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1. Introduction

“I’ve got all these variables, but I don’t know which ones to use.”

Classification and regression problems with large numbers of candidate pre-
dictor variables occur in a wide variety of scientific fields, increasingly so with
improvements in data collection technologies. For example, in microarray anal-
ysis, the number of predictors (genes) to be analyzed typically far exceeds the
number of observations.

Goals in model selection include:

e accurate predictions,

e interpretable models—determining which predictors are meaningful,

e stability—small changes in the data should not result in large changes
in either the subset of predictors used, the associated coefficients, or the
predictions, and

e avoiding bias in hypothesis tests during or after variable selection.

Older methods, such as stepwise regression, all-subsets regression and ridge re-
gression, fall short in one or more of these criteria. Modern procedures such as
boosting (Freund and Schapire, 1997) forward stagewise regression (Hastie el al.,
2001), and LASSO (Tibshirani, 1996), improve stability and predictions.

Efron et al. (2004) show that there are strong connections between these
modern methods and a method they call least angle regression, and develop an
algorithmic framework that includes all of these methods and provides a fast
implementation, for which they use the term ‘LARS’. LARS is potentially revo-
lutionary, offering interpretable models, stability, accurate predictions, graphical
output that shows the key tradeoff in model complexity, and a simple data-based
rule for determining the optimal level of complexity that nearly avoids the bias
in hypothesis tests.

This idea has caught on rapidly in the academic community—a ‘Google
Scholar’ search in May 2008 shows over 400 citations of Efron et al. (2004),
and over 1000 citations of Tibshirani (1996).
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We explain the importance of LARS in this introduction and in Section 2.1
and compare it to older variable selection or penalized regression methods in
Section 2.2. We describe extensions in Section 3, alternate approaches in Sec-
tion 4, and list some available software in Section 5.

2. History
2.1. Significance

In 1996 one of us (Hesterberg) asked Brad Efron for the most important prob-
lems in statistics, fully expecting the answer to involve the bootstrap, given
Efron’s status as inventor. Instead, Efron named a single problem, variable selec-
tion in regression. This entails selecting variables from among a set of candidate
variables, estimating parameters for those variables, and inference—hypotheses
tests, standard errors, and confidence intervals.

It is hard to argue with this assessment. Regression, the problem of estimating
a relationship between a response variable and various predictors (explanatory
variables, covariates) is of paramount importance in statistics (particularly when
we include “classification” problems, where the response variable is categorical).
A large fraction of regression problems require some sort of choice of predictors.
Efron’s work has long been strongly grounded in solving real problems, many of
them from biomedical consulting. His answer reflects the importance of variable
selection in practice.

Classical tools for analyzing regression results, such as ¢ statistics for judging
the significance of individual predictors, are based on the assumption that the
set of predictors is fixed in advance. When instead the set is chosen adaptively,
incorporating those variables that give the best fit for a particular set of data,
the classical tools are biased. For example, if there are 10 candidate predictors,
and we select the single one that gives the best fit, there is about a 40% chance
that that variable will be judged significant at the 5% level, when in fact all
predictors are independent of the response and each other. Similar bias holds
for the F test for comparing two models; it is based on the assumption that the
two models are fixed in advance, rather than chosen adaptively.

This bias affects the variable selection process itself. Formal selection proce-
dures such as stepwise regression and all-subsets regression are ultimately based
on statistics related to the F' statistics for comparing models. Informal selection
procedures, in which an analyst picks variables that give a good fit, are similarly
affected.

In the preface to the second edition of Subset Selection in Regression (Miller
2002), Allan Miller noted that little progress had been made in the previous
decade:

What has happened in this field since the first edition was published in 19907

The short answer is that there has been very little progress. The increase in the speed
of computers has been used to apply subset selection to an increasing range of models,
linear, nonlinear, generalized linear models, to regression methods which are more robust
against outliers than least squares, but we still know very little about the properties of
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the parameters of the best-fitting models chosen by these methods. From time-to-time
simulation studies have been published, e.g. Adams (1990), Hurvich and Tsai (1990), and
Roecker (1991), which have shown, for instance, that prediction errors using ordinary least
squares are far too small, or that nominal 95% confidence regions only include the true
parameter values in perhaps 50% of cases.

Problems arise not only in selecting variables, but also in estimating coeffi-
cients for those variables, and producing predictions. The coefficients and pre-
dictions are biased as well as unstable (small changes in the data may result in
large changes in the set of variables included in a model and in the corresponding
coefficients and predictions). Miller (2002) notes:

As far as estimation of regression coefficients is concerned, there has been essentially no
progress.

Least angle regression Efron et al. (2004), and its LASSO and forward stage-
wise variations, offer strong promise for producing interpretable models, accu-
rate predictions, and approximately unbiased inferences.

2.2. LARS and Earlier Methods

In this section we discuss various methods for regression with many variables,
leading up to the original LARS paper (Efron et al., 2004). We begin with “pure
variable selection” methods such as stepwise regression and all-subsets regres-
sion that pick predictors, then estimate coefficients for those variables using
standard criteria such as least-squares or maximum likelihood. In other words,
these methods focus on variable selection, and do nothing special about estimat-
ing coeflicients. We then move on to ridge regression, which does the converse—it
is not concerned with variable selection (it uses all candidate predictors), and
instead modifies how coefficients are estimated. We then discuss LASSO, a vari-
ation of ridge regression that modifies coefficient estimation so as to reduce
some coefficients to zero, effectively performing variable selection. From there
we move to forward stagewise regression, an incremental version of stepwise re-
gression that gives results very similar to LASSO. Finally we turn to least angle
regression, which connects all the methods.

We write LAR for least angle regression, and LARS to include LAR as well
as LASSO or forward stagewise as implemented by least-angle methods. We use
the terms predictors, covariates, and variables interchangeably (except we use
the latter only when it is clear we are discussing predictors rather than response
variables).

The example in this section involves linear regression, but most of the text
applies as well to logistic, survival, and other nonlinear regressions in which the
predictors are combined linearly. We note where there are differences between
linear regression and the nonlinear cases.
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TABLE 1
Diabetes Study: 442 patients were measured on 10 baseline variables; a

prediction model is desired for the response variable Y, a measure of disease

progression one year after baseline. Predictors include age, sex, body mass
indez, average blood pressure, and siz different blood serum measurements.
One goal is to create a model that predicts the response from the predictors; a
second is to find a smaller subset of predictors that fits well, suggesting that

those variables are important factors in disease progression.

Patient Age Sex BMI BP S1 S2 S3 S4 S5 S6 Y
1 59 2 32.1 101 157 932 38 40 49 87 151
2 48 1 216 87 183 1032 70 3.0 39 69 75
3 72 2 30.5 93 156 93.6 41 4.0 4.7 85 141

442 36 1 19.6 71 250 1332 97 3.0 46 92 57

2.2.1. Stepwise and All-Subsets Regression

We begin our description of various regression methods with stepwise and all-
subsets regression, which focus on selecting variables for a model, rather than
on how coefficients are estimated once variables are selected.

Forward stepwise regression begins by selecting the single predictor variable
that produces the best fit, e.g. the smallest residual sum of squares. Another
predictor is then added that produces the best fit in combination with the first,
followed by a third that produces the best fit in combination with the first two,
and so on. This process continues until some stopping criteria is reached, based
e.g. on the number of predictors and lack of improvement in fit. For the diabetes
data shown in Table 1, single best predictor is BMI; subsequent variables selected
are S5, BP, S1, Sex, S2, S4, and S6.

The process is unstable, in that relatively small changes in the data might
cause one variable to be selected instead of another, after which subsequent
choices may be completely different.

Variations include backward stepwise regression, which starts with a larger
model and sequentially removes variables that contribute least to the fit, and
Efroymson’s procedure (Efroymson, 1960), which combines forward and back-
ward steps.

These algorithms are greedy, making the best change at each step, regardless
of future effects. In contrast, all-subsets regression is exhaustive, considering all
subsets of variables of each size, limited by a maximum number of best sub-
sets (Furnival and Wilson, Jr., 1974). The advantage over stepwise procedures
is that the best set of two predictors need not include the predictor that was
best in isolation. The disadvantage is that biases in inference are even greater,
because it considers a much greater number of possible models.

In the case of linear regression, computations for these stepwise and all-
subsets procedures can be accomplished using a single pass through the data.
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This improves speed substantially in the usual case in where are many more
observations than predictors. Consider the model

Y=XB+¢€ (1)

where Y is a vector of length n, X an n by p matrix, 8 a vector of length p
containing regression coeflicients, and € assumed to be a vector of independent
normal noise terms. In variable selection, when some predictors are not included
in a model, the corresponding terms in 3 are set to zero. There are a number
of ways to compute regression coefficients and error sums of squares in both
stepwise and all subsets regression. One possibility is to use the cross-product
matrices X'X, X'Y, and Y'Y. Another is to use the QR decomposition. Both
the cross-product and QR implementations can be computed in a single pass
through the data, and in both cases there are efficient updating algorithms for
adding or deleting variables. However, the QR approach has better numerical
properties. See e.g. Thisted (1988); Monahan (2001); Miller (2002) for further
information.

For nonlinear regressions, the computations are iterative, and it is not possible
to fit all models in a single pass through the data.

Those points carry over to LARS. The original LARS algorithm computes
X’X and X'Y in one pass through the data; using the Q R factorization would be
more stable, and could also be done in one pass. LARS for nonlinear regression
requires multiple passes through the data for each step, hence speed becomes
much more of an issue.

2.2.2. Ridge Regression

The ad-hoc nature and instability of variable selection methods has led to other
approaches. Ridge regression (Miller, 2002; Draper and Smith, 1998), includes
all predictors, but with typically smaller coeflicients than they would have under
ordinary least squares. The coefficients minimize a penalized sum of squares,

p
Y —XBl5+6) 6. (2)

Jj=1

where 6 is a positive scalar; # = 0 corresponds to ordinary least-squares regres-
sion. In practice no penalty is applied to the intercept, and variables are scaled
to variance 1 so that the penalty is invariant to the scale of the original data.

Figure 1 shows the coefficients for ridge regression graphically as a function
of 8; these shrink as 6 increases. Variables most correlated with other variables
are affected most, e.g. S1 and S2 have correlation 0.90.

Note that as 6 increases, the coefficients approach but do not equal zero.
Hence, no variable is ever excluded from the model (except when coefficients
cross zero for smaller values of 6).

In contrast, the use of an ¢; penalty does reduce terms to zero. This yields
LASSO, which we consider next.
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Fic 1. Coefficients for ridge regression (standardized variables)

2.2.3. LASSO

Tibshirani (1996) proposed minimizing the residual sum of squares, subject
to a constraint on the sum of absolute values of the regression coeflicients,

le |3;] < t. This is equivalent to minimizing the sums of squares of residuals
plus an ¢; penalty on the regression coefficients,

p
1Y —XB[3+6) 18]. (3)

j=1

A similar formulation was proposed by Chen et al. (1998) under the name
basis pursuit, for denoising using overcomplete wavelet dictionaries (this corre-
sponds to p > n).

Figure 2 shows the resulting coefficients. For comparison, the right panel
shows the coefficients from ridge regression, plotted on the same scale. To the
right, where the penalties are small, the two procedures give close to the same
results. More interesting is what happens starting from the left, as all coefficients
start at zero and penalties are relaxed. For ridge regression all coefficients imme-
diately become nonzero. For LASSO, coefficients become nonzero one at a time.
Hence the ¢, penalty results in variable selection, as variables with coefficients
of zero are effectively omitted from the model.

Another important difference occurs for the predictors that are most signif-
icant. Whereas an ¢y penalty 6 5?— pushes 3; toward zero with a force pro-
portional to the value of the coefficient, an ¢; penalty 6> |3;| exerts the same
force on all nonzero coefficients. Hence for variables that are most valuable, that
clearly should be in the model and where shrinkage toward zero is less desirable,
an {1 penalty shrinks less. This is important for providing accurate predictions
of future values.
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LASSO Ridge Regression
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Fic 2. Coefficients for LASSO and Ridge Regression ({1 and l2 penalties).

In this case, BMI (body mass index) and S5 (a blood serum measurement)
appear to be most important, followed by BP (blood pressure), S3, Sex, S6,
S1, S4, S2, and Age. Some curious features are apparent. S1 and S2 enter the
model relatively late, but when they do their coefficients grow rapidly, in op-
posite directions. These two variables have strong positive correlation, so these
terms largely cancel out, with little effect on predictions for the observed val-
ues. The collinearity between these two variables has a number of undesirable
consequences—relatively small changes in the data can have strong effects on
the coefficients, the coefficients are unstable, predictions for new data may be
unstable, particularly if the new data do not follow the same relationship be-
tween S1 and S2 found in the training data, and the calculation of coeflicients
may be numerically inaccurate. Also, the S3 coefficient changes direction when
S4 enters the model, ultimately changing sign. This is due to high (negative)
correlation between S3 and S4.

2.2.4. Forward Stagewise

Another procedure, forward stagewise regression, appears to be very different
from LASSO, but turns out to have similar behavior.

This procedure is motivated by a desire to mitigate the negative effects of the
greedy behavior of stepwise regression. In stepwise regression, the most useful
predictor is added to the model at each step, and the coefficient jumps from
zero to the the least-squares value.

Forward stagewise picks the same first variable as forward stepwise, but
changes the corresponding coefficient only a small amount. It then picks the
variable with highest correlation with the current residuals (possibly the same
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variable as in the previous step), and takes a small step for that variable, and
continues in this fashion.

Where one variable has a clear initial advantage over other variables there
will be a number of steps taken for that variable. Subsequently, once a number
of variables are in the model, the procedure tends to alternate between them.
The resulting coeflicients are more stable than those for stepwise.

Curiously, an idealized version of forward stagewise regression (with the step
size tending toward zero) has very similar behavior to LASSO despite the ap-
parent differences. In the diabetes example, the two methods give identical re-
sults until the eighth variable enters, after which there are small differences
(Efron et al., 2004).

There are also strong connections between forward stagewise regression and
the boosting algorithm popular in machine learning (Efron et al. 2004;
Hastic et al. 2001). The difference is not in the fitting method, but rather in
the predictors used; in stagewise the predictors are typically determined in ad-
vance, while in boosting the next variable is typically determined on the fly.

2.2.5. Least Angle Regression

Least angle regression (Efron el al., 2004) can be viewed as a version of stagewise
that uses mathematical formulas to accelerate the computations. Rather than
taking many tiny steps with the first variable, the appropriate number of steps
is determined algebraically, until the second variable begins to enter the model.
Then, rather than taking alternating steps between those two variables until
a third variable enters the model, the method jumps right to the appropriate
spot. Figure 3 shows this process in the case of 2 predictor variables, for linear

regression.
/ | %/k/ i
0 X1 B A

Fic 3. The LAR algorithm in the case of 2 predictors. O is the prediction based solely
on an intercept. C' = Y = Ble +B2X2 is the ordinary least-squares fit, the projection
of Y onto the subspace spanned by X1 and Xa. A is the forward stepwise fit after one
step; the second step proceeds to C. Stagewise takes a number of tiny steps from O to
B, then takes steps alternating between the X1 and Xo directions, eventually reaching
E; if allowed to continue it would reach C. LAR jumps from O to B in one step, where
B is the point such that BC' bisects the angle ABD. At the second step it jumps to C.
LASSO follows a path from O to B, then from B to C. Here LAR agrees with LASSO
and stagewise (as the step size — 0 for stagewise). In higher dimensions additional
conditions are needed for exact agreement to hold.
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The first variable chosen is the one that has the smallest angle between the
variable and the response variable; in Figure 3 the angle COX; is smaller than
COX32. We proceed in that direction as long as the angle between that predictor
and the vector of residuals Y — vX; is smaller than the angle between other
predictors and the residuals. Eventually the angle for another variable will equal
this angle (once we reach point B in Figure 3), at which point we begin moving
toward the direction of the least-squares fit based on both variables. In higher
dimensions we will reach the point at which a third variable has an equal angle,
and joins the model, etc.

Expressed another way, the (absolute value of the) correlation between the
residuals and the first predictor is greater than the (absolute) correlation for
other predictors. As 7y increases, another variable will eventually have a correla-
tion with the residuals equaling that of the active variable, and join the model
as a second active variable. In higher dimensions additional variables will even-
tually join the model, when the correlation between all active variables and the
residuals drops to the levels of the additional variables.

Three remarkable properties of LAR There are three remarkable things
about LAR. First is the speed: Efron et al. (2004) note that “The entire sequence
of LARS steps with p < n variables requires O(p? + np?) computations — the
cost of a least squares fit on p variables.”

Second is that the basic LAR algorithm, based on the geometry of angle
bisection, can be used to efficiently fit LASSO and stagewise models, with certain
modifications in higher dimensions (Efron et al., 2004). This provides a fast and
relatively simple way to fit LASSO and stagewise models.

Madigan and Ridgeway (2004) comments that LASSO has had little impact
on statistical practice, due to the inefficiency of the original LASSO and com-
plexity of more recent algorithms (Osborne et al., 2000a); they add that this
“efficient, simple algorithm for the LASSO as well as algorithms for stagewise
regression and the new least angle regression” are “an important contribution
to statistical computing”.

Third is the availability of a simple C), statistic for choosing the number of
steps,

= (1/6?) an 2 n+2%k (4)

where k is the number of steps and 62 is the estimated residual variance (es-

timated from the saturated model, assuming that n > p). This is based on
Theorem 3 in Efron et al. (2004), which indicates that after k steps of LAR
the degrees of freedom Y | cov(fi;, Y;)/o? is approximately k. This provides a
simple stopping rule, to stop after the number of steps k that minimizes the C,
statistic.

Zou et al. (2007) extend that result to LASSO, showing an unbiased rela-
tionship between the number of terms in the model and degrees of freedom, and
discuss Cp, AIC and BIC criterion for model selection.
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F1c 4. Effect of LAR steps on residual variance and prediction error. The left panel shows
the residual sum of squares for LAR, ordinary least-squares with fized predictor order, and
stepwise regression. The right panel shows Zle 6]2; this measures how much less accurate
predictions are than for the true model. The figures are based on a simulation with 10,000
replications, with n = 40, p = 20, orthogonal predictors with norm 1, 3; = 1V j, and residual
variance 1.

The promise of a fast effective way of choosing the tuning parameter, based
on Cp, AIC or BIC, is important in practice. While figures such as Figure 2 are
attractive, they become unwieldy in high dimensions. In any case, for prediction
one must ultimately choose a single value of the penalty parameter.

Still, there are some questions about this C} statistic (Ishwaran 2004;
Loubes and Massart 2004; Madigan and Ridgeway 2004; Stine 2004), and some
suggest other selection criteria, especially cross-validation.

Cross-validation is slow. Still, a fast approximation for the tuning parameter
could speed up cross-validation. For example, suppose there are 1000 predictors,
and C), suggests that the optimal number to include in a model is 20; then when
doing cross-validation one might stop after say 40 steps in every iteration, rather
1000.

Note that there are different definitions of degrees of freedom, and the one
used here is appropriate for C), statistics, but that & does not measure other
kinds of degrees of freedom. In particular, neither the average drop in residual
squared error, nor the expected prediction error are linear in k (under the null
hypothesis that §; = 0 for all j). Figure 4 shows the behavior of those quantities.
In the left panel we see that the residual sums of squares drop more quickly
for LAR than for ordinary least squares (OLS) with fixed prediction order,
suggesting that by one measure, the effective degrees of freedom is greater than
k. In the right panel, the sums of squares of coefficients measures how much
worse predictions are than using the true parameters 3; = 0; here LAR increases
more slowly than for OLS, suggesting effective degrees of freedom less than k.
These two effects balance out for the C), statistic.
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In contrast, stepwise regression has effective degrees of freedom greater than
the number of steps; it overfits when there is no true signal, and prediction
errors suffer.

These results are encouraging. It appears that LAR fits the data more closely
than OLS, with a smaller penalty in prediction errors. While in this example
there is only noise and no signal, it suggests that LAR may have relatively high
sensitivity to signal and low sensitivity to noise.

2.2.6. Comparing LAR, LASSO and Stagewise

In general in higher dimensions native LAR and the least angle implementation
of LASSO and stagewise give results that are similar but not identical. When
they differ, LAR has a speed advantage, because LAR variables are added to the
model, never removed. Hence it will reach the full least-squares solution, using all
variables, in p steps. For LASSO, and to a greater extent for stagewise, variables
can leave the model, and possibly re-enter later, multiple times. Hence they may
take more than p steps to reach the full model (if n > p). Efron et al. (20041) test
the three procedures for the diabetes data using a quadratic model, consisting
of the 10 main effects, 45 two-way interactions, and 9 squares (excluding the
binary variable Sex). LAR takes 64 steps to reach the full model, LASSO takes
103, and stagewise takes 255. Even in other situations, when stopping short of
the saturated model, LAR has a speed advantage.

The three methods have interesting derivations. LASSO is regression with an
{1 penalty, a relatively simple concept; this is also known as a form of regulariza-
tion in the machine learning community. Stagewise is closely related to boosting,
or “slow learning” in machine learning (Efron e/ al., 2004; Hastie et al., 2007).
LAR has a simpler interpretation than the original derivation; it can be viewed
as a variation of Newton’s method (Hesterberg and Fraley 2006a, 2006b), which
makes it easier to extend to some nonlinear models such as generalized linear
models (Rosset and Zhu, 2004).

3. LARS Extensions

In this section we review extensions to LARS and other contributions described
in the literature. We introduce LARS extensions that account for specific struc-
tures in variables in Section 3.1, extensions to nonlinear models in Section 3.2,
extensions in other settings in Section 3.3, and computational issues in Sec-
tion 3.4.

Ridge regression and LASSO optimize a criterion that includes a penalty
term. A number of authors develop other penalty approaches, including SCAD
(Fan and Li, 2001), adaptive LASSO (Zou, 2006), relaxed LASSO (Meinshausen,
2007), and the Dantzig selector (Candes and Tao, 2007). Some of these may be
considered as alternatives rather than extensions to LARS, so we defer this
discussion until Section 4.
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3.1. Exploiting Additional Structure

Some kinds of data have structure in the predictor variables—they may be
ordered in some meaningful way (such as measurements based on intensity at
successive wavelengths of light in proteomics) or come in groups, either known
(such as groups of dummy variables for a factor) or unknown (such as related
genes in microarray analysis). There may be order restrictions (such as main
effects before interactions).

When there is a group of strongly correlated predictors, LASSO tends to
select only one predictor from the group, but we may prefer to select the whole
group. For a sequence of ordered predictors, we may want the differences between
successive coefficients to be small.

3.1.1. Ordered Predictors

Tibshirani et al. (2005) propose the fused LASSO for a sequence of predictors.
This uses a combination of an ¢; penalty on coefficients and an ¢; penalty on
the difference between adjacent coefficients:

p p
1Y —XBl5+60 ) (8] +62> 185 — Bi-1l.

j=1 =2

This differs from LASSO in that the additional ¢; penalty on the difference
between successive coefficients encourages the coefficient profiles ; (a function
of j) to be locally flat. The fused LASSO is useful for problems such as the
analysis of proteomics data, where there is a natural ordering of the predictors
(e.g. measurements on different wavelengths) and coefficients for nearby predic-
tors should normally be similar; it tends to give locally-constant coefficients.
Estimates can be obtained via a quadratic programming approach for a fixed
pair (01, 0s), or by pathwise coordinate optimization (Friedman et al., 2007a).

3.1.2. Unknown Predictor Groups

Zou and Hastie (2005b) propose the elastic net ! for applications with unknown
groups of predictors. It involves both the ¢; penalty from LASSO and the /o
penalty from ridge regression:

p p
Y —XBl5+ 6 ) |8 +6:> 537 (5)
j=1 j=1

They show that strictly convex penalty functions have a grouping effect, while
the LASSO ¢; penalty does not. A bridge regression (Frank and Friedman, 1993)
¢, norm penalty with 1 < ¢ < 2 is strictly convex and has a grouping ef-
fect, but does not produce a sparse solution (Fan and Li, 2001). This motivates

IR package elasticnet is available.
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Zou and Hastie (2005b) to use the elastic net penalty (5), which is strictly con-
vex when 5 > 0, and can also produce sparse solutions. The elastic net is useful
in the analysis of microarray data, as it tends to bring related genes into the
model as a group. It also appears to give better predictions than LASSO when
predictors are correlated. In high dimensional settings (p > n) elastic net al-
lows selecting more than n predictors, while LASSO does not. Solutions can be
computed efficiently using an algorithm based on LARS; for given 65, formula
(5) can be interpreted as a LASSO problem.

3.1.8. Known Predictor Groups

In some cases it is appropriate to select or drop a group of variables simultane-
ously, for example a set of dummy variables that represent a multi-level factor.
Similarly, a set of basis functions for a polynomial or spline fit should be treated
as a group.

Yuan and Lin (2006) propose group LASSO to handle groups of predictors
(see also (Bakin, 1999)). Suppose the p predictors are divided into J groups
of sizes p1,...,ps, and let B; be the corresponding sub-vectors of 8. Group
LASSO minimizes

p
Y —XBlI5+ 60 118, (6)

j=1

where ||n]|x = (n7 Kn)'/? is the elliptical norm determined by a positive definite
matrix K. This includes LASSO as a special case, with p; = 1 for all j and each
K; the one-dimensional identity matrix. Yuan and Lin (2006) use K; = p;lp,,
where I, is the pj-dimensional identity matrix. The modified penalty in (6)
encourages sparsity in the number of groups included, rather than the number
of variables.

Lin and Zhang (2006) let the groups of predictors correspond to sets of basis
functions for smoothing splines, in which the penalty ||3;]/x, would give the
square-root of the integrated squared second derivative of a spline function (a
linear combination of the basis functions). Their resulting COSSO (COmponent
Selection and Smoothing Operator) is an alternative to MARS (Friedman 1991).

Yuan and Lin (2006) note that group LASSO does not have piecewise linear
solution paths, and define a group LARS that does. Group LARS replaces the
correlation criterion in the original LARS with the average squared correlation
between a group of variables and the current residual. A group of variables that
has the highest average squared correlation with the residual is added to the
active set. Park and Hastie (2006b) modify group LARS, replacing the average
squared correlation with the average absolute correlation to prevent selecting a
large group with only few of its components being correlated with the residuals.

The Composite Absolute Penalties (CAP) approach, proposed by Zhao ¢t al.
(2008), is similar to group LASSO but uses £,,-norm instead of £;-norm, and
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the equivalent of an £, norm for combining group penalties:

J
1Y = XBIIZ+6>_(118;],,)" (7)

j=1

where ; > 1 for grouped variable selection. For example, when «; = oo, the
coefficients in the j'" group are encouraged to be of equal size, while v; = 2
does not imply any information but the grouping information.

An obvious generalization that could apply to many of the methods, both in
grouped and ungrouped settings, is to include constant factors in the penalties
for variables or groups to penalize different terms different amounts. Yuan and Lin
(2006) include constant terms p; depending on degrees of freedom—terms with
more degrees of freedom are penalized more. Similar constants could be used
to reflect the desirability of penalizing different terms differently. For example,
some terms known from previous experience to be important could be left un-
penalized or penalized using a small coefficient, while a larger number of terms
being screened as possible contributors could be assigned higher penalties. Main
effects could be penalized by small amounts and higher-order interactions pe-
nalized more.

3.1.4. Order Restrictions

Besides group structure, we may want to incorporate order restrictions in vari-
able selection procedures. For example, a higher order term (e.g. an interaction
term X3 X5) should be selected only when the corresponding lower order terms
(e.g. main effects X; and X3) are present in the model. This is the marginality
principle in linear models (McCullagh and Nelder, 1989) and heredity principle
in design of experiments (Hamada and Wu, 1992). Although it is not a strict
rule, it is usually better to enforce order restriction, because it helps the resulting
models to be invariant to scaling and transformation of predictors.

Efron et al. (2001) suggest a two-step procedure to enforce order restrictions:
first apply LARS only to main effects, and then to possible interactions be-
tween the main effects selected from the first step. Turlach (2001) shows that
the two-step procedure may miss important main effects at the first step in
some nontrivial cases and proposes an extended version of LARS: when the ;"
variable has the highest correlation with the residual, that variable and a set
of variables on which it depends enter the model together. Yuan et al. (2007)
propose a similar extension to LARS that accounts for the number of variables
that enter the model together: they look at the scaled correlations between the
response and the linear space spanned by the set of variables that should be
selected together. Choi and Zhu (2006) discuss re-parameterizing the interac-
tion coefficients to incorporate order restrictions, and the CAP approach (7) of
Zhao et al. (2008) can be used for the same purpose by assigning overlapping
groups (e.g. groups for each main effect and another that includes interactions
and all main effects).
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There is another type of order restriction called weak heredity or marginality
principle: a higher order term can be selected only when at least one of the
corresponding lower order terms is present in the model. Yuan et al. (2007)
extend LARS to this case by looking at the scaled correlations between the
response and the linear space spanned by each eligible set of predictors; in
contrast to the strong heredity case, the combination of an interaction and just
one (rather than both) of the corresponding main effects would be eligible.

3.1.5. Time Series and Multiresponse Data

The fused LASSO introduced in Section 3.1.1 is for problems with a sequence
of ordered predictors. Some problems, however, contain natural orderings in re-
sponse variables as well. A good example would be time-course data, in which
the data consist of multiple observations over time; either responses or predic-
tors, or both, could vary over time. For such cases, we could simply fit a model at
each time point, but it would be more efficient to combine the information from
the entire dataset. As an illustration, consider linear regression with multiple
responses at N different time points ¢y, ..., ¢y and fixed predictors X:

Y(t,) = XB(t,) + e(t,), r=1,...,N. (8)

where Y (t,) € R™, B(t,) € R?, €(t,) € R", and X is a n X p design matrix. By
assuming that adjacent time points are related and similar, we could apply the
fused LASSO to this problem by penalizing the difference between the coeffi-
cients of successive time points, |5;(t,) — 5;(tr—1)]. But it could be challenging
to simultaneously fit a model with all Np parameters when the number of time
points N is large.

Meier and Bithlmann (2007) propose smoothed LASSO to solve this prob-
lem. They assume that adjacent time points are more related than distant time
points, and incorporate the information from different time points by applying
weights w(+, t,) satisfying Zivzl w(ts, t,) = 1 in the criterion below for parame-
ter estimation at time-point ¢,:

Zwts,t Y (2s) = B(tr)||§+92|ﬁj(tr)l- 9)

The weights w(+, t,-) should have larger values at the time points near ¢, so that
the resulting estimates can reflect more information from neighboring points.
Problem (9) can be solved as an ordinary LASSO problem by using the smoothed
response Y (t,) = zf Lw(ts, t)Y (ts).

Turlach et al. (2005) and Simild and Tikka (2006) also address the multi-
ple response problem with different approaches. Turlach et al. (2005) extend
LASSO to select a common subset of predictors for predicting multiple response
variables using the following criterion:

.....

N
DoY) -X ||2+9Z max |3 ()] (10)
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We note that this is equivalent to a special case (with v; = oo) of the CAP
approach (Zhao et al., 2008) that was introduced in Section 3.1.3 for grouped
variable selection. On the other hand, Simild and Tikka (2006) extend the LARS
algorithm by defining a new correlation criterion between the residuals and the
predictor, ||(Y — Y)ijH,y (v = 1,2,00) where Y = (y(t1),...,y(tn)) is an
n X N matrix. They note that their method is very similar to group LARS
(Yuan and Lin, 2006) when v = 2. Both of their procedures differ from the
smoothed LASSO in that all coefficients corresponding to one predictor are
estimated as either zero or nonzero as a group — if a predictor is selected, its
coefficients at different time points are all nonzero, in contrast to the smoothed
LASSO which may have different nonzero coefficients at different times.

In (8), the predictors X are the same for different time points, but in some ap-
plications both X and y can vary over time. Balakrishnan and Madigan (2007)
combine ideas from group LASSO (Yuan and Lin, 2006) and fused LASSO
(Tibshirani et al., 2005), aiming to select important groups of correlated time-
series predictors. Wang et al. (2007h) consider autoregressive error models that
involve two kinds of coefficients, regression coefficients and autoregression co-
efficients. By applying two separate ¢; penalties to regression coefficients and
autoregression coefficients, they achieve a sparse model that includes both im-
portant predictors and autoregression terms.

3.2. Nonlinear models

The original LARS method is for linear regression:
E(Y[|X =x) = f(x) = 0o+ frz1 + ...+ By, (11)

where the regression function f(x) has a linear relationship to the predictors
Z1,...,Tp through the coefficients 31, ..., 3,. The problem can also be viewed
as the minimization of a sum-of-squares criterion

min[Y - X84

with added variable or model selection considerations. The LASSO extension
gives an efficient solution for the case of an ¢; penalty term on regression coef-
ficients:

p
min Y = X3 +0> 185 (12)
j=1

The number of solutions to (12) is finite for 6 € [0, c0), and predictor selection
is automatic since the solutions vary in the number and location of nonzero
coefficients.

The original LARS methods apply to quite general models of the form

EY|X=x)=f(x) =00+ 0101(x) + ...+ Bardnm(x), (13)
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where ¢,,, are (nonlinear) functions of the original predictors X. The ¢,, could,
for example, include higher-order terms and interactions such as z? or z;z;,
nonlinear transformations such as log(z;), piecewise polynomials, splines and
kernels.

The use of nonlinear basis functions ¢;(x) allows the use of linear methods for
fitting nonlinear relationships between y and the predictors x;. As long as the
¢m are predetermined, the fundamental structure of the problem is linear and
the original LARS methods are applicable. For example, Avalos et al. (2007)
consider additive models where each additive component ¢;(x) = ¢;(z;) is
fitted by cubic splines. They discuss the extension of LASSO to those models
by imposing the ¢; penalty on the coeflicients of the linear part to get a sparse
model. A drawback is that the resulting model may not obey order restrictions;
for example it may drop a linear term while keeping the corresponding higher
order terms.

Another example is kernel regression, in which ¢,,(x) = K (xm,x) (m =
1,...,n), where K is a kernel function belonging to a reproducing kernel Hilbert
space (RKHS), and \ is a hyperparameter that regulates the scale of the kernel
function K. By imposing an ¢; penalty on the coefficients with the squared
error loss function, the resulting model has a sparse representation based on a
smaller number of kernels so that predictions can be computed more efficiently.
Wang et al. (2007a) discuss a path-following algorithm based on LARS to fit
solutions to this ¢; regularized kernel regression model, as well as a separate
path-following algorithm for estimating the optimal kernel hyperparameter A.
Guigue et al. (2006) and Gunn and Kandola (2002) consider LASSO extensions
to more flexible kernel regression models, in which each kernel function K (2, -)
is replaced by a weighted sum of multiple kernels.

More generally, the sum-of-squares loss function in (12) can be replaced by
a more general convex loss function £,

min £(y, 6(x)8) + 0 Z 1851, (14)

although solution strategies become more complicated. Rosset and Zhu (2007)
extend the LARS-LASSO algorithm to use Huber’s loss function by specifying
modifications when the solution path hits the knots between the linear part and
quadratic part. Huber’s loss is also considered in Roth (20041) for ¢; regularized
kernel regression based on iteratively reweighted least squares (IRLS). When £
is e-insensitive loss, Lc(y, ) = >+, max(0, |y; — ¥;| — €), the problem becomes
an ¢; regularized Support Vector Machine (SVM). Path-following algorithms for
this problem are discussed in Zhu et al. (2003) and Hastic et al. (2004).

In several important applications, including generalized linear models and
Cox proportional hazards models, some function of the regression function f(x)
is linearly associated with the parameters (:

I(EY[X =x)) =9(f(x) = fo+ rar+ ... + Bpxp. (15)
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Several authors discuss extensions of LARS to these models: generalized lin-
ear models (Lokhorst, 1()()() Roth, 2004; Madigan (111(1 Ridgeway, 2004; Rosset,
2005; Park and Hastie, 2007; Keerthi and Shevade, 2007) and Cox regression
(leshnam 1997; Gui and L1 2005; Park and Hclbtl(,, 2007). 2

Some authors focus on the special case of a binary response (logistic regres-
sion). The function g in (15) has a parametric form and is linearly related to
predictors x. Zhang et al. (2004) consider a nonparametric framework called
Smoothing Spline ANOVA and extend LASSO by using the penalized nega-
tive Bernoulli log-likelihood with an ¢; penalty on the coefficients of the basis
functions. Shi e/ al. (2008) consider a two-step procedure to efficiently explore
potential high order interaction patterns for predicting the binary response in
high dimensional data where the number of predictors is very large. They first
focus on to binary (or dichotomized) predictors, and impose an ¢; penalty on
the coefficients of the basis functions for main effects and higher-order interac-
tions of those binary predictors to achieve a sparse representation. They then
use only the selected basis functions to fit a final linear logistic model.

The preceding paragraphs discuss applications with particular loss functions;
some authors propose general strategies for LASSO problems with general con-
vex loss functions. Rosset and Zhu (2007) discuss conditions under which coef-
ficient paths are piecewise linear. Rosset (2005) discusses a method for track-
ing curved coefficient paths for which the computational requirements severely
limit its suitability for large problems. Kim et al. (2005b) propose a gradient
approach?® that is particularly useful for high dimensions due to computation-
ally affordability; it requires only a univariate optimization at each iteration,
and its convergence rate is independent of the data dimension. Wang and Leng
(2007) suggest using approximations to loss functions that are quadratic func-
tions of the coefficients, so that solutions can then be computed using the LARS
algorithm.

Boosting is another technique that can be used to approximately fit ¢; reg-
ularized models. Efron ef al. (2004) showed that forward stagewise regression
can be viewed as a version of boosting for linear regression with the squared
error loss, producing a similar result to LASSO when the step size approaches
zero. For general loss functions, Zhao and Yu (2007) approximate the LASSO
solution path by incorporating forward stagewise fitting and backward steps.
Friedman (2006) discusses a gradient boosting based method that can be ap-
plied to general penalty functions as well as general loss functions.

Some of the approaches introduced in Section 3.1 for grouped and ordered
predictors have also been extended to nonlinear models. Park and Hastie (2007)
extend a path-following algorithm for elastic net to generalized linear models
for a fixed 65 in (5). They note that adding an ¢5 penalty is especially useful for
logistic regression since it prevents ||3]|; from growing to infinity as the regular-
ization parameter 6 decreases to zero, a common problem that arises in ¢; fitting
to separable data. Park and Hastie (2006h) propose a path-following algorithm

2S-PLUS and R packages glmpath and glars are available, for both GLMs and Cox re-
gression.
3R-package glasso is available.
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for group LASSO in exponential family models. Kim et al. (2006) use a gradi-
ent projection method to extend group LASSO to general loss functions, and
Meier ef al. (2008)% discuss an algorithm for group LASSO for logistic regression
models.

3.3. Other Applications

Robust Regression Rosset and Zhu (2007) and Owen (2006) extend LASSO
by replacing the squared error loss by Huber’s loss. In the linear regression
case this also yields piecewise-linear solution paths, allowing for fast solutions.
Khan et al. (2007) extend LAR by replacing correlations with robust correlation
estimates.

Subset of Observations LARS can be used for choosing an important subset
of observations as well as for selecting a subset of variables. Silva et al. (2005)
apply LARS for selecting a representative subset of the data for use as landmarks
to reduce computational expense in nonlinear manifold models.

Principal Component and Discriminant Analysis Jolliffe et al. (2003)
and Zou et al. (2006) apply ¢ penalties to get sparse loadings in principal com-
ponents. Trendafilov and Joilliffe (2007) discuss ¢; penalties in linear discrimi-
nant analysis.

Gaussian Graphical Models A number of authors discuss using ¢; penal-
ties to estimate a sparse inverse covariance matrix (or a sparse graphical model).
Meinshausen and Bithlmann (2006) fit a LASSO model to each variable, using
the others as predictors, then set the ¢j term of the inverse covariance matrix to
zero if the coefficient of X; for predicting X; is zero, or the converse. Many au-
thors (Yuan, 2008; Banerjee et al., 2008; Dahl et al., 2008; Yuan and Lin, 2007a;
Friedman et al., 2007b) discuss efficient methods for optimizing the ¢1-penalized
likelihood, using interior-point or blockwise coordinate-descent approaches. This
work has yet to be extended to handle nonlinear relationships between variables,
such as (13).

3.4. Computational Issues

There are three primary computation issues: speed, memory usage, and numer-
ical accuracy.

The original LAR algorithm for linear regression as described in Ffron el al.
(2004) and implemented in Efron and Hastie (2003)° is remarkably fast and
memory efficient in the p < n case, as noted in Section 2.1. Minor modifica-
tions allow computing the LASSO and forward stagewise cases. However, the

4R-package grplasso is available.
53-PLUS and R package lars is available.
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implementations use cross-product matrices, which are notorious for numerical
inaccuracy with highly correlated predictors.

Fraley and Hesterberg (2007) (see also Hesterberg and Fraley 2006a,b) de-
velop LARS implementations based on QR decompositions . This reduces the
roundoff error by a factor equal to the condition number of X relative to the
original algorithm. One variation uses only a single pass through the data for an
initial factorization, after which it requires storage O(p?), independent of n; in
contrast the original LARS implementation is intended for in-memory datasets,
and makes multiple passes through the data.

Fu (1998) proposes a shooting algorithm to solve LASSO for a specified value
of the penalty parameter 6. The algorithm is a special case of a coordinate
descent method that cycles through the coordinates, optimizing the current
one and keeping the remaining coordinates fixed. Using a (predefined) grid of
penalty parameters, the coefficient paths can be computed efficiently, especially
in very high-dimensional settings, by making use of the preceding solution as
starting values.

Other coordinate-wise optimization techniques have shown their success with
other penalty types and also for nonlinear models (Genkin et al. 2007;
Yuan and Lin 2006; Meier et al. 2008; Friedman et al. 2007a,b).

Osborne et al. (2000a) propose a descent algorithm for a LASSO problem
with a specified value of the penalty parameter 6, as well as a homotopy method
for the piecewise linear solution path in the linear regression case that is related
to the LAR implementation of Efron et al. (2004). In Osborne et al. (2000b), an
algorithm based on LASSO and its dual is proposed that yields new insights and
an improved method for estimating standard errors of regression parameters.

Nonlinear regression In the linear regression case the solution path is piece-
wise linear, and each step direction and jump size can be computed in closed-
form solution. In the nonlinear case paths are curved, so that iterative methods
are needed for computing and updating directions and determining the ends of
each curve, requiring multiple passes through the data. Hence the algorithms
are much slower than in the linear case.

4. Theoretical Properties and Alternative Regularization
Approaches

In this section we discuss some theoretical properties of LASSO, and illus-

trate how some alternative regularization approaches address the drawbacks
of LASSO.

4.1. Criteria

It is important to distinguish between the goals of prediction accuracy and
variable selection. If the main interest is in finding an interpretable model or

6S-PLUS and R package sclars is available.
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in identifying the “true” underlying model as closely as possible, prediction
accuracy is of secondary importance. An example would be network modeling
in biology. On the other hand, if prediction is the focus of interest, it is usually
acceptable for the selected model to contain some extra variables, as long as the
coefficients of those variables are small.

4.1.1. The Prediction Problem

Greenshtein and Ritov (2004) study the prediction properties of LASSO type
estimators. For a high-dimensional setting, where the number of parameters can
grow at a polynomial rate in the sample size n and the true parameter vector
is sparse in an ¢;-sense, they show that

E[(Y - xTB,)% —0? =0 (n— o0)

for a suitable choice of the penalty parameter § = 6,, (and other mild conditions),
where o2 is the error variance. There are no strict conditions on the design
matrix X. This risk consistency property is also called “persistency”.

4.1.2. The Variable Selection Problem

An important theoretical question is: “Is it possible to determine the true
model, at least asymptotically?” The answer is “Yes, but with some limita-
tions”. Meinshausen and Bithlmann (2006) show that LASSO is consistent for
variable selection if and only if a neighborhood stability condition is fulfilled.
Zhao and Yu (2006) made this condition more explicit and used the term “ir-
representable condition” for it. Under other assumptions, both sources show
that LASSO is consistent for model selection, even if p = p,, is allowed to grow
(at a certain rate) as n — oo. The irrepresentable condition requires that the
correlation between relevant and irrelevant predictors not be too large (we call
a predictor relevant if the corresponding (true) coefficient is nonzero and ir-
relevant otherwise). Unfortunately, the theory assumes that the regularization
parameter 6 follows a certain rate, which is impractical for applications. Even
80, the result implies that the true model is somewhere in the solution path with
high probability. In practice, people often choose 6 to be prediction optimal (or
use some other criteria like C).

Meinshausen and Bithlmann (2006) and Leng et al. (2006) illustrate some sit-
uations where a prediction optimal selection of § leads to estimated models that
contain not only the true (relevant) predictors but also some noise (irrelevant)
variables. For example, consider a high-dimensional situation with an underly-
ing sparse model, that is where most variables are irrelevant. In this case a large
value of the regularization penalty parameter § would be required to identify
the true model. The corresponding coefficients are biased significantly toward
zero, and the estimator will have bad prediction performance. In contrast, a pre-
diction optimal @ is smaller; in the resulting model, the relevant coefficients will
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not be shrunken too much, while the noise variables still have small coefficients
and hence do not have a large effect on prediction.

Recently it has been shown that LASSO is consistent in an f4-sense, for
q € {1,2}. This means that

1B, —Bllg =0 (n— o), (16)

(Meinshausen and Yu 2008; Zhang and Huang 2007; Bunea et al. 2007;
van de Geer 2008); for a high-dimensional setting and a suitable sequence 6,,, of-
ten under much fewer restrictions than needed for model selection consistency.
For fixed dimension p, this convergence result implies that coefficients corre-
sponding to the relevant predictors will be non-zero with high probability. The
conclusion is that the sequence of models found using LASSO contains the true
model with high probability, along with some noise variables.

This suggests that LASSO be used as a ‘variable filtering’ method. When
there are a very large number of predictors, a single regularization parameter 6
is not sufficient for selecting variables and coefficient estimation. LASSO may
be used to select a small set of predictors, followed by a second step (LASSO
or otherwise) to select coefficients for those predictors, and also to perform
additional variable selection in some cases.

4.2. Adaptive LASSO and related methods

One example of a two-step method is relazed LASSO (Meinshausen, 2007)7.
It works roughly as follows: Calculate the whole path of LASSO solutions and
identify the different submodels along the path. For each submodel, use LASSO
again, but with a smaller (or no) penalty parameter ¢8, where ¢ € [0, 1], i.e. no
model selection takes place in the second step. By definition, relaxed LASSO
finds the same sets of submodels as LASSO, but estimates the coefficients using
less shrinkage: Model selection and shrinkage estimation are now controlled by
two different parameters.

The hope is that the true model is somewhere in the first LASSO solution
path. Relaxing the penalty may give better parameter estimates, with less bias
toward zero. If we use ¢ = 0 in the second step, this is exactly the LARS/OLS
hybrid in Efron et al. (2004). In most cases, the estimator can be constructed at
little additional cost by extrapolating the corresponding LASSO paths. Empir-
ical and some theoretical results show the superiority over the ordinary LASSO
in many situations. Meinshausen (2007) shows that the convergence rate of
E[(Y —xT3,)2] — 02 is mostly unaffected by the number of predictors (in con-
trast to the ordinary LASSO) if the tuning parameters 6 and ¢ are chosen by
cross-validation. Moreover, the conjecture is that a prediction-optimal choice of
the tuning parameters leads to consistent model selection.

Another two-step method is adaptive LASSO (Zou, 2006). It needs an initial
estimator Bmm e.g. the least-squares estimator in a classical (p < n) situation.

"R package relaxo is available.
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Weights can then be constructed based on the importance of the different pre-
dictors. For example, if the coefficient of the initial estimator is rather large,
this would seem to indicate that the corresponding variable is quite important,
and the corresponding coefficient shouldn’t be penalized much. Conversely, an
unimportant variable should be penalized more. The second step is a reweighted
LASSO fit, using a penalty of the form

P
0 w;16,
j=1

where w; = 1/ an ;17 for some v > 0. Note that the weights are constructed
in a ‘data adaptive’ way. As with relaxed LASSO, the idea is to reduce bias by
applying less shrinkage to the important predictors. From a theoretical point of
view, this leads to consistent model selection, under fewer restrictions than for
LASSO. If # = 6,, is chosen at an appropriate rate it can be shown that

lim P[A, = Al =1,

n—oo
where A, is the estimated model structure and A is the true underlying model
structure. As in all penalty methods, the choice of the penalty parameter 6 is
an issue, but prediction-optimal tuning parameter selection gives good empirical
results.

Besides model selection properties, adaptive LASSO enjoys ‘oracle proper-

ties’: it is asymptotically as efficient as least squares regression using the perfect
model (all relevant predictors and no others) as identified by an oracle:

V(B —Ba) — N, 0*(Can)™t) (n— ),

where C 44 is the submatrix of C = lim,, o +X”'X corresponding to the active
set.

Implementation of the adaptive LASSO estimator is easy: After a rescaling of
the columns of the design matrix with the corresponding weights, the problem
reduces to an ordinary LASSO problem. Huang et al. (2008) develop some the-
ory about the adaptive LASSO in a high-dimensional setting. Several authors
discuss applying the adaptive idea to other LASSO models and prove their or-
acle properties: Wang and Leng (2006) for group LASSO, Wang et al. (2007D)
for autoregressive error models, Ghosh (2007) for elastic net, and Zhang and Lu
(2007) and Lu and Zhang (2007) for Cox’s proportional hazards model.

A predecessor of the adaptive LASSO is the nonnegative garrote (Breiman,
1995). It rescales an initial estimator by minimizing

P . P
1Y = xiBinargeills +0 ¢,
j=1 j=1

subject to ¢; > 0 for all j. Indeed, the adaptive LASSO with v+ = 1 and the
nonnegative garrote are almost identical, up to some sign constraints (Zou,
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2006). The nonnegative garrote is for example also studied in Gao (1998) and
Biithlmann and Yu (2006). More recently, Yuan and Lin (2007b) proved some
consistency results and showed that the solution path is piecewise linear and
hence can be computed efficiently.

The above methods try to reduce the bias of the estimates for the relevant
predictors by applying less shrinkage whenever the corresponding coefficients
are large. This raises the question of whether we could achieve similar behavior
with a suitably chosen penalty function. Fan and Li (2001) propose the SCAD
(smoothly clipped absolute deviation) penalty, a non-convex penalty that penal-
izes large values less heavily. It also enjoys oracle properties. The main drawback
is the computational difficulty of the corresponding non-convex optimization
problem.

Zou and Li (2008) make a connection between (adaptive) LASSO and SCAD.
They use an iterative algorithm based on a linear approximation of the SCAD
penalty function (or other penalties). In an approximation step, an (adaptive)
LASSO problem is solved, and hence a sparse solution is obtained. This solution
is then used for the next approximation step, and so on. However, it is not nec-
essary to use more than one iteration: their One-Step (one iteration) estimator
is asymptotically as efficient as the final solution, and hence also enjoys oracle
properties.

Conversely, adaptive LASSO can also be iterated: the coefficients can be
used to build new weights w;, and new coefficients can be calculated using
these weights, and the iteration can be repeated. Biithlmann and Meier (2008)
and Candes et al. (2007) find that doing multiple steps can improve estimation
error and sparsity.

4.3. Dantzig selector

Candes and Tao (2007) propose an alternative variable selection method called
Dantzig selector, by optimizing

mﬁinHXT(Y — XB)||s subject to ||3]1 < t.

They discuss an effective bound on the mean squared error of 3, and the result
can be understood as a deterministic version of (16). This procedure, which
can be implemented via linear programming, may be valuable in high dimen-
sional settings. In contrast, Tibshirani (1996) originally proposed a quadratic
programming solution for LASSO, though the LAR implementation is more
efficient.

However, Efron et al. (2007) and Meinshausen et al. (2007) argue that LASSO
is preferable to the Danzig selector for two reasons: implementation and perfor-
mance. Although Dantzig selector has a piecewise linear solution path
(Rosset and Zhu, 2007), it contains jumps and many more steps, making it
difficult to design an efficient path-following algorithm like the LARS imple-
mentation of LASSO. Furthermore, in their numerical results, they show that
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LASSO performs as well as or better than Dantzig selector in terms of prediction
accuracy and model selection.

5. Software

There are a number of S-PLUS and R packages related to LARS, including:

brdgrun (Fu, 2000), elasticnet (Zou and Hastie, 2005a), glars

(Insightful Corportation, 2006), glasso (Kim et al, 2005a), glmpath

(Park and Hastie, 2006a), grplasso (Meier et al., 2008), lars (Efron and Hastie,
2003), lasso2 (Lokhorst et al., 1999), relaxo (Meinshausen, 2007).

6. Conclusions and Future Work

LARS has considerable promise, offering speed, interpretability, relatively stable
predictions, nearly unbiased inferences, and a nice graphical presentation of co-
efficient paths. But considerable work is required in order to realize this promise
in practice. A number of different approaches have been suggested, both for lin-
ear and nonlinear models; further study is needed to determine their advantages
and drawbacks. Also various implementations of some of the approaches have
been proposed that differ in speed, numerical stability, and accuracy; these also
need further assessment.

Alternate penalties such as the elastic net and fused LASSO have advantages
for certain kinds of data (e.g. microarrays and proteomics). The original LARS
methodology is limited to continuous or binary covariates; grouped LASSO and
LAR offer an extension to factor variables or other variables with multiple de-
grees of freedom such as polynomial and spline fits. Work is needed to further
investigate the properties of these methods, and to extend them to nonlinear
models.

Further work is also needed to address some practical considerations, includ-
ing order restrictions (e.g. main effects should be included in a model before
interactions, or linear terms before quadratic), forcing certain terms into the
model, allowing unpenalized terms, or applying different levels of penalties to
different predictors based on an analyst’s knowledge. For example, when esti-
mating a treatment effect, the treatment term should be forced into the model
and estimated without penalty, while covariates should be optional and penal-
ized.

Additional work is needed on choosing tuning parameters such as the mag-
nitude of the ¢; penalty parameter in LASSO and other methods, the number
of steps for LAR, and the multiple tuning parameters for elastic net and fused
LASSO. Closely related is the question of statistical inference: is a larger model
significantly better than a simpler model? Work is needed to investigate and
compare model-selection methods including C), AIC, BIC, cross-validation, and
empirical Bayes.

Work is also needed to develop estimates of bias, standard error, and confi-
dence intervals, for predictions, coefficients, and linear combinations of coeffi-
cients. Are predictions sufficiently close to normally-distributed to allow for the
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use of t confidence intervals? Does it even make sense to compute standard er-
rors? Coefficients are definitely not normally distributed, due to a point mass at
zero; but when coefficients are sufficiently large, might ¢ intervals still be useful,
and how would one compute the standard errors?

The signal-to-noise ratio needs to be examined for the proposed methods, and
alternatives compared. Evidence for a good signal-to-noise ratio would provide
a strong impetus for their adoption by the statistical community.

Speed is also an issue, particularly for nonlinear models, and especially when
cross validation is used for model selection or bootstrapping is used for infer-
ences. In the linear regression case the cross-product matrices or Q R decompo-
sition required for computations can be calculated in a single pass through the
data. In contrast, for nonlinear models, fitting each subset of predictors requires
multiple passes. Development of fast methods for nonlinear models is highly
desirable.

Finally, to truly realize the promise of these methods beyond the domain of
academic research, work is needed on usability issues. Implementations must be
robust, numerical and graphical diagnostics to interpret regression model output
must be developed, and interfaces must be targeted to a broad base of users.

We close on a positive note, with comments in the literature about LARS:
Knight (2004) is impressed by the robustness of LASSO to small changes in its
tuning parameter, relative to more classical stepwise subset selection methods,
and notes “What seems to make the LASSO special is (i) its ability to produce
exact 0 estimates and (ii) the ‘fact’ that its bias seems to be more controllable
than it is for other methods (e.g., ridge regression, which naturally overshrinks

large effects) ...” Loubes and Massart (2004) indicate “It seems to us that it
solves practical questions of crucial interest and raises very interesting theoret-
ical questions ...”. Segal et al. (2003) write “The development of least angle

regression (LARS) (Efron et al., 2004) which can readily be specialized to pro-
vide all LASSO solutions in a highly efficient fashion, represents a major break-
through. LARS is a less greedy version of standard forward selection schemes.
The simple yet elegant manner in which LARS can be adapted to yield LASSO
estimates as well as detailed description of properties of procedures, degrees of
freedom, and attendant algorithms are provided by Efron et al. (2004).”

The procedure has enormous potential, which is evident in the amount of
effort devoted to the area by such a large number of authors in the short time
since publication of the seminal paper. We hope that this article provides a sense
of that value.

Additional information, including software, may be found at
www.insightful.com/lars
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