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AN INEQUALITY FOR THE DISTANCE BETWEEN DENSITIES
OF FREE CONVOLUTIONS

BY V. KARGIN

University of Cambridge

This paper contributes to the study of the free additive convolution of
probability measures. It shows that under some conditions, if measures μi

and νi , i = 1,2, are close to each other in terms of the Lévy metric and if the
free convolution μ1 � μ2 is sufficiently smooth, then ν1 � ν2 is absolutely
continuous, and the densities of measures ν1 � ν2 and μ1 � μ2 are close to

each other. In particular, convergence in distribution μ
(n)
1 → μ1, μ

(n)
2 → μ2

implies that the density of μ
(n)
1 � μ

(n)
2 is defined for all sufficiently large

n and converges to the density of μ1 � μ2. Some applications are provided,
including: (i) a new proof of the local version of the free central limit theorem,
and (ii) new local limit theorems for sums of free projections, for sums of �-
stable random variables and for eigenvalues of a sum of two N -by-N random
matrices.

1. Introduction. Free convolution is a binary operation on the set of probabil-
ity measures on the real line that converts this set into a commutative semigroup.
In contrast to the usual convolution, this operation is nonlinear relative to taking
convex combinations of measures. The study of properties of free convolution is
motivated by its numerous applications to operator algebras [11, 21, 24], random
matrices [10, 17, 19, 22], representations of the symmetric group [8] and quantum
physics [9, 27].

Starting with work by Voiculescu [21], it was noted that free convolution has
strong smoothing properties. Let μ1 � μ2 denote the free convolution of prob-
ability measures μ1 and μ2. In [6], it was proved that μ1 � μ2 has an atom
at x ∈ R if and only if there are y ∈ R and z ∈ R such that x = y + z, and
μ1({y}) + μ2({z}) > 1. In [1], it was shown that μ1 � μ2 can have a singular
component if and only if one of the measures is concentrated on one point, and the
other has a singular component (so that the resulting free convolution is simply a
translation of the measure with the singular component). Moreover, in the same
paper it was shown that the density of the absolutely continuous part of the free
convolution measure is analytic wherever the density is positive and finite.

Some quantitative versions of the smoothing property of free convolution have
also been given. In particular, in [23] it was shown that if μ1 is absolutely con-
tinuous with density fμ1 ∈ Lp(R) (p ∈ (1,∞]), then the free convolution of μ1

Received August 2011; revised January 2012.
MSC2010 subject classifications. 46L54, 60B20.
Key words and phrases. Free probability, free convolution, convergence of measures.

3241

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/12-AOP756
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


3242 V. KARGIN

with an arbitrary other measure μ2 is absolutely continuous with density fμ1�μ2 ∈
Lp(R), and ‖fμ1�μ2‖p ≤ ‖fμ1‖p . In particular, the supremum of the density
fμ1�μ2 is less than or equal to the supremum of the density of fμ1 .

Another important property of free convolution is that it is continuous with
respect to weak convergence of measures. In particular, by a result in [4], if

μ
(N)
1 → μ1 and μ

(N)
2 → μ2 as N grows to infinity (where → denotes conver-

gence in distribution), then μ
(N)
1 � μ

(N)
2 → μ1 � μ2. In fact, Theorem 4.13 in [4]

says that dL(μ1 � μ2, ν1 � ν2) ≤ dL(μ1, ν1) + dL(μ2, ν2), where dL denotes the
Lévy distance on the set of probability measures on R.

The main result of this paper establishes a strengthened version of this property.
If distances dL(μ1, ν1) and dL(μ2, ν2) are sufficiently small, and if μ1 � μ2 is
sufficiently smooth, then ν1 �ν2 is absolutely continuous and the distance between
the densities of μ1 �μ2 and ν1 �ν2 can be bounded in terms of the Lévy distances
between the original measures.

In particular, this result shows that the convergence in distribution μ
(N)
1 → μ1

and μ
(N)
2 → μ2 implies the convergence of the probability densities of μ

(N)
1 �μ

(N)
2

to the density of μ1 � μ2.
We prove this result under an assumption imposed on the measures μ1 and μ2,

which we call the smoothness of the pair (μ1,μ2) at a point of its support x. This
assumption holds at a generic point x if μ1 = μ2 = μ, and the density of μ � μ is
absolutely continuous and positive at x. In the case when μ1 �= μ2, this assumption
should be checked directly. We envision that in applications μ1 and μ2 are fixed
measures for which this assumption can be directly checked, and μ

(N)
1 and μ

(N)
2

are (perhaps random) measures for which it can be checked that they are close to
μ1 and μ2 in the Lévy distance.

In order to formulate our main result precisely, we introduce several definitions.
Let μ1 and μ2 be two probability measures on R with the Stieltjes transforms
mμ1(z) and mμ2(z), where the Stieltjes transform of a probability measure μ is
defined by the formula

mμ(z) :=
∫

R

μ(dx)

x − z
.

Then, the free convolution μ1 � μ2 is defined as a probability measure on R with
the Stieltjes transform mμ1�μ2(z), which satisfies the following system of equa-
tions:

mμ1�μ2(z) = mμ1

(
ω1(z)

)
,

mμ1�μ2(z) = mμ2

(
ω2(z)

)
,(1)

z − 1

mμ1�μ2(z)
= ω1(z) + ω2(z).

Here ω1(z) and ω2(z) are analytic functions in C
+ := {z :�z > 0}, that map C

+ to
itself, that have the property �ωj(z) ≥ �z, and such that ωj(z) = z + o(z) as z →
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∞ in the sector �z > κ|
z|, where κ is an arbitrary positive constant [7]. Functions
ω1(z) and ω2(z) are called the subordination functions for the pair (μ1,μ2).

The definition of free convolution by the system (1) is equivalent to the stan-
dard definition through R-transforms ([25] and [16]) if one sets ω1(z) = z −
Rμ2(−mμ1�μ2(z)), and similarly for ω2(z).

The subordination functions ωj(z) depend not only on z but also on the pair
(μ1,μ2). In particular, some properties of the measures μ1 and μ2 are encoded in
the functions ωj . A proper but more cumbersome notation would be ωj (μ1,μ2, z)

where j = 1,2. In the cases when we need to compare the subordination func-
tions for pairs (μ1,μ2) and (ν1, ν2), we will denote them by ωμ,j (z) and ων,j (z),
respectively.

The system (1) implies the following system of equations for ωj :

1

z − ω1(z) − ω2(z)
= mμ1

(
ω1(z)

)
,

(2)
1

z − ω1(z) − ω2(z)
= mμ2

(
ω2(z)

)
.

Note that the analytic solutions of the system (2) that satisfy the asymptotic
condition at infinity are unique in C

+. (This follows from the facts that the solu-
tions are unique in the area �z ≥ η0 for sufficiently large η0 and that the analytic
continuation in a simply-connected domain is unique.)

By Theorem 3.3 in [1], the limits ωj (x) = limη↓0 �ωj(x + iη) exist, and we
make the following definition.

DEFINITION 1.1. A pair of probability measures on the real line (μ1,μ2) is
said to be smooth at x if the following two conditions hold:

(i) �ωj(x) > 0 for j = 1,2, and
(ii)

kμ(x) := 1

m′
μ1

(ω1(x))
+ 1

m′
μ2

(ω2(x))
− (

x − ω1(x) − ω2(x)
)2 �= 0.(3)

Inequality (3) is a technical condition and holds for a generic point x ∈ R.
Condition (i) is somewhat stronger than the condition that μ1 � μ2 is Lebesgue

absolutely continuous at x. Indeed, if �ωj(x) > 0 for j = 1,2, then the limit

lim
η→0

mμ1�μ2(x + iη) = lim
η→0

mμ1

(
ω1(z)

)
exists and is finite. By using results in [1], we can infer from this fact that μ1 � μ2
is Lebesgue absolutely continuous at x.

In the converse direction, we have only that if μ1 = μ2 = μ, and μ � μ is
absolutely continuous with positive density at x, then condition (i) in the definition
of smoothness is satisfied; see Proposition 1.4 below.
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The fact that smoothness is strictly stronger than absolute continuity of μ1 �μ2
can be seen from the following example. If μ1 is a point mass at 0, that is, μ1 = δ0,
and if μ2 is absolutely continuous at x, then μ1 �μ2 = μ2 is absolutely continuous
at x, but the pair (μ1,μ2) is not smooth at x. Indeed, mδ0 = −z−1, and system (2)
implies that ω2(z) = z. Hence, �ω2(x) = 0 for every x.

On the other hand smoothness holds for many examples that we consider below.
Next, let us recall the following standard definition.

DEFINITION 1.2. The Lévy distance between probability measures μ and ν is

dL(μ, ν) = sup
x

inf
{
s ≥ 0 :Fν(x − s) − s ≤ Fμ(x) ≤ Fν(x + s) + s

}
,

where Fμ(t) and Fν(t) are the cumulative distribution functions of μ and ν.

It is well known that μ(N) → μ in distribution (i.e., the cumulative distribution
function of μ(N) weakly converges to the cumulative distribution function of μ) if
and only if dL(μ(N),μ) → 0; see, for example, Theorem III.1.2 on page 314 and
Exercise III.1.4 on page 316 in [18].

Here is the main result of this paper.

THEOREM 1.3. Assume that a pair of probability measures (μ1,μ2) is
smooth at x. Then, there are some sμ,0 > and cμ > 0, which depend only on
(μ1,μ2), such that for all pairs of probability measures (ν1, ν2) with dL(μj , νj ) <

s ≤ sμ,0 for both j = 1,2, it is true that ν1 �ν2 is absolutely continuous in a neigh-
borhood of x, and ∣∣fν1�ν2(x) − fμ1�μ2(x)

∣∣ < cμs,

where fν1�ν2 and fμ1�μ2 are the densities of ν1 � ν2 and μ1 � μ2, respectively.

This theorem will be proved as a corollary to Proposition 2.4 below. The as-
sumptions of the theorem are sufficient but possibly not necessary. Of course, it is
necessary to require that μ1 � μ2 be absolutely continuous at x so that the density
fμ1�μ2(x) is well defined. In addition, a simple example shows that absolute con-
tinuity alone is not sufficient. Indeed, if μ1 = ν1 = δ0 is a point mass at zero, and
μ2 is absolutely continuous, then δ0 � μ2 is absolutely continuous, but δ0 � ν2 is
not necessarily so, even if ν2 is close to μ2 in the Lévy distance. However, it is not
clear if the assumption of absolute continuity of μ1 � μ2 implies the statement of
the theorem once this degenerate case is ruled out.

The constant cμ in the theorem can be bounded in terms of �ωμ,j (x) and
|kμ(x)| from (3). In particular, if �ωμ,j (x) and |kμ(x)| are uniformly bounded
away from zero for all x ∈ (a, b), then supx∈(a,b) |fν1�ν2(x)−fμ1�μ2(x)| < cs for
some c > 0.

The main ideas of the proof of Theorem 1.3 are as follows. Let mνj
(z) and

mν1�ν2(z) denote the Stieltjes transforms of νj and ν1 � ν2, respectively, and let
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ων,j denote the subordination functions for the pair (ν1, ν2). First, we prove that
the smallness of dL(μj , νj ) implies that the differences |mνj

− mμj
| are small,

and that the differences between the derivatives of mνj
and mμj

are also small.
Then we show that this fact, together with system (2), implies that the differences
between the corresponding subordination functions are small. At this stage we
need the assumption of smoothness. Finally, we check that if both the Stieltjes
transforms and the subordination functions of pairs (μ1,μ2) and (ν1, ν2) are close
to each other, then the Stieltjes transforms of μ1 � μ2 and ν1 � ν2 are close to
each other uniformly on the half-line 
z = x, �z > 0. This fact implies that the
densities of μ1 � μ2 and ν1 � ν2 at x are close to each other.

Before discussing applications of Theorem 1.3, let us mention some results
which are helpful in checking the assumptions of this theorem.

PROPOSITION 1.4. If μ � μ is (Lebesgue) absolutely continuous in a neigh-
borhood of x, and the density of μ � μ is positive at x, then �ωj(x) > 0 for
j = 1,2.

Another important case is when one of the probability measures has the semi-

circle distribution with the density fsc(x) = 1
2π

√
(4 − x2)+. Since such a measure,

μsc, is absolutely continuous, μsc � μ is also absolutely continuous, for an arbi-
trary μ.

PROPOSITION 1.5. If the density of μsc � μ is positive at x, and∣∣mμsc�μ(x)
∣∣ �= 1,

then �ωj(x) > 0 for j = 1,2.

The proofs of Propositions 1.4 and 1.5 will be given in Section 3.
Now let us turn to applications. Theorem 1.3 can be applied to derive some

old and new results about sums of free random variables and about eigenvalues of
large random matrices.

Recall that if X1, . . . ,Xn are free, identically distributed self-adjoint random
variables with finite variance σ 2, then [15, 20] Sn := (X1 + · · · + Xn)/(σ

√
n)

converges in distribution to a random variable X with the standard semicircle law.
In terms of free convolutions, it means that if μ is a probability measure with

variance σ 2, and if

μn(dx) := μ � · · · � μ︸ ︷︷ ︸
n times

(
σ
√

ndx
)
,

then μn → μsc.
Bercovici and Voiculescu in [5] showed that the convergence in this limit law

holds in a stronger sense. Namely, assuming in addition that support of μ is
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bounded, they showed that μn has a density for all sufficiently large n and that the
sequence of these densities converges uniformly to the density of the semicircle
law. Recently, this result was generalized in [26] to the case of μn with unbounded
support and finite variance. Results in [5] and [26] can be considered as local limit
versions of the free CLT.

In the first application (Theorem 4.1), we give a short proof of the easier part
of the results in [5] and [26] by using Theorem 1.3. (A more difficult part of these
results concerns the uniformity of the convergence on R.)

In the second application (Theorem 4.2), we prove an analogous local limit
result for the sums Sn = X1,n +· · ·+Xn,n, where Xi,n are free projection operators
with parameters pi,n such that

∑n
i=1 pi,n → λ and maxi pi,n → 0 as n → ∞. The

classical analogue of this situation is the sum of independent indicator random
variables, and the classical result states that the sums converge in distribution to the
Poisson random variable with parameter λ. A local version of this result is absent
in the classical case because the Poisson random variable is discrete, and it does
not make sense to talk about convergence of densities. In the free probability case,
the limit of the spectral distributions of Sn is the Marchenko–Pastur distribution,
which is absolutely continuous with bounded density for λ > 1. We show that in
this case the spectral measures of Sn have a density for all sufficiently large n

and that the sequence of these densities converges uniformly to the density of the
Marchenko–Pastur law.

In the third application (Theorem 4.3), we show that a similar local limit result
holds for sums of free �-stable random variables.

The fourth application (Theorem 4.4) is of a different kind and is concerned
with eigenvalues of large random matrices. Let HN = AN + UNBNU∗

N , where
AN and BN are N -by-N Hermitian matrices, and UN is a random unitary ma-
trix with the Haar distribution on the unitary group U (N). Let λ

(A)
1 ≥ · · · ≥ λ

(A)
N

be the eigenvalues of AN . Similarly, let λ
(B)
k and λ

(H)
k be ordered eigenvalues of

matrices BN and HN , respectively. Define the spectral point measures of AN by
μAN

:= N−1 ∑N
k=1 δ

λ
(A)
k (H)

, and define the spectral point measures of BN and HN

similarly.
Assume that μAN

→ μα and μBN
→ μβ , and that the support of μAN

and μBN

is uniformly bounded. Let the pair (μα,μβ) be smooth at x.
Define NI := NμHN

(I), the number of eigenvalues of HN in interval I , and let
Nη(x) := N(x−η,x+η]. Finally, assume that η = η(N) and 1√

log(N)
� η(N) � 1.

Then, by using the author’s previous results from [14], and Theorem 1.3, it is
shown that

Nη(x)

ηN
→ fμα�μβ (x)

with probability 1, where fμα�μβ denotes the density of μα � μβ . This result
generalizes the main result in [17] where it was proved that μHN

→ μα �μβ . It can
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be interpreted as a local limit law for eigenvalues of a sum of random Hermitian
matrices.

The rest of the paper is organized as follows. Section 2 is concerned with the
proof of the main theorem, Section 3 contains proofs of Propositions 1.4 and 1.5,
Section 4 contains applications, and Section 5 concludes.

2. Proof of Theorem 1.3. Let Fμ(x) and Fν(x) denote the cumulative distri-
bution functions of the measures μ and ν, respectively.

LEMMA 2.1. Suppose that dL(μ, ν) = s. Assume that h(x) is a C1 real-
valued function, such that

∫ ∞
−∞ |h(u)|du < ∞ and

∫ ∞
−∞ |h′(u)|du < ∞. Assume

in addition that h(u) has a finite number of zeros. Then,

� :=
∫

R

∣∣h(u)
[
Fν(ηu) − Fμ(ηu)

]∣∣du ≤ cs max
{
1, η−1}

,(4)

where c > 0 depends only on h.

PROOF. Since h is a continuous function with a finite number of zeros, we
can decompose the set on which h(u) is nonzero into a finite number of intervals
Ik on which h(u) has a constant sign. Note that it suffices to estimate the integral
on each of these intervals. Consider the case when h(u) > 0 on an interval Ik . The
treatment of the case h(u) < 0 is similar.

By using the definition of the Lévy distance, we obtain the following estimate:∣∣Fν(ηu) − Fμ(ηu)
∣∣

≤ max
{
Fμ(ηu + s) − Fμ(ηu),Fν(ηu + s) − Fν(ηu),

Fμ(ηu) − Fμ(ηu − s),Fν(ηu) − Fν(ηu − s)
} + s.

It suffices to estimate∫
Ik

h(u)
{
Fμ(ηu + s) − Fμ(ηu) + s

}
du,

since the other cases are similar.
First of all, note that∫

Ik

h(u)s du ≤ s

∫ ∞
−∞

∣∣h(u)
∣∣du ≤ cs.(5)

Next, let Ĩk = Ik + s/η. Then,∫
Ik

h(u)Fμ(ηu + s) du =
∫
Ĩk

h(t − s/η)Fμ(ηt) dt
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and therefore, ∫
Ik

h(u)
[
Fμ(ηu + s) − Fμ(ηu)

]
du

≤
∫
Ik∩Ĩk

[
h(t − s/η) − h(t)

]
Fμ(ηt) dt(6)

+
∫
Ik�Ĩk

max
(∣∣h(t − s/η)

∣∣, ∣∣h(t)
∣∣)Fμ(ηt) dt.

For the first integral in this estimate, we can use the fact that

h(t − s/η) − h(t) = −
∫ t

t−s/η
h′(ξ) dξ

and therefore,∣∣∣∣
∫
Ik∩Ĩk

[
h(t − s/η) − h(t)

]
Fμ(ηt) dt

∣∣∣∣ ≤
∫

R

∫ t

t−s/η

∣∣h′(ξ)
∣∣Fμ(ηt) dξ dt

=
∫

R

∣∣h′(ξ)
∣∣(∫ ξ+s/η

ξ
Fμ(ηt) dt

)
dξ(7)

≤ s

η

∫
R

∣∣h′(ξ)
∣∣dξ.

For the second integral, we note that∫
Ik�Ĩk

max
(∣∣h(t − s/η)

∣∣, ∣∣h(t)
∣∣)Fμ(ηt) dt ≤ sup

∣∣h(t)
∣∣|Ik � Ĩk|

(8)
≤ 2 sup

∣∣h(t)
∣∣s/η.

By using estimates (5), (6), (7) and (8), we obtain

� ≤ cs max
{
1, η−1}

,

where c depends only on function h. �

Now, let mμ(z) and mν(z) denote the Stieltjes transforms of the probability
measures μ and ν, respectively.

LEMMA 2.2. Let dL(μ, ν) = s and z = x + iη, where η > 0. Then:

(a) |mμ(z) − mν(z)| < csη−1 max{1, η−1} where c is a positive constant, and
(b) | dr

dzr (mμ(z) − mν(z))| < crsη
−1−r max{1, η−1} where cr are positive con-

stants.

PROOF. (a) By integration by parts,

mμ(z) =
∫

R

Fμ(λ)

(λ − z)2 dλ.
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Hence, setting u = (λ − x)/η,

�mμ(z) = 2

η

∫
R

Fμ(x + ηu)
udu

(1 + u2)2 ,


mμ(z) = 1

η

∫
R

Fμ(x + ηu)
(u2 − 1) du

(1 + u2)2 ,

and similar formulas hold for �mν(z) and 
mν(z). Since u(1 + u2)−2 and (u2 −
1)(1 + u2)−2 satisfy the assumptions of Lemma 2.1, Claim (a) follows. Claim (b)
can be derived similarly by writing

dr

dzr
mμ(z) = (r + 1)!

∫
R

Fμ(λ)dλ

(λ − x − iη)r+2

= (r + 1)!
ηr+1

∫
R

1

(u − i)r+2 Fμ(ηu + x)du,

separating imaginary and real parts of the integrand, and applying Lemma 2.1. �

LEMMA 2.3. Assume that the pair (μ1,μ2) is smooth at x. Suppose that
(ν1, ν2) is another pair of probability measures such that dL(μj , νj ) < s for
j = 1,2. Let 
z = x and �z ≥ 0. Then∣∣∣∣ 1

z − ωμ,1(z) − ωμ,2(z)
− mνj

(
ωμ,j (z)

)∣∣∣∣ ≤ cμs

for j = 1,2. Here cμ > 0 depends only on (μ1,μ2) and x.

That is, if we substitute ωμ,j (z) in the system for ων,j (z), then the equalities
will be satisfied up to a quantity of order s.

PROOF OF LEMMA 2.3. The functions ωμ,j (z) satisfy equations (2), which
implies that it is enough to show that∣∣mνj

(
ωμ,j (z)

) − mμj

(
ωμ,j (z)

)∣∣ < cs

for j = 1,2. Note that minj=1,2{�(ωμ,j (x))} > 0 by the assumption of smoothness
of (μ1,μ2). In addition, �(ωμ,j (x + iη)) ≥ η for all η > 0. Hence, by continuity
of ωμ,j (x + iη) in η, we have κj := infη≥0 ωμ,j (x + iη) > 0. Then, by Lemma 2.2,∣∣mνj

(
ωμ,j (z)

) − mμj

(
ωμ,j (z)

)∣∣ < cs min
{
κ−1
j , κ−2

j

}
. �

PROPOSITION 2.4. Assume that a pair of probability measures (μ1,μ2) is
smooth at x. Then there are some sμ,0 > and cμ > 0 that depend only on (μ1,μ2)

and x, such that for all pairs of probability measures (ν1, ν2) with dL(μj , νj ) <

s ≤ sμ,0 for j = 1,2, the limits ων,j (x) := limη↓0 ων,j (x + iη) exist, and it is true
that ∣∣ων,j (x) − ωμ,j (x)

∣∣ ≤ cμs

for j = 1,2.
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COROLLARY 2.5. Assume that the assumptions of Proposition 2.4 hold and
that dL(μj , νj ) < s ≤ sμ,0 for j = 1,2. Then, ν1 � ν2 is absolutely continuous in
a neighborhood of x, and∣∣fν1�ν2(x) − fμ1�μ2(x)

∣∣ < cμs,

where fμ1�μ2 and fν1�ν2 denote the densities of μ1 �μ2 and ν1 �ν2, respectively.

PROOF. Since mν1�ν2(z) = (z−ων,1(z)−ων,2(z))
−1, Proposition 2.4 implies

that the limit mν1�ν2(x) := limη↓0 mν1�ν2(x + iη) exists and∣∣mν1�ν2(x) − mμ1�μ2(x)
∣∣ < cμs.(9)

By [1], ν1 � ν2 has no singular component. Hence, inequality (9) and the absolute
continuity of μ1 �μ2 in a neighborhood of x imply that for all sufficiently small s,
the measure ν1 � ν2 is absolutely continuous in a neighborhood of x with the
density fν1�ν2(x) = π−1�(mν1�ν2(x)), and∣∣fν1�ν2(x) − fμ1�μ2(x)

∣∣ < cμs. �

PROOF OF PROPOSITION 2.4. Let F(ω) : C2 → C
2 be defined by the formula

F :
(

ω1
ω2

)
→

(
c(z − ω1 − ω2)

−1 − mν1(ω1)

(z − ω1 − ω2)
−1 − mν2(ω2)

)
.

Let us use the norm ‖(x1, x2)‖ = (|x1|2 + |x2|2)1/2. By Lemma 2.3, ‖F(ωμ,1(z),
ωμ,2(z))‖ ≤ cμs for all z = x + iη and η ≥ 0.

The derivative of F with respect to ω is

F ′ =
(

(z − ω1 − ω2)
−2 (z − ω1 − ω2)

−2 − m′
ν1

(ω1)

(z − ω1 − ω2)
−2 − m′

ν2
(ω2) (z − ω1 − ω2)

−2

)
.

The determinant of this matrix is[
m′

ν1
(ω1) + m′

ν2
(ω2)

]
(z − ω1 − ω2)

−2 − m′
ν1

(ω1)m
′
ν2

(ω2).

By the assumption of smoothness and by Lemma 2.2, this is close (i.e., the differ-
ence < cs for some c > 0) to[

m′
μ1

(ω1) + m′
μ2

(ω2)
]
(z − ω1 − ω2)

−2 − m′
μ1

(ω1)m
′
μ2

(ω2)

at (ω1,ω2) = (ωμ,1(z),ωμ,2(z)) for all z = x + iη with η ≥ 0. The latter ex-
pression is nonzero by (3). In addition, the assumption of smoothness shows that
(z−ωμ,1(z)−ωμ,2(z))

−2 is bounded for z = x + iη with η ≥ 0. Hence, the entries
of the matrix [F ′]−1 are bounded at (ωμ,1(z),ωμ,2(z)), and the bound does not de-
pend on η. This shows that the operator norm of [F ′]−1 is bounded uniformly in η.

Similarly, an explicit calculation of F ′′, the assumption of smoothness of
(μ1,μ2) and Lemma 2.2 imply that for all z = x + iη with η ≥ 0, the operator
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norm of F ′′ is bounded (uniformly in η) for all (ω1,ω2) in a neighborhood of
(ωμ,1(z),ωμ,2(z)).

It follows by the Newton–Kantorovich theorem [13] that if s = maxj dL(μj , νj )

is sufficiently small, then the solution of the equation F(ω) = 0 exists for all z with

z = x and �z ≥ 0.

This solution must be (ων,1(z),ων,2(z)) by the following argument from [2].
A solution of equation F(ω) = 0 satisfies the following pair of equations:

ω1 = z + h2(ω2),

ω2 = z + h1(ω1),

where

hj (ω) = −ω − 1

mνj
(ω)

.

Note in particular that �hj (ω) ≥ 0 for all ω ∈ C
+; see, for example, [4] or [15].

Hence, ω1 is a fixed point of the function

fz(ω) = z + h2
(
z + h1(ω)

)
,

which maps C
+ to C

+. For every z ∈ C
+, the function fz(ω) is not a conformal

automorphism because it maps C
+ to a subset of C

+ +�z, which is a proper subset
of C

+. In addition, it is analytic as a function of z and ω that maps C
+ ×C

+ to C
+.

Hence, by Theorem 2.4 in [2], for every z ∈ C
+ the function fz(ω) has a unique

fixed point ω1(z).
A similar argument holds for ω2(z), and we conclude that equation F(ω) = 0

has a unique solution in C
+ × C

+, which necessarily coincides with (ων,1(z),
ων,2(z)).

In addition, this solution satisfies the inequalities∣∣ων,j (z) − ωμ,j (z)
∣∣ < cμs, j = 1,2,(10)

for all z with 
z = E and �z > 0.
By Theorem 3.3 in [1], the limits

ων,j (E) := lim
η↓0

ων,j (x + iη)

and

ωμ,j (E) := lim
η↓0

ωμ,j (x + iη)

exist, and by taking the limits in (10), we find that∣∣ων,j (x) − ωμ,j (x)
∣∣ ≤ cs. �
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3. Proofs of Propositions 1.4 and 1.5. Recall that a function f (x) is said to
be Hölder continuous at x0 if there exist positive constants α, C and ε such that
|x − x0| < ε implies that |f (x) − f (x0)| < C|x − x0|α .

LEMMA 3.1. Suppose that a probability measure μ has a density which is
positive and Hölder continuous at x. Let mμ(z) be the Stieltjes transform of μ.
Then |mμ(x + iη)| ≤ M < ∞ for all η > 0.

PROOF. The results of Sokhotskyi, Plemelj and Privalov ensure that the limit
of mμ(x + iη) exists when η ↓ 0; see Theorems 14.1b and 14.1c in [12]. In partic-
ular this implies that mμ(x + iη) is bounded for sufficiently small η. In addition,
|mμ(x + iη)| ≤ 1/η so it is bounded for large η. Since mμ(x + iη) is continuous in
the upper half-plane, mμ(x + iη) is bounded for all η, and the claim of the lemma
follows. �

PROOF OF PROPOSITION 1.4. Note that for the case μ1 = μ2 = μ,

ω1(z) = ω2(z) = (
z − mμ�μ(z)−1)

/2.(11)

Since by assumption μ � μ is absolutely continuous in a neighborhood of x,
and its density fμ�μ is positive at x, by the results in [1] fμ�μ is analytic and
therefore uniformly Hölder continuous in a neighborhood of x. By Sokhotskyi,
Plemelj and Privalov’s results, the limit mμ�μ(x) = limη↓0 mμ�μ(x + iη) ex-
ists and �mμ�μ(x) = πfμ�μ(x) > 0. Then it follows from (11) that the limits
ωj(x) = limη↓0 ωj (x + iη) exist. Moreover, since

�ωj(z) = 1

2

(
η + �mμ�μ(z)

|mμ�μ(z)|2
)

and by Lemma 3.1, |mμ�μ(z)|2 is bounded uniformly in η, hence the fact that
�mμ�μ(x) = πfμ�μ(x) > 0 implies that �ωj(x) > 0. This completes the proof of
the proposition. �

LEMMA 3.2. If μ1 has the semicircle distribution, then:

(i) ω1(z) = z − ω2(z) + [z − ω2(z)]−1;
(ii) mμsc�μ(z) = ω2(z) − z;

(iii) ω2(z) satisfies the equation

ω2(z) = z +
∫

μ(dx)

x − ω2(z)
.

PROOF. (i) If μ1 has the semicircle distribution, then m
(−1)
μ1 = −(z + z−1);

hence the first equation in system (2) implies

ω1 = −
(

1

z − ω1 − ω2
+ z − ω1 − ω2

)
,
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which simplifies to

ω1 = z − ω2 + 1

z − ω2
.

(ii) By using (i),

mμsc�μ = 1

z − ω1 − ω2
= −(z − ω2).

(iii) The second equation in system (2) becomes

−(
z − ω2(z)

) =
∫

μ(dx)

x − ω2(z)
. �

PROOF OF PROPOSITION 1.5. From (ii) in Lemma 3.2,

�ω2(x) = �mμsc�μ(x) = πfμsc�μ(x) > 0.

From (i),

�ω1(x) = �ω2(x)

(
−1 + 1

|x − ω2|2
)

= �ω2(x)

(
−1 + 1

|mμsc�μ(x)|2
)
.

Since �ω2(x) > 0, if |mμsc�μ(x)|2 < 1, then �ω1(x) > 0, and we are done. Two
remaining possibilities are |mμsc�μ(x)|2 = 1 and |mμsc�μ(x)|2 > 1. However,
|mμsc�μ(x)|2 > 1 is in fact not possible because this would imply that �ω1(x) < 0,
which is ruled out by a general result of Biane. To sum up, the assumptions
fμsc�μ(x) > 0 and |mμsc�μ(x)|2 �= 1 imply that �ωj(x) > 0. �

4. Applications. In the first application we re-prove an easier part of the free
local limit theorem which was first demonstrated in [5] for bounded random vari-
ables and later generalized in [26] to the case of unbounded variables with finite
variance. We will show the convergence of densities, but we will not investigate
whether the convergence is uniform on R.

Let Xi be a sequence of self-adjoint identically-distributed free random vari-
ables in the sense of free probability theory. Define Sn = (X1 + · · · + Xn)/

√
n,

and let μ and μn denote the spectral probability measures of Xi and Sn, respec-
tively. It is known that

μn(dx) = μ � · · · � μ︸ ︷︷ ︸
n times

(√
ndx

)
.

THEOREM 4.1. Suppose μ has zero mean and unit variance. Let Iε = [−2 +
ε,2 − ε]. Then for all sufficiently large n, μn is (Lebesgue) absolutely continuous
everywhere on I , and the density dμn/dx uniformly converges on Iε to the density
of the standard semicircle law.
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Note that the results in [5] imply that for every closed interval J outside of
[2,−2], the measure μn(J ) = 0 for all sufficiently large n, provided that μ1 has
bounded support. In addition, the uniform convergence on Iε can be strengthened
to the uniform convergence on R as in the proof of Theorem 3.4(iii) in [26].

PROOF OF THEOREM 4.1. Let ν1,n be the distribution of (X1 + · · · +
X[n/2])/

√
n and ν2,n be the distribution of (X[n/2]+1 + · · · + Xn)/

√
n. By using

the free CLT (Central limit theorem) from [15] (which generalizes the free CLT
in [20]), we infer that both ν1,n and ν2,n converge weakly to μ̃sc, where μ̃sc is the
semicircle law with variance 1/2. It is easy to calculate for the pair (μ̃sc, μ̃sc) that

ωμ̃,1 = ωμ̃,2 = 3z + √
z2 − 4

4

and therefore �ωμ̃,j (x) > 0 on Iε . (This also follows from Proposition 1.4.) A cal-
culation shows that the genericity condition (3) is satisfied for each x ∈ Iε , and
therefore the density of ν1,n � ν2,n exists for all sufficiently large n, and converges
to the density of μ̃sc � μ̃sc at each x ∈ Iε . A remark after Theorem 1.3 shows
that the convergence is in fact uniform on Iε . Since ν1,n � ν2,n = μn, this implies
that the density of μn converges uniformly on Iε to the density of the standard
semicircle law. �

In a similar fashion, it is possible to prove the local limit law for the convergence
to the free Poisson distribution.

Let {Xn,i}ni=1 be freely independent self-adjoint random variables with the dis-
tribution μn,i = pn,iδ1 + (1 − pn,i)δ0. Let Sn = Xn,1 + · · · + Xn,n, and let μn

denote the spectral probability measure of Sn. Then

μn(dx) = μn,1 � · · · � μn,n(dx).

Recall that the Marchenko–Pastur distribution with parameter λ ≥ 1 is a probabil-
ity measure μmp on R, with the density

fmp(x) =
√

4x − (1 − λ + x)2

2πx

supported on the interval [xmin, xmax] := [(1 −√
λ)2, (1 +√

λ)2]. In the free prob-
ability literature, this distribution is called the free Poisson distribution.

THEOREM 4.2. Assume that
∑n

i=1 pn,i → λ > 1 and maxi pn,i → 0 as
n → ∞. Let Iε = [xmin + ε, xmax − ε]. Then for all sufficiently large n, μn is
(Lebesgue) absolutely continuous everywhere on Iε , and the density dμn/dx uni-
formly converges on Iε to the density of the Marchenko–Pastur law with parame-
ter λ.
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The proof of this theorem is similar to the proof of the previous one. The first
step is the weak convergence of μn. In the case when pn,i = λ/n for all i, a proof
of weak convergence can be found on page 34 in [25]. The general case is a minor
adaptation of this case, and we omit it. Next, we choose kn so that

kn∑
i=1

pn,i ≤ λ/2 <

kn+1∑
i=1

pn,i

and define ν1,n and ν2,n as the spectral probability measures of Xn,1 + · · · + Xn,kn

and Xn,kn+1 +· · ·+Xn,n, respectively. It is easy to see that both ν1,n and ν2,n con-
verge weakly to μ̃mp, the Marchenko–Pastur distribution with parameter λ/2. By
using Proposition 1.4, we conclude that �ωμ̃mp,j (x) > 0 on Iε . Moreover, a direct
calculation shows that

ωμ̃,1(z) = ωμ̃,2(z) = 1
4

(
z + λ − 1 +

√(
z − (1 + λ)

)2 − 4λ
)

and

m′̃
μmp

= 1 − λ/2

2z2 + −z(1 + λ/2) + (1 − λ/2)2

2z2
√

(z − (1 + λ/2))2 − 2λ
.

After some calculations the genericity condition (3) can be simplified to the fol-
lowing inequality:

f (x,λ) := x3 − (
5 + 5

2λ
)
x2 + (

7 + 13
2 λ + 2λ2)

x

− (
3 − 5λ + 5

4λ2 + 1
2λ3)

(12)

�= 0.

Figure 1 shows the contour plot of f (x,λ). It can be seen from this plot and can
be checked formally that for λ > 1, there is only one x = x(λ) that violates (12).
Figure 2 shows the zero set of f (x,λ) for λ > 1, compared with the bounds on
the support of the Marchenko–Pastur distribution. It can be seen from this graph
and can be checked formally that x(λ) < tmin(λ) = (1 − √

λ)2. Consequently, if
x is in the support of μ̃mp � μ̃mp, the genericity condition (3) holds, and the pair
(μ̃mp, μ̃mp) is smooth at x. Hence, Theorem 1.3 applies, and the density of μn =
ν1,n � ν2,n converges uniformly on Iε to the density of μ̃mp � μ̃mp, that is, to the
density of the Marchenko–Pastur distribution with parameter λ.

Similar results can be established for other limit theorems, except that it is more
difficult to check the genericity condition (3) for a point in the support of the limit
distribution. Here is one more theorem of this type. Let measures μ and ν be
called equivalent (μ ∼ ν) if there exist such real a and b, with b > 0, that for every
Borel set S ⊂ R, μ(S) = ν(bS + a). Recall that a measure μ is called �-stable,
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FIG. 1. Contour plot of the right-hand side of (12).

if μ � μ ∼ μ. The measure ν belongs to the domain of attraction of a �-stable
law μ, if there exist measures νn equivalent to ν such that

νn � νn � · · · � νn︸ ︷︷ ︸
n times

→ μ.

FIG. 2. The zero set of the right-hand side of (12) compared with the support bounds for x(λ).
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Clearly, in this case there exists a sequence of real constants bn > 0 and an such
that

μn := ν � ν � · · · � ν︸ ︷︷ ︸
n times

(bn · +an) → μ.(13)

(More about the �-stability of probability measures and its relation to the classical
stability of probability measures can be found in [3].)

THEOREM 4.3. Suppose that a �-stable distribution μ is not equivalent to δ0
and that ν belongs to the domain of attraction of μ. Let an, bn and μn be defined as
in (13), and let J be a bounded closed interval such that the density of μ is strictly
positive on J . Then μn is (Lebesgue) absolutely continuous on J for all sufficiently
large n, and there exist such real κn > 0 and ξn that the density of μn(κn · +ξn)

converges to the density of μ at (Lebesgue) almost all E ∈ J .

PROOF. Let J ⊂ I , where the inclusion is strict, and I is a bounded, closed
interval such that density of μ is strictly positive on I . (Interval I exists because
by the results of Biane in [3] μ is absolutely continuous with analytical density.)

First, note that μn is (Lebesgue) absolutely continuous on R for all sufficiently
large n. Indeed, for even n = 2k, the definition of μn implies that μ2k = μk �
μk(s

−1
k · −tk) for some constants tk and sk > 0. For large k, μk is close in the

Lévy metric to μ, which is known to be absolutely continuous. Hence, μk has no
atoms with weight ≥ 1/2. This implies that μ2k has no atoms at all. In addition, by
results of Belinschi, μ2k has no singular component. Therefore, μ2k is absolutely
continuous on R if k is sufficiently large. The argument for the odd n = 2k + 1 is
similar if we write μ2k+1 = μk+1 � μk(sk · +tk).

In the second and final step, we note that there exists a sequence of constants
κn > 0 and ξn such that the density of μn(κn ·+ξn) converges to the density of μ at
(Lebesgue) almost all x ∈ I . Indeed, by the stability of μ, μ � μ = μ(s · +t) and
μ has positive analytic density on I ; therefore, by Proposition 1.4 �ωμ,j (x) > 0
at all x ∈ (I − t)/s. For almost all points x, the genericity condition (3) holds,
since otherwise kμ(x) (in the genericity condition) would be exactly 0 which is
not possible. For even n = 2k, we have μk � μk = μ2k(sk · +tk), where sk > 0
and tk are certain real constants. Hence, by Theorem 1.3 the weak convergence
μk → μ implies that the density of μk � μk ≡ μ2k(sk · +tk) converges to the
density of μ � μ ≡ μ(s · +t) at almost all points of (I − t)/s. It follows that for
κ2k = s/sk > 0 and ξ2k = t − (s/sk)tk , the density of μ2k(κ2k · +ξ2k) converges
to the density of μ at almost all points of I . The case of μ2k+1 can be handled
similarly by considering μk � μk+1. �

Our next application is of a different kind and answers a question that arises in
the theory of large random matrices.
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Let HN = AN +UNBNU∗
N , where AN and BN are N -by-N Hermitian matrices,

and UN is a random unitary matrix with the Haar distribution on the unitary group
U (N).

Let λ
(A)
1 ≥ · · · ≥ λ

(A)
N be the eigenvalues of AN . Similarly, let λ

(B)
k and λ

(H)
k be

ordered eigenvalues of matrices BN and HN , respectively.
Define the spectral point measures of AN by μAN

:= N−1 ∑N
k=1 δ

λ
(A)
k (H)

,

and define the spectral point measures of BN and HN similarly. Let NI :=
NμHN

(I) denote the number of eigenvalues of HN in interval I , and let Nη(x) :=
N(x−η,x+η].

Let the notation g1(N) � g2(N) mean that limN→∞ g2(N)/g1(N) = +∞.

THEOREM 4.4. Assume that:

(1) μAN
→ μα and μBN

→ μβ ;
(2) supp(μAN

) ∪ supp(μBN
) ⊆ [−K,K] for all N ;

(3) the pair (μα,μβ) is smooth at x;
(4) 1√

log(N)
� η(N) � 1.

Then
Nη(x)

2ηN
→ fμα�μβ (x)

with probability 1, where fμα�μβ denotes the density of μα � μβ .

Previously, it was shown by Pastur and Vasilchuk in [17] that assumption (1)
together with a weaker version of assumption (2) implies that μHN

→ μα � μβ

with probability 1. Theorem 4.4 says that the convergence of μHN
to μα �μβ holds

on the level of densities, so it can be seen as a local limit law for the eigenvalues
of the sum of random Hermitian matrices.

PROOF OF THEOREM 4.4. In Theorem 2 in [14], it was shown that the fol-
lowing claim holds. Suppose that η = η(N) and 1/

√
logN � η(N) � 1. Assume

that the measure μAN
� μBN

is absolutely continuous, and its density is bounded
by a constant TN . Then, for all sufficiently large N ,

P

{
sup
x

∣∣∣∣ Nη(x)

2Nη
− f�,N (x)

∣∣∣∣ ≥ δ

}
≤ exp

(
−cδ2 (ηN)2

(logN)2

)
,(14)

where c > 0 depends only on KN := max{‖AN‖,‖BN‖} and TN . Here f�,N de-
notes the density of μAN

� μBN
.

This statement can be modified so that the supremum in the inequality holds for
x in an interval, provided that the density of μAN

� μBN
is bounded by a constant

TN in the following interval:

P

{
sup

x∈(a,b)

∣∣∣∣ Nη(x)

2Nη
− f�,N (x)

∣∣∣∣ ≥ δ

}
≤ exp

(
−cδ2 (ηN)2

(logN)2

)
.(15)
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Since assumptions (1) and (3) hold, we can use Theorem 1.3 and infer that
f�,N (x) → fμα�μβ (x). In particular, the sequence of densities f�,N (x) is uni-
formly bounded by a constant T . This fact and assumption (2) imply that the pos-
itive constant c in (14) can be chosen independently of N . By using the Borel–
Cantelli lemma, we can conclude that

Nη(x)

2Nη
→ fμα�μβ (x)

with probability 1. �

5. Conclusion. We have proved that if probability measures ν1 and ν2 are
sufficiently close to probability measures μ1 and μ2 in the Lévy distance, and if
μ1 �μ2 is sufficiently smooth at x, then ν1 � ν2 is absolutely continuous at x, and
its density is close to the density of μ1 � μ2.

We have applied this result to derive several local limit law results for sums of
free random variables and for eigenvalues of a sum of random Hermitian matrices.
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