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REGULARITY OF THE ENTROPY FOR RANDOM WALKS ON
HYPERBOLIC GROUPS1

BY FRANÇOIS LEDRAPPIER

University of Notre Dame and Université Paris 6

We consider nondegenerate, finitely supported random walks on a
finitely generated Gromov hyperbolic group. We show that the entropy and
the escape rate are Lipschitz functions of the probability if the support re-
mains constant.

1. Introduction. This paper is an extension of [17] to finitely generated Gro-
mov hyperbolic groups; see [9] and Section 2 below for the definition of hyperbolic
groups. Let p be a finitely supported probability measure on an infinite group G,
and define inductively, with p(0) being the Dirac measure at the identity e,

p(n)(x) = [
p(n−1) � p

]
(x) = ∑

y∈G

p(n−1)(xy−1)
p(y).

Define the entropy hp and the escape rate �S
p by

hp := lim
n

−1

n

∑
x∈G

p(n)(x) lnp(n)(x), �S
p := lim

n

1

n

∑
x∈G

|x|p(n)(x),

where | · | is the word metric defined by some symmetric generating set S. The
entropy hp was introduced by Avez [2] and is related to bounded solutions of
the equation on G f (x) = ∑

y∈G f (xy)p(y); see, for example, [14]. Erschler and
Kaimanovich have shown that, on Gromov hyperbolic groups, the entropy and the
escape rate depend continuously on the probability p with finite first moment [8].
Here we are looking for a stronger regularity on a more restricted family of prob-
ability measures. We fix a finite set F ⊂ G such that

⋃
n Fn = G, and we consider

probability measures in P(F ), where P(F ) is the set of probability measures p

such that p(x) > 0 if, and only if, x ∈ F . The set P(F ) is naturally identified with
an open subset of the probabilities on F , which is a contractible open polygonal
bounded convex domain in R

|F |−1. We show:

THEOREM 1.1. Assume G is a Gromov hyperbolic group, and F is a finite
subset of G such that

⋃
n Fn = G. Then, with the above notation, the functions

p �→ hp and p �→ �S
p are Lipschitz continuous on P(F ).
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If the infinite hyperbolic group G is amenable, G is virtually cyclic, and the
entropy is vanishing on P(F ). Moreover, it follows from the formula in [15] that
the escape rate is Lipschitz continuous in on P(F ); see the remark after Formula
(4) below. If G is a non-Abelian free group, and F a general finite generating
set, then p �→ hp is real analytic ([17], Theorem 1.1) and p �→ �S

p as well [10].
This holds more generally for free products; see [10] and [11] for the precise con-
ditions. A general nonamenable hyperbolic group has many common geometric
features with non-Abelian free groups, and our proof follows the scheme of [17].
For Gromov hyperbolic groups, Ancona [1] proved that the Martin boundary of
the random walk directed by the probability p is the Gromov geometric boundary.
Let Kξ(x) be the Martin kernel associated to a point ξ of the geometric boundary.
Our main technical result, Proposition 4.1, uses the description of the Martin ker-
nel by Ancona (see also [12, 21]) to prove that lnKξ(x) is a Lipschitz continuous
function of p as a Hölder continuous function on the geometric boundary. Then,
like in [17], we can express hp in terms of the exit measure p∞ of the random
walk on the geometric boundary ∂G and the Martin kernel. Unfortunately, it is
not clear in that generality that the measure p∞, seen as a linear functional on
Hölder continuous functions on the geometric boundary, depends smoothly on the
probability in M(F). We use a symbolic representation of ∂G (see [6]) to express
p∞ as an combination of a finite number of symbolic measures. Each of these
symbolic measures depends Lipschitz on p, and the entropy hp is the maximum
of a finite family of Lipschitz functions. The escape rate is expressed by an anal-
ogous formula: it is the maximum of the integrals of the Busemann kernel with
respect of the stationary measures on the Busemann boundary. It turns out that the
Busemann boundary can be described in terms of the same symbolic representa-
tion, and the Lipschitz regularity of the escape rate follows. It is likely that both
entropy and rate of escape are more regular than what is obtained here, but this is
what we can prove for the moment. Observe that for G = Z, S = {±1}, and F a fi-
nite generating subset, the function p �→ �S

p = |∑F ipi | is Lipschitz continuous on
P(F ), but not C1. For another example in the same spirit, we recall that Mairesse
and Matheus [19] have shown that for the braid group B3 = 〈a, b|aba = bab〉 and
F = {a, a−1, b, b−1}, p �→ �F

p is Lipschitz, but not C1 on P(F ). The entropy is
constant 0 in the case of Z; the regularity of the entropy for the braid group is
unknown.

In this note, the letter C stands for a real number independent of the other vari-
ables, but which may vary from line to line. The lower case c0, c1 will be constants
which might depend only on p ∈ P(F ). In the same way, the letter Op stands for
a neighborhood of p in P(F ) which may vary from line to line.

2. Preliminaries.

2.1. Hyperbolic groups. We first recall basic facts about hyperbolic groups
[9]. Let G be a finitely generated group with a symmetric finite set of generators S.
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Let d(x, y) = |x−1y| be the word metric on G associated to S. For a subset F ⊂ G,
we denote

N(F,R) := {
x ∈ G :d(x,F ) ≤ R

}
and ∂F = {

x ∈ G :d(x,F ) = 1
}
.

For x, y, z ∈ G, the Gromov product (x|y)z is defined by the formula

(x|y)z = 1
2

(
d(x, z) + d(y, z) − d(x, y)

)
.

We write (x|y) for (x|y)e, where e is the unit element. Let δ > 0. The group G is
said to be δ-hyperbolic if, for all x, y, z,w ∈ G,

(x|y)w ≥ min
{
(x|z)w, (y|z)w} − δ.(1)

If G is δ-hyperbolic, then every geodesic triangle � = {α,β, γ } in G is 4δ-slim,
that is,

α ⊂ N(β ∪ γ,4δ), β ⊂ N(γ ∪ α,4δ), γ ⊂ N(α ∪ β,4δ).

A sequence {xn}n≥1 is said to converge to infinity if limn,m→∞(xn|xm) = ∞.
Two sequences {xn}n≥1 and {yn}n≥1 converging to infinity are said to be equiv-
alent if limn→∞(xn|yn) = ∞. The geometric boundary ∂G is defined as the set
of equivalence classes of sequences converging to infinity. The Gromov product
extends to G ∪ ∂G by setting

(ξ |η) = sup lim inf
n,m→∞(xn|ym),

where the sup runs over all sequences {xn}n≥1 converging to ξ and {ym}m≥1
converging to η. Recall that G ∪ ∂G is compact when equipped with the base
{N({x}, r)} ∪ {Vr(ξ)}, where

Vr(ξ) := {
η ∈ G ∪ ∂G : (η|ξ) > r

}
.

One can introduce a metric ρ on ∂G such that, for some a > 1 and C > 0,

a−(ξ |η)−C ≤ ρ(ξ, η) ≤ a−(ξ |η)+C.

Another boundary is the Busemann boundary ∂BG. Define, for x ∈ G, the func-
tion 
x(z) on G by

�x(z) = d(x, z) − d(x, e).

The assignment x �→ 
x is continuous, injective and takes values in a relatively
compact set of functions for the topology of uniform convergence on compact
subsets of G. The Busemann compactification G of G is the closure of G for that
topology. The Busemann compactification G is a compact G-space. The Buse-
mann boundary ∂BG := G \ G is made of Lipschitz continuous functions h on
G such that h(e) = 0, and such that the Lipschitz constant is at most 1. More-
over, they are horofunctions in the sense of [6]: they have the property that for all
λ ≤ h(x), the distance of a point x to the set h−1(λ) is given by h(x) − λ; see
Section 5.1 for more about horofunctions.
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2.2. Random walks. Let � be a compact space. � is called a G-space if the
group G acts by continuous transformations on �. This action extends naturally
to probability measures on �. We say that the measure ν on � is stationary if∑

x∈G(x∗ν)p(x) = ν. The entropy of a stationary measure ν is defined by

hp(�,ν) = − ∑
x∈G

(∫
�

ln
dx−1∗ ν

dν
(ξ) dν(ξ)

)
p(x).(2)

The entropy hp and the escape rate �p are given by variational formulas over
stationary measures (see [14], Section 3, for the entropy and [15], Theorem 18,
for the escape rate)

hp = max
{
hp(�,ν);�G-space and ν stationary on �

}
,(3)

�S
p = max

{∑
x∈G

(∫
G

h
(
x−1)

dν(h)

)
p(x);ν stationary on G

}
.(4)

Moreover, the stationary measures in (4) are supported by ∂BG. In particular, in
the case when G is virtually cyclic, ∂BG is finite and not reduced to a point,2 and
�S
p is given by the maximum of a finite number of linear functions of p.

Let � = GN be the space of sequences of elements of G, M the product prob-
ability pN. The random walk is described by the probability P on the space of
paths �, the image of M by the mapping

(ωn)n∈Z �→ (Xn)n≥0 where X0 = e and Xn = Xn−1ωn for n > 0.

In particular, the distribution of Xn is the convolution p(n). We have:

THEOREM 2.1 ([1], Corollary 6.3, [13], Theorem 7.5). There is a mapping
X∞ :� → ∂G such that for M-a.e. ω,

lim
n

Xn(ω) = X∞(ω).

The action of G over itself by left multiplications extends to ∂G and makes ∂G

a G-space. The image measure p∞ := (X∞)∗M is the only stationary probability
measure on ∂G, and (∂G,ν) achieves the maximum in (3) ([13], Theorem 7.6)

hp = hp

(
∂G,p∞) = − ∑

x∈F

(∫
∂G

ln
dx−1∗ p∞

dp∞ (ξ) dp∞(ξ)

)
p(x).(5)

The Green function G(x) associated with (G,p) is defined by

G(x) =
∞∑

n=0

p(n)(x)

2The restriction of each limit function to a Z coset is of the form ±x + a, where a can take a finite
number of values, and there is at least one Z coset where both signs appear.
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(see, e.g., Proposition 2.2 for the convergence of the series). For y ∈ G, the Martin
kernel Ky is defined by

Ky(x) = G(x−1y)

G(y)
.

Ancona ([1], Théorème 6.2) showed that yn → ξ ∈ ∂G if, and only if, the Martin
kernels Kyn converge toward a function Kξ called the Martin kernel at ξ . We have

dx∗p∞

dp∞ (ξ) = Kξ(x).(6)

2.3. Differentiability. We are going to use formula (3) and first show that the
mapping p �→ − lnKξ(x) is Lipschitz continuous from a neighborhood Op of p in
P(F ) into a space of Hölder continuous functions on ∂G. The following properties
are obtained exactly in the same way as in [17].

For x, y ∈ G, let u(x, y) be the probability of eventually reaching y when start-
ing from x. By left invariance, u(x, y) = u(e, x−1y). Moreover, by the strong
Markov property, G(x) = u(e, x)G(e) so that we have

Ky(x) = u(x, y)

u(e, y)
.(7)

By definition, we have 0 < u(x, y) ≤ 1. The number u(x, y) is given by the sum of
the probabilities of the paths going from x to y which do not visit y before arriving
at y. The next two results are classical:

PROPOSITION 2.2. Let p ∈ P(F ). There are numbers C and ζ,0 < ζ < 1
and a neighborhood Op of p in P(F ) such that for all q ∈ Op , all x ∈ G and all
n ≥ 0,

q(n)(x) ≤ Cζn.

PROOF. Let q ∈ P(F ). Consider the convolution operator Pq in �2(G,R),
defined by

Pqf (x) = ∑
y∈F

f
(
xy−1)

q(y).

Derriennic and Guivarc’h [7] showed that for p ∈ P(F ), Pp has spectral radius
smaller than one. In particular, there exists n0 such that the operator norm of P

n0
p in

�2(G) is smaller than one. Since F and Fn0 are finite, there is a neighborhood Op

of p in P(F ) such that for all q ∈ Op , ‖P n0
q ‖2 < λ for some λ < 1 and ‖P k

q ‖2 ≤ C

for 1 ≤ k ≤ n0. It follows that for all q ∈ Op , all n ≥ 0,∥∥P n
q

∥∥
2 ≤ Cλ[n/n0].

In particular, for all x ∈ G, q(n)(x) = [P n
q δe](x) ≤ |P n

q δe|2 ≤ Cλ[n/n0]|δe|2 ≤
Cλ[n/n0]. �
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COROLLARY 2.3 ([7]). Let p ∈ P(F ). There are numbers C and δ > 0 such
that for all q ∈ Op , all x, y ∈ G,

G(x,y) ≤ Ce−δ|x−1y|.

PROOF. We have q(n)(x−1y) = 0 for n ≤ 1
r
|x−1y|; take δ = 1

r
ln 1

ζ
. �

Fix p ∈ P(F ), and let � be a subset of G. We can define G�(x, y), u�(x, y)

by considering only the paths of the random walk which remain inside �. Clearly,
G� ≤ G,u� ≤ u. For x ∈ G, V a subset of G and v ∈ V , let αV

x (v) be the prob-
ability that the first visit in V of the random walk starting from x occurs at v

(αV
x (v) = uG\V ∪{v}(x, v)). We have 0 ≤ ∑

v∈V αV
x (v) ≤ 1 and the following:

PROPOSITION 2.4. Fix x and V . For all s > 1, the mapping p �→ αV
x (v) is a

C∞ function from P(F ) into �s(V ). Moreover, ‖ ∂αV
x

∂pi
‖s is bounded independently

of x and V .

PROOF. By Proposition 2.2, there is a neighborhood Op of p in P(F ) and
numbers C, ζ,0 < ζ < 1, such that for q ∈ Op and for all y ∈ G,

q(n)(y) ≤ Cζn.

The number αV
x (v) can be written as the sum of the probabilities αn,V

x (v) of enter-
ing V at v in exactly n steps. We have

αn,V
x (v) ≤ q(n)(x−1v

) ≤ Cζn.

Moreover, the function p �→ αn,V
x (v) is a homogeneous polynomial of degree n

on P(F ), since

αn,V
x (v) = ∑

E
qi1qi2 · · ·qin,

where E is the set of paths {x, xi1, xi1i2, . . . , xi1i2 · · · in = v} of length n made
of steps in F which start from x and enter V in v. It follows that for all α =
{n1, n2, . . . , n|B|, ni ∈ N ∪ {0}}, all v ∈ V ,

∣∣∣∣ ∂α

∂pα
αn,V

x (v)

∣∣∣∣ ≤ n|α|

(infi∈F pi)|α| α
n,V
x (v) ≤ Cn|α|

(infi∈F pi)|α| ζ
n,

where |α| = ∑
i∈F ni . Therefore,

∑
v∈V

∣∣∣∣ ∂α

∂pα
αn,V

x (v)

∣∣∣∣
s

≤ Cns|α|

(infi∈F pi)s|α| ζ
(s−1)n

∑
v∈V

αn,V
x (v) ≤ Cns|α|

(infi∈F pi)s|α| ζ
(s−1)n.

Thus, q �→ ∂α

∂pα αV
x (v) is given locally by a uniformly converging series in �s(V )

of derivatives. It follows that q �→ αV
x (v) is a C∞ function from P(F ) into �s(V ).
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From the above computation, it follows that ‖ ∂α

∂pα αV
x (v)‖s ≤ ∑

n
Cns|α|

(infi∈F pi)
s|α| ×

ζ (s−1)n, independently of x,V . �

PROPOSITION 2.5. There exists T large enough that for t > T , for any y

and V , the mapping p �→ α
{y}
v (y) is a C∞ function from P(F ) into �t (V ). More-

over, v �→ ∂α
{y}
v (y)
∂pi

is bounded in �t (V ) independently of y and V .

PROOF. It suffices to show that there is T such that the function v �→ α
{y}
v (y) ∈

�T (V ) and to apply the same arguments as in the proof of Proposition 2.4. Con-
sider the probability p̌ with support F−1 defined by p̌(x) = p(x−1), and define
all quantities (p̌)(n), Ǧ(x), ǔ(x, y). Observe that, since it is the sum of the same
probabilities over the same set of paths, G(v, y) = Ǧ(y, v). Therefore, we have,
using Corollary 2.3 for the p̌ random walk,

α{y}
v (y) ≤ G(v, y) = Ǧ(y, v) ≤ e−δ̌|y−1v|.

The group G has exponential growth: there is a v such that there are less than
CevR elements of G at distance less than R from y. It follows that for T > v/δ̌,
the function v �→ α

{y}
v (y) ∈ �T (V ). �

2.4. Projective contractions on cones. In this subsection, we recall the
Birkhoff theorem about linear maps preserving convex cones. Let C be a con-
vex cone in a Banach space, and define on C the projective distance between half
lines as

ϑ(f,g) := ln
[
τ(f, g)τ (g, f )

]
,

where τ(f, g) := inf{s, s > 0, sf − g ∈ C}. Let D be the space of directions in C .
Then, ϑ defines a distance on D. Let A be an operator from C into C , and let
T : D → D be the projective action of A. Then, by [3],

ϑ(Tf,T g) ≤ βϑ(f,g) where β = tanh
(1

4 DiamT (D)
)
.(8)

In some cases, ϑ-diameters are easy to estimate: for example, in Ct = {f ∈
�t ;f ≥ 0}, the set U (g, c) := {f : c−1g ≤ f ≤ cg}, where g ∈ C and c ≥ 1, has
ϑ-diameter 4 ln c. Moreover, the following observation is useful:

LEMMA 2.6 ([18], Lemma 1.3). Let f,g ∈ Ct ,‖f ‖t = ‖g‖t . Then,

‖f − g‖t ≤ (
eϑ(f,g) − 1

)‖f ‖t .
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3. Obstacles. In this section, we show that the function � on ∂G defined
by �(ξ) := − lnKξ(x) is Hölder continuous for any fixed x ∈ G. This is not a
new result [12]. Nevertheless, we present the construction and the proof in order
to introduce the notation used in the next section to show that � is Lipschitz in
p as a Hölder continuous function on ∂G. Like in [12], the proof is based on
Ancona’s Harnack inequality at infinity (see [1] and [12], Proposition 2.1, for the
form used here): there exist a number R and a constant c = c(p) such that if [x, y]
is a geodesic segment and z ∈ [x, y], then for any � ⊂ G, N([x, y],R) ⊂ �, we
have

c−1u�(x, z)u�(z, y) ≤ u�(x, y) ≤ cu�(x, z)u�(z, y),(9)

where u�(v,w) is the probability of ever arriving at w starting from v before
reaching G \ �. Moreover, from the proof of (9) in [12] or [21], it follows that
there exists a neighborhood O of p in P(F ) and a constant C such that c(p) ≤ C

for p ∈ O.

3.1. Obstacles. Without loss of generality, we may assume that F contains
the set of generators, and δ is an integer. Set r = max{|x|;x ∈ F, δ}.

Fix M large. In particular, M ≥ R + 12r , where R is given by (9). For a
geodesic γ , we call an obstacle a family U−

0 ⊂ U0 ⊂ U−
1 ⊂ U1 of subsets of G

such that

U−
0 = {

x ∈ G :d
(
x, γ (−2M)

)
< d

(
x, γ (0)

)}
,

U0 = {
x ∈ G :d

(
x, γ (−2M)

)
< d

(
x, γ (4r)

)}
,

U−
1 = {

x ∈ G :d
(
x, γ (0)

)
< d

(
x, γ (2M)

)}
,

U1 = {
x ∈ G :d

(
x, γ (0)

)
< d

(
x, γ (2M + 4r)

)}
.

The subsets U±
i are connected and satisfy U−

0 ⊂ U0 ⊂ U−
1 ⊂ U1. More precisely,

we have the two following elementary facts:

LEMMA 3.1. If x ∈ U−
0 and [x, γ (−2M)] is a geodesic segment, then

[x, γ (−2M)] ⊂ U−
0 .

PROOF. Assume not. Then there is a z ∈ [x, γ (−2M)] such that d(z,

γ (−2M)) ≥ d(z, γ (0)). Adding d(z, x) to both sides of this inequality, we ob-
tain

d
(
x, γ (−2M)

) = d(x, z) + d
(
z, γ (−2M)

) ≥ d(x, z) + d
(
z, γ (0)

) ≥ d
(
x, γ (0)

)
,

a contradiction to x ∈ U−
0 . �

The statements and the proofs are the same for all U±
i .
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LEMMA 3.2. If x ∈ U−
0 , then B(x, r) ⊂ U0; if x ∈ U0, then B(x,M − 3r) ⊂

U−
1 .

PROOF. Let x ∈ U−
0 and x′ ∈ B(x, r). Writing (1) with x = x′, y = γ (0), z =

γ (4r) and w = γ (−2M), we get

d
(
x′, γ (−2M)

) − d
(
x′, γ (0)

) + 2M

≥ min
{
d
(
x′, γ (−2M)

) − d
(
x′, γ (4r)

) + 2M + 4r,4M
} − 2δ.

Since d(x′, γ (−2M)) − d(x′, γ (4r)) < d(x, γ (−2M)) + r − d(x, γ (0)) + 5r <

6r ≤ 2M − 4r , we get

d
(
x′, γ (4r)

) ≥ d
(
x′, γ (0)

) + 4r − 2δ > d
(
x, γ (0)

) + r

> d
(
x, γ (−2M)

) + r > d
(
x′, γ (−2M)

)
.

Analogously, if x ∈ U0 and x′ ∈ B(x,M − 3r), we get, writing now (1) with z =
γ (2M),

d
(
x′, γ (−2M)

) − d
(
x′, γ (0)

) + 2M

≥ min
{
d
(
x′, γ (−2M)

) − d
(
x′, γ (2M)

) + 4M,4M
} − 2δ.

Since the right-hand side is smaller than 4M − 2r , it cannot exceed 4M − 2δ, and
we get

d
(
x′, γ (0)

) ≤ d
(
x′, γ (2M)

) − 2M + 2δ < d
(
x′, γ (2M)

)
. �

Lemma 3.2 implies that any trajectory of the random walk going from U−
0 to

G\U1 has to cross successively U0 \U−
0 ,U−

1 \U0 and U1 \U−
1 . For V1,V2 subsets

of G, denote A
V2
V1

the (infinite) matrix such that the row vectors indexed by v ∈ V1

are the αV2
v (w),w ∈ V2. In particular, if V2 = {y}, set ω

y
V1

for the (column) vector

ω
y
V1

= A
{y}
V1

= (
α{y}

v (y)
)
v∈V1

= (
u(v, y)

)
v∈V1

.

Fix t > T . By Propositions 2.4 and 2.5, ω
y
V1

is a vector in �t (V1) and α
V0
x ∈ �s(V0),

with 1/s +1/t = 1. With this notation, the strong Markov property yields, if U−
0 ⊂

U0 ⊂ U−
1 ⊂ U1 is an obstacle and x ∈ U−

0 , y /∈ U1,

u(x, y) = ∑
v0,v1

αV0
x (v0)A

V1
V0

(v0, v1)u(v1, y) = 〈
αV0

x ,A
V1
V0

ω
y
V1

〉

with the natural summation rules for matrices and for the (�s, �t ) coupling. All
series are bounded series with nonnegative terms, and we set Vi = Ui \ U−

i .
Observe that an obstacle is completely determined by the directing geodesic

segment [γ (−2M), . . . , γ (2M + 4r)], so that there is a finite number of possible
obstacles and therefore a finite number of spaces �t (V ), of (infinite) matrices A

V1
V0

,

of vectors ωz
V1

and α
V0
x if the distances d(z, γ (2M + 4r + 1)) and d(x, γ (−2M))

are bounded.
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3.2. Properties of the matrix A
V1
V0

. Recall that the general entry of the matrix

A = A
V1
V0

is A(v0, v1), the probability that starting from v0 ∈ V0, the first visit in
V1 occurs at v1. In particular, assume A(v0, v1) = 0. Then, all paths from v0 to v1
with steps in F have to enter V1 elsewhere before reaching v1. Since the support F

of p contains the generators of the group, A(v, v1) = 0 for all v’s in the connected
component of v0 in U−

1 . By Lemma 3.1, all paths from γ (0) to v1 with steps in
F have to enter V1 before reaching v1. Therefore this property depends neither on
v0 /∈ U−

1 nor on p ∈ P(F ). We say that v1 is active if A(v0, v1) �= 0. In the sequel
we will call V1 the set of active elements of U1 \ U−

1 . We have:

PROPOSITION 3.3. Let γ be a geodesic, U−
0 ⊂ U0 ⊂ U−

1 ⊂ U1 an obstacle,
V0 = U0 \ U−

0 , V1 the active part of U1 \ U−
1 . There exists a neighborhood Op of

p in P(F ) and a constant c1 such that, for all p ∈ Op , all v0 ∈ V0, v1 ∈ V1,

c−1
1 uG\U−

1

(
v0, γ (0)

)
α

V1
γ (0)(v1) ≤ A(v0, v1) ≤ c1uG\U−

1

(
v0, γ (0)

)
α

V1
γ (0)(v1).(10)

PROOF. Introduce the set U−−
1 , U−−

1 = {x ∈ G :d(x, γ (0)) < d(x, γ (2M −
4r))}. By a variant of Lemma 3.2, we may write, for v0 ∈ V0, v1 ∈ V1,

A(v0, v1) = ∑
w∈U−

1 \U−−
1

uG\U−
1
(v0,w)αV1

w (v1).

Using that α
V1
γ (0)(v1) = ∑

w∈U−
1 \U−−

1
uG\U−

1
(γ (0),w)αV1

w (v1), we see that it suf-

fices to prove that, for all p ∈ Op , all v0 ∈ V0,w ∈ U−−
1 \ U−

1 ,

c−1
1 uG\U−

1

(
v0, γ (0)

)
uG\U−

1

(
γ (0),w

)

≤ uG\U−
1
(v0,w) ≤ c1uG\U−

1

(
v0, γ (0)

)
uG\U−

1

(
γ (0),w

)
.

This will follow from a variant of (9) once we will have located the point γ (0)

with respect to the geodesic [v0,w].
Observe that if v0 ∈ U0, then d(v0, γ (0)) ≥ M − 3r . Indeed, writing that

(
γ (−2M),γ (4r)

)
v0

≥ min
{(

γ (−2M),γ (−M + 2r)
)
v0

,
(
γ (4r), γ (−M + 2r)

)
v0

} − δ

= (
γ (−2M),γ (−M + 2r)

)
v0

− δ,

we get that d(v0, γ (4r)) ≥ M + 2r − δ ≥ M − 3r and the claim follows. Since,
by Lemma 3.1, the whole geodesic [v0, γ (−M + 2r)] lies in U0, we have
d(γ (0), [v0, γ (−M + 2r)]) ≥ M − 3r . But we know that γ (0) ∈ N([v0, γ (M)] ∪
[v0, γ (−M + 2r)],4δ). It follows that there is a point z1 ∈ [v0, γ (M)] with
d(γ (0), z1) ≤ 4δ. In the same way, since w ∈ G \ U−−

1 , d(γ (0), [w,γ (M −
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2r)]) ≥ M − 3r and therefore d(z1, [w,γ (M − 2r)]) ≥ M − 3r − 4δ. It follows
that there is a point z ∈ [v0,w] such that d(z, γ (0)) ≤ d(z, z1)+ d(z1, γ (0)) ≤ 8δ.

Let y0 be the point in [v0,w] at distance R from w. Then G \ U−
1 contains

N([v0, y0],R), and the point z belongs to [v0, y0].3 So we may apply (9) to the
points v0, z, y0 and the domain � = G \ U−

1 to obtain, for all p ∈ Op , all v0 ∈
V0, v1 ∈ V1,

c−1
0 uG\U−

1
(v0, z)uG\U−

1
(z, y0) ≤ uG\U−

1
(v0, y0) ≤ c0uG\U−

1
(v0, z)uG\U−

1
(z, y0).

By changing the constant, we can replace y0 by w [since d(w,y0) = R] and z by
γ (0) [since d(z, γ (0)) ≤ 8δ]. We obtain the desired inequality. �

For V a subset of G, t > 0, denote Ct
V the convex cone of nonnegative sequences

in �t (V ) and define on Ct
V the projective distance between half lines as

ϑ(f,g) := ln
[
τ(f, g)τ (g, f )

]
,

where τ(f, g) := inf{s, s > 0, sf − g ∈ Ct
V }. Represent the space of directions as

the sector of the unit sphere Dt
V = Ct

V ∩ St
V ; then, ϑ defines a distance on Dt

V for
which Dt

V is a complete space (Lemma 2.6). We fix t > T such that the sequences

α
{y}
v (y) ∈ �t (V ) and we consider the matrix A

V1
V0

as an operator from �t (V1) into
the space of sequences indexed on V0. We have:

PROPOSITION 3.4. Choose t > T and s such that 1/s + 1/t = 1. For any
obstacle U−

0 ⊂ U0 ⊂ U−
1 ⊂ U1, all p ∈ Op , the operator A

V1
V0

sends Ct
V1

into Ct
V0

,

the adjoint operator (A
V1
V0

)∗ sends Cs
V0

into Cs
V1

and

DiamCt
V0

(
A

V1
V0

(
Ct

V1

)) ≤ 4 ln c1, DiamCs
V1

((
A

V1
V0

)∗(
Cs

V0

)) ≤ 4 ln c1,

where c1 and Op are the ones in (10).

PROOF. By definition,
∑

v1∈V1
α

V1
γ (0)(v1) ≤ 1 so that α

V1
γ (0)(v1) ∈ �s(V1).

By (10), for any v0 ∈ V0, any f ∈ �t (V1),

A
V1
V0

f (v0) ≤ c1uG\U1

(
v0, γ (0)

)∥∥αV1
γ (0)(v1)

∥∥
s‖f ‖t .

By the same argument as in the proof of Proposition 2.5, we see that v0 �→
uG\U−

1
(v0, γ (0)) ∈ �t (V0). It follows that for any f ∈ �t (V1), A

V1
V0

f belongs to

�t (V0).
By (10), we know that for any f ∈ Ct

V1
,

c−1
1 uG\U1

(
v0, γ (0)

) ≤ A
V1
V0

f (v0)

〈αV1
γ (0)(·), f (·)〉 ≤ c1uG\U1

(
v0, γ (0)

)
.(11)

3Since w /∈ U−−
1 , we have d(w, z) ≥ d(w,γ (0)) − 8δ ≥ M − 3r − 8δ ≥ M − 11r > R.
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It follows that DiamC
V t

0
A

V1
V0

(Ct
V1

) ≤ 4 ln c1. The same argument works for the ad-

joint operator (A
V1
V0

)∗, since we know that v0 �→ uG\U1(v0, γ (0)) ∈ �t (V0) and

v1 �→ α
V1
γ (0)(v1) ∈ �s(V1). �

PROPOSITION 3.5. Choose t > T +1, s such that 1/s+1/t = 1. The mapping
p �→ A

V1
V0

[resp., p �→ (A
V1
V0

)∗] is C∞ from P(F ) into L(�t (V1), �
t (V0)) [resp.,

L(�s(V0), �
s(V1))].

PROOF. We follow the scheme of the proofs of Propositions 2.4 and 2.5. By
Proposition 2.2, there is a neighborhood Op of p in P(F ) and numbers C, ζ,0 <

ζ < 1, such that for q ∈ Op and for all y ∈ G,

q(n)(y) ≤ Cζn.

We write αV1
v0

(v1) as the sum of the probabilities αn,V1
v0

(v1) of entering V1 at v1 in
exactly n steps. We have, for all v0 ∈ V0, v1 ∈ V1,

αn,V1
v0

(v1) ≤ q(n)(v−1
0 v1

) ≤ Cζn.

As before, the function p �→ αn,V1
v0

(v1) is a homogeneous polynomial of degree n

on P(F ) and for all α = {n1, n2, . . . , n|B|, ni ∈ N ∪ {0}}, all v0 ∈ V0, v1 ∈ V1,
∣∣∣∣ ∂α

∂pα
αn,V1

v0
(v1)

∣∣∣∣ ≤ Cn|α|

(infi∈F pi)|α| α
n,V1
v0

(v1) ≤ Cn|α|

(infi∈F pi)|α| ζ
n.

Let f ∈ �t (V1). Then,

∑
v1

∣∣∣∣ ∂α

∂pα
αn,V1

v0
(v1)

∣∣∣∣∣∣f (v1)
∣∣ ≤

∥∥∥∥ Cn|α|

(infi∈F pi)|α| α
n,V1
v0

(v1)

∥∥∥∥
s

‖f ‖t

≤ Cn|α|ζ (s−1)n/s(uG\U−
1

(
v0, γ (0)

))1/s‖f ‖t .

To obtain the last inequality, we use that

∥∥αn,V1
v0

(v1)
∥∥
s ≤ C

(
ζ (s−1)n

∑
v1

αn,V1
v0

(v1)

)1/s

,

(10) and
∑

v1
α

V1
γ (0)(v1) ≤ 1. Therefore,

∥∥∥∥
∑
v1

∣∣∣∣ ∂α

∂pα
αn,V1

v0
(v1)

∣∣∣∣∣∣f (v1)
∣∣∥∥∥∥

�t (V0)

≤ Cn|α|ζ (s−1)n/s

(∑
v0

(
uG\U1

(
v0, γ (0)

))t/s)1/t

‖f ‖t .
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Since t > T + 1, t/s > T , the series
∑

v0
(uG\U1(v0, γ (0)))t/s converges, and the

operator

f �→ ∑
v1

∂α

∂pα
αn,V1

v0
(v1)f (v1)

has norm smaller than Cn|α|ζ (s−1)n/s in L(�t (V1), �
t (V0)). The series of operators

which defines ∂α

∂pα A
V1
V0

is converging.
The proof is the same for the adjoint operator. We estimate, for g ∈ �s(V0),

∑
v0

∣∣∣∣ ∂α

∂pα
αn,V1

v0
(v1)

∣∣∣∣∣∣g(v0)
∣∣ ≤

∥∥∥∥ Cn|α|

(infi∈F pi)|α| α
n,V1
v0

(v1)

∥∥∥∥
t

‖g‖s

≤ Cn|α|ζ n/t (αV1
γ (0)(v1)

)(t−1)/t‖g‖s .

As before, we find that the operator

g �→ ∑
v0

∂α

∂pα
αn,V1

v0
(v1)g(v0)

has norm smaller than

Cn|α|ζ n/t
∑
v1

(
α

V1
γ (0)(v1)

)s(t−1)/t ≤ Cn|α|ζ n/t

in L(�s(V0), �
s(V1)) (recall that s t−1

t
= 1). The series of operators which defines

∂α

∂pα (A
V1
V0

)∗ is converging as well. �

3.3. Hölder regularity of the Martin kernel. Fix x ∈ G and a geodesic γ with
γ (0) = e. Consider the family U−

0 ⊂ U0 ⊂ · · · ⊂ U−
n ⊂ Un such that for all j =

1, . . . , n−1, U−
j ⊂ Uj ⊂ U−

j+1 ⊂ Uj+1 is an obstacle for γ ◦σ 2jM+K . The integer

K is chosen so that x, e ∈ U−
0 , for example, K = 4M + |x|. With that choice,

γ (n) /∈ Uk as soon as n > K + 2kM + 4r . Iterating the strong Markov property,
we get, for z /∈ Uk ,

u(x, z)

u(e, z)
= 〈αV0

x ,A
V1
V0

· · ·AVk

Vk−1
ωz

Vk
〉

〈αV0
e ,A

V1
V0

· · ·AVk

Vk−1
ωz

Vk
〉 .

Choose t > T + 1 and s such that 1/s + 1/t = 1. Set fk(z) := ωz
Vk

‖ωz
Vk

‖t
, α :=

α
V0
e , β := α

V0
x . For all z /∈ Uk , fk(z) ∈ Dt

Vk
and α,β ∈ Cs

V0
− {0}. By Proposi-

tion 2.4, if z, z′ /∈ Uk , ϑCt (A
Vk

Vk−1
fk(z),A

Vk

Vk−1
fk(z

′)) ≤ 4 ln c1. Set τ = c2
1−1

c2
1+1

. By
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repeated application of (8), we have, as soon as z, z′ /∈ Uk ,

ϑCt

(
A

V1
V0

· · ·AVk

Vk−1
fk(z),A

V1
V0

· · ·AVk

Vk−1
fk

(
z′))

≤ τ k−1ϑCt

(
A

Vk

Vk−1
fk(z),A

Vk

Vk−1
fk

(
z′))(12)

≤ 4 ln c1τ
k−1.

We are interested in the function � : ∂G → R,

�(ξ) = − lnKx(ξ) = − ln lim
xn→ξ

u(x, xn)

u(e, xn)
.

If we choose the reference geodesic γ converging toward ξ , then setting �n(ξ) =
u(x,γ (n))
u(e,γ (n))

, we have limn �n(ξ) = �(ξ). More precisely, as soon as n,m > K +
2kM + 4r , we may write

�n(ξ) − �m(ξ) = ln
〈α,Tj0 · · ·Tjk−1fk(γ (n))〉
〈β,Tj0 · · ·Tjk−1fk(γ (n))〉

〈β,Tj0 · · ·Tjk−1fk(γ (m))〉
〈α,Tj0 · · ·Tjk−1fk(γ (m))〉 ,

where Tjs is the projective action of A
Vs+1
Vs

. By (12) and Lemma 2.6, we have, as
soon as n,m > K + 2kM + 4r , |�n(ξ) − �m(ξ)| ≤ Cτk . For the same reason, for
any fixed family of fk ∈ Dt

Vk
, the sequence Tj0 · · ·Tjk−1fk converge in Dt

V0
toward

some f∞, independent of the choice of fk and a priori depending on the geodesic
γ converging toward ξ . In any case, we have

‖Tj0 · · ·Tjk−1fk − f∞‖t ≤ Cτk and �(ξ) = ln
〈α,f∞〉
〈α1, f∞〉 .(13)

Consider now two points ξ, η ∈ ∂G such that ρ(ξ, η) < a−n−C . Then there is a
geodesic γ converging to ξ and a sequence {y�}�≥1 going to η such that for �,m

large enough, (γ (m), y�) > n. For fixed x and K = 4M + |x|, consider the same
family U−

0 ⊂ U0 ⊂ · · · ⊂ U−
k ⊂ Uk such that for all j = 1, . . . , k − 1, U−

j ⊂ Uj ⊂
U−

j+1 ⊂ Uj+1 is an obstacle for γ ◦ σ 2jM+K . We have:

LEMMA 3.6. Assume 2kM < n − K − 4r − 22δ and � large enough. Then,
y� /∈ Uk .

PROOF. Choose � large enough that limm→∞(γ (m), y�) > n, and we choose
a geodesic [y�, ξ ] such that (y�, ξ) > n. By definition of Uj , we have to show
that d(y�, γ (2(j − 1)M + K)) ≥ d(y�, γ (2jM + K + 4r)) for 2jM + K + r +
22δ < n. By continuity, there is a point s0 where the function s �→ d(y�, γ (s))

attains its minimum. We are going to show that s0 ≥ n − 12δ. By 8δ convexity of
s �→ d(y�, γ (s)) ([9], Proposition 25, page 45), this proves the claim.4

4Indeed, since 2jM +K + r +22δ < n, γ (2jM +K +4r +10δ) lies between γ (2(j −1)M +K)

and s0 and thus, by 8δ convexity of the distance, d(y�, γ (2jM + K + 4r + 10δ)) ≤ d(y�, γ (2(j −
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By continuity, there is a point s1 such that d(γ (s1), [γ (0), y�]) = d(γ (s1), [y�,

ξ ]) ≤ 4δ. On the one hand,

s1 ≥ d
(
γ (0), [y�, ξ ]) − 4δ ≥ n − 4δ

[recall that (ξ, y�) > n]. On the other hand, we know that

d
(
y�, γ (s1)

) ≤ (
γ (0), ξ

)
y�

+ 8δ ≤ d
(
y�, γ (s0)

) + 8δ

(see the proof of Lemma 22.4 in [21]). It follows that s0 ≥ s1 − 8δ ≥ n − 12δ. �

We have that �(ξ) − �(η) = limxm→ξ,y�→η ln( u(e,xm)
u(x,xm)

u(x,y�)
u(e,y�)

). With the above
notation, assume that k is such that 2kM < n−K − 4r − 22δ. If � and m are large
enough, y�, γ (m) /∈ Uk and

�(ξ) − �(η) = lim
xm→ξ,y�→η

ln
〈β,Tj0 · · ·Tjk−1fk(γ (m))〉
〈α,Tj0 · · ·Tjk−1fk(γ (m))〉

〈α,Tj0 · · ·Tjk−1fk(y�)〉
〈β,Tj0 · · ·Tjk−1fk(y�)〉 .

Since as above, we have ϑ(Tj0 · · ·Tjk−1fk(γ (m)), Tj0 · · ·Tjk−1fk(y�)) < Cτk , and
α,β take a finite number of values, we have

∣∣�(ξ) − �(η)
∣∣ ≤ Cτk ≤ Cρn

0

for a new constant C and ρ0 = τ 1/2M . This shows that for all x ∈ G, the func-
tion ξ �→ − lnKx(ξ) is Hölder continuous on ∂G. Moreover, the Hölder exponent
|lnρ0|/ lna and the Hölder constant C are uniform on a neighborhood of p in
P(F ).

Let us choose κ < 1, κ < − lnρ0
2 lna

, and consider the space �κ of functions φ

on ∂G such that there is a constant Cκ with the property that |φ(ξ) − φ(η)| ≤
Cκ(d(ξ, η))κ . For φ ∈ �κ , denote ‖φ‖κ the best constant Cκ in this definition. The
space �κ is a Banach space for the norm ‖φ‖ := ‖φ‖κ +max∂G |φ|. In this subsec-
tion, we showed that for p ∈ P(F ), x ∈ G, there exist κ > 0 and a neighborhood

Op of p in P(F ) such that for p′ ∈ Op , the function �p′(ξ) = − lnKξ(x) belongs
to �κ and that the mapping p′ �→ �p′ is bounded from Op into �κ .

4. The Martin kernel depends regularly on p.

PROPOSITION 4.1. Fix x ∈ G. For all p ∈ P(F ), there exist κ > 0 and a
neighborhood Op of p in P(F ) such that the mapping p �→ �(ξ) = − lnKξ(x) is
Lipschitz continuous from Op into �κ .

1)M + K)) + 8δ [recall that s0 achieves the minimum of d(y�, γ (s))]. The inequality follows by
writing the δ-hyperbolicity relation (1) with x = y�, y = γ (2jM +K +4r), z = γ (2jM +K +4r +
10δ) and w = γ (2(j − 1)M + K).
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PROOF. Let p ∈ P(F ) and choose κ = κ(p) given by Section 3.3. We have to
find a neighborhood O of p in P(F ) and a constant C such that, for p′ ∈ O,

‖�p − �p′‖ = max
ξ

∣∣�p(ξ) − �p′(ξ)
∣∣ + ‖�p − �p′‖κ ≤ Cϑ

(
p,p′),

where, for convenience, we use on P(F ) the already defined projective distance
on R

F . We treat the two terms separately.

CLAIM 1. maxξ |�p(ξ) − �p′(ξ)| ≤ Cϑ(p,p′).

Choose the geodesic γ converging to ξ . Applying Section 3.3 and (13), there
are vectors f∞(p), f∞(p′) ∈ �t (V0) such that

∣∣�p(ξ) − �p′(ξ)
∣∣ =

∣∣∣∣ln 〈α(p), f∞(p)〉
〈α(p′), f∞(p′)〉

〈β(p′), f∞(p′)〉
〈β(p), f∞(p)〉

∣∣∣∣.
By Proposition 2.4, we make an error of order Cϑ(p,p′) when replacing β(p′) by
β(p) and α(p′) by α(p). The remaining term is

lim
k

∣∣∣∣ln 〈α,Tj0 · · ·Tjk−1fk〉
〈α,T ′

j0
· · ·T ′

jk−1
fk〉

〈β,T ′
j0

· · ·T ′
jk−1

fk〉
〈β,Tj0 · · ·Tjk−1fk〉

∣∣∣∣,(14)

where Tjs is the projective action of A
Vs+1
Vs

(p), T ′
js

the projective action of

A
Vs+1
Vs

(p′) and we have chosen once for all fk ∈ �t (Vk), independent of p ∈ O.
We have

ϑ
(
Tj0 · · ·Tjk−1fk, T

′
j0

· · ·T ′
jk−1

fk

)

≤
k−1∑
i=1

ϑ
(
Tj0 · · ·Tji−1T

′
ji

· · ·T ′
jk−1

fk, Tj0 · · ·Tji
T ′

ji+1
· · ·T ′

jk−1
fk

)

≤
k−1∑
i=1

τ i−1ϑ
(
T ′

ji
· · ·T ′

jk−1
fk, Tji

T ′
ji+1

· · ·T ′
jk−1

fk

)
,

where we used (12) to write the last line. If the neighborhood O is relatively
compact in P(F ), all points T ′

ji+1
· · ·T ′

jk−1
fk are in a common bounded subset

of Dt
Vji+1

. By Proposition 3.5, there is a constant C and a neighborhood O such

that for p′ ∈ O, i = 1, . . . , k − 1,

ϑ
(
T ′

ji
T ′

ji+1
· · ·T ′

jk−1
fk, Tji

T ′
ji+1

· · ·T ′
jk−1

fk

) ≤ Cϑ
(
p,p′).

Finally, we get that for all k, ϑ(Tj0 · · ·Tjk−1fk, T
′
j0

· · ·T ′
jk−1

fk) ≤ C
1−τ

ϑ(p,p′). Re-
porting in (14) proves Claim 1.

CLAIM 2. ‖�p − �p′‖κ ≤ Cϑ(p,p′).
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Let ξ, η ∈ ∂G be such that ρ(ξ, η) < a−n−C . We want to show that there is a
constant C and a neighborhood O, independent on n such that, for p′ ∈ O,

∣∣�p(ξ) − �p′(ξ) − �p(η) + �p′(η)
∣∣ ≤ Ca−κnϑ

(
p,p′).

Choose as before a geodesic γ converging to ξ and a sequence {y�}�≥1 going to
η such that for �,m large enough, (γ (m), y�) > n. For fixed x and K = 4M +
|x|, consider the same family U−

0 ⊂ U0 ⊂ · · · ⊂ U−
k ⊂ Uk such that for all j =

1, . . . , k − 1, U−
j ⊂ Uj ⊂ U−

j+1 ⊂ Uj+1 is an obstacle for γ ◦ σ 2jM+K . By Lem-
ma 3.6, for � large enough, y� /∈ Uk , and we may write �p(ξ)−�p′(ξ)−�p(η)+
�p′(η) as

lim
xm→ξ,y�→η

ln
〈β,Tj0 · · ·Tjk−1gk〉
〈α,Tj0 · · ·Tjk−1gk〉

〈α′, T ′
j0

· · ·T ′
jk−1

g′
k〉

〈β ′, T ′
j0

· · ·T ′
jk−1

g′
k〉

(15)

× 〈α,Tj0 · · ·Tjk−1hk〉
〈β,Tj0 · · ·Tjk−1hk〉

〈β ′, T ′
j0

· · ·T ′
jk−1

h′
k〉

〈α′, T ′
j0

· · ·T ′
jk−1

h′
k〉

,

where α = α(p),α′ = α(p′), β = β(p),β ′ = β(p′), Tjs is the projective action of

A
Vs+1
Vs

(p), T ′
js

the projective action of A
Vs+1
Vs

(p′) and gk, g
′
k are fk(γ (m)) calcu-

lated with p and p′, respectively, hk,h
′
k are fk(y�) calculated with p and p′.

Recall that gk = fk(γ (m)) is the direction of ω
γ (m)
v in �t (Vk). It can obtained by

a series of obstacles along γ between Uk and γ (m). Let us show that we can choose
m large enough (depending on p′) such that we have ϑ(gk, g

′
k) ≤ Cϑ(p,p′). In-

deed,

ϑ
(
gk, g

′
k

) = ϑ
(
fk

(
γ (m)

)
, f ′

k

(
γ (m)

))
= ϑ

(
Tjk

· · ·Tjm−1fm,T ′
jk

· · ·T ′
jm−1

f ′
m

)
.

We have ϑ(fm,f ′
m) < C and for m large enough,

ϑ
(
T ′

jk
· · ·T ′

jm−1
fm,T ′

jk
· · ·T ′

jm−1
f ′

m

)
< τm−kC ≤ ϑ

(
p,p′).

By the same computation as in Claim 1, we then have

ϑ
(
Tjk

· · ·Tjm−1fm,T ′
jk

· · ·T ′
jm−1

fm

) ≤ Cϑ
(
p,p′).

Since ϑ(gk, g
′
k) ≤ Cϑ(p,p′), using the contraction of the Tj , we can replace g′

k by
gk in (15) with an error less than Cτkϑ(p,p′) < Cρn

0 ϑ(p,p′). In the same way,
following obstacles along the geodesic between γ (n) and y�, we have, for � large
enough, ϑ(hk,h

′
k) ≤ ϑ(p,p′), and we can replace h′

k by hk in (15) with an error
less than Cρn

0 ϑ(p,p′).
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Observe also that all terms α̇ = α/‖α‖s, β̇ = β/‖β‖s belong to Ds
Vj0

. We may

write, considering, for instance, 〈α′, T ′
j0

· · ·T ′
jk−1

g′
k〉,

〈α′, T ′
j0

· · ·T ′
jk−1

g′
k〉

〈α,T ′
j0

· · ·T ′
jk−1

g′
k〉

= 〈α′,A′
j0

· · ·A′
jk−1

g′
k〉

〈α,A′
j0

· · ·A′
jk−1

g′
k〉

= 〈(A′
jk−1

)∗ · · · (A′
j0

)∗α′, g′
k〉

〈(A′
jk−1

)∗ · · · (A′
j0

)∗α,g′
k〉

= ‖α′‖s

‖α‖s

〈(T ′
jk−1

)∗ · · · (T ′
j0

)∗α̇′, g′
k〉

〈(T ′
jk−1

)∗ · · · (T ′
j0

)∗α̇, g′
k〉

,

where (T ′
j )

∗ denotes the projective action of (A′
j )

∗ on Ds
Vj

. Observe that if we

replace α′ by α, β ′ by β in (15) and use the above equation and its analogs, the
ratios ‖α′‖s‖α‖s

, ‖β ′‖s

‖β‖s
cancel one another, and using the contraction of the (T ′

j )
∗, we

make an other error of size at most Cρn
0 ϑ(p,p′).

We find that, up to an error of size at most Cρn
0 ϑ(p,p′), the difference �p(ξ)−

�p′(ξ) − �p(η) + �p′(η) is given by

lim
xm→ξ,y�→η

ln
〈β̇,Aj0 · · ·Ajk−1gk〉
〈β̇,A′

j0
· · ·A′

jk−1
gk〉

〈α̇,A′
j0

· · ·A′
jk−1

gk〉
〈α̇,Aj0 · · ·Ajk−1gk〉

× 〈α̇,Aj0 · · ·Ajk−1hk〉
〈α̇,A′

j0
· · ·A′

jk−1
hk〉

〈β̇,A′
j0

· · ·A′
jk−1

hk〉
〈β̇,Aj0 · · ·Ajk−1hk〉 ,

where we reordered the denominators to get a sum of four terms of the form

± ln
〈α,Aj0 · · ·Ajk−1g〉
〈α,A′

j0
· · ·A′

jk−1
g〉

with α ∈ Ds
Vj0

, g ∈ Dt
Vjk

. We can arrange each such term and write

〈α,Aj0 · · ·Ajk−1g〉
〈α,A′

j0
· · ·A′

jk−1
g〉

=
k−1∏
i=0

〈α,Aj0 · · ·Aji−1Aji
A′

ji+1
· · ·A′

jk−1
g〉

〈α,Aj0 · · ·Aji−1A
′
ji
A′

ji+1
· · ·A′

jk−1
g〉

=
[k/2]∏
i=0

〈(A′
ji−1

)∗ · · · (A′
j0

)∗α,A′
ji
gi〉

〈(A′
ji−1

)∗ · · · (A′
j0

)∗α,Aji
gi〉 ×

k−1∏
i=[k/2]+1

〈(Aji
)∗αi,A

′
ji+1

· · ·A′
jk−1

g〉
〈(A′

ji
)∗αi,A

′
ji+1

· · ·A′
jk−1

g〉

=
[k/2]∏
i=0

〈(Aji
)∗αi, gi〉

〈(A′
ji
)∗αi, gi〉 ×

k−1∏
i=[k/2]+1

〈αi,Aji
gi〉

〈αi,A
′
ji
gi〉 ,
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where αi = (Tji−1)
∗ · · · (Tj0)

∗α, gi = T ′
ji+1

· · ·T ′
jk−1

g. Set βi = (Tji−1)
∗ · · · (Tj0)

∗β ,
hi = T ′

ji+1
· · ·T ′

jk−1
h. We are reduced to estimate

[k/2]∏
i=0

〈(Aji
)∗βi, gi〉

〈(A′
ji
)∗βi, gi〉

〈(A′
ji
)∗αi, gi〉

〈(Aji
)∗αi, gi〉

〈(Aji
)∗αi, hi〉

〈(A′
ji
)∗αi, hi〉

〈(A′
ji
)∗βi, hi〉

〈(Aji
)∗βi, hi〉

×
k−1∏

i=[k/2]+1

〈βi,Aji
gi〉

〈βi,A
′
ji
gi〉

〈αi,A
′
ji
gi〉

〈αi,Aji
gi〉

〈αi,Aji
hi〉

〈αi,A
′
ji
hi〉

〈βi,A
′
ji
hi〉

〈βi,Aji
hi〉 .

Since, gi, hi remain in a bounded part of the DV t and αi, βi in a bounded
part of the DV s , using Propositions 2.4 and 2.5, one gets a constant C such
that ϑ(Aji

gi,A
′
ji
gi), ϑ(Aji

hi,A
′
ji
hi), ϑ((Aji

)∗αi, (A
′
ji
)∗αi) and ϑ((Aji

)∗βi,

(A′
ji
)∗βi) are all smaller than Cϑ(p,p′). Furthermore, using the contraction of

Tj and (Tj )
∗ (Proposition 3.4) we see that

ϑ(αi, βi) ≤ Cτ i, ϑ(gi, hi) ≤ Cτk−i .

Moreover, all products in the formula are approximations of 〈α,f∞〉 and thus are
uniformly bounded away from 0. It follows that for i ≤ k/2,∣∣∣∣ln

〈(Aji
)∗βi, gi〉〈(A′

ji
)∗βi, hi〉

〈(A′
ji
)∗βi, gi〉〈(Aji

)∗βi, hi〉
∣∣∣∣,

∣∣∣∣ln
〈(A′

ji
)∗αi, gi〉〈(Aji

)∗αi, hi〉
〈(Aji

)∗αi, gi〉〈(A′
ji
)∗αi, hi〉

∣∣∣∣ ≤ Cτk−iϑ
(
p,p′)

and for i > k/2,∣∣∣∣ln
〈βi,Aji

gi〉〈αi,A
′
ji
gi〉

〈βi,A
′
ji
gi〉〈αi,Aji

gi〉
∣∣∣∣,

∣∣∣∣ln
〈αi,Aji

hi〉〈βi,A
′
ji
hi〉

〈αi,A
′
ji
hi〉〈βi,Aji

hi〉
∣∣∣∣ ≤ Cτ iϑ

(
p,p′),

so that finally the main term of (15) is estimated by
[k/2]∑
i=0

Cτk−iϑ
(
p,p′) +

k−1∑
i=[k/2]+1

Cτ iϑ
(
p,p′) ≤ Cτk/2ϑ

(
p,p′) ≤ Cρ

n/2
0 ϑ

(
p,p′).

Claim 2 is proven (recall that κ < − lnρ0
2 lna

so that ρ1/2 < a−κ ). �

5. Markov coding and regularity of p∞. In this section, we discuss the reg-
ularity of the mapping p �→ p∞ from P(F ) into the space �∗

κ of continuous linear
forms on �κ . By Theorem 2.1, p∞ is the only p-stationary measure for the ac-
tion of ∂G, and thus depends continuously on p. In the case of the free group,
p∞ appears as the eigenform for an isolated maximal eigenvalue of an operator on
�κ (see [16], Chapter 4c) and therefore depends real analytically on p. This argu-
ment does not seem to work in all the generality of a hyperbolic group, and we are
going to use the Markov representation of the boundary which was described by
M. Coornaert and A. Papadopoulos in [6].
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5.1. Markov coding. Following [6], we call horofunctions any integer valued
function on G such that, for all λ ≤ h(x), the distance of a point x to the set h−1(λ)

is given by h(x)−λ. Two horofunctions are said to be equivalent if they differ by a
constant. Let �0 be the set of classes of horofunctions. Equipped with the topology
of uniform convergence on finite subsets of G, the space �0 is a compact metric
space. G acts naturally on �0. The Busemann boundary ∂BG is a G-invariant
subset of �0. For each horofunction h, sequences {xn}n≥1 such that

d(xn, xn+1) = h(xn) − h(xn+1) = 1

converge to a common point in ∂G, the point at infinity of h. Two equivalent
horofunctions have the same point at infinity. The mapping π :�0 → ∂G which
associates to a class of horofunctions its point at infinity is continuous, surjective,
G-equivariant and uniformly finite-to-one. Fix an arbitrary total order relation on
the set of generators S. Define a map α :�0 → �0 by setting, for a class ϕ =
[h] ∈ �0, α(ϕ) = a−1ϕ, where a = a(ϕ) is the smallest element in S satisfying
h(e) − h(a) = 1. In [6] is proven:

THEOREM 5.1 ([6]). The dynamical system (�0, α) is topologically conjugate
to a subshift of finite type.

We assume, as we may, that the number R0 used in the construction of [6] satis-
fies R0 > r . In order to fix notation, let (�,σ ) be the subshift of finite type of Theo-
rem 5.1. That is, there is a finite alphabet Z and a Z×Z matrix A with entries 0 or 1
such that � is the set of sequences z = {zn}n≥0 such that for all n, Azn,zn+1 = 1 and
σ is the left shift on �. We can decompose � into transitive components. Namely,
there is a partition of the alphabet Z into the disjoint union of Zj , j = 0, . . . ,K

in such a way that for j = 1, . . . ,K , �j := {z, z0 ∈ Zj } is a σ -invariant transi-
tive subshift of finite type and

⋃K
j=1 �j is the ω-limit set of �. By construction,

G-invariant closed subsets of � are unions of �j for some j ∈ {1, . . . ,K}. We
denote such G-invariant subsets by �J , where J is the corresponding subset of
{1, . . . ,K}. In particular, the supports of stationary measures on G are subsets of
∂BG which are identified with such �J .

For χ > 0 consider the space �χ of functions φ on � such that there is a
constant Cχ with the property that, if the points z and z′ have the same first
n coordinates, then |φ(z) − φ(z′)| < Cχχn. For φ ∈ �χ , denote ‖φ‖χ the best
constant Cχ in this definition. The space �χ is a Banach space for the norm
‖φ‖ := ‖φ‖χ + max� |φ|. Identifying � with �0, we still write π :� → ∂G the
mapping which associates to z ∈ � the point at infinity of the class of horofunc-
tions represented by z.

PROPOSITION 5.2. The mapping π :� → ∂G is Hölder continuous.
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PROOF. Let z and z′ be two elements of � such that zi = z′
i for 1 ≤ i ≤ n. De-

note h and h′ the corresponding horofunctions with h(e) = h′(e) = 0. Let {xn}n≥0
be define inductively such that x0 = e and (xn−1)

−1xn is the smallest element a in
S such that h(xn−1)−h(xn−1a) = 1. The sequence {xn}n≥0 is a geodesic and con-
verges to π(z). By [6], Lemma 6.5, h and h′ coincide on N({x0, . . . , xn+L0},R0),
where L0 and R0 has been chosen as in [6], page 439. In particular, if one as-
sociates {x′

n}n≥0 similarly to h′, the sequence {x′
n}n≥0 is a geodesic which con-

verges to π(z′), and we have xk = x′
k for 0 ≤ k ≤ n + L0. It follows that for all

m,m′ > n + L0,

(xm, xm′)e = n + L0 + (xm, xm′)xn+L0
≥ n + L0 ≥ n.

Therefore(
π(z),π

(
z′))

e ≥ lim inf
m,m′ (xm, xm′)e ≥ n and ρ

(
π(z),π

(
z′)) ≤ e−an+c1 . �

In the same way, we have:

PROPOSITION 5.3. Let x be fixed in G with |x| < R0. Then the mapping z �→
hz(x) depends only on the first coordinate in �, where hz is the horofunction
representing z in Theorem 5.1.

PROOF. As above, if z0 = z′
0 and h,h′ are the corresponding horofunctions

with h(e) = h′(e) = 0, h and h′ coincide on N(e,R0) ⊃ {x}. �

Let ν be a stationary probability measure on �0. By equivariance of π , the mea-
sure π∗ν is stationary on ∂G and, by Theorem 2.1, we have π∗ν = p∞. Actually,
there is a more precise result:

PROPOSITION 5.4. Let ν be a stationary measure on �0. Then, for ν-a.e.
ϕ ∈ �0, all x,

dx∗ν
dν

(ϕ) = Kπ(ϕ)(x).(16)

PROOF. Since the mapping π :�0 → ∂F is G-equivariant and finite-to-one,
the measure ν can be written as∫

ψ(ϕ)dν(ϕ) =
∫ ( ∑

ϕ : π(ϕ)=ξ

ψ(ϕ)a(ϕ)

)
dp∞(ξ),

where a is a nonnegative measurable function on �0 such that
∑

ϕ : π(ϕ)=ξ a(ϕ) = 1
for p∞-a.e. ξ . Moreover, since ∂G is a Poisson boundary for the random walk
([13], Theorem 7.6), the conditional measures a(ϕ) has to satisfy a(xϕ) = a(ϕ)

p∞-a.s. ([14], Theorem 3.2). Formula (16) for the density then follows from for-
mula (6). �
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Identifying �0 with �, we see that, for z ∈ �, σ−1z is given by some az, where
a is one of the generators. We can describe the restriction of a stationary measure
to �j . More precisely, we have:

PROPOSITION 5.5. For each j = 1, . . . ,K , there is a unique probability mea-
sure νj such that any p-stationary measure on � has the restriction to �j propor-
tional to νj . Moreover, for all p ∈ P(F ), there exist χ > 0 and a neighborhood
Op of p in P(F ) such that the mapping p �→ νj is Lipschitz continuous from Op

to �∗
χ(�j ).

PROOF. Consider a p-stationary probability measure on � that has a nonzero
restriction to �j . Let νj be this (normalized) restriction. By (16), for all x such that

x−1�j = �j , we have dx∗νj

dνj
(z) = Kπ(z)(x). We shall show that there is a unique

probability measure on �j satisfying dσ∗νj

dνj
(z) = Kπ(z)(z0) and that it depends

Lipschitz continuously on p as an element of �∗
χ for some suitable χ .

We use thermodynamical formalism on the transitive subshift of finite type �j .
For χ < 1 and φ ∈ �χ with real values, we define the transfer operator Lφ on
�χ(�j ) by

Lφψ(ξ) := ∑
η∈σ−1ξ

eφ(η)ψ(η).

Then, Lφ is a bounded operator in �χ . Ruelle’s transfer operator theorem (see [4],
Theorem 1.7, and [20], Proposition 5.24) applies to Lφ , and there exists a number
P(φ) and a linear functional Nφ on �χ such that the operator L∗

φ on (�χ)∗ satis-

fies L∗
φNφ = eP (φ)Nφ . The functional Nφ extends to a probability measure on �j

and is the only eigenvector of L∗
φ with that property. Moreover, φ �→ Lφ is a real

analytic map from �χ to the space of linear operators on �χ ([20], page 91). Con-
sequently, the mapping φ �→ Nφ is real analytic from �χ into the dual space �∗

χ ;
see, for example, [5], Corollary 4.6. For p ∈ P(F ), define φp(z) = lnKπ(z)(z0).
By Propositions 4.1 and 5.2, we can choose χ such that the mapping p �→ φp is
Lipschitz continuous from a neighborhood Op of p in P(F ) into the space �χ . It
follows that the mapping p �→ Nφp is Lipschitz continuous from Op into �∗

χ .

From the relation dσ∗νj

dνj
(z) = Kπ(z)(z0), we know that νj is invariant under L∗

φp
.

This shows that νj is the only probability measure satisfying this relation, that
P(φp) = 0 and that νj extends Nφp . �

Let �J be a minimal, closed G-invariant subset of �. We know that �J is a
finite union of transitive subshifts of finite type. We have:

COROLLARY 5.6. For p ∈ P(F ), there is a unique p-stationary probability
measure νJ (p) on �J . There is a χ and a neighborhood O of p such that the
mapping p �→ νJ (p) is Lipschitz continuous from O into �∗

χ(�J ).
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PROOF. Let νJ be a p stationary measure on �J . We know by Proposition 5.5
that the conditional measures on the transitive subsubshifts are unique and Lips-
chitz continuous from O into �∗

χ(�k). We have to show that the νJ (�k) are well
determined and Lipschitz continuous in p. Write again equation (16), but now for
elements x ∈ G that exchange the �k within �J and write that

∑
k νJ (�k) = 1.

We find that the νJ (�k) are given by a system of linear equations. By Proposi-
tions 4.1 and 5.5, we know that the coefficients of this linear system are Lipschitz
continuous on O. We know that there is a solution, and that it is unique, since
otherwise there would be a whole line of solutions, in particular one which would
give νJ (�k) = 0 for some k and this is impossible. Then the unique solution is
Lipschitz continuous. �

6. Proof of Theorem 1.1. Choose χ small enough and O a neighborhood
of p in P(F ) such that Proposition 4.1 and Corollary 5.6 apply: the mappings
p �→ lnKπ(z)(x) and p �→ νJ are Lipschitz continuous from O into, respectively,
�χ(�) and �∗

χ(�J ). Then, by definition (2), the function p �→ hp(�J , ν) is Lips-
chitz continuous on O. By (3) and (5), the function hp is the maximum of a finite
number of Lipschitz continuous functions on O; this proves the entropy part of
Theorem 1.1.

For the escape rate part, recall that the Busemann boundary ∂BG is made of ho-
rofunctions so that it can be identified with a G-invariant subset of �. Stationary
measures on ∂BG are therefore convex combinations of the νJ ′ , where J ′ are such
that νJ ′(∂BG) = 1. Formula (4) yields �S

p = maxJ ′ {∑x∈F (
∫
�J ′ h(x−1) dνJ ′(h)) ×

p(x)}. By Proposition 5.3, for a fixed x ∈ F the function h(x) is in �χ(�j )

for all χ . Therefore, Corollary 5.6 implies that each one of the functions∫
�J ′ h(x−1) dνJ ′(h) is Lipschitz continuous on O. This achieves the proof of The-

orem 1.1 because the function p �→ �S
p is also written as the maximum of a finite

number of Lipschitz continuous functions on O.
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