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CONSISTENCIES AND RATES OF CONVERGENCE OF
JUMP-PENALIZED LEAST SQUARES ESTIMATORS
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We study the asymptotics for jump-penalized least squares regression
aiming at approximating a regression function by piecewise constant func-
tions. Besides conventional consistency and convergence rates of the esti-
mates in L2([0,1)) our results cover other metrics like Skorokhod metric
on the space of càdlàg functions and uniform metrics on C([0,1]). We will
show that these estimators are in an adaptive sense rate optimal over cer-
tain classes of “approximation spaces.” Special cases are the class of func-
tions of bounded variation (piecewise) Hölder continuous functions of order
0 < α ≤ 1 and the class of step functions with a finite but arbitrary number of
jumps. In the latter setting, we will also deduce the rates known from change-
point analysis for detecting the jumps. Finally, the issue of fully automatic
selection of the smoothing parameter is addressed.

1. Introduction. We consider regression models of the form

Yn
i = f

n

i + ξn
i , i = 1, . . . , n,(1)

where (ξn
i )n∈N,1≤i≤n is a triangular scheme of independent zero-mean sub-

Gaussian random variables and f
n

i is the mean value of a square integrable func-
tion f ∈ L2([0,1)) over an appropriate interval [xn

i−1, x
n
i ] [see, e.g., Donoho

(1997)]

f
n

i = (xn
i − xn

i−1)
−1

∫ xn
i

xn
i−1

f (u)du.(2)
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For ease of notation, we will mostly suppress the dependency on n in the sequel.
When trying to recover the characteristics of the regression function in applica-

tions, we frequently face situations where the most striking features are sharp tran-
sitions, called change points, edges or jumps [for data examples see Fredkin and
Rice (1992), Christensen and Rudemo (1996), Braun, Braun and Müller (2000)].
To capture these features, in this paper we study a reconstruction of the origi-
nal signal by step functions, which results from a least squares approximation of
Y = (Y1, . . . , Yn) penalized by the number of jumps. More precisely, we consider
minimizers Tγ (Y ) ∈ arg minHγ (·, Y ) of the Potts functional

Hγ (u,Y ) = 1

n

n∑
i=1

(ui − Yi)
2 + γ · #J (u).(3)

Here J (u) = {i : 1 ≤ i ≤ n − 1, ui �= ui+1} is the set of jumps of u ∈ R
n. Note that

the minimizer is not necessarily unique.
The name Potts functional refers to a model which is well known in statistical

mechanics and was introduced by Potts (1952) as a generalization of the Ising
model [Ising (1925)] for a binary spin system to more than two states. The original
model was considered in the context of Gibbs fields with energy equal to the above
penalty.

Various other strategies dealing with discontinuities are known in the liter-
ature. Kernel regression as (linear) nonparametric method offers various ways
to identify jumps in the regression function, essentially by estimating modes of
the derivative; see, for example, Hall and Titterington (1992), Loader (1996),
Müller (1992) or Müller and Stadtmüller (1999). Other approaches like local
M-smoothers [Chu et al. (1998)], sigma-filter [Godtliebsen, Spjøtvoll and Mar-
ron (1997)], chains of sigma-filters [Aurich and Weule (1995)] or adaptive weights
smoothing [Spokoiny (1998), Polzehl and Spokoiny (2003)] are based on nonlin-
ear averages which mimic robust W -estimators [cf. Hampel et al. (1986)] near
discontinuities. Therefore, they do not blur the jump as much as linear methods
would do.

The case when the regression function is a step function has been studied
first by Hinkley (1970) and later by Yao (1988) and Yao and Au (1989). Given
a known upper bound for the number of jumps, Yao and Au (1989) derive the
optimal O(n−1/2) and O(n−1) rates for recovering the function in an L2 sense
and detecting the jump points, respectively. Their results have been generalized
to overdispersion models and applied to DNA-segmentation by Braun, Braun and
Müller (2000). Without the constraint of a known upper bound for the number of
jumps, Birgé and Massart (2007) give a nonasymptotic bound for the MSE for a
slightly different penalty.

In this more general setting we will deduce the same (parametric) rates as Yao
and Au (1989) for the Potts minimizer if f is piecewise constant with a finite but
arbitrary number of jumps. We show that the estimate asymptotically reconstructs
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the correct number of jumps with probability 1. Further we will give (optimal)
rates in the Skorokhod topology, which provides simultaneous convergence of the
jump points and the graph of the function, respectively. As far as we know, this
approach is new to regression analysis.

If the true regression function is not a step function, the Potts minimizer can-
not compete in terms of rate of convergence for smoothness assumptions stronger
than C1. This is due to the nonsmooth approach of approximation via step func-
tions and could be improved by fitting polynomials between estimated jumps [see
Spokoiny (1998), Kohler (1999)]. For less smooth functions, however, we will
show that it is adaptive and obtains optimal rates of convergence. To this end,
we prove rates of convergence in certain classes of “approximation spaces” well
known in approximation theory [DeVore and Lorentz (1993)]. To our knowledge,
these spaces have not been introduced to statistics before. As special cases, we
obtain (up to a logarithmic factor) the optimal O(n−1/3) and O(n−α/(2α+1)) rates
if f is of bounded variation or if f is (piecewise) Hölder continuous on [0,1] of
order 1 ≥ α > 0, respectively. The logarithmic factor occurs, since we give almost
sure bounds instead of the more commonly used stochastic or mean square error
bounds. Optimality in the class of functions with bounded variation shows that
the Potts minimizer has the attribute of “local adaptivity” [Donoho et al. (1995)].
Under the assumption that the error is bounded, Kohler (1999) obtained nearly the
same rates (worse by an additional logarithmic term) in these Hölder classes for
the mean square error of a similar estimator.

We stress that minimizing Hγ in (3) results in a step function, that is, a regres-
sogram in the sense of Tukey (1961). Hence, this paper also answers the question
how to choose the partition of the regressogram in an asymptotic optimal way [cf.
Eubank (1999)] over a large scale of approximation spaces.

Subset selection and TV penalization. Our results can be viewed as a result
on subset selection in a linear model Y = α + βT X + ε with covariates X. In this
context our estimator minimizes the functional

Ln(α,β) :=
n∑

i=1

(
Yi − α −

k∑
j=1

βjXij

)2

subject to #{j :βj �= 0} ≤ N,

or (for proper N ), what is equivalent for a proper choice of γ , minimization of

Ln(α,β) + γ #{j :βj �= 0}.
Setting k = n− 1 as well as Xij = 1 for j < i and 0 else, we obtain the Potts func-
tional (3) with u1 = α and ui = α + ∑i−1

j=1 βj for 2 ≤ i ≤ n. In general, to select
the correct variables, one requires a kind of oversmoothing, which is reflected by
our results in the present paper. The Potts smoother in (3) achieves this by means
of an �0 penalty and for nearly uncorrelated predictors it is well known that �1
penalization has almost the same properties as complexity-penalized least squares
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regression [cf. Donoho (2006a, 2006b)]. However, as a variable selection problem,
detection of jumps in regression has a special feature, namely, the covariates Xij

are highly correlated and these results do not apply. A similar comment applies
to TV penalized estimation, as, for example, considered by Mammen and van de
Geer (1997) which aims for minimizing

Fγ (u,Y ) = γ · ∑
1≤i≤n−1

|ui − ui+1| +
n∑

i=1

(ui − Yi)
2.

This can also be viewed in this context. Choosing Xik as above, it is a special case
of the lasso, which was introduced by Tibshirani (1996) and minimizes Ln(α,β)

subject to
∑k

j=1 |βj | ≤ t . Again, for (nearly) uncorrelated predictors, the lasso
comes close to the �0 solution. Thus, the relation of the Potts functional to the
total variation penalty is roughly the same as the relation of subset selection to the
lasso. In fact, for highly correlated predictors, the relationship between �0 and �1
solutions is much less understood and this question is above the scope of the paper.
However, it seems that in our case �1 penalization performs suboptimally. As an
indication, from Mammen and van de Geer (1997), Theorem 10, we obtain an
upper rate bound of OP(n−α/3) for the error of the total variation penalized least
squares estimator of an α-Hölder continuous function in contrast to the (optimal)
rate of OP(nα/(2α+1)), achieved by the Potts minimizer.

A reason for this difference is that the Potts functional will generally lead to
fewer but higher jumps in the reconstruction, and hence is even more sparse than �1
or TV based reconstructions. In general, a side phenomenon related to such spar-
sity of an estimator is a bad uniform risk behavior [see Pötscher and Leeb (2008)].
Although the conditions of that paper are not fulfilled in our model (basically,
contiguity of the error distributions will fail), this phenomenon can be observed
numerically in our situation. Our estimate will fail when the number of jumps
grows too fast with the number of observations and small plateaus in the data will
not be captured. However, our emphasis is on estimation of the main data features
(here jumps) to obtain a sparse description of data, similar in spirit to Davies and
Kovac (2001).

Computational issues. In general, a major burden of �0 penalization is that
it leads to optimization problems which are often NP hard and relaxation of this
functional becomes necessary or other penalties, such as �1, have to be used. In-
terestingly, computation of the minimizer of the Potts functional in (3) is a notable
exception. The family (Tγ (Y )))γ>0 can be computed in O(n3) and the minimizer
for one γ in O(n2) steps [see Winkler and Liebscher (2002)]. At the heart of that
result is the observation that the set of partitions of a discrete interval carries the
structure of a directed acyclic graph which makes dynamic programming directly
applicable [see Friedrich et al. (2008)].
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The paper is organized as follows: after introducing some notation in Section 2,
we provide in Section 3.1 the rates and consistency results for step functions and
general bounded functions in the L2 metric. In Section 3.2 we present the results of
convergence in Hausdorff metric for the set of jump functions and in Section 3.3
for the Skorokhod topology for the regression function. In Section 3.4 we will
introduce a simple data-driven parameter selection strategy resulting from our pre-
vious results and compare this to a multiresolution approach as in Davies and Ko-
vac (2001). We briefly discuss relations to other models such as Bayesian imaging
and extensions to higher dimensions in Section 4. Technical proofs are given in the
Appendix.

This paper is complemented by the work of Boysen et al. (2007) which con-
tains technical details of some of the proofs, the consistency of the estimates for
more general noise conditions and the consistency of the empirical scale space
(Tγ (Y ))γ>0 toward its deterministic target [cf. Chaudhuri and Marron (2000)].

2. Model and notation. For a functional F :� → R ∪ {∞}, we denote by
arg minF the subset of � consisting of all minimizers of F . Let S([0,1)) =
{f :f = ∑n

i=1 αi1[ti ,ti+1), αi ∈ R,0 = t1 < · · · < tn+1 = 1, n ∈ N} denote the space
of right-continuous step functions and let D([0,1)) denote the càdlàg space of
right-continuous functions on [0,1] with left limits and left-continuous at 1. Both
will be considered as subspaces of L2([0,1)) with the obvious identification of a
function with its equivalence class, which is injective for these two spaces. ‖·‖ will
denote the norm of L2([0,1)) and the norm on L∞([0,1)) is denoted by ‖ · ‖∞.

Minimizers of the Potts functionals (3) will be embedded into L2([0,1)) by the
map ιn : Rn 
−→ L2([0,1)),

ιn((u1, . . . , un)) =
n∑

i=1

ui1[(i−1)/n,i/n).(4)

Under the regression model (1), this leads to estimates f̂n = ιn(Tγn(Y )), that is,

f̂n ∈ ιn(arg minHγn(·, Y )).(5)

Here and in the following (γn)n∈N is a (possibly random) sequence of smoothing
parameters. We suppress the dependence of f̂n on γn since this choice will be clear
from the context.

For the noise, we assume the following uniform sub-Gaussian condition. For a
discussion on how this condition can be weakened [see Boysen et al. (2007)].

CONDITION (A). The triangular array (ξn
i )n∈N,1≤i≤n of random variables

obeys the following properties.
(i) For all n ∈ N the random variables (ξn

i )1≤i≤n are independent.

(ii) There is a universal constant β ∈ R such that Eeνξn
i ≤ eβν2

for all ν ∈ R,
1 ≤ i ≤ n, and n ∈ N.
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Finally, we recall the definition of Hölder classes. We say that a function
f : [0,1] → R belongs to the Hölder class of order 0 < α ≤ 1, if there exists C > 0
such that

|f (x) − f (y)| ≤ C|x − y|α for all x, y ∈ [0,1].
3. Consistency and rates. In order to extend the Potts functional in (3) to

L2([0,1)), we define for γ > 0, the continuous Potts functionals H∞
γ :L2([0,1))×

L2([0,1)) → R ∪ {∞}:
H∞

γ (g, f ) =
{

γ · #J (g) + ‖f − g‖2, if g ∈ S([0,1)),
∞, otherwise.

Here J (g) = {t ∈ (0,1) :g(t−) �= g(t+)} is the set of jumps of g ∈ S([0,1)). By
definition, we have for every g ∈ arg minH∞

γ (·, f ) that H∞
γ (g, f ) ≤ H∞

γ (0, f ) =
‖f ‖2 and therefore #J (g) ≤ γ −1‖f ‖2 for γ > 0. Since a minimizer is uniquely
determined by its set of jumps, minimizing H∞

γ can be reduced to a minimization
problem on the compact set of jump configurations with not more than γ −1‖f ‖2

jumps which implies existence of a minimizer. For γ = 0, we set H∞
0 (g, f ) =

‖f − g‖2 for all g ∈ L2([0,1)), hence

LEMMA 1. For any f ∈ L2([0,1)) and all γ ≥ 0 we have
arg minH∞

γ (·, f ) �= ∅.

In order to keep the presentation simple, we choose throughout the following
an equidistant design xn

i = i/n in the model (1) and (2). All results given remain
valid for designs with design density h, such that inft∈[0,1] h(t) > 0 and h is Hölder
continuous on [0,1] of order α > 1/2. Moreover, for all theorems in this section
we will assume that Yn is determined through (1) and the noise ξn satisfies Con-
dition (A).

3.1. Convergence in L2. We investigate the asymptotic behavior of the Potts
minimizer when the sequence (γn)n∈N converges to a constant γ for γ > 0 and
γ = 0, respectively. If γ > 0, we do not recover the original function in the limit,
but a parsimonious representation at a certain scale of interest determined by γ . For
γ = 0 the Potts minimizer is consistent for the true signal under some conditions
on the sequence (γn)n∈N:

(H1) (γn)n∈N satisfies γn → 0 and γnn/ logn → ∞ P-a.s.

For the consistency in approximation spaces in Theorem 2, we consider instead

(H2) (γn)n∈N satisfies γn → 0 and γn ≥ (1 + δ)12β logn/n P-a.s. for almost
every n and some δ > 0. Here β is given by the noise Condition (A).

THEOREM 1. (i) Assume that f ∈ L2([0,1)) and γ > 0 are such that fγ is
a unique minimizer of H∞

γ (·, f ). Moreover, suppose (γn)n∈N satisfies γn → γ
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P-a.s.; then

f̂n

L2([0,1))−−−−−→
n→∞ fγ P-a.s.

(ii) Let f ∈ L2([0,1)) and (γn)n∈N fulfill (H1). Then

f̂n

L2([0,1))−−−−−→
n→∞ f P-a.s.

(iii) Let f ∈ S([0,1)) and (γn)n∈N fulfill (H1). Then

‖f̂n − f ‖ = O

(√
logn

n

)
P-a.s.

Moreover,

‖f̂n − f ‖ = OP

(√
1

n

)
.

We stress that the parametric rates in Theorem 1(iii) are obtained for a broad
range of rates for the sequence of smoothing parameters. It is only required that γn

converges to zero slower than logn/n. When trying to extend these results to more
general function spaces, the question arises, which properties of the true regression
function f determine the almost sure rate of convergence of the Potts estimator. It
turns out that the answer lies in the speed of approximation of f by step functions.
Let us introduce the approximation error

�k(f ) := inf{‖g − f ‖ :g ∈ S([0,1)),#J (g) ≤ k}(6)

and the corresponding approximation spaces

Aα =
{
f ∈ L∞[0,1] : sup

k≥1
kα�k(f ) < ∞

}

for α > 0. The following theorem gives the almost sure rates of convergence for
these spaces.

THEOREM 2. If f ∈ Aα and (γn)n∈N satisfies condition (H2), then

‖f̂n − f ‖ = O
(
γ α/(2α+1)
n

)
P-a.s.

Now we give examples of well known function spaces contained in Aα for
α ≤ 1.

EXAMPLE 1. Suppose f has finite total variation. Then, f ∈ A1 holds.
Choosing γn � logn/n such that condition (H2) is fulfilled yields ‖f̂n − f ‖ =
O((logn/n)1/3) P-a.s.
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PROOF. For the application of Theorem 2 we need to show that there is a δ > 0
such that for all k ∈ N, k ≥ 1, there is an fk ∈ S([0,1)) with ‖f − fk‖ ≤ δ/(k + 1)

and #J (fk) ≤ k. Since each function of finite total variation is the difference of two
increasing functions and #J (g + g′) ≤ #J (g) + #J (g′), it is enough to consider
increasing f with f (0) = 0 and f (1) < 1. Define for i = 1, . . . , k intervals

Ii = f −1([(i − 1)/k, i/k)
)
.

Then, fk(x) = ∑k
i=1 1Ii

(x)(i − 1/2)/k satisfies ‖f − fk‖ ≤ ‖f − fk‖∞ ≤ (2k)−1

which completes the proof. �

EXAMPLE 2. Suppose f belongs to a Hölder class of order α (with 0 < α ≤
1). Then, f ∈ Aα holds. For γn � logn/n fulfilling condition (H2), we get that
‖f̂n − f ‖ = O((logn/n)α/(2α+1)) P-a.s.

PROOF. Analogous to the proof above, we define for Ii = [(i − 1)/k, i/k) the
function fk(x) = ∑k

i=1 1Ii
(x)f ((i − 1/2)/k). On Ii we have ‖f (x) − f (y)‖∞ ≤

Ck−α . Thus ‖f − fk‖ ≤ ‖f − fk‖∞ ≤ C(2k)−α holds. �

Obviously this result still holds, if the regression function f is piecewise Hölder
with finitely many jumps.

REMARK 1 (The case α > 1). The characterization of the sets Aα and re-
lated questions are a prominent theme in nonlinear approximation theory [see, e.g.,
DeVore (1998), DeVore and Lorentz (1993)]. For f piecewise C1, it is known that
α > 1 implies that f is piecewise constant [Burchard and Hale (1975)], whereas
this is still an open problem for general f . We conjecture that this implication
holds for any f . This would imply that stronger smoothness assumptions than in
the examples above do not yield better convergence rates.

Choosing γn independently of the function and the function class as in the ex-
amples above yields convergence rates which are up to a logarithmic factor the
optimal rates in the classes Aα , 0 < α ≤ 1 and S([0,1)). This shows that the es-
timate is adaptive over these classes. The additional logarithmic factor originates
from giving almost sure rates of convergence.

3.2. Hausdorff convergence of the jump-sets. In this section we present the
rates known from change-point analysis for detecting the locations of jumps if f

is a step function. Moreover, the following theorem shows that we will eventually
estimate the right number of jumps almost surely. Before stating the results, we
recall the definition of the Hausdorff metric ρH on the space of closed subsets
contained in (0,1). For nonempty closed sets A,B ⊂ (0,1) set

ρH (A,B) = max
{

max
a∈A

min
b∈B

|b − a|,max
b∈B

min
a∈A

|b − a|
}

and ρH (A,∅) = ρH (∅,A) = 1.



JUMP PENALIZED LEAST SQUARES 165

THEOREM 3. Let f ∈ S([0,1)) and (γn)n∈N fulfill (H1). Then:

(i) #J (f̂n) = #J (f ) for large enough n P-a.s.,
(ii) ρH (J (f̂n), J (f )) = O(logn/n) P-a.s.,

(iii) ρH (J (f̂n), J (f )) = OP(1/n).

REMARK 2 (Distribution of the jump locations and estimated function values).
With the help of Theorem 3(i) we can derive the asymptotic distribution of the
jump locations and of the estimated function values between, obtaining the same
results as Yao and Au (1989), who assumed an a priori bound of the number of
jumps. To this end, note that the estimator of Yao and Au (1989) and the Potts
minimizer coincide if they have the same number of jumps. Denoting the ordered
jumps of f and their estimators by (τ1, . . . , τR) and (τ̂1, . . . , τ̂R̂

), respectively, we

know by Theorem 3(i) that asymptotically R̂ = R holds almost surely. For R̂ = R

we get that n(τ̂1, . . . , τ̂R) are asymptotically independent and the limit distribution
of n(τ̂r − [τr ]) is the minimum of a two-sided asymmetric random walk [cf. Yao
and Au (1989), Theorem 1]. Moreover, the estimated function values are asymp-
totically normal with the parametric

√
n-rate.

3.3. Convergence in Skorokhod topology. Now that we have established rates
of convergence for the graph of the function as well as for the set of jump points, it
is natural to ask whether one can handle both simultaneously. To this end, we recall
the definition of the Skorokhod metric [Billingsley (1968), Chapter 3]. Let �1
denote the set of all strictly increasing continuous functions λ : [0,1] 
−→ [0,1]
which are onto. We define for f,g ∈ D([0,1))

ρS(f, g) = inf
{

max
(

L(λ), sup
0≤t≤1

|f (λ(t)) − g(t)|
)

:λ ∈ �1

}
,

where L(λ) = sups �=t≥0 | log λ(t)−λ(s)
t−s

|. The topology induced by this metric is
called J1-topology.

We find that in the situation of Theorem 1(i) we can establish consistency with-
out further assumptions, whereas in the situation of Theorem 1(ii), f has to belong
to D([0,1)).

THEOREM 4. (i) Under the assumptions of Theorem 1(i) we have

f̂n

D([0,1))−−−−−→
n→∞ fγ P-a.s.

(ii) If f ∈ D([0,1)) and (γn)n∈N satisfies condition (H1), then

f̂n

D([0,1))−−−−−→
n→∞ f P-a.s.
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If f is continuous on [0,1]

f̂n

L∞([0,1])−−−−−→
n→∞ f P-a.s.

(iii) If f ∈ S([0,1)) and (γn)n∈N satisfies condition (H1), then

ρS(f̂n, f ) = O

(√
logn

n

)
P-a.s.

Moreover,

ρS(f̂n, f ) = OP

(√
1

n

)
.

3.4. Parameter choice and simulated data. In this section we assume ξn
i ∼

N(0, σ 2), i = 1, . . . , n i.i.d. for all n. Note that in this case we have β = σ 2/2
in Condition (A). Theorem 2 directly yields a simple data-driven procedure for
choosing the parameter γ which leads to optimal rates of convergence. For a
strongly consistent estimate σ̂ of σ , the choice γ̂n = Cσ̂ 2 logn/n almost surely
satisfies condition (H2) for C > 6 and gives the rates of Theorem 2. However, in
simulations it turns out that smaller choices of C lead to better reconstructions. A
closer look at the proof of Theorem 2 shows that the constant in condition (H2)
mainly depends on the behavior of the maximum of the partial sum process
sup1≤i≤j≤n(ξ

n
i + · · · + ξn

j )2/(j − i + 1). As we consider a triangular scheme in-
stead of a sequence of i.i.d. random variables for the error we cannot use results
as in Shao (1995) to obtain an almost sure bound for this process [cf. Tomkins
(1974)]. But those results give an upper bound in probability (cf. Lemma A.2)
for the maximum. This allows us to refine the bound above to C ≥ 2 + δ for any
δ > 0 and obtain the rates of Theorem 6 in probability. We found that values of C

between 2 and 3 lead to good reconstruction for various simulation settings.
Figure 1 shows the behavior of the Potts minimizer for the test signals of

Donoho and Johnstone (1994) sampled at 2048 points and a choice of C = 2.5.
In order to understand the finite sample behavior of the Potts minimizer, the esti-
mates are calculated at different signal-to-noise ratios ‖f ‖2/σ 2 (seven, four and
one). The reconstructions of the locally constant blocks signal (first row) differ
very little from the original signal. This is not surprising since the original sig-
nal is in S([0,1)) where the estimator achieves parametric rates. The spikes of the
bumps signal (second row) are correctly estimated for all cases. The estimator cap-
tures all relevant features of the Heavisine signal (third row) at the levels seven and
four. Only in the presence of strong noise the detail of the spike right to the second
maximum is lost. Finally, the case of the Doppler signal (fourth row) shows that
the estimator adapts well to locally changing smoothness.

Clearly the performance depends on the particular function f . Hence one might
want to try different approaches to selecting the parameter. One possibility is
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FIG. 1. The left column shows signals from Donoho and Johnstone (1994). Columns 2, 4 and 6 show noisy versions with signal-to-noise ratios of 7, 4
and 1, respectively. On the right of each noisy signal is the Potts reconstruction. The penalty was chosen as γn = 2.5σ̂ 2 logn/n, where σ̂ 2 is an estimate
of the variance.
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to choose the smoothing parameter according to the multiresolution criterion of
Davies and Kovac (2001). If f ∈ S([0,1)), this criterion picks asymptotically the
correct number of jumps.

THEOREM 5. Assume f ∈ S([0,1)), ξn
i ∼ N(0, σ 2) i.i.d. and γ̂n is chosen

according to the MR-criterion, that is, γ̂n is the maximal value such that the cor-
responding reconstruction f̂ MR

n satisfies

1√
#I

∣∣∣∣∣
∑
i∈I

Y n
i − f̂ MR

n (xn
i )

∣∣∣∣∣ ≤ (1 + δ)σ̂
√

2 logn(7)

for all connected I ⊂ {1, . . . , n}, some δ > 0 and some consistent estimate σ̂ of σ .
Moreover, assume γn satisfies condition (H1) and f̂n is the corresponding recon-
struction. Then P(f̂ MR

n = f̂n)−−−−−→
n→∞ 1.

Note that it is possible to derive the same result if in (7) only dyadic intervals
[see Davies and Kovac (2001)] are considered. We conjecture that the MR-criterion
leads to consistent estimates in more general settings.

4. Discussion—relation to other models. The Potts smoother falls in the
general framework of van de Geer (2001) which gives very general and power-
ful tools to prove rates of convergence for penalized least squares estimates. With
some effort, it is possible to use the methods developed in that paper to derive
the convergence rates given in Theorem 2. However, using that method does not
lead to the required constant in Section 3.4. In fact, the resulting constant in con-
dition (H2) would be substantially larger.

Most penalized least squares methods either use a penalty which is a seminorm
(as in spline regression) or penalizes the number or size of coefficients of an ortho-
normal basis reconstruction. Note that the Potts smoother belongs to none of these
classes. Nonetheless, it is related to various other statistical procedures and we
would like to close this paper by highlighting these relations and shortly comment
on possible extensions to two dimensions.

Bayesian interpretation and imaging. In image analysis Bayesian methods for
restoration have received much attention [see, e.g., Geman and Geman (1984)].
The Potts functional can be interpreted as a limit of the one-dimensional version
of a certain MAP estimator, which has been used for edge-preserving smoothing,
discussed by Blake and Zisserman (1987) and Künsch (1994) among many others.
For a detailed discussion and overview of related functionals in dimension 1 [see
Winkler et al. (2005)].
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Generalization to 2d. For two-dimensional data, a measure of complexity cor-
responding to the number of jumps is given by the number of plateaus or partition
elements. However, it is computationally infeasible to allow for arbitrary parti-
tions in the reconstruction. Therefore one chooses a subclass of step functions with
good approximation properties and seeks for effective minimization algorithms in
this class. As in the one-dimensional case, the rate of convergence will be deter-
mined by the approximation properties of the chosen function class. One example,
complexity penalized sums of squares with respect to a class of “Wedgelets” [cf.
Donoho (1999)], is discussed in the Ph.D. thesis of Friedrich (2005), and possible
alternatives in the survey by Führ, Demaret and Friedrich (2006). We mention that
the proof of Theorem 2 could be adapted to their setting.

APPENDIX: PROOFS

A.1. Preliminaries. Since the consistency results are formulated in terms of
a function space, we translate all minimization problems to equivalent problems
for functionals on L2([0,1)). Therefore we introduce the functionals H̃∞

γ (g, f ) =
H∞

γ (g, f ) − ‖f ‖2 and H̃ n
γ (g, f ) is defined as H̃∞

γ (g, f ) for g ∈ Sn([0,1)) :=
ιn(Rn), and ∞, else. Clearly, the functionals are constructed in such a way that
the minimization of Hγ (3) on R

n is equivalent to the minimization of H̃ n
γ if

we identify the minimizers via the map ιn defined in (4). The constant −‖f ‖2

is just added for convenience and does not affect the minimization. Obviously,
u ∈ arg minHγ (·, f n

) if and only if ιn(u) ∈ arg min H̃ n
γ (·, f ) and similarly for

Hγ (·, y) for y ∈ R
n. The most important property of these functionals is that the

minimizers g ∈ S([0,1)) of H̃ n
γ and H̃∞

γ for γ > 0 are determined by their jump-
set J (g) and given by the projection onto the space of step functions which are con-
stant outside that set. To make this precise in the course of the proofs, we introduce
for any J ⊂ (0,1) the partition PJ = {[a, b) :a, b ∈ J ∪ {0,1}, (a, b) ∩ J = ∅}.
Abbreviating by

μI (f ) = �(I )−1
∫
I
f (u) du

the mean of f over some interval I , this projection is then given by

fJ = ∑
I∈PJ

μI (f )1I .

Further, we extend the noise in (1) to L2([0,1)) by ξn = ιn((ξn
1 , . . . , ξn

n )) and,
finally, we define for f ∈ S([0,1)) the minimum distance between any two jumps
as

mpl(f ) := min
{|s − t | : s �= t ∈ J (f ) ∪ {0,1}}.(8)

The proofs rely on properties of the noise, some a priori properties of the Potts
minimizers and on proving epiconvergence of the functionals defined above with
respect to the topology of L2([0,1)).
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A.2. Two properties of the noise. The behavior of ξn
J = ∑

I∈PJ
μI (ξ

n)1I

from Condition (A) is controlled by the following two estimates which are proved
in Boysen et al. (2007), Section 4.2.

LEMMA A.1. Let (ξn
i )n∈N,1≤i≤n fulfill Condition (A). For

Cn := sup
1≤i≤j≤n

(ξn
i + · · · + ξn

j )2

(j − i + 1) logn
(9)

we have that

lim sup
n→∞

Cn ≤ 12β P-a.s.

Moreover, for all intervals I ⊂ [0,1) and all n ∈ N

μI (ξ
n)2 ≤ Cn

logn

n�(I)

as well as

‖ξn
Jn

‖2 = ∑
I∈PJn

�(I )μI (ξ
n)2 ≤ Cn

logn

n
(#Jn + 1).(10)

LEMMA A.2. Assume ξn
i ∼ N(0, σ 2), i = 1, . . . , n i.i.d. for all n. Then for Cn

defined by (9) we have Cn = 2σ 2 + oP(1).

A.3. A priori properties of the minimizers. The following properties of the
minimizers are used to prove our main statements.

LEMMA A.3. Let f ∈ L2([0,1)), g ∈ arg min H̃ n
γ (·, f ) and I ∈ PJ(g). Then,

denoting a = μI (g) = �(I )−1 ∫
I g(u) du, the following statements are valid.

(i) If I ′ ∈ PJ(g) and I ′ ∪ I is an interval, then

γ ≤ �(I )�(I ′)
�(I ) + �(I ′)

(
μI (f ) − μI ′(f )

)2
.

(ii) If I ′ ∈ Bn, I ′ ⊂ I , is an interval, then

2γ ≥ �(I ′)
(
μI ′(f ) − a

)2
.

(iii) If both I ′ ∈ Bn and I ′ ∪ I are intervals and 1I ′g = b1I ′ for some b ∈ R,
then

(b − a)

(
μI ′(f ) − a + b

2

)
≥ 0.
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(iv) If I ′
1, I

′
2, I

′
1 ∪ I, I ′

2 ∪ I ∈ Bn are intervals and 1I ′
l
f̂ = bl1I ′

l
, l = 1,2, then

for all disjoint intervals I1, I2 ∈ Bn, I = I1 ∪ I2, such that I1 ∪ I ′
1 and I2 ∪ I ′

2 are
intervals,

�(I1)
(
μI1(f ) − b1

)2 + �(I2)
(
μI2(f ) − b2

)2

≥ γ + �(I1)
(
μI1(f ) − a

)2 + �(I2)
(
μI2(f ) − a

)2
.

PROOF. The inequalities are obtained by elementary calculations comparing
the values of H̃ n

γ (·, f ) at g and at some g̃ obtained from g by: joining the plateaus
at I and I ′ [for (i)], splitting the plateau at I into three plateaus [for (ii)], moving
the jump point [for (iii)], and removing the plateau at I by joining each of the parts
to the adjacent intervals [for (iv)].

As an example, we provide the calculations for (i). Determine t by {t} = I ∩ I ′
and set g̃ = fJ(g)\{t}. Then g̃ differs from g only on I ∩ I ′ such that

0 ≤ H̃ n
γ (g̃, f ) − H̃ n

γ (g, f )

= −γ + ∥∥(
μI (f ) − μI∪I ′(f )

)
1I

∥∥2 + ∥∥(
μI ′(f ) − μI∪I ′(f )

)
1I ′

∥∥2

= −γ + �(I )
(
μI (f ) − μI∪I ′(f )

)2 + �(I ′)
(
μI ′(f ) − μI∪I ′(f )

)2

= −γ + �(I )�(I ′)
�(I ) + �(I ′)

(
μI (f ) − μI ′(f )

)2
,

which completes the proof of (i). �

A.4. Epiconvergence. One basic idea of the consistency proofs is to use
the concept of epiconvergence of the functionals [see, e.g., Dal Maso (1993),
Hess (1996)]. We say that numerical functions Fn :� 
→ R ∪ {∞}, n = 1, . . . ,∞
on a metric space (�,ρ) epiconverge to F∞ if for all sequences (ϑn)n∈N with
ϑn → ϑ ∈ � we have F∞(ϑ) ≤ lim infn→∞ Fn(ϑn), and for all ϑ ∈ � there ex-
ists a sequence (ϑn)n∈N with ϑn → ϑ such that F∞(ϑ) ≥ lim supn→∞ Fn(ϑn).
One important property is that each accumulation point of a sequence of mini-
mizers of Fn is a minimizer of F∞. However, that does not mean that a sequence
of minimizers has accumulation points at all. To prove this, one needs to show
that the minimizers are contained in a compact set. The following lemma which
is a straightforward consequence of the characterization of compact subsets of
D([0,1)) [Billingsley (1968), Theorem 14.3] will be applied to this end.

LEMMA A.4. A subset A ⊂ D([0,1)) is relatively compact if the following
two conditions hold:

(C1) For all t ∈ [0,1] there is a compact set Kt ⊆ R such that

g(t) ∈ Kt for all g ∈ A.
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(C2) For all ε > 0 there exists a δ > 0 such that for all g ∈ A there is a step
function gε ∈ S([0,1)) such that

sup{|g(t) − gε(t)| : t ∈ [0,1]} < ε and mpl(gε) ≥ δ,

where mpl is defined by (8).

A.5. The proof of Theorem 1(i), (ii) and Theorem 4(i), (ii). For the sake of
brevity we just give a short outline of the proof of the first two parts of Theorem 1
and the proof of Theorem 4(i). The details can be found in Boysen et al. (2007).
The proof of Theorem 1(iii) is postponed to Section A.7, because it requires the
proof of Theorem 3.

PROOF OF THEOREM 1(i), (ii). Note that condition (H1) automatically holds
if γn → γ > 0. We can thus prove both parts at once: Use first H̃ n

γn
(f̂n, f + ξn) ≤

H̃ n
γn

(0, f + ξn), γnn/ logn → ∞ and (10) to obtain

#Jn ≤ 2‖f ‖ + 2Cn(logn/n)

γn − 2Cn(logn/n)
= O(γ −1

n ).(11)

Then (10) and γnn/ logn → ∞ imply

‖ξn
Jn

‖2 = ∑
I∈PJn

�(I )μI (ξ
n)2 → 0 P-a.s.(12)

The map

g 
→
{

#J (g), if g ∈ S([0,1)),
∞, if g /∈ S([0,1)),

is lower semicontinuous as map from L2 to N ∪ ∞. Using that together with (11)
and (12), we can verify the two inequalities from the definition of epiconver-
gence and deduce that H̃ n

γn
(·, f + ξn) actually converges to H̃∞

γ (·, f ) for γn →
γ ≥ 0 and γnn/ logn → ∞ in that sense. Since for any f ∈ L2([0,1)) the set
{fJ :J ⊂ (0,1),#J < ∞} is relatively compact in L2([0,1)), a comparison of
H̃ n

γn
(f̂n, f + ξn) with H̃ n

γn
(0, f + ξn) and usage of (11) above yields that the set⋃

n∈N arg min H̃ n
γn

(·, f + ξn) is relatively compact. The uniqueness of the mini-

mizer of H̃∞
γ (·, f ) along with the epiconvergence of H̃ n

γn
(·, f + ξn) and the com-

pactness finally imply convergence of the minimizers. �

PROOF OF THEOREM 4(i). To prove this, one can proceed in a similar way as
above. The proof of Lemma 1 is straightforward using H∞

γ (0, f ) = ‖f ‖2 and the
relative compactness of {fJ : #J ≤ ‖f ‖2/γ } in L2([0,1)) for γ > 0. �

Next, we will prove consistency in the space D([0,1)) equipped with the
Skorokhod J1-topology. This part is considerably more elaborate; in particular
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we need some of the a priori information about the minimizers provided by
Lemma A.3.

PROOF OF THEOREM 4(ii). All equations in this proof hold P-almost surely,
which will be omitted for ease of notation. If f1, f2 ∈ D([0,1)) are limit points
of the sequence of minimizers, we know by Theorem 1(ii) that f = f1 = f2 in
L2([0,1)), which implies that they are equal in D([0,1)). Thus, it is enough to
show that the minimizers {(f + ξn)Jn :n ∈ N} are contained in a compact set. For
this goal we use now the conditions (C1), (C2) from Lemma A.4.

For the proof of (C1), consider any interval I ∈ PJn . We know from part (i) of
Lemma A.3, for any neighboring interval I ′, that

γn ≤ �(I )�(I ′)
�(I ) + �(I ′)

(
μI (f + ξn) − μI ′(f + ξn)

)2

≤ �(I )�(I ′)
�(I ) + �(I ′)

(
12‖f ‖2∞ + 3Cn

logn

n�(I)
+ 3Cn

logn

n�(I ′)

)

≤ 12‖f ‖2∞�(I ) + 6Cn

logn

n
.

This yields 1/�(I ) = O(γ −1
n ). Application of Lemma A.1 yields

‖ξn
Jn

‖2∞ = max{μI (ξ
n)2 : I ∈ PJn} = O

(
logn

nγn

)
= o(1)

and ‖(f + ξn)Jn‖∞ = O(1). For the proof of (C2), let us fix ε > 0 and a step
function f̃ with ‖f − f̃ ‖∞ < ε/7. Further, set δ = mpl(f̃ ) > 0. Now we will
consider three different classes of intervals I ∈ PJn which are characterized by
their position relative to J (f̃ ) and estimate (f + ξn)Jn − f̃ uniformly on them,
separately.

Class 1 consists of intervals I with J (f̃ ) ∩ I = ∅. We obtain that∥∥1I

(
f̃ − (f + ξn)Jn

)∥∥∞ ≤ ‖1I (f̃ − fJn)‖∞ + ‖ξn
Jn

‖∞ ≤ ‖f̃ − f ‖∞ + o(1) < ε/7

for large enough n uniformly for all such I and n.
Class 2 covers intervals I which are not in class 1 but for which there is some

interval Ĩ ∈ P
J(f̃ )

with �(I ∩ Ĩ ) ≥ δ/6. To apply Lemma A.3(ii), choose an interval

I ′ ⊆ I ∩ Ĩ from Bn such that ρH (I ′, I ∩ Ĩ ) ≤ 1/n. We find for all t ∈ I ′

|(f + ξn)Jn(t) − μI ′(f + ξn)| ≤
√

2γn

�(I ′)
≤

√
2γn

δ/6 − 2/n
,

hence

|(f + ξn)Jn(t) − f̃ (t)| ≤ |μI ′(f ) − μI ′(f̃ )| + |μI ′(ξn)| +
√

2γn

δ/6 − 2/n

≤ ε/7 +
√

Cn logn/n

δ/6 − 2/n
+

√
2γn

δ/6 − 2/n
< ε/6
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for large enough n depending only on (γn)n∈N, δ, ε. Clearly, this implies that for n

large enough supI∩I ′ |(f + ξn)Jn − f̃ | < ε/6 uniformly in I, I ′.
Class 3 contains all intervals I ∈ PJn which are in neither class 1 nor class 2

such that �(I ) < δ/3 and I ∩ J (f̃ ) = {t0}. Then the neighboring intervals of I in
PJn belong necessarily to class 1 or 2. Further, if a neighboring interval I ′ is in
class 2, we know that there is Ĩ ∈ P

J(f̃ )
with �(Ĩ ∩ I ′) ≥ δ/6 and Ĩ ∩ I �= ∅ such

that dist(t0, Ĩ ) = 0. In any case, we find for any interval Ĩ with endpoint t0 in P
J(f̃ )

and any interval I ′ neighboring I in PJn with I ′ ∩ Ĩ �= ∅ that sup
Ĩ∩I ′ |(f +ξn)Jn −

f̃ | < ε/6 and thus |μI ′((f +ξn)Jn)−μ
Ĩ
(f̃ )| = |μ

Ĩ∩I ′((f +ξn)Jn)−μ
Ĩ∩I ′(f̃ )| <

ε/6.
We choose t1 with nt1 ∈ N and |t1 − t0| < 1/n as well as I1 = I ∩ [0, t1), I2 =

I ∩ [t1,1) and I ′
j as neighboring intervals of Ij in PJn , j = 1,2. Denoting a =

μI (f + ξn) and bj = μI ′
j
(f + ξn), application of Lemma A.3(iv) yields (together

with Lemma A.1) that

�(I1)
(
a − μI1(f + ξn)

)2 + �(I2)
(
a − μI2(f + ξn)

)2

≤ −γn + �(I1)
(
b1 − μI1(f + ξn)

)2 + �(I2)
(
b2 − μI2(f + ξn)

)2
,

�(I1)
(
a − μI1(f )

)2 + �(I2)
(
a − μI2(f )

)2

≤ −γn + 2�(I1)μI1(ξ
n)(a − b1) + 2�(I2)μI2(ξ

n)(a − b2)

+ �(I1)
(
b1 − μI1(f )

)2 + �(I2)
(
b2 − μI2(f )

)2

≤ 2�(I1)μI1(ξ
n)(a − b1) + 2�(I2)μI2(ξ

n)(a − b2) + �(I )ε2(1/6 + 1/7)2

≤ 2|a − b1|
√

�(I1)Cn logn/n + 2|a − b2|
√

�(I2)Cn logn/n + �(I )ε2/9.

From ‖ξn
Jn

‖ = o(1) we find bi − a = O(1) such that for large n depending on ε, δ

only

�(I1)
(
a − μI1(f )

)2 + �(I2)
(
a − μI2(f )

)2 ≤ �(I )ε2/9.

The above results yield for t ′ ∈ I that

�(I1)
(
(f + ξn)Jn(t

′) − μI1(f )
)2 + �(I2)

(
(f + ξn)Jn(t

′) − μI2(f )
)2 ≤ �(I )ε2/9

and hence

min
(|(f + ξn)Jn(t

′) − μI1(f )|, |(f + ξn)Jn(t
′) − μI2(f )|) ≤ ε/3,

min
(|(f + ξn)Jn(t

′) − μI1(f̃ )|, |(f + ξn)Jn(t
′) − μI2(f̃ )|) ≤ ε/2.

This shows that either ‖1I∩[t0,1)(f̃ − (f + ξn)Jn)‖∞ ≤ ε/2 or ‖1I∩[0,t0)(f̃ − (f +
ξn)Jn)‖∞ ≤ ε/2 holds for large n, depending on ε, δ only.
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Given Jn we define a new partition P ′
n coarser than PJn by the following pro-

cedure. First we join all neighboring intervals of class 1 and denote the resulting
intervals again as class 1. If there are class 1 intervals left of length < δ/3, there
must be a left or a right neighbor which is class 2 and has an overlap of length
> δ/3 with an interval of constancy of f̃ . Then we join the class 1 interval to that
neighbor (if there are two, to the left one). At the end, we join each class 3 inter-
val I to its left neighbor, if ‖1I∩[t0,1)(f̃ − (f + ξn)Jn)‖∞ ≤ ε/2, or else to its right
neighbor. The collection of those joined intervals is P ′

n.
By the results for class 1,2,3 intervals we know for all I ∈ P ′

n that �(I ) ≥
δ/3. Further, for each I ∈ P ′

n there is I ′ ∈ P
J(f̃ )

such that Ĩ ∩ I ′ �= ∅ for all Ĩ ∈
PJn , Ĩ ⊆ I , and ‖1I∩I ′(f̃ − (f + ξn)Jn)‖∞ < ε/2 holds. Thus, defining f̃n =∑

I∈P ′
n
μI ((f + ξn)Jn)1I we obtain that ‖f̃n − (f + ξn)Jn‖∞ < ε. Thus (C2) is

established and by Lemma A.4 {(f + ξn)Jn :n ∈ N} is contained in a compact set.
This completes the proof of the first assertion. The second assertion follows from
the fact that convergence in D([0,1)) implies convergence in L∞([0,1]) if the
limit is continuous [Billingsley (1968), page 112]. �

A.6. The proof of Theorem 2. Fix numbers kn ≥ 1, the precise magnitude of
which will be chosen below. Further, sets Kn ⊆ {1/n, . . . , (n − 1)/n} are chosen
such that fKn is a best approximation of f by a step function from Sn([0,1)) with
kn ≥ 1 jumps, which exists since the subspace of Sn([0,1)) containing functions g

with #J (g) ≤ kn and ‖g‖ ≤ 2‖f ‖ is compact.
Let f̃kn be an approximation of f in S([0,1)) with at most kn jumps for which

‖f̃kn − f ‖ = O( 1
kα
n
). Further, without loss of generality, we can assume that f̃kn =

f
J(f̃kn )

which implies ‖f̃kn‖∞ ≤ ‖f ‖∞. Moving each jump of f̃kn to the next t ∈
[0,1] with nt ∈ N but leaving the value of f̃kn unchanged on each plateau, we
obtain a step function f̃n ∈ Sn([0,1)) with ‖f̃kn − f̃n‖2 ≤ 2kn

n
‖f ‖2∞. This shows

‖f̃n − f ‖2 = O( 1
k2α
n

+ kn

n
). Since fKn is a best approximation, we derive

‖fKn − f ‖2 = O

(
1

k2α
n

+ kn

n

)
.

By definition f̂n is a minimizer of H̃ n
γn

(·, f + ξn) and we get

H̃ n
γn

(f̂n, f + ξn) ≤ H̃ n
γn

(fKn, f + ξn).

By #Kn = kn, this implies γn#Jn + ‖f̂n − f − ξn‖2 ≤ γnkn + ‖fKn − f − ξn‖2

and hence

‖f̂n − f ‖2 ≤ γn(kn − #Jn) + ‖fKn − f ‖2 + 2〈f − fKn, ξ
n〉 + 2〈f̂n − f, ξn〉

≤ γn(kn − #Jn) + ‖fKn − f ‖2 + 2〈f̂n − fKn, ξ
n〉.
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Now observe that J (f̂n − fKn) ⊆ Jn ∪ Kn which gives

〈f̂n − fKn, ξ
n〉 = 〈f̂n − fKn, (ξ

n)Jn∪Kn〉
≤ ‖f̂n − fKn‖‖(ξn)Jn∪Kn‖
≤ ‖f̂n − f ‖‖(ξn)Jn∪Kn‖ + ‖f − fKn‖‖(ξn)Jn∪Kn‖
≤ 1

2 + δ
‖f̂n − f ‖2 + 2 + δ

4
‖(ξn)Jn∪Kn‖2

+ 1

δ
‖f − fKn‖2 + δ

4
‖(ξn)Jn∪Kn‖2.

The above inequalities yield

δ

2 + δ
‖f̂n − f ‖2 ≤ γn(kn − #Jn) + 2 + 2δ

δ
‖fKn − f ‖2 + (1 + δ)‖(ξn)Jn∪Kn‖2.

Using the estimate (10) with Cn from (9) we obtain for C′ = δ/(2 + δ)

C′‖f̂n − f ‖2

≤ γn(kn − #Jn) + C′′
(

1

k2α
n

+ kn

n

)
+ (1 + δ)Cn

logn

n
(#Jn + kn + 1)

≤ kn

(
γn + (1 + δ)Cn

logn

n
+ C′′

n

)
+ #Jn

(
(1 + δ)Cn

logn

n
− γn

)

+ C′′

k2α
n

+ (1 + δ)Cn

logn

n
,

for some constant C′′ depending on f . We get from γn ≥ (1 + δ)12β logn/n to-
gether with the relation lim supn→∞ Cn ≤ 12β that (1 + δ)Cn logn/n ≤ γn and
C′′/n ≤ γn for large enough n, hence C′‖f̂n − f ‖2 ≤ γn(3kn + 1) + C′′/k2α

n .

Choosing kn = �γ −1/(2α+1)
n � we obtain

‖f̂n − f ‖2 = O
(
γ 2α/(2α+1)
n

)
and the proof is complete.

A.7. The proof of Theorem 3, Theorem 1(iii) and Theorem 4(iii).

PROOF OF THEOREM 3(ii). 1. First we will show that

∀t ∈ J (f ) ∃tn ∈ Jn with |tn − t | < mpl(f )/3.(13)

From part (i) of Theorem 4 and S([0,1)) ⊂ D([0,1)) we obtain immediately that

f̂n

D([0,1))−−−−−→
n→∞ f . Therefore, there is some random integer n0 such that for all n ≥ n0

ρS(f̂n, f )
(14)

< min
(
min{|f (t) − f (t − 0)| : t ∈ J (f )}/2,

∣∣log
(
1 − 2

3mpl(f )
)∣∣).
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The relation (13) is a direct consequence of inequality (14). Assume (13) does not
hold. In this case, a Lipschitz function λ ∈ �1 with L(λ) < | log(1 − 2/3mpl(f ))|
could not achieve t ∈ J (f̂n ◦ λ) and hence ‖f̂n ◦ λ − f ‖∞ ≥ |f (t) − f (t − 0)|/2
contradicting (14).

2. Now we will show that for all t ∈ J (f ) there exists a sequence tn ∈ Jn, such
that |tn − t | = O(logn/n). For any t ∈ J (f ) let tn be a point in Jn closest to t . We
want to apply Lemma A.3(iii). For that goal, suppose for the moment that tn < t

and f (t) > f (t − 0). Choose In ∈ PJn as interval with right end point tn and set
I ′
n = [tn, sn) where nsn ∈ N is such that |sn − t | < 1/n as well as an = μIn(f̂n) and

bn = μI ′
n
(f̂n). Then Lemma A.3(iii) shows

(bn − an)

(
μI ′

n
(f + ξn) − an + bn

2

)
≥ 0.

Clearly, f̂n

D([0,1))−−−−−→
n→∞ f implies an −−−−−→

n→∞ f (t − 0) and bn −−−−−→
n→∞ f (t) such that

almost surely eventually

μI ′
n
(f ) − an + bn

2
≥ −μI ′

n
(ξn) ≥ −Cn

√
logn

n�(I ′
n)

.

We know further limn→∞ μI ′
n
(f ) = f (t − 0) such that almost surely eventually

0 >
f (t − 0) − f (t)

3
≥ −Cn

√
logn

n�(I ′
n)

which implies �(I ′
n) = O(logn/n) and |tn − t | = O(logn/n).

3. Next we will prove that there exists no sequence tn ∈ Jn which satisfies the
relation lim supn→∞(n/ logn)ρH ({tn}, J ) = ∞. We consider two adjacent inter-
vals I, I ′ ∈ PJn for which there is an Ĩ ∈ PJ(f ) with �(I ∪ I ′ \ Ĩ ) = O(logn/n).
Then

|μI (f ) − μ
I∩Ĩ

(f )| = |�(I ∩ Ĩ )
∫
I f (u) du − �(I )

∫
I∩Ĩ

f (u) du|
�(I )�(I ∩ Ĩ )

= |�(I ∩ Ĩ )
∫
I\Ĩ f (u) du − �(I \ Ĩ )

∫
I∩Ĩ

f (u) du|
�(I )�(I ∩ Ĩ )

≤ 2‖f ‖∞
�(I ∩ Ĩ )�(I \ Ĩ )

�(I )�(I ∩ Ĩ )
= 2‖f ‖∞

�(I \ Ĩ )

�(I )

and a similar estimate holds for I ′. By means of μ
I∩Ĩ

(f ) = μ
I ′∩Ĩ

(f ) and
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1/�(I ) = O(1/γn) we obtain

(
μI (f ) − μI ′(f )

)2 ≤ (
1/�(I )2 + 1/�(I ′)2)

O

(
log2 n

n2

)

≤ (
1/�(I ) + 1/�(I ′)

)
O

(
log2 n

γnn2

)

= (
1/�(I ) + 1/�(I ′)

)
o
(

logn

n

)
.

Now Lemma A.3(i) implies

γn ≤ �(I )�(I ′)
�(I ) + �(I ′)

(
μI (f + ξn) − μI ′(f + ξn)

)2

≤ �(I )�(I ′)
�(I ) + �(I ′)

(
3
(
μI (f ) − μI ′(f )

)2 + 3μI (ξ
n)2 + 3μI ′(ξn)2)

≤ O

(
logn

n

)
�(I )�(I ′)

�(I ) + �(I ′)
(
1/�(I ) + 1/�(I ′)

) = O

(
logn

n

)
.

This contradicts γnn/ logn → ∞. Thus, almost surely, there are only finitely
many n for which there are two adjacent intervals I, I ′ ∈ PJn and Ĩ ∈ PJ(f ) with
�(I ∪ I ′ \ Ĩ ) = O(logn/n). Consequently, ρH (Jn, J (f )) = O(logn/n), which
implies the statement. �

PROOF OF THEOREM 3(i). 4. Suppose now there are sn, tn ∈ Jn with sn → t ,
tn → t for t ∈ J (f ). Then we have by the previous result that |tn − sn| =
O(logn/n) as well as 1/|tn − sn| = O(1/γn). This gives us logn/(nγn) = O(1)

contradicting nγn/ logn → ∞. Thus #Jn = #J (f ) eventually. �

PROOF OF THEOREM 3(iii). 5. For this statement, observe that in the special
situation considered in step 2, it is not necessary to assume |sn − t | < 1/n. Hence
for any sn ∈ [tn, t) with nsn ∈ N we have almost surely eventually

0 >
f (t − 0) − f (t)

3
≥ −μ[tn,sn)(ξ

n)

conditional on tn < t . Denote p the largest integer such that p/n ≤ t − 1/n. Using
the exponential inequality [cf. Petrov (1975), Sections 3 and 4]

P

(
n∑

i=1

μiξ
n
i ≥ z

)
≤ exp

(
− z2

4β
∑n

i=1 μ2
i

)
for all z ∈ R,(15)

for triangular arrays fulfilling Condition (A) and all numbers μi , i = 1, . . . , n, we
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obtain for all k′ ∈ N

P
({k′/n < (t − tn) ≤ (k′ + 1)/n})

≤ P

({
μ[(p+1−k′)/n,(p+1−k′+i)/n)(ξ

n) ≥ f (t) − f (t − 0)

3

for all i = 1, . . . , k′
})

= P

({ξn
p−k′+1 + · · · + ξn

p−k′+i

i
≥ f (t) − f (t − 0)

3
for all i = 1, . . . , k′

})

≤ P

({ξn
p−k′+1 + · · · + ξn

p

k′ ≥ f (t) − f (t − 0)

3

})

≤ exp
(−k′z2

4β

)
=

(
exp

(−z2

4β

))k′
=: qk′

,

where z = (f (t)−f (t −0))/3. Note that q < 1 depends on f (t)−f (t −0) and β

only. Clearly, we can use a similar argument if f (t −0) > f (t) or tn ≥ t . Summing
up these inequalities we obtain P({|t − tn| ≥ k/n}) ≤ 2qk/(1 − q) and

P
({ρH (Jn, J (f )) ≥ k/n}) ≤ 2#J (f )qk/(1 − q).

This shows limk→∞ lim supn→∞ P({ρH (Jn, J (f )) ≥ k/n}) = 0, or in other words
ρH (Jn, J (f )) = OP(n−1). �

PROOF OF THEOREM 1(iii), THEOREM 4(iii). 6. By 4 and 5, we may choose n

so large that #Jn = #J (f ) and ρH (Jn, J (f )) ≤ mpl(f )/3. Then there is a unique
1–1 map ϕn :J (f ) 
−→ Jn for which

∑
t∈J (f ) |t − ϕn(t)| is minimal. We derive

ϕn(t)− t = O(logn/n) for all t ∈ J (f ). Extend now ϕn by ϕn(0) = 0 and ϕn(1) =
1. For [s, t) ∈ PJ(f ) we get thus

∥∥1[ϕn(s),ϕn(t)) − 1[s,t)
∥∥ = O

(√
logn

n

)
.

Further, ‖f ‖∞ < ∞ yields |μ[ϕn(s),ϕn(t))(f ) − μ[s,t)(f )| = O(
√

logn/n). Lem-
ma A.1 implies that μ[ϕn(s),ϕn(t))(ξ

n) = O(
√

logn/n) such that ‖f̂n − f ‖ =
O(

√
logn/n) which yields the first part of Theorem 1(iii) and

∥∥μ[ϕn(s),ϕn(t))(f + ξn)1[ϕn(s),ϕn(t)) − μ[s,t)(f )1[s,t)
∥∥ = O

(√
logn

n

)
.

We define an extension λn ∈ �1 of ϕn by linear interpolation. From above, we
obtain the estimate ‖f̂n − f ◦ λn‖∞ = O(

√
logn/n). Furthermore,

L(ϕn) = max[s,t)∈PJ(f )

∣∣∣∣log
ϕn(t) − ϕn(s)

t − s

∣∣∣∣ = O(logn/n)
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such that ρS(f̂n, f ) = O(
√

logn/n).
7. By direct calculations we obtain from (15) and Lemma A.1 that

max
I∈PJn

|μI (ξ
n)| = OP(n−1/2).

Using this estimate and ρH (Jn, J (f )) = OP( 1
n
) in the same way as the almost sure

rate in step 6, we obtain that ρS(f̂n, f ) and ‖f̂n − f ‖ are of order OP(1/
√

n). �

A.8. The proof of Theorem 5. It is sufficient to show that

P
(
#J (f̂ MR

n ) = #J (f̂n)
)−−−−−→

n→∞ 1.

Assume there exists some subsequence nk such that #J (f̂ MR
nk

) < #J (f ) for
all nk . As a step function with #J (f ) jumps cannot be approximated by a sequence
of functions with fewer jumps, there exists a sequence of connected intervals Ink

with Ink
∈ Bnk

such that lim infnk→∞ l(Ink
) ≥ ε1 > 0 and for Ĩnk

= {i :xnk

i ∈ Ink
}∣∣∣∣∣ 1

#Ĩnk

∑
i∈Ĩnk

f
nk

i − f̂ MR
nk

(x
nk

i )

∣∣∣∣∣ ≥ ε2 > 0.

Consequently by Lemma A.1 for large nk

|∑
i∈Ĩnk

Y
nk

i − f̂ MR
nk

(x
nk

i )|√
#Ĩnk

≥ ε2
√

ε1nk −
|∑

i∈Ĩnk
ξ

nk

i |√
#Ĩnk

≥ ε2
√

ε1nk − O
(√

lognk

)
P-a.s.

This implies that for large nk the MR-criterion is not satisfied. By Theo-
rem 3(i) we have P(#J (f̂n) = #J (f̂ )) → 1 for n → ∞. Hence P(#J (f̂ MR

n ) ≥
#J (f̂n))−−−−−→

n→∞ 1.

It remains to show that f̂ MR
n has asymptotically at most as many jumps as f̂n.

Observe that

max
1≤j≤k≤n

|∑k
i=j Y n

i − f̂n(x
n
i )|√

k − j + 1
(16)

≤ max
1≤j≤k≤n

|∑k
i=j ξn

i | + |∑k
i=j f̂n(x

n
i ) − f

n

i |√
k − j + 1

.
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By the Cauchy–Schwarz inequality and Theorem 1(iii) we have for 1 ≤ j ≤ k ≤ n

|∑k
i=j f̂n(x

n
i ) − f

n

i |√
k − j + 1

= n|〈f̂n − f
n
,1[j/n,(k+1)/n)〉|√

k − j + 1

≤ n
‖1[j/n,(k+1)/n)‖√

k − j + 1
(‖f̂n − f ‖ + ‖f n − f ‖)

= √
n(‖f̂n − f ‖ + ‖f n − f ‖) = OP (1)

uniformly in j, k. Lemma A.2 implies

max
1≤j≤k≤n

|∑k
i=j ξn

i |√
k − j + 1

= σ
√

2 logn + oP

(√
logn

)
.

Applying the results above to (16) we arrive at

max
1≤j≤k≤n

|∑k
i=j Y n

i − f̂n(x
n
i )|√

k − j + 1
= σ

√
2 logn + oP

(√
logn

)
.

Since σ̂ is a consistent estimate of σ , this implies that the probability that f̂n sat-
isfies the MR-criterion tends to 1 as n goes to infinity. As γ̂n is chosen maximal
such that the MR-criterion is satisfied, we can conclude P(γ̂n ≥ γn)−−−−−→

n→∞ 1 and

consequently P(#J (f̂ MR
n ) ≤ #J (f̂n))−−−−−→

n→∞ 1 which proves the claim. �
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