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Association models for a pair of random elements X and Y (e.g., vectors)
are considered which specify the odds ratio function up to an unknown para-
meter . These models are shown to be semiparametric in the sense that they
do not restrict the marginal distributions of X and Y. Inference for the odds
ratio parameter # may be obtained from sampling either ¥ conditionally on X
or vice versa. Generalizing results from Prentice and Pyke, Weinberg and Wa-
cholder and Scott and Wild, we show that asymptotic inference for # under
sampling conditional on Y is the same as if sampling had been conditional
on X. Common regression models, for example, generalized linear models
with canonical link or multivariate linear, respectively, logistic models, are
association models where the regression parameter 8 is closely related to the
odds ratio parameter 6. Hence inference for 8 may be drawn from samples
conditional on Y using an association model.

1. Introduction and outline. A common approach to describe the relation-
ship between a random output variable Y of interest (e.g., a health status) and a
random input vector X (e.g., consumption of tobacco, alcohol and other risk fac-
tors) is by means of a parametric regression model which specifies the conditional
distribution of Y given X = x up to an unknown parameter vector. In the most
simple case Y is an indicator (e.g., for the presence of a disease) and the condi-
tional distribution is binomial B(1, p(x)). The popular logistic regression model
relates the logistic transform of p(x) and a vector z = h(x) € RS of covariates—
obtained from x by a suitable function ~—through logit p(x) =y + z’ # with
parameters ¥ € R and 6 € RS. The appropriate sampling scheme for this model
is to sample Y conditionally on X = x for specified values of x. In epidemiology
this is called a cohort study, each of the J cohorts being determined by its value x.
In contrast, the so-called case-control studies are obtained by sampling X con-
ditional on Y =1 (cases), respectively, ¥ = O (controls). An important result by
Prentice and Pyke [12] briefly states that asymptotic inference for the parameter 8
(but not for y) in a case-control study may be obtained as if the data came from a
cohort study. Actually their work covers the multivariate logistic regression model
(cf. Example 3) for a random variable Y taking values in {0, 1, ..., K} and was
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460 G. OSIUS

generalized by Scott and Wild [14] to multiplicative intercept models. Our aim is
to extend these results to semiparametric odds ratio models (introduced in [9]) for
random elements, including in particular random vectors Y and X, each with con-
tinuous and/or discrete components. The odds ratio function OR(x, y) for the joint
density p(x, y) of X and Y is defined as a cross-product ratio with respect to fixed
reference values x° and y°:

_p(x,y) - p(x®,y°)
p(x,y°) - p(x°, )

An equivalent description is given by the corresponding ratio for the conditional
density p(y | X = x) of Y given X—or vice versa. Under mild assumptions the
joint distribution of (X, Y) is uniquely determined by the odds ratio function and
the marginal distributions of X and Y; compare [9] or [10]. And conversely, for any
pair of marginal distributions for X and Y and an odds ratio function there exists a
joint distribution having these properties. The odds ratio function thus captures the
complete association structure of X and Y by ignoring the information contained
in the marginal distributions. A parametric odds ratio model specifies only the odds
ratio function up to an unknown parameter vector 6, that is,

log OR(x, y) =g (x, y).

This model is semiparametric in the sense that it does not restrict the marginal
distributions of X and Y, but only the association structure. An important class are
log-bilinear association models where the log-odds ratio function is bilinear with
respect to given transformations z = hx (x) and v = hy(y), that is,

(1.1) log OR(x, y) =z" @v.

OR(x, y)

In fact, some widely used regression models, for example, generalized linear mod-
els with canonical link function and multivariate linear, respectively, logistic re-
gression models, have a log-bilinear association structure. The assumptions con-
cerning the conditional distribution of ¥ given X in these regression models may
be removed by passing to the corresponding log-bilinear odds ratio model. One
advantage of odds ratio models over regression models is that inference about
the odds ratio parameter # may be obtained from sampling X conditionally on
Y or vice versa. To prove this, we first observe that maximum likelihood estima-
tion is invariant under both conditional sampling schemes, that is, the estimate 0
maximizing the conditional likelihood L x|y for samples of X given Y also maxi-
mizes the corresponding conditional likelihood Ly x for samples of ¥ given X—
and conversely. Generalizing the result in Prentice and Pike [12] and Scott and
Wild [14], we show that the estimated asymptotic covariance matrix for 9 is in-
variant under both conditional sampling schemes, too. Hence asymptotic inference
concerning the odds ratio parameter # may be obtained from a sample drawn con-
ditionally on Y as if the sample had been drawn conditionally on X.
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The paper is organized as follows. In Section 2 we establish that the joint distri-
bution of (X, Y) is uniquely determined by its odds ratio function and the marginal
distributions (uniqueness theorem), and that each of these three components can
vary independently of another (existence theorem). The latter result will be proved
here under weaker assumptions than in [9] using a different approach. Association
models are introduced in Section 3 and some widely used regression models are
recognized having a log-bilinear association. Although log-bilinear association is
a natural and common choice, we derive the main results for more general odds
ratio models determined by

(1.2) logOR(x,y) =G(z,V,80),

where G is a given (sufficiently smooth) function. Section 4 establishes that the
maximum likelihood estimate @ is invariant under the usual sampling schemes:
unconditional or conditional on X, respectively, Y. For log-bilinear association
models the likelihood to maximize corresponds to a log-linear model for a suit-
able contingency table. Hence results on the existence and uniqueness as well as
techniques to compute the estimate are already available.

Knowing that the estimate 6 is invariant under conditional sampling given ei-
ther X or Y, we establish in several steps our main result, that its estimated asymp-
totic normal distribution is invariant, too. In Section 5 we consider sampling X
conditional on Y but maximize the “reverse” conditional log-likelihood £(X)—
arising from conditioning ¥ on X—with respect to A = (@, y*), where y* is a
nuisance parameter vector. For the information matrix I(A) = E(—D%XE(X)) we
show that the submatrix [I~!(1)]ge of I"1(X) corresponding to @ is indeed the
asymptotic covariance matrix of 0. To establish the asymptotic normality of the
estimate A, we first prove its consistency in Section 6. Our asymptotic approach
applies to a fixed set {yg, ..., yx} of values for Y to be conditioned upon and inde-
pendent samples of size n; from each conditional distribution of X given Y = yy,
such that n = ) ny tends to infinity while the ratios nj;/n remain fixed. In Sec-
tion 7 the asymptotic normality is derived more generally for any (weakly) consis-
tent estimate A which solves the estimating equation at least approximately, that is,
Dy £(L) = op(4/n). Using the observed information J(A) = —D%Xﬁ(k) as a consis-
tent estimate of I(L), we finally obtain the asymptotic normality of the odds ratio
estimate

6~N@O, I D)lgo)-

The estimated asymptotic covariance matrix here is exactly the same as if sampling
had been conditional on X for the observed x-values.

We do not attempt to derive our results under the weakest possible assumptions
but prefer a few easily interpretable conditions which will be verified for a log-
bilinear association model under mild distributional assumptions. The approach
adopted here is symmetric in X and Y so that interchanging X with Y in any
argument entails its dual.
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2. The odds ratio function. Consider arbitrary nonempty spaces Q2x, respec-
tively Qy, with o -algebras By, respectively By, and denote the product o -algebra
on 2 = Qx x Qy by B. Let £ the space of all probability measures P on (2, 8B)
and denote the marginal distributions of P on Qy, respectively Qy, by PX, re-
spectively PY. The definition of an odds ratio function for P requires a posi-
tive density with respect to a product measure and a natural choice is the prod-
uct PXY = PX x PY of the marginals. This leads to the subspace of probability
measures P having a positive density with respect to PXY, or equivalently, are
dominated by and dominate PXY:

[ - D p _ i) XY
J<_{Pe4y———>q_4PeJ|P«J> < P).

For any P € P« with density p = dP/dPXY its odds ratio function OR p With
respect to fixed reference values x° € Qx and y° € Qy is defined on Q2 x Q2 by
_ P, y) - p(x®y°)

px,y°) - p(x°,y)

2.1 OR,(x,y)
The choice of the dominating product measure PXY is not essential (cf. [9]): re-
placing p by a positive density p,, with respect to a product v = vx X vy of o -finite
measures yields the same ratio (2.1). Since the density p of P is only unique up to
almost sure equality, the same holds for the odds ratio function OR,, of P, which
nevertheless will also be denoted simply by OR(P). The log-odds ratio function
may be written in terms of the log-density

(2.2) logORp(x,y) =log p(x,y) +log p(x°, y°) —log p(x, y°) —log p(x°, y).

It is convenient to view any P € & as a joint distribution of a pair (X, Y) of random
elements defined on some probability space with values in Q2 and the odds ratio
function of (X, Y) is defined by OR(X, Y) = OR(P).

To show that the odds ratio function completely characterizes the association
between X and Y, we have to restrict the joint distribution P by requiring that
its log-density log p is PXY -integrable, or equivalently, that the Kullback—Leibler
information [7]

dpPXY
1(P*Y | P):/log(—dp )dPXY

is finite. Any P in the subclass Py = {P € P« | I(PXY | P) < 0o} is uniquely
determined by its marginal distributions and its odds ratio function.

THEOREM 1 (Uniqueness). Any P, P> € J’f having the same marginals
Plx = P2X , P1Y = P2Y and the same odds ratio function OR(P1) = OR(P;) agree:
P =Ps.
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For a proof one easily establishes I (P; | P») = 0 using (2.2); compare [10].

Next we want to “define” a distribution P on €2 by specifying its marginal dis-
tributions and its (log) odds ratio function. For given distributions wy on Qx and
my on Qy and a measurable function ¥ on €2, we investigate under which condi-
tions we can finda P € J’f with PX =7y, PY =y and log OR(P) = . First of
all, ¥ has to satisfy the obvious constraints

CONDITION (OR1). ¥ (x,y°) =0, ¥ (x°, y) =0 for all x, y.

Furthermore from P € 5, and (2.2) we obtain two necessary integrability con-
ditions:

CONDITION (E1). v is mx X my-integrable.

CONDITION (E2). There exists mx-integrable f:Qy —> R my-integrable
y : Qy —> R functions such that exp(yy — 8 — y) is mx X my-integrable.

These conditions are also sufficient for the existence of the wanted P € JP/.

THEOREM 2 (Existence). For distributions wy on Qx and wy on Qy and a
measurable function  on Q x Q the following statements are equivalent:

(a) There exists P € P with PX = nx, PY =y and log OR(P) = .
(b) There exists P € Pr with log OR(P) = .
(c) ¥ satisfies Conditions (OR1), (E1) and (E2).

The proof is given in Appendix A.1. A few remarks are in order.

1. Conditions (E1) and (E2) hold for bounded , for example, for continuous
and compact 2.

2. The integrability of exp(y» — 8 — ) in Condition (E2) holds if ¢ < 8+ y. And
if even |¢| < B + y, then Condition (E1) follows, too.

3. For finite Qy (or Qx) Condition (E1) implies Condition (E2) for B(x) =
X, 1% (x, ) and y =0.

4. Although P is uniquely determined by Theorem 1, there is no explicit formula
for P available. In the proof P is given by an /-projection, which can only be
obtained as a limit in an iterative procedure. Only for binary Y (and vector-
valued X) the distribution P is easily available; compare [1] or [9].

5. A stronger version of Condition (E2) requiring exp(iy» — ) and exp(y¥y — y) to
be integrable was used in [9, 10] to obtain P as a limit of an iterative propor-
tional fitting procedure.

6. For finite spaces Q2x and Qy this result has long been known; compare [11],
Section 3.4.
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3. Association models. An association model for the joint distribution P of
(X, Y) only restricts the odds ratio function of P and leaves the marginal distrib-
utions of X and Y arbitrary. To formulate such a model we assume that P has a
positive density with respect to a fixed product measure v = vy X vy of o-finite
measures Vy, respectively vy, on Qy, respectively Qy. Hence P is restricted to
the class PXY = (P € P | P K v « P} C P, which also restricts the marginal
distribution PX of X to

PX = {mx probability measure on Qy | 7y K vy < Ty},

and the marginal PY to the corresponding #Y. From now on all densities on £,
respectively Qx, Qy are taken with respect to the dominating measure v, respec-
tively vy, vy.

We consider parametric association models indexed by a parameter vector
0 < RS. For any 0 let 1y be a measurable function on Q satisfying Condi-
tion (OR1). The parametric odds ratio model restricts the log-odds ratio function
of P to logOR(P) = g for some 0. To guarantee for any @ and any marginals
wx, Ty the existence of a joint distribution P with 9 = log OR(P) and these
marginals, we assume the following bounding condition:

CONDITION (OR2). There exist nonnegative measurable functions Ux
on Q2x and Yy on Qy with [Yg(x, y)| < [¥x(x) + ¥y (y)]- (|0 forall 0, x, y.

Furthermore we restrict 7y to the class {PfX ={nx € PX| &X is wx-integrable}

and my to the corresponding class & fY . Condition (¢) in Theorem 2 holds for any
Ty € J’fx Ty € J’fy and @, and hence there exists a unique P € Py with PX =

7x, PY =y and log OR(P) = p. Thus a parametric association model (PAM)
for distributions P in {PJX Y = pX¥ 0 P 1s specified by the requirements

(3.1) log OR(P) € {yg | 6 € RS}, PX e {P/X PY e Pl

This is a semiparametric model for the joint distribution P since the marginals are
only slightly restricted by integrability conditions. By (2.2) a density p(x,y) of
Pe J’fx Y satisfying (3.1) can be parametrized as

(3.2) logp(x,y) =a+ Bx)+y () + velx,y)

with @ € R and integrable functions § and y. Identifiability may be achieved
through the constraints 8(x°) = 0 and y(y°) = 0, which will be assumed here.
The integration constant « is determined by

a=—log [ exp(B +y + o) dv
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and marginal density pX (x) of PX is given by
log p* (x) =a + B(x) + 5(x), 8(x) = log[/ exp(y () + Yo (x, ) dVY(y)]-

The conditional distribution of ¥ given X = x belongs to " and the conditional
density p(y | X = x) satisfies

(3.3) log p(y | X =x) =y (y) +v¥p(x,y) —5(x).

The integration constant §(x) can be removed by passing to the density ratio
Pyl X=x)

(3.4) log —————=y () + Vo(x, y).
p(y°lX =x)

Equation (3.4) may be viewed as a “regression model.” Conversely, suppose a
model for P is specified by (3.4) with an arbitrary integrable function y and the
parametric family 9. Then log OR(P) = vy and hence the model (3.4) is semi-
parametric in the sense that it does not restrict the marginal distributions P* and
PY—provided they belong to the class jX , respectively P fY. In the latter case the
regression model (3.4) is in fact equivalent to the association model (3.1). Note
that for finite Qy and counting measure vy the integrability condition imposed by
PY e J’[Y always holds.

An important class of parametric association models are log-bilinear asso-
ciation (LBA) models with respect to measurable maps hyx:Qx — RXx and
hy : Qy —> RXY | which will always be chosen here such that ~x(x°) =0 and
hy(y°) =0. The parameter € is a Kx x Ky-matrix and the log-odds ratio function
is bilinear in the transformed variables Ay (x) and Ay (y)

3.5) Yo(x,y) =hx(x)T0hy(y)  forallx,y.

Since |hx(x)T0hy (»)| < llhx )| - Ay (y)]l - 1], Condition (OR2) holds for
VUx (x) = |hx (x)||> and ¥y (y) = ||hy (¥)]|>. And the integrability condition in fPfX

and JP}/ states that the second moments E (||Ax (X)||%) and E (||hy (Y)||?) are finite.

Any submodel of (3.5) specified by a linear restriction of the form § = A7 §*B with
given matrices A, B and parameter matrix 8 yields a log-bilinear association too,
with respect to iy = Ahy, hy =Bhy.

Association models have been introduced long ago in the context of contin-
gency tables, that is, when both X and Y have a finite range; see [4] for a review.
The “RC association models” and “RC correlation models” in [4] are both asso-
ciation models in our sense, the former (but not the latter) being log-bilinear. Ex-
tensions of these models to multivariate contingency tables studied in Gilula and
Haberman [3] also satisfy (3.1). Goodman [4] has generalized the bivariate normal
distribution to a bivariate log-bilinear model in our sense, but did not establish its
semiparametric nature. Returning to our primary focus, namely general random
vectors X and Y, the following examples reveal that the association structure of
some widely used regression models is in fact log-bilinear.
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EXAMPLE 1 (Generalized linear models). Let Y be a univariate random
variable, X an R-dimensional random vector and suppose that the conditional
density of Y given X = x belongs to the exponential family p(y | X = x) =
expl{a(@) [y - t(x) — b(t(x))] + c(y, ¢)} with suitable functions a, b, ¢, T and
a (dispersion) parameter ¢; compare [8]. Then the log-odds ratio function has
the form ¥ (x,y) = a(@)~ ' [t(x) — 1(x°)] - [y — ¥°] and t(x) is a strictly
monotone function of the conditional expectation u(x) = E(Y | X = x), namely
7(x) = A(u(x)), where A~ =4/, A generalized linear model specifies the condi-
tional expectation via a link function g:

(3.6) gn(x) =a+2"B,

where z = hx (x) € RS is a known vector of formal covariates (obtained from x by
a given function i x) and o« € R, B € RS are unknown parameters. For G = Ao g ™!
and hy (x°) = 0 the log-odds ratio function is ¥ (x, y) = a(¢) ! - [G(a + 2T B) —
G(a)]- [y — »°]. If the canonical link g = 2~1 is chosen, then

(3.7) Y(x,y)=2"0[y — y°]

is of the form (3.5) with Ay (y) = y — y° and parameter § = a(¢)~! 8. Note that the
intercept « is no longer present in (3.7). Taking the log-bilinear association model
(3.7) instead of (3.6) weakens the distributional assumption while still including
the regression parameter 8 up to a positive constant a(¢)~!. In particular a linear
hypothesis Cf = 0 with a given matrix C is equivalent to C# = 0, and for a vec-
tor ¢ a one-sided hypothesis ¢/ 8 > 0 is equivalent to ¢/ @ > 0. Generalized linear
models with canonical link are often used. First of all, normal conditional distrib-
utions N (i (x), 02) of Y yield the classical linear model with a(¢) = o2. Second,
binomial conditional distributions B(u(x), 1) lead to logistic regression models.
And finally, for Poisson conditional distributions Pois(w(x)) log-linear models are
obtained. Note that for the latter two models we have a(¢) = 1 and hence 6 = 8.

The above semiparametric nature of the logistic regression model has been no-
ticed before; compare Breslow, Robins and Wellner [1], who established its semi-
parametric efficiency under case-control sampling. However, the logistic regres-
sion model is the only one among generalized linear models for binary Y which
is equivalent to an association model (3.1); compare [9] or Example 2 below. And
the resulting relation between the two conditional densities (given X, resp., Y) has
been noticed before by Kagan [6].

EXAMPLE 2 (Multivariate linear logistic regression). Extending univariate
logistic regression to the multivariate case, suppose Y (e.g., a disease status)
takes values in Qy = {0,1,..., K}, K > 1, and X is an R-dimensional vec-
tor of observed covariates. Then JL(Y | X = x) is a multinomial distribution
Mg 41(1, m(x)) with K 4 1 classes and probabilities mx(x) = P(Y =k | X =x) >
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0. Using the multivariate logistic transformation logitmy (x) = log(mwy (x) /7o (x))
of w(x), the linear logistic regression model is given by

(3.8) logit 7y (x) = yx + 2 0y, k=1,...,K,

where z = hx (x) € RS is as above a vector of formal covariates and y; € R, 0 €
RS are unknown parameters. Choosing y° = 0, the log-odds ratio function is

3.9) Yx,y) =hx () 0k = hx(x)T0hy k),

where § = (0,...,0k) is an § x K parameter matrix, and the function Ay :
Qy — RXK maps k > 0 to the kth unit vector e; and hy(0) = 0. Hence
the linear logistic regression model is equivalent to the log-bilinear association
model (3.9)—provided E (|| x (X)]|?) is finite. As mentioned above, this also holds
for submodels given by linear constraints, for example, 6; = 6 for all k > 0. Al-
though the model (3.8) has been known for a long time, its semiparametric char-
acter (based on Theorem 2) does not seem to have been established before for
K > 2.

Replacing z” 0 by an arbitrary function g(z, 6;) leads to a general logistic
regression model

logit mx (x) = v + g(z, 0y), k=1,...,K,

which is equivalent to the log-odds ratio model
Y(x,y) =ghx(x),0k) =g(hx(x),0hy (k).

EXAMPLE 3 (Multivariate linear regression). Let ¥ and X be random vectors
taking values in RX | respectively R®, and suppose that the conditional distribution
of Y given X is multivariate normal,

(3.10) LY | X =x) = Ng(uyx), %),

such that the conditional covariance matrix X is nonsingular and does not depend
on x. From the conditional log-density

log p(y | X = x) = —3[logl2m)® det(X)1 + [y — uy )1 Ty — sy (0)1]

the log-odds ratio function with respect to y° = 0 is ¥ (x,y) = [uy(x) —
wy (x2)1T £y, The multivariate linear regression model

(3.11) py(x)=a+pz

with covariates z = hx(x) € RS and S x K parameter matrix 8 has a log-bilinear
association

(3.12) Yx,y)=hx(x)T0y

with parameter matrix § = BX~!—assuming Ay (x°) = 0. Note that the regres-
sion parameter § may only be recovered from @ if the covariance matrix X is



468 G. OSIUS

known. However, any linear hypothesis CB = 0 is equivalent to the corresponding
hypothesis C8 = 0, and the latter may be tested using the semiparametric associ-
ation model (3.12) instead of the regression model (3.11) with the distributional
assumption (3.10). If instead of (3.10) we allow the conditional covariance matrix
to depend on x, that is, L(Y | X = x) = Ng(uy(x), X(x)), then (3.11) leads to
Y(x,y)= hX(x)Tﬂ):_l (x)y, which is not bilinear.

The above examples reveal that important regression models may be generalized
to log-bilinear association models by ignoring the distributional assumption for the
conditional distribution. Although log-bilinear association is a natural candidate,
we also consider the more general association model

(3.13) Vo (x,y) =G(hx(x),hy(y),0)  forallx,y,

given by a fixed function G with G(0, —, =) = G(—,0,—) = 0. We assume
throughout that the function G satisfies the following regularity condition (al-
though some results also hold under weaker assumptions):

CONDITION (R1). G(z,v,#) is thrice continuously differentiable with re-
spect to @ for all z € hx[Q2x], v € hy[Qy] and the derivatives are continuous in z
and v.

Further properties of the functions k2 x, hy and G will be assumed later in Con-
ditions (R2”) and (MC).

4. Estimation. For a given data set (x;, y;) withi =1, ..., n we want to es-
timate the association parameter @ of the model (3.13) under unconditional sam-
pling from the joint distribution of (X, Y) and conditional sampling of ¥ given X
or vice versa. Not surprisingly the maximum likelihood estimate 6 under any of
these three sampling schemes may be obtained as a solution of the same estimating
equation.

4.1. Unconditional sampling. For unconditional sampling the data set (x;, y;)
is an independent sample from the joint distribution of (X, Y). Suppose there are
J + 1 > 1 different x-values and K + 1 > 1 different y-values observed and
denote the corresponding subsets of Qx and Qy by Q% = {x(),...,x)} and
QY = {y©), .-, Yx)}. If rji is the observed frequency of (x(j), yx)). then the
likelihood is

J K
Lxy =[] [] Py, yw)” =Lxyy - Ly
j=0k=0

with a conditional and a marginal likelihood
K J K

@ Lxy=[[[1rCh 1 Y=yw)”™,  Ly=]]pr"Gw)™
k=0 j=0 k=0
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(the subscript “+” indicates summation over the replaced index). The model does
not restrict the marginal distribution of Y and hence the empirical density with
respect to counting measure vy on Q7,

Ay 1
4.2) P (vawy) = Tk fork=0,...,K

is the usual nonparametric estimate. If we restrict the distribution PY to the
class 2y of all distributions with finite support Q}, then Ly is a multinomial
likelihood which attains its maximum for (4.2). Hence, for estimation purposes
we may restrict the marginal P to Py and maximization of Lyy is equivalent to
separate maximization of Lyy and Ly, because the latter two have no common
parameters.

Interchanging X and Y, we split the likelihood as Lxy = Ly|x - Lx and by the
above argument we may additionally restrict PX to the class Py of all distrib-
utions with finite support ©%. Under these restrictions for both PX and P! the
likelihood Lxy is a multinomial likelihood for the observed (J + 1) x (K + 1)-
contingency table (7 ;). Hence, estimation of # is reduced to a multinomial model
whose probabilities pjx = p(x(j), Y)) satisfy the log-odds ratio model

log(pjk poo/ pjopox) = Vo (x(j), Yay) =: ¥jk(@)  forall j and k

with respect to the reference values x° = x(p) and y° = y(). The parametriza-
tion (3.2) now involves only a finite number of parameters

(4.3) logpjk=PBj+ vk +vji(0) — 10g<ZZeXP[13j + v+ wjk(o)]>,

j ok

namely B; = B(x(;)), ¥k = ¥ (Yx)) and 0 with By = yp = 0. Instead of maximizing
Lxy, itis typically preferable to maximize either Ly x or Ly using the parame-
trization of the conditional probabilities py|; = pji/pj+ Of pjjk = pjk/P+k given
by (3.3) and its dual

log pjj = vk + ¥ jx(@) — 6, logpjk =Bj +Vjk(0) — e,

where the parameters §;, respectively, &, are determined by the remaining ones.

4.2. Conditional sampling. When sampling is conditional on values for Y
taken from Q’; ={y0),---, Y(k)}, say, then the data set (x;, y;) withi =1,...,nis
partitioned into K + 1 independent subsamples given by the values of y;, such that
each subsample (x;) with y; = y«) is an independent sample from the conditional
distribution £L(X | Y = y«)). Instead of maximizing the appropriate likelihood
L x|y we can equivalently maximize the unconditional likelihood L xy or even the
“reverse” conditional likelihood Ly x. The latter is preferable from a computa-
tional point of view, when the nuisance parameters y are less than those of Ly,
that is, for K < L. A dual argument applies if sampling is conditional on values
for X taken from Q% = {x(0), ..., X}
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4.3. Log-bilinear association. In the log-bilinear association model (3.5), the
odds ratios may be written as V() = ZJT~0V]< with z; = hx(x(;)) and v =
hy (¥)), or in matrix notation

lﬁ(ﬂ):ZOVTeRJxK’ Z=(Zjl)€RJXKX, V=(Ukl)€RKXKY_
Then (4.3) reduces to a log-linear model for the probabilities p j,

(4.4) log pjk =a + Bj + v + 2 0vi

induced by the covariates z;, v; and results by Haberman [5] on the existence
and uniqueness of maximum likelihood estimates in log-linear models apply. In
particular the estimate p = (p ) is unique (if it exists) and hence the estimate 9 is
unique too, provided the parameter 6 is identifiable.

For sampling conditional on Y, the values y«) should be chosen such that the
rank condition holds:

CONDITION (RK). The Ky x K-matrix v = (Vi,...,Vg) hasrank Ky.

This condition will be assumed whenever the log-bilinear association model is
used. Then a convenient reparametrization is available:

(4.5) Vi) =20, 0;=0v; e R¥X

with a Ky x K parameter-matrix 0 = (61, e 0 k) =0VT . The observed matrix Z
of covariates will typically have rank Kx and then 6, respectively, € is uniquely de-
termined by ¥ (§) = Z8V' = Z# and hence identifiable. In general identifiability
of @ is guaranteed by Condition (C3) in Section 6.

5. Conditional likelihood. Although the maximum likelihood estimate 0 of
the association parameter # may be obtained by maximizing either of the two con-
ditional likelihoods, the stochastic properties of the latter depend on the sampling
scheme. Let us now consider sampling conditional on Y —which can be preferable
from a practical point of view (even for regression models)—and derive proper-
ties of the “reverse” likelihood Ly x. The advantage of Ly x over the appropri-
ate likelihood L x|y is that it usually has fewer nuisance parameters since K is
fixed by the sampling design whereas J will typically increase with the number of
observations—unless Q2x is finite. An important example for finite Q2y are case-
control studies (called choice-based samples in econometrics) for which asymp-
totic inference on @ in the (general) logistic regression model may be obtained
as if sampling had been conditional on X; compare [12] and [14]. We want to
extend these results to arbitrary Y (e.g., vectors with continuous and/or discrete
components) and association models.

Instead of a data set (x;, y;) we now consider the underlying random elements.
It is convenient to represent the sample as a compound vector of random elements
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X = (Xgi) indexedby k =0, ..., K andi =1, ..., ng. Omitting now the parenthe-
ses in y) and x(;), each Xy; is distributed as Xy ~ £L(X | Y = y). As above rj;
denotes the frequency of (x;, yx) in the sample (xg;, yx) and the empirical distrib-
ution on QF = {yo, ..., yx} is given by the proportions 7y = ny/n, where n =n
is the total sample size. Replacing in P the marginal distribution of Y by the em-
pirical distribution (4.2) yields a joint distribution P* on Qx x QJ given by the
density p* with respect to vy x vy:

P,y =7 - p(x | Y =) for all x, k.

The marginal density of ¥ under P* is p*¥ (yx) = % and the marginal, respec-
tively, conditional density for X is

K
Py =) " px|Y =y, respectively,

G5.0) k=0
' reepx | Y =yp)

P (x)
Equation (3.3) yields the parametrization log pf (x) = y;* + e (x, yr) — 8*(x) with
nuisance parameters y;" = y*(yx) and §*(x) = log[}_; exp(y;" + ¢ (x, y))], hence

i) i=p | X=x)=

explyy + Vo (x, yi)l
> exply* + Vo (x, y)1

Choosing the reference value y° = yo we have y" = 0, and the nuisance parameter
sy =y, ....v¢) € RX . Finally, the logarithm of the conditional likelihood

Ly|x may be written in terms of the compound parameter vector A := (0, y*) €
RS+K .

(5.2) pi(x) =

K ng

e :=logLy;x =Y > logpj(Xy;)  with
k=0i=1
(5.3)

K
log pi (Xki) = vi' + Vo (Xii» yi) — log [Z exp(y" + Yo (Xui, yz))]-
1=0

Notice that £(X) is the log-likelihood of the multivariate logistic regression model
(5.4 logit py (x) = ¥ + Y (x, i), k=1,....K,

which is nonlinear in general. The estimate ) maximizing £(X) satisfies

K ng

(5.5) DytM) =YY Dylog pi(Xii) =0,
k=0i=1

where Dj denotes the differential operator with respect to A. The basic stochastic
properties of the solution of the estimating equation (5.5) depend on the moments
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of the estimating function D;£(X) and its derivative. The first important property
(proved in Appendix A.2) is that its expectation is zero—which is not obvious
since £(A) is not the log-likelihood for the underlying sampling:

(5.6) E[Dy(W)] = _ny - E[Dylog p{(Xx)]=0.
k
Next, the components of the covariance matrix X (1) := Cov(Dy£(1)) are given
by
(5.7) T (M) =) ni - Cov(Dy, log p;; (Xx), Dy, log pi; (Xx))
k
and for the partial second derivatives we get
(58) Ju() = =D3; L) ==Y 3" D3 ; log pji(Xx)
ki
with expectation (cf. Appendix A.2)
(5.9) Iy\):=Esu(M\) =) _ni- E(Dy, log p{(Xi) - Dy, log pjf(Xy)).
k
Since £(A) is not the log-likelihood for sampling conditional on X, the matrices
() and I(A) need not be equal, but from (5.7) their difference is
(5.10)  L;(A) — B (M) = )i - E(Dy, log pji (X)) - E(Dy, log pf(X)).
k

From now on we assume the essential:
CONDITION (R2). X (A) = Cov(Dy£(X)) is positive definite for all A.
Two equivalent formulations (cf. Appendix A.2) are
CONDITION (R2"). I(X) is positive definite for all A.

CONDITION (R2”). Forall 8, alls € RS and ¢y, ...,cx € R: Dorg(X, i) -
s=cyfork=1,..., K almost surely = s = 0.

In the last formulation—which does not include the nuisance parameter y *—we
can replace X by X, since their distributions belong to #* and hence dominate
each other.

Using the block notation for an (S + K) x (S + K) matrix, say

Ez[zao Zoy}
Yy Zyy ’

a fundamental result can be derived (cf. Appendix A.2) by adopting the method
in [12].
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THEOREM 3. Forany A

0 0
(@ 10 - M =10 o |10,
where the K x K -matrix W is the sum of the diagonal diag(n]_1 e n%l) and the

constant matrix (nal), that is, Wy = Aklnk_l + nal with the Kronecker’s A.
(b) [T M)l =" =) - T A)]oo-

The matrix in (b) will later turn out to be the asymptotic covariance matrix of
the estimate 6. _
Log-bilinear association: Using (4.5) and @ (instead of ) the model states

(5.11)  Ye(x,y) =270,  withz=hx(x), 6 =(01,...,0k) c REx*K
and is equivalent to the linear logistic regression model given by (5.2), that is,
logitp,f(x):yk*—l—zTh, k=1,....K.

Condition (R2"”) holds if 4 x (X) is not concentrated on a hyperplane of REx | that
is, if the following condition is met (cf. Appendix A.2):

CONDITION (R2)1ga. For all s € REx:sThy(X) is constant almost surely
=s=0.

6. Asymptotics and consistency. We now turn to the asymptotic properties
of the estimate A = (5, P*) in the model (3.13). Our asymptotic approach assumes
that set Q3 = {yo, ..., yx} of conditional values will remain fixed while all sub-
sample sizes ny tend to infinity with fixed ratios 7y = ny/n > 0 for all n and k.
Hence the nuisance parameter y*, the distribution P* and its conditional densities
Py (x) do not vary with n. The true parameter will now be denoted by A° = (6°, y°)
instead of A and the notation E, P, etc. now refer to expectations, probabilities,
etc. with respect to A°. The conditional log-likelihood £ (A)—the additional in-
dex n is supplied if necessary—need not have a unique maximizing argument A
for every sample. Concerning uniqueness, the strong law of large numbers yields
for the matrix J™ (A) = — D, £ (1) from (5.8)

1 (n) T . X - 2 *
6.1) -J"YA)——1IN) = Z i - E(—Dy, log pi (Xk)) almost surely.

n n—oo k=0
The matrix I(A) = }ll(k) is positive definite by Condition (R2) which implies
—D3,£™ (%) = —J™ (1) is negative definite for almost all (i.e., all except finitely
many) n, almost surely. Hence—almost surely—the function £/ (X) is strictly
concave for almost all n, which implies that Dy £™ (1) = 0 has at most one solu-
tion A, which also maximizes 2™ (). Since the unique existence of a maximizing
argument A of £0V (1) is not guaranteed for every n, we consider any sequence of
(measurable) functions A" as estimators if the estimating condition is met:
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CONDITION (C1). If £ (X) has a maximizing argument A, then £ (A")) =
Max; £ (X).

To establish the consistency of such a sequence A we assume an integrability
and an identifiability condition:

CONDITION (C2). E{yx(Xy)} <ooforallk=0,...,K.

CONDITION (C3). g, (X, yx) = Y9, (X, yr) for k =1, ..., K almost surely
=01 =20,.

As in Condition (R2”), we can equivalently replace X by X in Condition (C3).
In Appendix A.3 we derive the asymptotic (unique) existence and strong consis-
tency of the estimator:

THEOREM 4 (Consistency). Under Conditions (C1)—(C3) the following prop-
erties hold almost surely:

(a) For almost all n there exists a unique A maximizing M), namely A
(b) For almost all n there exists a unique solution A of D™ ) = 0,
namely A,
() A™ = (O™, y* ™M) ——1° = (6°, y°).
n—oo

Log-bilinear association: In view of ¥x(x) = ||hx(x)||?, Condition (C2) re-
duces to a moment condition for Z; = hx (Xy):

CONDITION (C2)1Ba. E{||Zk||?} < oo forallk=0,..., K.

And, using the parametrization (5.11), Condition (C3) reduces to
hy (X)8x1 = hx (X)0x2
fork=1,...,K almostsurely = 0 = 6, for all &,
which is implied by the stronger Condition (R2)r ga .-

7. Asymptotic normality. Let us finally establish the asymptotic normality
for a sequence A of estimates. Instead of assuming Condition (C1), we derive
the asymptotic distribution for any weakly consistent sequence A" solving the
estimating equation at least approximately, that is, we only assume

CONDITION (N1). Dy™QAMY) = 0p(/n), respectively, n=1/2 . Dye™ x

A P
AM)y ——0.
n— oo
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N P
CONDITION (N2). AW ——5°,

n—oo

Obviously both conditions hold under the assumptions of Theorem 4. Further-
more we assume the following consistency results, which are derived later (Theo-
rem 6) from Condition (N2) and additional moment conditions:

A P _
CONDITION (N3). L (g™ @° 4 1[A® —r°))dr ——T(A°).
n—oo

A P _
CONDITION (N4). 1Jm@my —T)°).
n—oo

In Appendix A.4 we derive the asymptotic normality of the estimate as follows,
where A!/2, respectively, A!/? denotes the generalized Moore—Penrose inverse,
respectively, the symmetric root of a positive semidefinite matrix A, and I is the
identity matrix.

THEOREM 5 (Normality). Any sequence A of estimators with Conditions
(N1)—(N3) is asymptotic normal

(a) VA[A® —1°] é NO,T ') - TR0 -T ' A%) with T) 1= X, 7 -
Cov(Dylog pf(X0)).

(b) VAlD®) — 01— NO. [T 3)go).

COROLLARY. Ifin addition Condition (N4) holds, then

© @A) 1y 10 61— N(O. ).

Less formally (a) and (b) state
AXNQS T -ZA TR, 0 N@. T A)ee).

J ():) is a consistent estimate of I(A°) by Condition (N4), and will be positive defi-
nite for almost all n (almost surely) by (6.1). In this case, (c) states

(7.1) 6~ N@®. 1" (W)]oo).

Notice that for an observed data set, the estimated covariance matrix [J ! ():)]99
(where the random variables are replaced by observations) is identical to the cor-
responding matrix under sampling conditional on X (instead of Y). In this sense
the estimate 6 and its estimated asymptotic normal distribution are invariant un-
der sampling conditional on either Y or X. Hence asymptotic inference (i.e., tests
or confidence regions) for the association parameter # based on the asymptotic
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distribution (7.1) of the estimate @ is invariant under both conditional sampling
schemes, too.

The above Conditions (N3) and (N4) will now be derived from the consistency
Condition (N2) and additional properties of the function G. For

K

Hy(z|0) = |Ds,G(z, hy(n).0),
k=0

K
Hy(z]8) = |Dj 4 Gz hy(%).0),
k=0

K
Hyg(z10) =Y |Dj g4 Gz hy(y). 0),
k=0

the following result is proved in Appendix A.4.

THEOREM 6. Conditions (N3) and (N4) follow from (N2) and the moment
condition (MC)1 A

CONDITION (MC). There exists €° > 0 such that for B(0°) ={6 | |6 —0°| <
e°Yandallk =0, ..., K the following functions of Ly = hx(Xy):

sup H,(Zy |0)°, sup Hy (Zi | 0)7, sup  Hys(Zy | 60)
0cB(0°) 0cB(6°) 0cB(6°)
have finite expectation for all r,s,t =1, ..., S.

Hence the requirements for Theorem 5 are met if Conditions (MC) and (C1)-
(C3) in Theorem 4 hold.

Log-bilinear association: The log-bilinear association model is based on the
function G(z, v, 0) = z! @v with partial derivatives Dy, G(z,v,0) = z;v,, and van-
ishing higher derivatives. Hence Condition (MC) holds if Condition (C2)pa is
strengthened to

CONDITION (MC)iga. E{lIZk|I’} < oo forallk=0,..., K.

8. Discussion. Association models for a pair of random elements (X, Y) do
not restrict the marginal distributions of X and Y but only their odds ratio func-
tion. We have looked at parametric association models which include the impor-
tant log-bilinear association models. An advantage of these models is that infer-
ence about the odds ratio (or association) parameter vector # may be obtained
from sampling Y conditional on fixed values of X or vice versa. The maximum
likelihood estimate @ is the same under both conditional sampling schemes, and
asymptotic inference concerning @ is invariant with respect to sampling, too. More
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precisely, we have shown that for samples conditional on Y, the estimate 6 maxi-
mizing the “reverse” conditional likelihood Ly |x is consistent, asymptotic normal
and its estimated asymptotic covariance matrix is the same as if sampling had been
conditional on X. These results have been obtained much earlier for discrete Y
with finite range for the multivariate linear logistic regression model in [12] and
for the general logistic regression model in [16] (for X with finite range) and [14].
Our result allows both X and Y to be arbitrary random vectors each having discrete
and/or continuous components.

Furthermore, asymptotic inference for the regression parameters 8 in widely
used regression models is available when sampling is conditional on Y (instead
of X). For example, in log-linear regression models for Poisson variates we have
B = 0 and hence inference on 8 may also be obtained from samples conditional
on Y. Even in the linear regression model u(x) = o + zTﬂ with covariate vector
z=hx(x)and L(Y | x) = N(u(x),o?), asymptotic inference for § = 0_2;3 may
be obtained from samples conditional on Y—including tests of a linear hypothe-
sis Cf# = 0, which is equivalent to Cf = 0. However, confidence regions are only
available for €, but not for 8, unless an estimate of o2 from another sample is at
hand. This extends to the multivariate case where the conditional distribution of
Y is multivariate normal Ng (u(x), X) and the odds ratio parameter is given by
6 = BX~!. Although sampling conditional on Y seems unnatural for a regression
model, it may be very attractive if such a sample is much easier (e.g., cheaper or
quicker) to obtain. The advantages of (retrospective) case-control over (prospec-
tive) cohort studies can thus be extended to an arbitrary response vector Y, for
example, to infinite discrete response categories or to a continuous response Y.
In the latter case we do not get confidence intervals for @, but fests for linear
hypothesis—which may be of primary interest (e.g., in a clinical trial)—are avail-
able.

Related, but different, semiparametric models for random vectors X = (X1, ...,
Xp)and Y = (Yy, ..., Yy) are given by multivariate copulas which specify para-
metric distributions on [0, 1]/ ™7 with uniform marginals. However, a copula is not
an association model in our sense (cf. [9]) because a copula only leaves the mar-
ginal distributions of all univariate components X; and Y; arbitrary, but the mar-
ginal distribution of the vectors X, respectively, Y are restricted through the para-
metrization of the copula, unless both X and Y are univariate. And even in the
latter case, the odds ratio function OR(X, Y) cannot be recovered from the corre-
sponding copula unless both marginal distributions of X and Y are known. Hence
the rather general semiparametnc associations models considered here do not fit in
the framework of copulas.

APPENDIX: PROOFS

A.1. Proof of Theorem 2 (existence). We have already seen that (b) im-
plies (c) and it remains to derive (a) from (c), which uses the concept of an
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I-projection and heavily relies on results by Csiszar [2] and Riischendorf and
Thomsen [13]. Setting m = wx X wy we first conclude from Condition (E2) the
existence of R € P with w-density

r=exp(¢y —B—y —a)>0, azlog/exp(w—ﬁ—y)dn

and the wanted P will be the I-projection of Ron € ={P € P | PX =y, PY =
my}. The integrability of ¥, 8 and y implies

I(J't|R)=/log(%)dn=/(o¢+,3+y—1ﬁ)d7r<oo

and since 7 € &, we conclude from Theorem 2.1 in [2] that R has an /-projection
P on &. Application of Theorem 3.1 in [2] to the set

F={fx+fr|fxeLlilmx), fr € L1(my)} C L1(P)

yields that the R-density pg of P satisfies pr = exp(h) m-almost surely, where A
belongs to the closure ¥~ of & in &L (P). Riischendorf and Thomsen [13] pointed
out that ¥ need not be closed in £ (P)—which was claimed in the proof of Corol-
lary 3.1, case (B) in Csiszér [2].

Now R <« m implies that exp(#) > 0 is an R-density of P and hence R < P <
R. Furthermore r > 0 yields R <« 7 <« R and hence P € P, since PX¥ = 7.
From Theorem 2.2 in [2] we obtain

I( | P)+I(P|R)=<I(m|R) < o0,

which establishes P € #;. Finally OR(P) = v remains to be shown. From P <
PXY and Proposition 2 in [13] we conclude the existence of measurable functions
a:Qx — R and b:Qy — R, such that &(x,y) = b(x) + c(y) P-almost surely,

and hence R-almost surely. Hence a w-density of p is given by

P89 expto+o) (b+c—p )
—=—.—=¢X -r=ex —-B—-vy -
dr _dR dx DU T TEepTe ree

and a direct calculation yields log OR(P) = i as required.

A.2. Proof of the results in Section 5. We start with some preliminary re-
sults. The derivatives of log p{ are given by

D;,, pj (x)

D;, log pi(x) =
' k Py (x)

(A.1) 5 .
D)\s)wpk(x) B

D;, log pi(x) - Dy, log pi(x).

D%sx, log pi (x) =



ASYMPTOTIC INFERENCE FOR ASSOCIATION MODELS 479

For any set of measurable functions G (x) we obtain from (5.1) a key equality:

D Fi- E(Gr(Xp) =Y _Fr - E(Gk(X) | Y = )
k k

=Y 7 -/Gk(x) PG 1Y = yi) dvx (1)
k

(A2)
_ / 3" Gr(x) - pi(x) - P () dvx (x)
k

—E* {Z Gr(X) - pZ(X)},
k

where E* denotes expectation with respect to P*.
In particular, we get for G (x) = H(x) - Dy log p{(x) and any measurable H (x)

> Fi - E[H (X)) - Dy log pji (Xo)]
k

(A.3) =E*[2H(X)-DxlogPZ(X)-P}f(X)}
k

= E*[H(X) : ZDw;:oo} =0,

k

since p7 (x) = 1. In particular, (5.6) follows for H(x) = 1.

PROOF OF (5.9). Choosing Gi(Xy) = p,’f(Xk)_1 . Diktp,’:(Xk) in (A.2)
yields

> Fe- Elpf (X0 ™' D3, pi(X)) = E¥ [Z D}, pz(xw} =0
k k

and (5.9) follows using (A.1):

E(Jsy (W) =n-) Fi- E(Dy, log p{(Xp) - Dy, log p{(Xy)). -
k

PROOF OF CONDITIONS (R2) < (R2). By (5.10) I(A) is a sum of X(A)
and a positive semidefinite matrix. Hence I(A) is positive semidefinite, and even
positive definite, provided Condition (R2) holds. Conversely, let Condition (R2’)
hold. Then t/ X ()t = Var(t! D3£(A)T) = 0 implies that t” D3 £(1)7 is constant
almost surely, and hence t? D%xf(l) = D[t D3 ¢(M)T] = 0 almost surely. Thus
t'I(V) = Et! D%kﬁ(k)) = 0, which implies t = 0 by Condition (R2"). Hence Con-
dition (R2) holds. [
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PROOF OF CONDITIONS (R2') < (R2”). I(X) is positive semidefinite (as al-
ready observed) and hence Condition (R2') is equivalent to
(A4) Forallte RSTK  tfI\t=0 = t=0.
For any t € R5tX we get from (5.9)

t" It ="y - E(| Dy log pf(Xi) - t]1%)
k

and since the distributions of X; and X dominate each other:
(A5) t'IMNt=0 < Dy log pf(X)-t=0
fork=0,..., K almost surely.

To derive Condition (R2’) from Condition (R2"), let t” I(A)t = 0. From (5.4) we
get

(A.6) logit pi (X) =log p; (X) — log p5(X) = v + Vo (X, y)
and for t = (s, —¢) with s € RS, ¢ = (¢, ..., ckx), we obtain from (A.5) almost
surely

0 = D; logit p; (X) - t = Dy logit p; (X) - s — D, logit p{(X) - ¢
(A7)
= Dorg(X, yr) - S — Ck forallk=1,..., K.

And from Condition (R2”) we conclude s = 0 as well as ¢, = 0 for all k, and thus
t=0.

Conversely, suppose Condition (R2') holds. To establish Condition (R2"), it
suffices to show that (A.7) implies s = 0. From (5.2) and (5.4) we get

-1
po(X) = <Z exp[logit p; (X, yz)]) ,
1

Dalog pi(X) - t=ps(X)™" Y expllogit pj (X, y1)1 - Dy logit pj (X, /) - t.
[

Hence (A.7)—and logit pj = O—imply Dj;log pj(X) - t = 0 almost surely.
From (A.6) we get Dy log p;(X)-t=0for k=0, ..., K almost surely, and (A.5),
(A.4) establish t =0 and hence s =0. [

PROOF OF THEOREM 3. Part (a) is equivalent to three equations:
(@)go Ipg — Tgg =lpy - W- I,
(a)ey I0y - Zﬂy :IOy 'W‘Iyy’

@)yy Ly -y =L, -W-1,.
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Some prerequisite results are derived first using the notation

bsi = E[Dp, log p;(X;)] € R, bi = (bik. ... bsi) € RS,

cmk = E[Dy; log pp(Xp)] € R, ¢ = (Cik, - .., ckir) € RX,
B=(bj,...,bg) e RS*K B=(by.....bg) e RS*K+D
C=(cy,...,cx) e REXK C=(co.... cx) e REXEHD
N =diag(ni,...,ng) e REXK N =diag(no, ..., ng) e REXE+D,

From (5.3) we obtain the partial derivatives

Dy, log i (x) = Dg g (x, yi) — Y p(x) - Do, W (x, y1),
I

Dy log pi(x) = Agm — ppy (X)
and (5.9) yields

Lyyz =nY Tk E(Dg log pi(Xi) - Dy log pi (Xk))
k

=nm - E(Dg,log pp(Xp)) —n Y i E(pp (Xx) - Do, log p{(Xy))
k

=ny - E(Dg, log pyr (Xk)) [cf. (A.3) for H(x) = p}i (x)].
Hence lo,yx =1 - bsm, IV/*Vr?i = N, * CIm, OF IN Matrix notation
(A.8) Ipy =B-N, I,,=C-N.
From (5.6) we have ) ; ng - bgy =0 and ) ; ng - ¢ = 0, or in matrix notation
(A9) 0 =nobo + Bn, 0 =npcy + Cn, n=(ny,...,ng).
Using the constant vector e = (1) and constant matrix eJre_TF = (1) we thus obtain

Ipy -W=B -Nny'ecel +N'I=n;'B-n-el +B=—by-el +B
and similarly with C instead of B
I, W=C-N-W=—¢-el +C.

Now (a)g,, is obtained as follows:
Iy -W-II =[B—bg-el]J[C-N]"=B-N-C" —bg-[C-n]"  [cf. (A8)]

=B-N-CT +bg-ng-cf =B-N.-C" [cf. (A.9)]
=T, — Zp, [cf. (5.10)]
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And (a)gg, respectively (a),y, is established similarly (replace B and by by C
and ¢y, respectively, vice versa). Hence (a) holds, and multiplication with I
yields (b). [

PROOF OF CONDITION (R2);ga = (R2”). Suppose for s = (sy,...,Skx) €
REx*K and ¢y, ...,ck e Rwehave forallk=1,..., K

ck=DoVe(X, y)-s=)_ DgYg(X,y1) st =hx(X)" -, almost surely.
1

Then Condition (R2); s implies sy = 0 for all k, and hence s =0. [

A.3. Proof of Theorem 4 (consistency). The proof is based on the ingenious
ideas from Wald [15]. The log-odds ratio ¥g(x, y) in the model (3.13) depends
only on the vectors z=hx (x) and v = hy(y). Therefore we regard p; (x) = pi(z |
A) as a function of z and A using the notation

Gi(z,0) :=G(z, hy (y), 0) = Yo (x, yi),

exply + G ) _
S explyf + Gi(z.0)]  E0

pr(z|X) =

nk(z| 1) :=log pi(z| ) = v + Gi(.0) — log(Zexpm* + G, o)]).
l

We first show for Zy := hx (X})
(A.10) E{lng(Zy | M|} < o0 forallAand k=0, ..., K.

From yj = 0= Go(z,0) and po(z| L) < 1 we get

lno(z | V)| = 10g<z exply;” + Gi(z, 0)]) <log(K+D+y"l +Max|[Gi(z, 0)|.
]

And Condition (OR?2) yields

(A1) |Gi(2,0)| < [¥x (x) + Iy O] - 111,

which in view of Condition (C2) proves (A.10) for k = 0. For k > 0 we get
I | M| =y + Gr(z,0) +no(z, M| < Iyl + 1Gi(z, )| + Ino(z | V)]

Hence (A.11) and Condition (C2) establish (A.10).
Next we prove three basic lemmas.

LEMMA A.1. Forany A #ZA°: Z/f:oFk E{nr(Zy | N) — ne(Zy | A°)} < O.
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LEMMA A.2. Fork=0,..., K and any A\:

lim E{ sup  nx(Zy | )J)} = E{n(Zx | 1)}.
£20 Uv—ai<e

LEMMA A.3. For any compact set A C RX x RS with 1° ¢ A:

m [sup M) — e<">(x°)} =—00  almost surely.

li
n—oo AcA

PROOF OF LEMMA A.1. Ui = ni(Zi | A) — nk(Zx | A°) has finite expectation
by (A.10), and Jensen’s inequality yields

(A12) S F-E{U < Y 7k - log Efexp(Up)) < 1og(27k : E{exp(Uk>}>.
k k k

Equation (A.2) with Gy (Xy) = exp(Ux) = pr(Zi | M)[pr(Zx | A°)]~! and X # A°
gives (the true parameter is denoted by A° here)

Y Fi - Efexp(Up)} = E*{Zﬁk(zk m} =1
k k

and (A.12) implies > ; 7k - E{U} < 0. It remains to show that this inequality is
strict. Suppose not; then equality holds in both places of (A.12). The first equality
implies that each Uy is constant almost surely, say Uy = logcy, and the second
yields ¢ = ¢ for all k, hence Uy = logc, respectively, pi(Zy | L) = ¢ - pr(Zy | A°)
almost surely. From ) ; px =1 we get ¢ = 1, and hence

(A.13) Nk (Zg | A) = np(Zy | 1°) for all k almost surely.
Then
Vo (Xk, yi) = ni(Zi | X) +n0(Zo | A) — no(Zk | A) — nk(Zo | A) = Ygo (Xk, yi)
almost surely, and since the distributions of X; and X dominate each other,
Yo (X yk) = Yo (X, yr) for all k almost surely.
From Condition (C3) we get # = 60°. For A = (@, y*) (A.13) gives almost surely
Ve + Gi(Zi, 0) = ni(Zi | X) — no(Zy | A) = v¢ + Gi(Z, 0°) for all k

and from 6 = #° we conclude y* = y°, which contradicts A £ A°. [

PROOF OF LEMMA A.2. Continuity implies for any positive sequence &, — 0

sup  nk(z | X)) —— nk(z | X).
IV =Xl <en n—oe
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Since

(A.14) (@A) < sup  mk(z|A) =<0,
IV =Al<e,

the dominated convergence theorem and (A.10) yield

Bl s om0 | En ).

A=Al <en U

PROOF OF LEMMA A.3. For ¢ > 0 consider the ball B(A | &) ={A" | ||]A/ —
Al < &} with interior B°(A | €) and let ni(z | A, &) = SUP)’eB(Ale) ez | \).
Lemma A.2 implies

;ij)r})sz E{mi(Zi | A, &)} =) i+ E{me(Zi | M)}
k k

and for any L € A Lemma A.1 gives

D k- E{m(Zi | M} < Y Tk E{qi(Zy | A%}
k k

Hence there exists an &) > 0 such that

(A.15) D Fk E{m(Zi | A &)} < DTk - E{me(Zi | A°)).
k k
Since A is compact, there are finitely many A1, ..., Ay € A such that forany A € A

there exists 1 <m < M with A € B°(A,, | &a,,). Thus ng(z | A) < ni(z | A, €1,,)
and

(A.16)  sup €™ ) — €A <Max Y Y [ne(Zii | M £a,,) — me(Zi | A°)].
— £

AEA i

For each m the strong law of large numbers gives almost surely

1 .
lim ~ SO Ime(Zii | A €0,,) — M (Zgi | A°)]
k i

= Fi- [E(m(Zi | A, 62,0} — Eime(Ze | A2} <0 [cf. (A15)]
3

with finite expectations by (A.10) and (A.14). Hence
Hm Y [k (Zii | Ao €,,) — mc(Zii | A°)] = —o00
n—0 PR

and the right-hand side in (A.16) tends to —oo for n — oo almost surely. [J

PROOF OF THEOREM 4 (CONSISTENCY). For any & > 0, the function £/ ()
attains its maximum within B(A° | ). We show first that (almost surely) the max-
imizing argument lies (for almost all n) in the open ball B°(A | ), and hence is a
solution of Dy £™ (1) = 0. Applying Lemma A.3 to the boundary A, = dB(1° | €)
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yields that the following statements hold almost surely for almost all n:

(i) suppeq, L) < €™ @A°),

(i) supyy_roj<e £ A) < suppy _roy < £ Q).
(iii) there exists A € B°(A° | &) with Dy £ (A™) =0,
(iv) €™ () is strictly concave [cf. (6.1), (R2)],

(v) there is a unique A" € B°(A° | &) maximizing £ (1),
(vi) A® =A™ [cf. (C1)].

This proves (a), (b) and also (c), since ¢ was arbitrary. [J
A.4. Proof of the results in Section 7.

PROOF OF THEOREM 5 (NORMALITY). The (standard) proof is only outlined.
For U™ = D{ £™ the central limit theorem and (5.6) give

L _
(A.17) n~120™ ey —— N0, T(1°)).
n—oo

A first-order expansion about A° yields
n~V2UW (A = p=12UW %) 4D, - /A —2°
(%) +D,

with

1 .
D, = / DAUM (A + 1[A —1°]) dt
nJo

1 ! A
. / IWA° + ([A® —2°])dr
nJo
and Condition (N1) implies
A P
D, - V/a[A® —2°] +n~ UM %) — 0.
n—oo
D,, can be replaced by its limit —I(1°) from Condition (N3), that is,
A — P
Ja[A® —x°] = 02T 0y U™ (1) —— 0,
n—oo

which together with (A.17) establishes (a). And (b) follows in view of Theo-
rem 3(b). [

PROOF OF THEOREM 6. Keeping the notation from Appendix A.3, the partial
derivatives of

ni(z| 1) = log pi(z| 1) = v + Gy (2. 0) — log<2 exply}* + G(z, 0)])
[
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up to order 3 are given by
Dysni(z|X) = D — pm (2| 1),
DL, mi(z|X) = =Dy, pi(z| X,
D} k(@A) ==D3 , pr(z| ),
Do, mi(z|X) =) [Auy — pi(z| V)] - Do, Gi(z,0),
1

DZomi(@|X) = (1A — pi(z| V)] - D} 4 Gi(2,6)
)

— Dy, pi(z| L) - Do, Gy(z,0)),

D} g omk@| V)= 1Ak — pr(z| V)] D 44 Gi(z.6)
)

— Dy, p1(z|\) - Dj g Gi(2,6)
— Do, p1(z| ) - DG 4, Gi(z,0)
— D} 4 P1(z | A) - Dg,Gi(z,0))
with partial derivatives [cf. (A.1)]
Dy, pi(z|X) = pr(z|X) - Dyni(z | L),

D3, k(@ |A) = pr(z| MID;, mk (@] X) + Dy (2| X) - Dy, me(z | V)],
Next we deduce from Condition (MC) a weaker moment condition, from which
Conditions (N3) and (N4) will be derived (cf. Lemma A.4):

CONDITION (MC)™. There exists ¢° > 0 such that for B(A°) = {A | ||A —
A°|| <e°}andall k =0,..., K the following functions:

sup D3, m(Zi |M)| with Zg = hx (Xi)
AeB(L°)

have finite expectation for all r, s, =1,...,Sand [/ =0, ..., K.

For the above derivatives we successively get the following bounds, where the
fixed argument z is omitted:

| Dy < 1, | Do, ni(M)| = Hy.(0),
Dy, mk(M)| < HY(0) :=1+ H(0),

D2, )| = |Ds, pr)] < Dy (V)| < HE(O),

1D o k(M| < Hyy (0) + Hy(0)%,
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D2, ()| < H(0)> + Hy4(8),
D3, pe()| < 2HE(0)* + Hi4(9),
D5 5, k)| = D75, B (M) < 2H7(0) + Hi 4 (6),
1D} 6.6, < Hit4(8) +3H () Hyr(8) +2H?(0)’.
Taking (for fixed z) the supremum over the ball B(0°) gives

sup HY < 1+ZsupHr,
r
suij’;2 <1 +223upHs + ZZsupHsz,
s N t
supr <1 +3ZsupH, +3225upH,Hs + ZZZSupH,HsH,,
r r K r N t
sup Hy 4 < Z;SUP Hy,
)
sup Hy 4 < ZXS:Xt:Sllp Hyst,

sup HY - Hyy <) > [sup Hy; + sup H, Hy].

r s t

Condition (MC) obviously implies for i = 1, 2 that

sup H,(Zx|0)', sup H,(Zy |0) - Hy (Zy | 0)
0B(0°) 0<B(6°)

have finite expectation, too. Hence

sup sup |D; ;. m(Zx |0,y
Y 0cB(6°)

has finite expectation for any r, s, t and any k, /. This proves Condition (MC)™ and
Lemma A.4 establishes the theorem. [

LEMMA A.4. Conditions (N2) and (MC)™ imply Conditions (N3) and (N4).

PROOF. Using (6.1) for A = A° to establish Condition (N3), it suffices to show
for any s and 7 that

1 ! N P
(A.18) —/ [78(A° + ([ — 1°]) — 1 (%)) dt — 0.

nJo n—o00
From

IPM==Y3"D}, m(Zii |V with Zy; = hx(Xg)
k i
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a Taylor expansion gives for any € > O and ||A —A°|| < ¢

| o <(n)
;|Js; M) — T (A < eS8 (o),

— 1
S ==33" sup D}, m(Zii | V).
o IVt <e

The strong law of large numbers yields

E(n)(s) S ZFkE< sup || Dikm Nk (Zy, | A) ||> almost surely,
e 1A —x°|<e

where the limit is finite by Condition (MC)™ for & < &°. For |4 — 1°|| < & we
thus have

1 sl A 1
~ j (57 (A2 + o [A = x°]) — J§;”<x°>]dr‘ <= sup 1) = Ju (X))
n.Jo I a—r°|<e

<5 (e)

which in view of Condition (N2) implies (A.18). And Condition (N4) follows
similarly. Note that if almost sure convergence A — A° is assumed instead of
Condition (N2), then the above arguments establish almost sure convergence in
Conditions (N3) and (N4), too. [
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