreasing and may take
infinite values.

THEOREM 3.1. Let μ be a probability measure on X and α a Young function
satisfying the �2-condition. If μ satisfies (LSI+

α (A)) for some constant A > 0,
then μ satisfies Tα(1/tA) with tA = sup{t ∈ R

+; ξα(t) < 1/A}.

The following lemma gives an estimation of ξα .

LEMMA 3.2. Let α be a Young function satisfying the �2-condition, and let
1 ≤ rα ≤ pα , pα > 1 be the numbers defined by (1.4). Then, it holds

ξα(x) ≤ (pα − 1)max
(
x1/(pα−1);x1/(rα−1)) ∀x > 0,(3.4)

with the convention x∞ = 0 if x ≤ 1 and ∞ otherwise.

The proof of this result is in the Appendix.
Using Lemma 3.2, we easily derive point (i) of Theorem 1.7, with the explicit

constant C+ = max(((pα − 1)A)rα−1; ((pα − 1)A)pα−1).

Before turning to the proof of Theorem 3.1, let us say that estimation (3.4)
is satisfactory, at least for the small values of x (corresponding to the large values
of A), as we show with the following exact calculation of ξα , when α is the function
αp1,p2 defined by (1.1).
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LEMMA 3.3. Let p1 ≥ 2 and p2 > 1, and let α = αp1,p2 ; then pα =
max(p1,p2), and it holds

ξα(x) = (pα − 1)x1/(pα−1) ∀x ≤ 1.

Moreover, for x ≥ 1, it holds

ξα(x) =
⎧⎪⎨⎪⎩p1

(
1

q2
x1/(p2−1) +

(
1

q1
− 1

q2

)
1

x

)
, if p1 ≥ p2,

max
(
(p1 − 1)x1/(p1−1); (p2 − 1)x1/(p2−1)), if p1 ≤ p2,

where q1 = p1/(p1 − 1) and q2 = p2/(p2 − 1).

The proof of this lemma is in the Appendix, too.

PROOF OF THEOREM 3.1. Our aim is to use Herbst’s argument (see, e.g.,
[1, 17, 19]) together with Proposition 2.3. Let n ∈ N

∗; according to Lemma 3.4
below, for any bounded function f :Xn → R, the function Qα,nf is separately
locally Lipschitz [recall that the inf-convolution operator Qα,n is defined by (2.1)].
Fix a nonnegative bounded continuous function f :Xn → R

+. Applying (3.2) to
tQα,nf , t > 0, and using Lemma 3.5 below together with the fact that f ≥ 0, one
gets

Entμn

(
etQα,nf ) ≤ A

∫ n∑
i=1

α∗(
t
∣∣∇+

i Qα,nf
∣∣)etQα,nf dμn

≤ Atξα(t)

∫
Qα,nf etQα,nf dμn.

Now, we proceed with the Herbst argument. Set H(t) = ∫
etQα,nf dμn, t > 0.

Since Entμn(etQα,nf ) = tH ′(t) − H(t) logH(t), the latter can be rewritten as(
t − Atξα(t)

)
H ′(t) ≤ H(t) logH(t), t > 0.

Set W(t) = 1
t

log(H(t)), t > 0, so that the previous differential inequality reduces
to

W ′(t)t
(
1 − Aξα(t)

) ≤ Aξα(t)W(t).

Since limt→0 W(t) = μn(Qα,nf ), we get

H(t) ≤ exp
(
tC(t)μn(Qα,nf )

) ∀t ∈ (0, tA),

where we set C(t) = exp
∫ t

0
Aξα(u)

u(1−Aξα(u))
du; thanks to Lemma 3.2 above, we are

guaranteed that tA > 0 and that C(t) < ∞ on (0, tα). Since Qα,nf ≤ f , we finally
get ∫

etQα,nf dμn ≤ etC(t)μn(f ) ∀t ∈ (0, tA),

which leads to the expected result, thanks to Proposition 2.3 [and after optimization
over t ∈ (0, tA)]. �
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LEMMA 3.4. Let α be a Young function. For any integer n ∈ N
∗, any bounded

function f :Xn → R, the function Qα,nf is separately locally Lipschitz on Xn.

PROOF. Let h = Qα,nf ; then, for all x ∈ Xn and 1 ≤ i ≤ n, it holds

hi,x(u) = inf
yi∈X

{
inf

y1,...,yi−1,yi+1,...,yn

{
f (y) + ∑

j �=i

α
(
d(xj , yj )

)} + α
(
d(u, yi)

)}
= Qαg(u),

where g :X → R is defined by the second infimum. Let us show that u �→ Qαg(u)

is locally Lipschitz on X. Observe that g is bounded and define ro = α−1(2‖g‖∞).

For all u ∈ X, and all y ∈ X such that d(y,u) > ro, we have

g(y) + α
(
d(u, y)

)
> −‖g‖∞ + α(ro) = ‖g‖∞.

Since Qαg ≤ ‖g‖∞, we conclude that Qαg(u) = infd(y,u)≤ro{g(y) + α(d(u, y))}.
Let uo ∈ X, and let Bo be the closed ball of center uo and radius 2ro. If u ∈ Bo,
then Qαg(u) = infy∈Bo{g(y) + α(d(u, y))}. Now, if y ∈ Bo, we see that for all
u, v ∈ Bo,∣∣α(

d(u, y)
) − α

(
d(v, y)

)∣∣
≤ ∣∣d(v, y) − d(u, y)

∣∣ max
t∈[0,1]α

′+
(
td(u, y) + (1 − t)d(v, y)

)
≤ Lod(u, v),

with Lo = α′+(4ro). The map Bo → R :u �→ Qαg(u) is an infimum of Lo-
Lipschitz functions on Bo, so it is Lo-Lipschitz on Bo. This ends the proof. �

LEMMA 3.5. Let α be a Young function. For any integer n, any t ≥ 0 and any
bounded continuous function f :Xn → R,

n∑
i=1

α∗(
t
∣∣∇+

i Qα,nf
∣∣) ≤ tξα(t)

(
Qα,nf (x) − f

(
yx))

,

where yx ∈ Xn is any point such that Qα,nf (x) = f (yx) + ∑n
j=1 α(d(xj , y

x
j )).

PROOF. Fix n, t ≥ 0 and a bounded function f :Xn → R
+. For x =

(x1, . . . , xn) ∈ Xn, i ∈ {1, . . . , n} and z ∈ X, we shall use the following notation:

x̄iz = (x1, . . . , xi−1, z, xi+1, . . . , xn).

Let x ∈ Xn; since f is bounded continuous and closed balls in X are assumed to
be compact, it is not difficult to show that there exists yx ∈ Xn such that

Qα,nf (x) = f
(
yx) +

n∑
j=1

α
(
d
(
xj , y

x
j

))
.
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For all z ∈ X and all 1 ≤ i ≤ n, we have also Qα,nf (x̄iz) ≤ f (yx)+∑
j �=i α(d(xj ,

yx
j )) + α(d(z, yx

i )). Since the maps u �→ [u]+ and α are nondecreasing, it holds[
Qα,nf

(
x̄iz

) − Qα,nf (x)
]
+ ≤ [

α
(
d
(
z, yx

i

)) − α
(
d
(
xi, y

x
i

))]
+

≤ [
α

(
d(z, xi) + d

(
xi, y

x
i

)) − α
(
d
(
xi, y

x
i

))]
+.

Therefore,∣∣∇+
i Qα,nf

∣∣(x) ≤ lim sup
z→xi

[α(d(z, xi) + d(xi, y
x
i )) − α(d(xi, y

x
i ))]+

d(z, xi)

= α′+
(
d
(
xi, y

x
i

))
.

Hence, by the very definition of ξα ,
n∑

i=1

α∗(
t
∣∣∇+

i Qα,nf
∣∣) ≤

n∑
i=1

α∗(
tα′+

(
d
(
xi, y

x
i

)))

≤ tξα(t)

n∑
i=1

α
(
d
(
xi, y

x
i

))
= tξα(t)

(
Qα,nf (x) − f

(
yx))

. �

3.2. Modified log-Sobolev inequality minus. In this section we prove the sec-
ond part of Theorem 1.7, that we restate (in a slightly stronger form) below, namely
that the modified log-Sobolev inequality minus LSI−

α implies the transport-entropy
inequality Tα . Let us define [recall the defintion of ξα given in (3.3)]

tα = sup
{
t ∈ R

+, ξα(t) < +∞}
.

Note that, by Lemma 3.2, if α satisfies the �2-condition, then tα ≥ 1.

THEOREM 3.6. Let μ be a probability measure on X and α a Young function
satisfying the �2-condition. If μ satisfies (LSI−

α (A)) for some constant A > 0,
then μ satisfies Tα(B−) with B− = limt→tα

1
t

exp{∫ t
0

Aξα(u)
u(1+Aξα(u))

du}.
For more comprehension and to complete the proof of part (ii) of Theorem 1.7,

let us prove that B− ≤ C−. If rα > 1, then by Lemma 3.2, tα = +∞. Moreover,
using that 1

t
= exp{− ∫ t

1
1
u

du}, t ≥ 1, one has

logB− =
∫ 1

0

Aξα(u)

u(1 + Aξα(u))
du −

∫ +∞
1

1

u(1 + Aξα(u))
du

≤
∫ 1

0

A(pα − 1)u1/(pα−1)

u(1 + A(pα − 1)u1/(pα−1))
du

−
∫ +∞

1

1

u(1 + A(pα − 1)u1/(rα−1))
du

= logC−,
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with

C− = (
1 + A(pα − 1)

)pα−rα
(
A(pα − 1)

)rα−1
.

When rα = 1, since tα ≥ 1 and using the fact that the function

t → 1

t
exp

{∫ t

0

Aξα(u)

u(1 + Aξα(u))
du

}
is nonincreasing, we get

B− ≤ exp
{∫ 1

0

Aξα(u)

u(1 + Aξα(u))
du

}
≤ (

1 + A(pα − 1)
)pα−1 = C−.

PROOF OF THEOREM 3.6. The proof of Theorem 3.6 follows essentially the
lines of the proof of Theorem 3.1. Let n ∈ N

∗; thanks to the tensorisation property
of (LSI−

α (A)), it holds

Entμn

(
eg) ≤ A

∫ n∑
i=1

α∗(∣∣∇−
i g

∣∣)eg dμn(3.5)

for any g :Xn → R separately locally Lipschitz and bounded. Take a non-
negative bounded continuous function f :Xn → R

+. Recall that Pα,nf (x) =
supy∈Xn{f (y) − ∑n

i=1 α(d(xi, yi))}. Since Pα,nf = −Qα,n(−f ), it follows from
Lemma 3.4 that Pα,nf is separately locally Lipschitz. Applying (3.5) to g =
tPα,nf , t > 0, one gets

Entμn

(
etPα,nf ) ≤ A

∫ n∑
i=1

α∗(
t
∣∣∇−

i Pα,nf
∣∣)etPα,nf dμn.

Observe that Pα,nf = −Qα,n(−f ) and that |∇−(−h)| = |∇+h|, for all h :X → R.
So applying Lemma 3.5, we see that for all x ∈ Xn, there is some yx ∈ Xn such
that

n∑
i=1

α∗(
t
∣∣∇−

i Pα,nf
∣∣)(x) =

n∑
i=1

α∗(
t
∣∣∇+

i Qα,n(−f )
∣∣)(x)

≤ tξα(t)
(
Qα,n(−f )(x) + f

(
yx))

≤ tξα(t)
(‖f ‖∞ − Pα,nf (x)

)
.

So we get the following inequality:

Entμn

(
etPα,nf ) ≤ Atξα(t)

∫ (‖f ‖∞ − Pα,nf
)
etPα,nf dμn.

As in the proof of Theorem 3.1, we proceed with the Herbst argument. Set H(t) =∫
etPα,nf dμn, t ∈ (0, tα). Since Entμn(etPα,nf ) = tH ′(t)−H(t) logH(t), the latter

can be rewritten as(
t + Atξα(t)

)
H ′(t) ≤ H(t) logH(t) + Atξα(t)‖f ‖∞H(t) ∀t ∈ (0, tα).
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Set W(t) = 1
t

logH(t), t ∈ (0, tα), so that the previous differential inequality re-
duces to

W ′(t)t
(
1 + Aξα(t)

) ≤ −Aξα(t)W(t) + Aξα(t)‖f ‖∞.

Set c(t) = exp{− ∫ t
0

Aξα(u)
u(1+Aξα(u))

du} [which belongs to (0,1) thanks to Lem-
ma 3.2]. Since limt→0 W(t) = μn(Pα,nf ), solving the latter differential inequality,
we easily get that for all t ∈ (0, tα),

H(t) ≤ etc(t)μn(Pα,nf )et‖f ‖∞(1−c(t)).

Applying Corollary 2.5 yields that Tα(1/(tc(t))) holds for all t ∈ (0, tα). Observ-
ing that the function t → tc(t) is nondecreasing on (0, tα), the proof is completed
by optimizing in t . �

4. From (τ)-log-Sobolev inequality to transport-entropy inequality. In
this section, we prove the second part [(2) ⇒ (1)] of Theorem 1.8. Observe that
Tα(C/λ) is equivalent to Tλα(C). Hence, changing α into λα, we can restate the
first part of Theorem 1.8 as follows.

THEOREM 4.1. Let μ be a probability measure on X and α a Young function
satisfying the �2-condition. Let pα > 1 be defined by (1.4). If μ satisfies (τ ) −
LSIα(1,A) for some A > 0, then μ satisfies Tα(C) with

C = κpα max(A,1)pα−1,

where κpα = p
pα(pα−1)
α

(pα−1)(pα−1)2
.

Two proofs are given below. The first one exactly follows the lines of the proof
of LSI−

α ⇒ Tα , whereas the second one uses the equivalence between transport-
entropy inequalities and dimension-free concentration established in [11] together
with a change of metric argument.

In each proof, the first step is to tensorise the (τ )-log-Sobolev inequality. Let
n ∈ N

∗; using the sub-additivity property (3.1) of the entropy functional, we see
that (τ ) − LSIα(1,A) implies that

Entμn

(
eh) ≤ A

∫ n∑
i=1

(
h − Q(i)

α h
)
eh dμn ∀h :Xn → R,(4.1)

where Q
(i)
α is the inf-convolution operator with respect to the ith coordinate,

namely

Q(i)
α h(x) = Qα(hi,x)(xi) = inf

y∈X

{
h
(
x̄iy

) + α
(
d(xi, y)

)}
(using the notation introduced in Section 3).
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As in the proof of Theorem 3.6, applying (4.1) to h = tPα,ng, t ≥ 0 where g

belongs to some class of functions, we get

Entμn

(
etPα,ng) ≤ A

∫ n∑
i=1

(
tPα,ng − Q(i)

α (tPα,ng)
)
etPα,ng dμn.(4.2)

As a main difference, the class of functions g differs in each proof. In the first one,
g is any nonnegative bounded separately locally Lipschitz function, whereas in the
second proof, g is globally Lipschitz in some sense.

For both proofs, the next step is to bound efficiently the right-hand side of (4.2),
in order to use some Herbst argument. This bound will be given by the following
lemma.

LEMMA 4.2. Let α be a Young function satisfying the �2-condition, and let
pα > 1 be defined by (1.4). For any bounded continuous function g :Xn → R, for
any x ∈ Xn and t ∈ [0,1),

n∑
i=1

(
tPα,ng(x) − Q(i)

α (tPα,ng)(x)
) ≤ tε(t)

(
n∑

i=1

α
(
d
(
xi, y

x
i

)))
,

where yx ∈ Xn is any point such that Pα,ng(x) = g(yx) − ∑n
i=1 α(d(xi, y

x
i )), and

where

ε(t) = 1

(1 − t1/(pα−1))pα−1 − 1 ∀t ∈ [0,1).

We postpone the proof of Lemma 4.2 to the end of the section.

4.1. A first proof. The first proof of Theorem 4.1 mimics the one of the impli-
cation LSI−

α ⇒ Tα .

PROOF OF THEOREM 4.1. Using (4.2), Lemma 4.2 ensures that for every non-
negative locally Lipschitz bounded function g, for every t ∈ [0,1),(

t + Atε(t)
)
H ′(t) ≤ H(t) logH(t) + Atε(t)‖g‖∞H(t),

where H(t) = ∫
etPα,ng dμn.

Solving this differential inequality, exactly as in the proof of Theorem 3.6 (we
omit details), leads to ∫

ePα,ng dμn ≤ ecμn(Pα,ng)e‖g‖∞(1−c),

with c = 1/C,

C = exp
∫ 1

0

Aε(t)

t (1 + Aε(t))
dt.
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The inequality Tα(C) then follows from Corollary 2.5.
Now, let us estimate the constant C. By convexity, one has for every v ∈ [0,1],

(1 − v) − (1 − v)pα ≤ (pα − 1)v.

This inequality easily implies that for all t ∈ [0,1), ε(t)
t

≤ (pα − 1)ε′(t). Conse-
quently, we obtain for all u ∈ [0,1),

logC ≤ (pα − 1)

∫ u

0

Aε′(t)
1 + Aε(t)

dt +
∫ 1

u

Aε(t)

t (1 + Aε(t))
dt

≤ (pα − 1) log
(
1 + Aε(u)

) − logu.

Optimizing in u, we get

C ≤ inf
u∈(0,1)

(1 + Aε(u))pα−1

u
≤ inf

u∈(0,1)

(1 + ε(u))pα−1

u
max(A,1)pα−1

= κpα max(A,1)pα−1,

with κpα = p
pα(pα−1)
α

(pα−1)(pα−1)2
. �

4.2. A second proof. The idea of this second proof is to prove the theorem in
the particular case of the functions αp(x) = xp and then to treat the general case
by a change of metric argument.

4.2.1. Tp inequalities. Let us introduce some notation and definitions. When
α(x) = αp(x) = |x|p , we will use the notation Tp(C) and (τ ) − LSIp instead of
Tαp(C) and (τ ) − LSIαp . Let n ∈ N

∗; a function f :Xn → R is said to be (L,p)-
Lipschitz L > 0,p > 1, if

∣∣f (x) − f (y)
∣∣ ≤ L

(
n∑

i=1

dp(xi, yi)

)1/p

∀x, y ∈ Xn.

We recall the following result from [11].

THEOREM 4.3. The probability μ verifies the transport-entropy inequality
Tp(C), for some C > 0 if and only if it enjoys the following dimension free con-
centration property: for all n ∈ N

∗ and all f :Xn → R such that

∣∣f (x) − f (y)
∣∣ ≤ L

(
n∑

i=1

dp(xi, yi)

)1/p

∀x, y ∈ Xn

for some L > 0, it holds

μn(
f ≥ μn(f ) + u

) ≤ exp
(−up/

(
LpC

)) ∀u ≥ 0.
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So to show that a Tp inequality holds, it is enough to prove the right concentra-
tion inequality.

We will use the following result to estimate the right-hand side of (4.2).

LEMMA 4.4. Let p > 1; there exists a constant ωp ≥ 1 such that for all n ∈ N
∗

and all (L,p)-Lipschitz function f :Xn → R, and all x ∈ Xn, the function

Xn → R :y �→ f (y) −
n∑

i=1

dp(xi, yi)

attains its maximum on the closed ball{
y ∈ Xn;

n∑
i=1

dp(xi, yi) ≤
(

L

ωp

)q
}
, with q = p

p − 1
.

When (X,d) is geodesic (see below), then one can take ωp = p.

Recall that (X,d) is geodesic, if for all x, y ∈ X, there is a path (zt )t∈[0,1] join-
ing x to y and such that d(zs, zt ) = |s − t |d(x, y), for all s, t ∈ [0,1]. This notion
encompasses the case of Riemannian manifolds.

The proof of the lemma is at the end of the section.

THEOREM 4.5. Let p ≥ 2; if μ verifies the (τ ) − LSIp(1,A), then it
verifies Tp(C), with C = (ap max(1;A))p−1, with ap = inft∈(0,1){ 1

tq−1 (1 +
(p/ωp)q

p−1

∫ t
0

ε(u)
u

du)}.

REMARK 4.6. Let us compare the constants appearing in Theorems 4.1
and 4.5 for p = 2. When p = 2, Theorem 4.1 gives C1 = 4 max(1;A), and
Theorem 4.5 gives C2 = a2 max(1;A). A simple calculation shows that when

p = 2, a2 = infs∈(0,1){1−(2/ω2)
2 ln(1−s)

s
}. If ω2 = 1, then a2 � 7,5, and C1 is

smaller than C2. But if ω2 = 2 [which is the case, when (X,d) is geodesic], then
a2 � 3,14, and C2 is smaller than C1.

PROOF OF THEOREM 4.5. Take a (L,p)-Lipschitz function g :Xn → R. To
bound the right-hand side of (4.2), we use Lemmas 4.2 and 4.4.

n∑
i=1

(
tPαp,ng(x) − Q(i)

αp
(tPαp,ng)(x)

) ≤ tε(t)(L/ωp)q.

So, letting H(t) = ∫
etPαp,ng dμn, (4.2) provides

tH ′(t) − H(t) logH(t) ≤ Atε(t)H(t)(L/ωp)q ∀t ∈ [0,1).
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Equivalently, the function K(t) = 1
t

logH(t) verifies K ′(t) ≤ A(L/ωp)q ε(t)
t

.

Since K(t) → μn(Pαp,ng) when t → 0+, we conclude that∫
etPαp,ng dμn ≤ exp

(
tμn(Pαp,ng) + tA(L/ωp)qk(t)

) ∀t ∈ [0,1),(4.3)

where k(t) = ∫ t
0

ε(u)
u

du, t ∈ [0,1). Since g is (L,p)-Lipschitz, it holds

0 ≤ Pαp,ng(x) − g(x) ≤ sup
y∈Xn

{
L

(
n∑

i=1

dp(xi, yi)

)1/p

−
n∑

i=1

dp(xi, yi)

}

= sup
r≥0

{
Lr − rp} = (p − 1)(L/p)q.

Plugging the inequalities g ≤ Pαp,ng and μn(Pαp,ng) ≤ μn(g) + (p − 1)(L/p)q

into (4.3), we get∫
etg dμn ≤ exp

(
tμn(g) + t (p − 1)(L/p)q + tA(L/ωp)qk(t)

) ∀t ∈ [0,1).

Applying this inequality to g = f/t with f a (L,p)-Lipschitz function, we get∫
ef −μn(f ) dμn ≤ exp

(
(L/p)q

tq−1

(
p − 1 + A(p/ωp)qk(t)

)) ∀t ∈ (0,1).

So, optimizing over t ∈ (0,1) yields∫
ef −μn(f ) dμn ≤ exp

(
(L/p)q(p − 1)max(1;A)ap

)
,(4.4)

with

ap = inf
t∈(0,1)

{
1

tq−1

(
1 + (p/ωp)q

p − 1

∫ t

0

ε(u)

u
du

)}
.

Using Chebyshev’s argument, we derive from (4.4) that

μn(
f ≥ μn(f ) + u

) ≤ exp
(−up/

(
LpC

)) ∀u ≥ 0,

with C = (ap max(A;1))p−1. Applying Theorem 4.3, we conclude that μ verifies
Tp(C). �

4.2.2. Extension via a change of metric. A change of metric technique, which
is explained in the lemma below, enables us to reduce the study of the transport-
entropy inequalities Tα to the study of the inequalities Tp , p > 1.

LEMMA 4.7. Let α be a Young function satisfying the �2-condition, and let
pα > 1 be defined by (1.4). The function x �→ α(x)1/pα is subadditive on R

+:

α1/pα (x + y) ≤ α1/pα (x) + α1/pα (y) ∀x, y ∈ R
+.

As a consequence, dα(x, y) = α1/pα (d(x, y)), x, y ∈ X is a distance on X.
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The proof of Lemma 4.7 is at the end of the section.

PROOF OF THEOREM 4.1. Let α be a Young function and μ a probability
on X. According to Lemma 4.7, the function dα(x, y) = α1/pα (d(x, y)), x, y ∈
X is a metric on X. Furthermore, it is clear that μ verifies (τ ) − LSIα(1,A)

[resp., Tα(C)] on (X,d) if and only if μ verifies (τ ) − LSIpα(1,A) [resp.,
Tpα(C)] on (X,dα). We immediately deduce from Theorem 4.5 that if μ verifies
(τ ) − LSIα(1,A), then it verifies Tα(C), with C = (apα max(1;A))pα−1, where

apα = inf
t∈(0,1)

{
1

tqα−1

(
1 + p

qα
α

pα − 1

∫ t

0

ε(u)

u
du

)}
(since ωpα ≥ 1) and ε defined in Lemma 4.2. Note that the constant C obtained
using this approach is in general bigger than the constant obtained in the first proof
of Theorem 4.1. �

4.3. Proofs of the technical lemmas.

PROOF OF LEMMA 4.2. Fix t > 0, x ∈ Xn and i ∈ {1, . . . , n}. Then

tPα,ng(x) − Q(i)
α (tPα,ng)(x) = sup

z∈X

{(
tPα,ng(x) − tPα,ng

(
x̄iz

)) − α
(
d(xi, z)

)}
.

Let yx be such that Pα,ng(x) = g(yx) − c(x, yx), where c(x, y) = ∑n
i=1 α(d(xi,

yi)). By choosing w = yx in the expression below, it holds

Pα,ng(x) − Pα,ng
(
x̄iz

) = g
(
yx) − c

(
x, yx) − sup

w∈Xn

{
g(w) − c

(
x̄iz,w

)}
≤ c

(
x̄iz, yx) − c

(
x, yx)

= α
(
d
(
z, yx

i

)) − α
(
d
(
xi, y

x
i

))
= dpα

α

(
z, yx

i

) − dpα
α

(
xi, y

x
i

)
≤ (

dα

(
xi, y

x
i

) + dα(xi, z)
)pα − dpα

α

(
xi, y

x
i

)
,

where, in the last line, we used the triangular inequality for the distance dα defined
in Lemma 4.7. Hence, optimizing yields

tPα,ng(x) − Q(i)
α (tPα,ng)(x)

≤ sup
z∈X

{
t
[(

dα

(
xi, y

x
i

) + dα(xi, z)
)pα − dpα

α

(
xi, y

x
i

)] − dpα
α (xi, z)

}
= sup

r>0

{
t
[(

dα

(
xi, y

x
i

) + r
)pα − dpα

α

(
xi, y

x
i

)] − rpα
}

= tε(t) dpα
α

(
xi, y

x
i

) = tε(t)α
(
d
(
xi, y

x
i

))
.

Taking the sum, we get the result. �
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PROOF OF LEMMA 4.4. Let yx be a point where the function y �→ f (y) −∑n
i=1 dp(xi, y) reaches its maximum. Then, for all z ∈ Xn, it holds

n∑
i=1

dp(
xi, y

x
i

) ≤ f
(
yx) − f (z) +

n∑
i=1

dp(xi, zi)

≤ L

(
n∑

i=1

dp(
zi, y

x
i

))1/p

+
n∑

i=1

dp(xi, zi).

Choosing z = x, we get
∑n

i=1 dp(xi, zi) ≤ Lq.

Now, assume that (X,d) is geodesic. Then the product space (Xn, d(n)) with
d(n)(x, y) = (

∑n
i=1 dp(xi, yi))

1/p is geodesic too. In the calculation above, take
for z a t-midpoint of x and yx ; that is, choose z ∈ Xn such that d(n)(x, z) =
td(n)(x, yx) and d(n)(z, yx) = (1 − t) d(n)(x, yx), with t ∈ [0,1]. Then, letting
� = d(n)(x, yx), it holds �p ≤ L(1 − t)� + tp�p, and so 1−tp

1−t
�p−1 ≤ L. Letting

t → 1 gives the result. �

PROOF OF LEMMA 4.7. Let ϕ(x) = α1/pα (x)/x, x > 0. Then, by definition
of pα ,

ϕ′+(x) = α1/pα (x)(xα′+(x)/(pαα(x)) − 1)

x2 ≤ 0.

So ϕ is nonincreasing on (0,+∞). Thus, if x > y,

α1/pα (x + y) = (x + y)ϕ
(
x(1 + y/x)

) ≤ (x + y)ϕ(x)

= α1/pα (x) + y
α1/pα (x)

x
≤ α1/pα (x) + α1/pα (y). �

5. Holley–Stroock perturbation lemma: Proof of Theorem 1.9. In this sec-
tion, we prove Theorem 1.9.

PROOF OF THEOREM 1.9. The proof follows the line of the original
proof [18]; see also [26]. Using the following representation of the entropy,

Entμ(g) = inf
t>0

{∫ (
g log

(
g

t

)
− g + t

)
dμ

}
with g = ef , we see that [since g log(

g
t
) − g + t ≥ 0]

Entμ̃(g) ≤ esupϕ

Z
Entμ(g).

Since μ verifies Tα(C), Theorem 2.1 implies that, for all λ ∈ (0,1/C),

Entμ̃
(
ef ) ≤ esupϕ

Z

1

1 − λC

∫ (
f − Qλ

αf
)
ef dμ ≤ eOsc(ϕ)

1 − λC

∫ (
f − Qλ

αf
)
ef dμ̃.
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In other words, μ̃ satisfies (τ ) − LSIα(λ, eOsc(ϕ)

1−λC
), for any λ ∈ (0,1/C). Now, ap-

plying Theorem 1.8, we conclude that μ̃ verifies Tα(C̃), with

C̃ = κpα inf
λ∈(0,1/C)

{
1

λ

1

(1 − λC)pα−1

}
e(pα−1)Osc(ϕ)

= κpα

p
pα
α

(pα − 1)pα−1 Ce(pα−1)Osc(ϕ) = κ̃pαCe(pα−1)Osc(ϕ). �

APPENDIX: TECHNICAL RESULTS

In this appendix we prove the technical lemmas on Young functions we used
during the paper. First, let us prove Lemma 1.6, that we restate below.

LEMMA A.1. If α is a Young function satisfying the �2-condition, then

rα := inf
x>0

xα′−(x)

α(x)
≥ 1 and 1 < pα := sup

x>0

xα′+(x)

α(x)
< +∞,(A.1)

where α′+ (resp., α′−) denotes the right (resp., left) derivative of α.

PROOF. Using the convexity of α, we see that α(x)/x ≤ α′−(x). This shows
that rα ≥ 1. On the other hand, the function α is convex, so α(2x) ≥ α(x) +
xα′+(x), for all x > 0. Since α verifies the �2-condition, there is some constant
K ≥ 2 such that α(2x) ≤ Kα(x). So we get xα′+(x) ≤ (K − 1)α(x), for all x > 0.
This proves that pα < +∞. Let us show that pα > 1. Otherwise we would have
rα = pα (since α′− ≤ α′+) and so xα′−(x)/α(x) = xα′+(x)/α(x) = 1 for all x > 0.

This would imply that α is linear on [0,∞). This cannot happen, since by assump-
tion Young functions are increasing and such that α′(0) = 0. So pα > 1. �

Now let us prove Lemmas 3.2 and 3.3 whose statements are summarized below.
Recall that the function ξα is defined by

ξα(x) := sup
u>0

α∗(xα′+(u))

xα(u)
, x > 0.

LEMMA A.2.

• Let α be a Young function satisfying the �2-condition, and let 1 ≤ rα ≤ pα ,
pα > 1 be the numbers defined by (A.1). Then, it holds

ξα(x) ≤ (pα − 1)max
(
x1/(pα−1);x1/(rα−1)) ∀x > 0,(A.2)

with the convention t∞ = 0 if t ≤ 1 and ∞ otherwise.
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• Let p1 ≥ 2 and p2 > 1 and let α = αp1,p2 ; then pα = max(p1,p2), and it holds

ξα(x) = (pα − 1)x1/(pα−1) ∀x ≤ 1.

Moreover, for x ≥ 1, it holds

ξα(x) =
⎧⎪⎨⎪⎩p1

(
1

q2
x1/(p2−1) +

(
1

q1
− 1

q2

)
1

x

)
, if p1 ≥ p2,

max
(
(p1 − 1)x1/(p1−1); (p2 − 1)x1/(p2−1)), if p1 ≤ p2,

where q1 = p1/(p1 − 1) and q2 = p2/(p2 − 1).

PROOF. Defining ω(x) = supu>0
α∗(ux)
α∗(u)

, for all x ≥ 0, we get

ξα(x) ≤ ω(x)

x
sup
u>0

α∗(α′+(u))

α(u)
∀x > 0.

From the convexity inequality α(x) ≥ α(u) + (x − u)α′+(u), x,u ≥ 0, we deduce
immediately that α∗(α′+(u)) = uα′+(u) − α(u), for all u ≥ 0. Thus

sup
u>0

α∗(α′+(u))

α(u)
= pα − 1.

So, all we have to show is that ω(x) ≤ max(xpα/(pα−1);xrα/(rα−1)), for all x ≥ 0.
Define ϕ(u) = α(u)/upα and ψ(u) = α(u)/urα , for all u > 0. As in the proof

of Lemma 4.7, a simple calculation shows that ϕ is nonincreasing, and ψ is non-
decreasing. As a result,

α(tu) ≤ tpαα(u) ∀u ≥ 0, ∀t ≥ 1,

α(tu) ≤ t rαα(u) ∀u ≥ 0, ∀t ∈ [0,1].
Taking the Fenchel–Legendre transform yields

α∗(v/t) ≥ tpαα∗(
v/tpα

) ∀v ≥ 0, ∀t ≥ 1,

α∗(v/t) ≥ t rαα∗(
v/trα

) ∀v ≥ 0, ∀t ∈ [0,1].
Equivalently,

α∗(ux) ≤ xpα/(pα−1)α∗(u) ∀u ≥ 0, ∀x ∈ [0,1],
α∗(ux) ≤ xrα/(rα−1)α∗(u) ∀u ≥ 0, ∀x ≥ 1.

And since rα ≤ pα , we conclude that ω(x) ≤ max(xpα/(pα−1);xrα/(rα−1)), x ≥ 0.

Now, let us calculate ξαp1,p2
, for p1 ≥ 2, p2 > 1. First observe that ξλα = ξα

for all λ > 0. It will be more convenient to do the calculation with the function
α := ᾱp1,p2 = 1

p1
αp1,p2 . Let us denote by q1 = p1

p1−1 , q2 = p2
p2−1 , the conjugate
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exponents of p1 and p2. Then the following identity holds: α∗ = ᾱq1,q2 . Let us
show that

ξα(x) = (pα − 1)x1/(pα−1)

for x ≤ 1. The case x > 1 is similar and left to the reader. Define

ϕ(u) = α∗(xu)

α ◦ α′−1(u)
, u > 0.

We have to distinguish three cases:

ξα(x) = 1

x
max

(
sup
u≤1

ϕ(u); sup
1≤u≤1/x

ϕ(u); sup
u≥1/x

ϕ(u)
)
.

Case 1. 0 < u ≤ 1. Then ϕ(u) = (p1 − 1)xq1 .

Case 2. 1 ≤ u ≤ 1/x. Then

ϕ(u) = xq1

q1

uq1

uq2/p2 + 1/p1 − 1/p2
.

If p1 ≥ p2, then the function ϕ is nonincreasing on [1,1/x], and so

sup
1≤u≤1/x

ϕ(u) = ϕ(1) = (p1 − 1)xq1.

If p1 ≤ p2, then the function ϕ is nondecreasing on [1,1/x], and so

sup
1≤u≤1/x

ϕ(u) = ϕ(1/x).

Case 3. u ≥ 1/x. Then

ϕ(u) = (xu)q2/q2 + 1/q1 − 1/q2

uq2/p2 + 1/p1 − 1/p2
.

If p1 ≥ p2, the function ϕ is nonincreasing on [1/x,∞), and so

sup
u≥1/x

ϕ(u) = ϕ(1/x).

If p1 ≤ p2, the function ϕ is nondecreasing on [1/x,∞), and so

sup
u≥1/x

ϕ(u) = lim
u→∞ϕ(u) = (p2 − 1)xq2 .

Observe, in particular, that ϕ never reaches its supremum at u = 1/x. We conclude
that

sup
u>0

ϕ(u) = max
(
(p1 − 1)xq1; (p2 − 1)xq2

)
,

and so

ξα(x) = max
(
(p1 − 1)x1/(p1−1); (p2 − 1)x1/(p2−1))

= (
max(p1;p2) − 1

)
x1/(max(p1;p2)−1).

Since pα = max(p1;p2), the proof is complete. �
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