The Annals of Satistics

2005, Vol. 33, No. 1, 159-183

DOI 10.1214/009053604000001084

© Institute of Mathematical Statistics, 2005

COMBINING INFORMATION FROM INDEPENDENT SOURCES
THROUGH CONFIDENCE DISTRIBUTIONS!

BY KESAR SINGH, MINGE XIE AND WILLIAM E. STRAWDERMAN
Rutgers University

This paper develops new methodology, together with related theories,
for combining information from independent studies through confidence
distributions. A formal definition of a confidence distribution and its
asymptotic counterpart (i.e., asymptotic confidence distribution) are given
and illustrated in the context of combining information. Two general
combination methods are developed: the first along the lines of combining
p-values, with some notable differences in regard to optimality of Bahadur
type efficiency; the second by multiplying and normalizing confidence
densities. The latter approach is inspired by the common approach of
multiplying likelihood functions for combining parametric information.
The paper also develops adaptive combining methods, with supporting
asymptotic theory which should be of practical interest. The key point of
the adaptive development is that the methods attempt to combine only the
correct information, downweighting or excluding studies containing little or
wrong information about the true parameter of interest. The combination
methodologies are illustrated in simulated and real data examples with a
variety of applications.

1. Introduction and motivations. Point estimators, confidence intervals and
p-values have long been fundamental tools for frequentist statisticians. Confidence
distributions (CDs), which can be viewed as “distribution estimators,” are often
convenient devices for constructing all the above statistical procedures plus more.
The basic notion of CDs traces back to the fiducial distribution of Fisher (1930);
however, it can be viewed as a pure frequentist concept. Indeed, as pointed out
in Schweder and Hjort (2002), the CD concept is “Neymannian interpretation of
Fisher’s fiducial distribution” [Neyman (1941)]. Its development has proceeded
from Fisher (1930) though recent contributions, just to name a few, of Efron
(1993, 1998), Fraser (1991, 1996), Lehmann (1993), Schweder and Hjort (2002)
and others. There is renewed interest in CDs [Schweder and Hjort (2002)],
partly because “statisticians will be asked to solve bigger and more complicated
problems” [Efron (1998)] and the development of CDs might hold a key to “our
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profession’s 250-year search for a dependable objective Bayes theory” [Efron
(1998) and Schweder and Hjort (2002)].

This paper is mainly focused on some new developments on the “combination”
aspect of CDs, where two natural approaches of combining CD information
from independent studies are considered. The first approach is froprihkie
combination scheme which dates back to Fisher (1932); see also Littell and Folks
(1973) and Marden (1991), among many others. The second approach is analogous
to multiplying likelihood functions in parametric inference. The two approaches
are compared in the case of combining asymptotic normality based CDs. We
require the resulting function of combined CDs to be a CD (or an asymptotic CD)
so that it can be used later on to make inferences, store information or combine
information in a sequential way.

For this purpose, we adopt a formal definition of CD developed by and
presented in Schweder and Hjort (2002), and extend it to obtain a formal definition
of asymptotic confidence distributions (aCDs). Supp&seXo,..., X, aren
independent random draws from a populatiBnand X is the sample space
corresponding to the data 96, = (X1, X», ..., X,)'. Let 6 be a parameter of
interest associated with (F may contain other nuisance parameters), an®let
be the parameter space.

DEFINITION1.1. AfunctionH,(:) = H,(X,,, ) onX x ® — [0, 1] is called a
confidence distribution (CD) for a parameteif (i) for each givenX,, € X, H,(-)
is a continuous cumulative distribution function; (ii) at the true parameter value
6 = 6o, H,(60) = H,(X,, 6p), as a function of the sampls,,, has the uniform
distributionU (0, 1).

The function H, (-) is called an asymptotic confidence distribution (aCD) if

requirement (ii) above is replaced by (iiat & = 6y, H, (6p) L U@,1) asn —
+o00, and the continuity requirement dif, (-) is dropped.

We call, when it existss,, (6) = H, (6) a CD density, also known as a confidence
density in the literature. This CD definition is the same as in Schweder and Hjort
(2002), except that we suppress possible nuisance parameter(s) for notational
simplicity. Our version, which was developed independently of Schweder and
Hjort (2002), was motivated by the observation (1.1) below. For evenn
(0,1), let (—o0, &, ()] be a 100:% lower-side confidence interval, whegga) =
&,(X,,, @) is continuous and increasing infor each sampleX,,. Then H, () =
gn‘l(-) is a CD in the usual Fisherian sense. In this case,

{Xn i Hy(0) <a}={X,:0 <&, ()}
(1.1)
forany« in (0,1) andd in ® C R.
Thus, at6 = 6y, P{H,(6y) < a} = a and H,(6p) is U(0,1) distributed.
Definition 1.1 is very convenient for the purpose of verifying if a particular
function is a CD or an aCD.
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The notion of a CD (or aCD) is attractive for the purpose of combining
information. The main reasons are that there is a wealth of informatiérirside
a CD, the concept of CD (and particularly aCD) is quite broad, and the CDs are
relatively easy to construct and interpret. Section 2 provides a brief review of
materials related to the CDs along these views. See Schweder and Hjort (2002)
for an expanded discussion of the concept of CDs and the information contained
in CDs.

The main developments are in Sections 3 and 4. We provide in Section 3 a
general recipe by adopting a genegalalue combination scheme. Section 3.1
derives an optimal method for combining CDs associated with the same parameter,
where the optimality is in terms of the Bahadur slope. The optimal scheme is
notably different from that for combining-values. Section 3.2 proposes adaptive
combination methods, in the setting where the parameter values in some of the
prior studies are not necessarily the same as the parameter value in the current
study. The properties of adaptive consistency and adaptive efficiency are discussed.
Analogous to combining likelihood functions in likelihood inference, we study
in Section 4 a combination approach of multiplying CD densities. There we also
provide a comparison of the two different CD-combining approaches in the case of
normal type aCDs. Section 5 illustrates the methodology through three examples,
each of which has individual significance. The proofs are in the Appendix.

2. Examplesand inferential information contained inaCD. The notion of
CDs and aCDs covers a broad range of examples, from regular parametric cases
to p-value functions, normalized likelihood functions, bootstrap distributions and
Bayesian posteriors, among others.

ExampLE 2.1. Normal mean and variance. SupposeXi, X2,..., X, is a
sample fromn (i, o2), with both  and o2 unknown. A CD foru is H,(y) =

Fi, 1(3 /f) whereX ands? are, respectively, the sample mean and variance, and
F;, ,(-) is the cumulative distribution function of the Studejpt -distribution.

A CD for 62 is H,(y) =1 — ((” 1)5") for y > 0, whereF, 2 () is the
cumulative distribution function of thgn_l-dlstrlbutlon.

EXAMPLE 2.2. p-value function. For any giverd, let p,,(e) Pn(X,,0) be
a p-value for a one-sided tesfo: 6 < 6 versusK1: 6 > 6. Assume that the-
value is available for alf. The functionp, () is called ap-value function [Fraser
(1991)]. Typically, at the true valug= 0g, p, (60) as a function oK, is exactly (or
asymptotically)U (0, 1)-distributed. AlsoH, (-) = p,(-) for every fixed sample is
almost always a cumulative distribution function. Thus, usugjly) satisfies the
requirements for a CD (or aCD).
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ExampLE 2.3. Likdihood functions. There is a connection between the
concepts of aCD and various types of likelihood functions, including likelihood
functions in single parameter families, profile likelihood functions, Efron’s implied
likelihood function and Schweder and Hjort’s reduced likelihood function, and so
on. In fact, one can easily conclude from Theorems 1 and 2 of Efron (1993) that in
an exponential family, both the profile likelihood and the implied likelihood [Efron
(1993)] are aCD densities after a normalization. Singh, Xie and Strawderman
(2001) provided a formal proof, with some specific conditions, which shows that
¢ is proportional to an aCD density for the paramefigrwhere ¢*(0) =
0,(0) — £,(D), £,(0) is the log-profile likelihood function, andl is the maximum
likelihood estimator of6. Schweder and Hjort (2002) proposed the reduced
likelihood function, which itself is proportional to a CD density for a specially
transformed parameter. Also see Welch and Peers (1963) and Fisher (1973) for
earlier accounts of likelihood function based CDs in single parameter families.

EXAMPLE 2.4. Bootstrap distribution. Let § be a consistent estimator 6f
In the basic bootstrap methodology the distributiorfof 6 is estimated by the
bootstrap distribution ofig — 0, wheredy is the estimatod computed on a
bootstrap sample. An aCD féris H,,(y) = Ps(Op > 20 — y)=1— PO —0 <
6 — y), where Pg(-) is the probability measure induced by bootstrapping. As
n — o0, the limiting distribution of normalized is often symmetric. In this case,
due to the symmetry, the raw bootstrap distributign(y) = Pg (Op < y) is also
an aCD ford.

Other examples include a second-order accurate CD of the population mean
based on Hall's [Hall (1992)] second-order accurate transformstdtistic, an
aCD of the correlation coefficient based on Fisherscore function, among
many others. See Schweder and Hjort (2002) for more examples and extended
discussion.

A CD contains a wealth of information, somewhat comparable to, but different
than, a Bayesian posterior distribution. A CD (or aCD) derived from a likelihood
function can also be interpreted as an objective Bayesian posterior. We give a
brief summary below of information in a CD related to some basic elements of
inference. The reader can find more details in Singh, Xie and Strawderman (2001).
This information is also scattered around in earlier publications, for example, in
Fisher (1973), Fraser (1991, 1996) and Schweder and Hjort (2002), among others.

e Confidence interval. From the definition, it is evident that the intervals
(—00, H7 (1 — )], [H; (@), +00) and (H; Y (a/2), H (1 — «/2)) provide
100(1 — a)%-level confidence intervals of different kinds fer, for any
a € (0,1). The same is true for an aCD, where the confidence level is achieved
in limit.
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e Point estimation. Natural choices of point estimators of the parameter
given H, (0), include the mediaM,, = Hn‘l(l/Z), the meam,, = ffo‘f tdH, (1)
and the maximum point of the CD densﬁ;y: argmax h, (0), h,(0) = H, (0).

Under some modest conditions one can prove that these point estimators are
consistent plus more.

e Hypothesis testing. From a CD, one can obtajmvalues for various hypothesis
testing problems. Fraser (1991) developed some results on such a topic through
p-value functions. The natural line of thinking is to measure the support
that H,(-) lends to a null hypothesi&o:6 € C. We perceive two types of
support: 1.Strong-support ps(C) = [- dH,(0). 2. Weak-support p,,(C) =
SURec 2MIN(H,(0), 1 — H,(0)). If Kq is of the type(—oo, 6p] or [6p, c0) or a
union of finitely many intervals, the strong-supppstC) leads to the classical
p-values. IfKg is a singleton, that iko is 0 = 6p, then the weak-suppopt, (C)
leads to the classical-values.

3. Combination of CDs through a monotonic function. In this section we
consider a basic methodology for combining CDs which essentially originates
from combiningp-values. However, there are some new twists, modifications and
extensions. Here one assumes that some past studies (with reasonably sensible
results) on the current parameter of interest exist. The CDs to be combined may be
based on different models. A nice feature of this combination method is that, after
combination, the resulting function is always an exact CD if the input CDs from
the individual studies are exact. Also, it does not require any information regarding
how the input CDs were obtained. Section 3.1 considers the perfect situation when
the common parameter had the same value in all previous studies on which the CDs
are based. Section 3.2 presents an adaptive combination approach which works
asymptotically, even when there exist some “wrong CDs” (CDs with underlying
true parameter values different fraty). For clarity, the presentation in this section
is restricted to CDs only. The entire development holds for aCDs with little or no
modification.

3.1. CD combination and Bahadur efficiency. Let Hyi(y),..., H.(y) be L
independent CDs, with the same true parameter vapju€sample sizes are
suppressed in the CD notation in the rest of this paper). Suppese, ..., uy)
is any continuous function frof®, 1]* to R that is monotonic in each coordinate.
A general way of combining, depending @a(u1,...,uz), can be described
as follows: DefineH.(u1,...,ur) = G¢(ge(ua,...,ur)), where G.(-) is the

continuous cumulative distribution function gf(Us, ..., Ur), andUs, ..., UL
are independerit (0, 1) distributed random variables. Denote
(3.1) H.(y) = H.(H1(y), ..., HL())).

Itis easy to verify thatd.(y) is a CD function for the parametérWe callH.(y) a
combined CD. If the objective is only to get a combined aCD, one may also allow
the aboveg, function to involve sample estimates.
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Let Fo(-) be any continuous cumulative distribution function a‘del(-) be its
inverse function. A convenient special case of the functiors

(32)  gelur,uz,...,ur) = Fytuy) + Fy tug) + - + Fy tuy).

In this caseG.(-) = Fp * - - - * Fg(+), wherex stands for convolution. Just like the
p-value combination approach, this general CD combination recipe is simple and
easy to implement. Some examplesrgfare:

e Fp(t) = ®(¢) is the cumulative distribution function of the standard normal. In
this case

1

Hym (y) = ¢(ﬁ[¢—1(H1(y>) + oY (Hy() 4+ <1>—1(HL<y>)]).

e Fy(t) =1—e7t, fort > 0, is the cumulative distribution function of the standard
exponential distribution (with mean 1). QFp(¢) = €', for r < 0, which is the
cumulative distribution function of the mirror image of the standard exponential
distribution. In these cases the combined CDs are, respectively,

L
Hpi(y) = P(xi <-2) log(1— H; (y)))
i=1

and

L
Hpa(y) = P<X22L > —2) logH; (y)),
i=1

wherey2, is ax2-distributed random variable with’2degrees of freedom. The
recipe forHg»(y) corresponds to Fisher’s recipe of combinipgyalues [Fisher
(1932)].

o Fo(t) = 3¢'Ly<0) + (1 — 2e7")1(>0), denoted aDE(r) from now on, is the
cumulative distribution function of the standard double exponential distribution.
Herel, is the indicator function. In this case the combined CD is

Hpe(y) = DEL(DE™Y(H1(»)) + -+ DE"Y(HL())),
whereDE; (t) = DE *--- % DE(t) is the convolution of. copies of DE(r).

Lemma 3.1 next gives an iterative formula to compt&; (¢). One critical
fact of this lemma is that the exponential parts of the tail®@f; () are the same
as those oD E (). The proof of Lemma 3.1 is in the Appendix.

LEMMA 3.1. For ¢ > 0 we have

1= DEL() = DEL(—1) = 3VL(De ",
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where V (¢) isapolynomial of degree L — 1. This sequence of polynomial s satisfies
the following recursiverelation: for k =2,3,..., L,

t
2Vi(t) = Vi1 (1) + /0 [Viea(s) — V{_1(s)]ds

o8}
+/0 [Vie1(5) + Viea(t +5) = V{_a(5)]e™> ds.
Inparticular, V1(r) =1and Va(r) = 1+1/2.

Littell and Folks (1973) established an optimality property, in terms of Bahadur
slope, within the class of combinegd-values based on monotonic combining
functions. Along the same line, we establish below an optimality result for the
combination of CDs.

Following Littell and Folks (1973), we define the concept of Bahadur slope
fora CD:

DEFINITION 3.1. Letn be the sample size corresponding to a CD function
H(-). We call a nonnegative functiofi(z) = S(¢; 6p) the Bahadur slope for the
CD function H(-) if for any ¢ > 0, S(—&) = —Ilim,— 1 % logH 6y — ¢) and
S(e) = —lim, s 400 2 log{1 — H (6o + &)} almost surely.

The Bahadur slope gives the rate, in exponential scale, at whiéh — ¢) and
1— H(6 + ¢) go to zero. The larger the slope, the faster its tails decay to zero. In
this sense, a CD with a larger Bahadur slope is asymptotically more efficient as a
“distribution-estimator” for.

Supposensy, no,...,ny, the sample sizes behind the CDO#(y), Ho(y),
..., Hr(y), goto infinity at the same rate. For notational simplicity, replacky n
and writen; = {A; + o(D}n for j =1,2,3,..., L; we always have.; = 1. Let
S;(t) be the Bahadur slope fd#;(y), j =1,2,..., L, andS.(¢) be the Bahadur
slope for their combined CD, sa¥f.(y). The next theorem provides an upper
bound forS.(¢) [i.e., the fastest possible decay rateM(y) tails] and indicates
when it is achieved. Its proof can be found in the Appendix.

THEOREM3.2. Under 6 = 0p, for any ¢ > 0,asn — +o0,

o1 -
—liminf - logH.(6p — ) < jz_lkij(—S)

and

1 L
—liminf =log(1— He(6o+)) < > 1;S;(e)
" js
j=1
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almost surely. If the slope function S.(-) exists,

L L L L
Se(—e) < Y 2;8j(=e) [ D a; and See) < Y28 [ DAy
j=1 j=1 j=1 j=1

Furthermore, almost surely, for any ¢ > 0,

L L L L
SEl(g):ijSj(g)/Z,\j and SEz(—s):ZAij(—S)/Z)»j;
j=1 =1 =1 i

L L L L
SpE(—e) = ijsj(—s)/ZAj and Spg(e) = ijsj(s)/ij.
j=1 j=1 j=1 j=1

Here, Sg1(t), Sg2(t) and Spg(r) are the Bahadur slope functions of combined
CDs Hg1(x), Hg2(x) and Hp g (x), respectively.

This theorem states that thBE(r) based combining approach is, in fact,
optimal in terms of achieving the largest possible value of Bahadur slopes on both
sides. The two combined CO¥g1(y) and Hg2(y) can achieve the largest possible
slope value only in one of the two regiorts;> 6p or 6 < 8p. This phenomenon is
illustrated in Figure 1.
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Fic. 1. A typical figure of density plots of Hpg(-), Hg1(-) and Hgo(-), when we combine
independent CDs for the common mean parameter . of N(x, 1.0) and N (u, 1.52); thetrue u = 1
and the sample sizes are nq = 30 and np = 40. The solid, dotted and dashed curves are the density
curvesof Hpg(+), Hg1(-) and Hga(+), respectively.
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Note that, in thep-value combination case, Littell and Folks (1973) established
that Fisher's way of combination is optimal in terms of having the largest possible
Bahadur slope. To our knowledge, no one has consideredDtEé) based
combination rule when combining-values. There is a notable difference between
combining p-values and CDs. While for CDs one cares about the decay rates of
both tails, separately, a typicalvalue concept either involves only one tail of
the distribution of a test statistic or lumps its two tails together. Dhg&(z) based
combination rule is quite natural when combining CDs, but not when combining
p-values.

3.2. Adaptive combination. The development in Section 3.1 is under the
assumption that all the CD#&;(y), ..., H.(y) are for the same parameter
with identical true valu& = 6p. There may be doubts about the validity of this
assumption. For instance, |&f (y) be a CD foro with true valuefy, based on
a current study of sample siza. Let Ho(y), ..., Hy(y) be available CDs of
based on previous (independent) studies involving sample gizes ., nz}. One
could be less than certain that all earlier values® ofrere indeed equal to the
current valueg = 6. It will be problematic if one combines all the available CDs
when some of the studies had the underlying va@ué 0y. Indeed, the resulting
function of combination will not even be an aCD (under the true valeeoy).
This can be demonstrated by a simple example of combining two @R!) =

d( y_él) andHs(y) = d)((f/_j%), whereo is known,/n (61 —6g) ~ N(0, 52, and

o//n
(62— 0g) ~ N (0, 52), for somedg + g. The combined outcome by the normal-
based approachiy y (y) = @(%ﬁ?), is not uniformly distributed, even in
limit (n — o0) wheny = 6. In this section we propose adaptive combination
approaches to remedy this problem and go on to establish related optimality
properties under a large sample setting.

Let H1(-) be a CD with true parameter val@e= 6y, based on a current study.

The L — 1 CDs from the previous studies érare separated into two sets:

Ho = {H;: H; has the underlying value 6f=6p, j =2,..., L},
J1={H;: H; has the underlying value 6f+# 6o, j =2,..., L}.

The set#fy contains the “right” CDs andi; contains the “wrong” CDs. We
assume, however, the information abdtg and #¢;1 is unavailable to us.

The development of a general adaptive combination recipe starts with an
extension of the general combination method of Section 3.1, which includes a set
of weightsw = (w1, ..., wr), w1 = 1. Our intention is to select a set of adaptive
weights that can filter out the “wrong” CDs (i#¢1) and keep the “right” CDs
(in F) asymptotically.
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Although it could be much more general, for simplicity, we let

L
(33) gc,w(ula---,”L): Za)]FO_l(MJ)’
j=1

where Fp(-) is a continuous cumulative distribution function with a bounded
density. LetG, (1) = Fo(t) * Fo(sz) % ek Fo(w’—L) and H o, (u1,...,ur) =
Gew(gew(ui,...,ur)). We define

Hc,a)(Y) = Hc,a)(Hl(y)a Ha(y), ..., HL(Y))-

Define the weight vectapvg as(1, wéo), e w(LO)), WheFEw;O) = 1for H; € #,
andwﬁo) =0 for H; € #,. The combined CD functiomic(o) (y) = He,o(y) is OUr
target which combine#/; with the CDs in#p. Of course, we lack the knowledge
of o and#1, SOwg is unknown. Thus, we need to determine the adaptive weights,
denoted bw™ = (1, 3, ..., w] ), converging tasg, from the available information
inthe CDs. LetH*(y) = H.,»+(y). One would hope thal/ (y) is at least an aCD.

DEFINITION 3.2. A combination method is adaptively consistentjf(y) is
an aCD ford = 6.

Supposer1, no, ..., ny go to infinity at the same rate. Again, we let=n; and
write n; = {A; + o(D}n, fori =1,2,...,L; Az1 = 1. We define below adaptive
slope efficiency.

DEerINITION 3.3. A combination method is adaptively slope efficient if for
anye > 0,

1
—nll)rroo - log HY(—¢) = Z AjSj(—e),
JHje{H1}UHo
o1
—nll)rpw;log{l—H:(e)}: > AjSie).

Jj: HjelH1}UHo

HereS;(z) is the Bahadur slope @ (x), all assumed to exist.

Let I; be a confidence interval derived fraH) (), fori =1, 2,..., L. Suppose,
asn — oo, the lengths of theseé confidence intervals all go to zero almost surely.
Then, for all largen, it is expected that; N /; = @ for j such thatd; € #,. This
suggests that in order to get rid of the CDs7i whenn is large, we should take
wi =Lni e for j=2,..., L, wherel, is the indicator function. With this
choice of data-dependent weights, we have the following theorem. The theorem
can be easily proved using the Borel-Cantelli lemma and its proof is omitted.
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THEOREM 3.3. Assume that theintervals /; lie within an e-neighborhood of
the corresponding true value of 6, for all large n almost surely, and for any fixed
e > 0. In addition, assume that, for each j such that H; € #o, we have

+00
(3.4) Y PN =02) < +oo.
n=1

Then if a);‘ = lin1;+2) forj=1,2,...,L,we havesupy |H(y) — HC(O)(y)| =0,
for all large n almost surely.

Note that H§°>(y) is the “target” combined CD. From Theorem 3.3 we
immediately have the following corollary.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, the adaptive
combination recipe described in this section, with the adapting weights w’J“ =
Linnij#e) for j=2,... L, is adaptively consistent. Furthermore, if Fo(r) =

DE(t) in (3.3),this combination method is also adaptively slope efficient.

REMARK 3.1. A simple example is to také = (H, *(a,/2), H 11 —
@n/2),i=1,2,..., L. Itfollows thatP(I1NI; = @) <1— (1 —ay)? < 2a, for
eachj such that; e #p. Thus,Z:j‘{ o, < oo is a sufficient condition for (3.4).
However, this bound is typically very conservative. To see this, consider the basic
example ofz-based CD for unknown normal mean with known variamce
Let H;(y) = ®(V/n(y — X;)/o), whereX; is the sample mean in théh study,
andze, 2 is the normal critical value of levet, /2. We haveP(I1NI; = @) =
21— <I>(«/§Zan/2)), which could be a lot smaller thamx2. Considering this issue,
we recommend a somewhat substantial valuefoin applications.

A feature that may be regarded as undesirable with the above adaptive method
is the fact that it assigns weights either 0 or 1 to the CDs. We propose below
the use of kernel function based weights, which take values between 0 and 1.
Under some regularity conditions, we will show that the weighted adaptive
combination method with the kernel based weights is adaptively consistent and
“locally efficient” (Theorem 3.5).

Let K(r) be a symmetric kernel function),K (t)dt =1, [tK(t)dt = 0 and
[ 2K (1)dr = 1. In the present context we also require that the tails of the kernel
function tend to zero at an exponential rate. Some examples are the normal kernel
K(t) = ¢ (1), the triangle kernel and the rectangular kernel function, among others.

In order to use the kernel function, some measure of “distance” betWegen
and H;(y), j = 2,..., L, is needed. For illustrative purposes, we dse- 6,
wheref;, i =1,..., L, are point estimators obtained frofj (v), respectively.

We assume;, for i = 1,2,..., L, converge in probability to their respective
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underlying values of, say6p ;, at the same polynomial rate. Fot 1 ori such
that H; € #o, 6o,; = 0. Let b, — 0 be such thaly; — 6o ;| = 0,(b,). We define
the kernel function based weights as

" él—éj .
(3.5) wj:K(T)/K(O) forj=1,2 ..., L.

Among many other possibilities, one set of convenient choio@s:isHi‘l(%) and
by = /Rn, whereR, = H{ *(3) — H; 1 (}) is the interquartile range a1 ().

Under the above setting, we have the following theorem; its proof is in the
Appendix.

THEOREM3.5. Let §, > 0 be a sequence such that H; (6p + §,,) are bounded
away from 0 and 1, in probability, for i = 1 and i with H; € J#. Suppose Fop
in (3.3)isselected such that min{ Fo(¢), 1 — Fo(¢)} tends to zero, exponentially fast
as |f| — oo. Then, with a)j as defined in (3.5),0ne has

sup  |H () —H9()|—0  inprobability, asn — +ooc.
x€l0—3n,00-+6]

Theorem 3.5 suggests that in a local neighborhooéyot#*(y) and HC(O)(y)
are close for large. Recall thatHﬁo)(y) is the target that combingd; with the
CDs in #tg. The following conclusion is immediate from Theorem 3.5.

COROLLARY 3.6. Under the setting of Theorem 3.5, with a)’j asin (3.5),the
adaptive combination method described in this section is adaptivély consistent.

The result in Theorem 3.5 is a local result depending,grwhich is typically
O((n~Y?). For a set of general kernel weights of the form (3.5), we cannot get
an anticipated adaptive slope efficiency result for the adaptive DE combination
method. But, for the rectangular kernel, this optimality result does hold, since in
this case the weight* becomes either 1 or O for all large almost surely. The
proof of the following corollary is similar to that of Theorem 3.4 and is omitted.

COROLLARY 3.7. Under the setting of Theorem 3.5, with a);‘ asin (3.5)and
K (1) = {1/(2V/3)}1;, . /3, the adaptive combination method described in this
section with Fo(r) = DE(t) is adaptively slope efficient if Y72, P(16; — 6o ;| >
Bp,) <oofor j=1,2,...,L.

4. Combination of CDs through multiplying CD densities. Normalized
likelihood functions (as a function of the parameter) are an important source of
obtaining CD or aCD densities. In fact, it was Fisher who prescribed the use
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of normalized likelihood functions for obtaining his fiducial distributions; see,
for example, Fisher (1973). Multiplying likelihood functions from independent
sources constitutes a standard method for combining parametric information.
Naturally, this suggests multiplying CD densities and normalizing to possibly
derive combined CDs as follows:

(4.1) HP(9)=/(0079)m®h (y)dy/ f(oo’oo)mh () dy,

where h*(y) = Hlehi(y) and h;(y) are CD densities fromL independent
studies. Schweder and Hjort (2002) suggested multiplying their reduced likelihood
functions for combined estimation, which is closely related to the approach
of (4.1). However, they did not require normalization and, strictly speaking, the
reduced likelihood function, in general, is not a CD density dofit is only
proportional to a CD density for a specially transformed parameter).
Unfortunately, the combined functioHp (-) may not necessarily be a CD or
even an aCD function in general. But we do have some quite general affirmative
results. We first present here a basic result pertainirigt¢). Let Ty, 7o, ..., TL
be a set of statistics frorh independent samples. Suppd%,e{-), i=12...,L,
are the cumulative distribution functions @f — 6 with density functions; ()
which are entirely free of parameters. Thus, one ha€Ds of 9, given by
H;(0) =1— H;(T; — 0) with corresponding CD densitiés (0) = h; (T; — 6).

THEOREM4.1. Intheabove setting, Hp(0) isan exact CD of 6.

An elementary proof of this theorem is given in the Appendix. This theorem
can also be proved using the general theory relating best equivariant procedures
and Bayes procedures relative to right invariant Haar measure [see, e.g., Berger
(1985), Chapter 6 for the Bayes invariance theory]. Using this Bayes-equivariance
connection, or directly, one can also obtain an exact CD for the scale parameter
0, but it requires one to replade‘(y) in (4.1) with 2**(y)/y, whereh**(y) =
[T ki ()}

The original method of (4.1) does not yield an exact CD for a scale parameter.
Let us consider a simple example.

ExAMPLE 4.1. Consider theU[0, 8] distribution with unknown®. Let
H(©)=1- (%)”f overf >Y;,i =1, 2, be the input CDs, wherg, andY> are
maxima of two independent samples of sizggandn,. The multiplication method
(4.1) yieldsHp () = (%)”1”’2“, overf > Y =maxYy, Y2). This Hp(#) is not
an exact CD, though it is an aCD.

The setting for Theorem 4.1 is limited. But it allows an asymptotic extension
that covers a wide range of problems, including those involving the normal and
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“heavy tailed” asymptotics, as well as other nonstandard asymptotics such as that
in Example 4.1.

Let ITI,-,L, be an asymptotic (weak limit) cumulative distribution function of
& =n? TZV‘Q where(T;, V;) are statistics based on independent samples of sizes
ni,i=1...,L. Denoteﬁi,a(-) = ﬁ[,a(-). One has aCD densities given by

né - T, —0
4.2 hia(0) = —hi o n%——).
(42) () vm(”’vi)
Let & have uniformly bounded exact densiti§§g(-), fori=1,...,L, and

define h; .(-) as in (4.2) with#, , replaced byh; .(-). Assume the regularity
conditions: (a)%;.(-) — h;.(-) uniformly on compact sets. (bj;.(-) are
uniformly integrable. (c)V; — t?, a positive quantity, in probability, foi =
1,..., L. DefineHp(:) by (4.1) wheren; (-) is eitherh; ,(-) or h; ().

THEOREM4.2. Intheabove setting, Hp () isan aCD.

The proof is based on standard asymptotics using Theorem 4.1 on combination
of H;,'s and is not presented here. We would like to remark that, due to the
special form of the normal density, in the usual case of normal asymptmtie%(

ﬁ,-,a = @), the combined functioip (-), with 4;(-) = h; 4(-) in (4.1), is an aCD
without requiring the regularity conditions (a) and (b).

For the purpose of comparing the two different combination approaches given

by (3.1) and (4.1), we now specialize to asymptotic normality based aCDs

where both methods can apply. Lgt= \/n—lTV’G The normality based aCD
is H,(0) =1— Hi (&) =1— ®(&) with aCD densityh; (0) = h; (&) =
%(b(éi). Consider the combined functidiip (-) with input aCD densitieg; ,(-)

or h; .(-). It is straightforward to verify that/p(-) in this special case is the same
as (or asymptotically equivalent to)

Lo Y2
HAN<0>=1—<I><[ZV’} (éc—e)>,

j=1 "¢

whered, = Xk, w1/ Zle(%) is the asymptotically optimal linear combina-
tionof7;,i =1,2,..., L. Inlight of this remark, it is evident that the large sample
comparison presented below betwdépy and Hp g also holds betweeH p and
Hppg. Note thatH 4y is, in fact, a member of the rich class of combining methods
introduced in Section 3.1, where we pigKu1, ..., uz) = Zle[(%)l/zcb‘l(ui)]
in (3.1).

The concept of the Bahadur slope, which is at the heart of Section 3, is still
well defined for aCDs andipg(-) still has the slope optimality. However, the
concept of slope loses its appeal on aCDs since one can alter the slope of an aCD
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by tampering with its tails, while keeping it an aCD. Nevertheless, if the input
CDs are the normal based aCDs mentioned above, it is straightforward to show
that Hpr and H4 y have the same slope (achieving the upper bound). This result is
noteworthy in the special case whers are means of normal samples dnd= Giz

are the known variances, whekg, i is an exact CD. In this casél, y is derived

from a UMVUE estimator.

Next we address the following question: How &,z and H4y compare in
terms of the lengths of their derived equal-tail, two-sided asymptotic confidence
intervals? Let us definép g (o) = Hpy b (1—a) — Hp (@) andly (@) = Hya (1—

a) — Hgli(a). Also, we assume, as in Section 3, that=n andn ; /n are bounded
below and above, fof =2, ..., L. Letlim* be the limit agn, «) — (00, 0). Akey
aspect of lini is the fact that it allowsx to converge to 0, at an arbitrary rate; of
course, slow rates are better from a practical viewpoint. The proof is given in the
Appendix.

THEOREM4.3. |lim*[£pg(a)/€an(a)] = 1in probability.

Hence, for combining large sample normality based aCDs, the three combining
methodsHpg, Hp and Hyy are equivalent in the above sense. When the input
aCDs are derived from profile likelihood functions, th-method amounts to
multiplying profile likelihood functions, in which case (in view of the standard
likelihood inference) Hp may have a minor edge ovelpr when a finer
comparison is employed. On the other haHg,r has its global appeal, especially
when nothing is known about how the input CDs were derived. It always returns
an exact CD when the input CDs are exact. A5,z preserves the second-order
accuracy when the input CDs are second-order accurate (a somewhat nontrivial
result, not presented here). Aspects of second-order asymptotis are not
known to us, whileH 4 5 ignores second-order corrections.

The adaptive combining in Section 3.2 carries oveHtQy, sinceHay () is a
member of the rich class of combining methods introduced there. Also, one can
turn Hp into an adaptively combined CD by replacing(y) in (4.1) with 2} (y),
whereh? (y) = [1-1 h" () or [1% 1 hi (wiy). The adaptive weights; are chosen
such thatw; — 1 for the “right” CDs (in #p) andw; — 0 for the “wrong” CDs
(in #¢1). Some results along the line of Section 3.2 can be derived.

We close this section with the emerging recommendation that while normal type
aCDs can be combined by any of the methétiss, Hp or H4y, exact CDs and
higher-order accurate CDs should generally be combined bpenethod.

5. Examples.

5.1. The common mean problem. The so-called common mean problem
of making inference on the common mean, say of two or more normal
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populations of possibly different variances, also known as the Behrens—Fisher
problem, has attracted a lot of attention in the literature. In the large sample
setting, it is well known that the Graybill-Deal estimatagp = {(nz/sgm +
(n1/52)X2}/{(n1/s2) + (n2/s2)}, is asymptotically efficient. In the small sample
setting, there is still research going on attempting to find efficient exact confidence
intervals for u. In particular, Jordan and Krishnamoorthy [(1996), through
combining statistics] and Yu, Sun and Sinha [(1999), through combining two-sided
p-values] proposed efficient exact confidence intervals for the common mean
however, there is a small but nonzero chance that these intervals do not exist.

Let us consider the CD based method, first under large sample settings. In

this case, we start with normal based aCls,(y) = @(ﬁ) and Hy, (y) =

d)(é]j‘f). Following Section 4.2, we would like to prescribe the combined CDs

Han(y) [or Hp(y), which is the same]. It is interesting to note that this combined
CD is the same as the CD directly derived from the Graybill-Deal estimator. Thus,
the confidence intervals derived froHy y (6) are asymptotically shortest.

If one wants to obtain exact confidence intervals for one can turn to
the recipe prescribed in Section 3.1. Clearly, exact CDs [dobased on

two independent normal samples aff(y) = F,”l_l(ﬁ) and Hx(y) =
F,nz_l(%), respectively; see Example 2.1. By Theorem 3.2, the DE based
approach will be Bahadur optimal among all exact CD based approaches of
Section 3. The resulting exact confidence intervalfomwith coverage 1- «, is

(9a/2, q1-a/2), Whereg; is thes-quantile of the CD functio{pg (y). This exact
confidence interval for always exists at every level.

We carried out a simulation study of 1000 replications to examine the coverage
of the CD based approaches, under three sets of sample(sizes) = (3, 4),
(30,40) or (100 140) and two sets of (true) variance®?, 02) = (1,1.5%)
or (1,3.5%). The coverage of constructed 95% confidence intervals is right on
target around 95% in the six cases for tHg based exact method. However,
the Graybill-Deal (i.e., aCDH sy or Hp) based method leads to serious
under-coverage (88% and 8™%) in the two cases with small sample sizes
(n1, n2) = (3, 4), and notable under-coverage (3% and 936%) in the two cases
with moderate sample siz€s1, n2) = (30, 40). So, in small sample cases, the
exact CD based approach is substantially better, in terms of coverage.

Theorem 4.3 suggests that, under a large sample setting, the DE based approach
and the Graybill-Deal estimator (equivalentlysy or Hp) based approach will
have similar lengths for confidence intervals with high asymptotic coverage. We
carried out a simulation study to compare the lengths in the two cases with large
sample sizen1, n2) = (100, 140), at confidence level 95%. We found that the
lengths corresponding to thiépr based method, on average, are slightly higher
than those corresponding to the Graybill-Deal estimator, but they are not too
far apart. The average ratio of the lengths, in the 1000 simulations, is 1.034 for
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(02,02) = (1,1.5%) and 1.081 for(cZ, 02) = (1, 3.5%). Similar ratios were also
obtained for the 90% and 99% confidence intervals under the same setting. The
simulation results seem to endorse our recommendation at the end of Section 4.

5.2. Adaptive combination of odds ratios in ulcer data. Efron [(1993),
Section 5] studied an example of combining independent studies. The example
concerns a randomized clinical trial studying a new surgical treatment for stomach
ulcers [Kernohan, Anderson, McKelvey and Kennedy (1984)] in which there
are 9 successes and 12 failures among 21 patients in treatment groups, and 7
successes and 17 failures among 24 patients in the control group. The parameter
of interest is the log odds ratio of the treatment. Based on the data, the estimated
Iog odds ratio i1 = log(13/75) = 0.600, with estimated standard erréf =
(5+ 13 + 3+ #£)Y2=0.629. In addition to Kernohan’s trial, there were 40 other
randomlzed trials of the same treatment between 1980 and 1989 [see Table 1 of
Efron (1996) for the complete data]. The question of interest is how to combine
the information in these 40 studies with that in Kernohan'’s trial. Efron (1993)
employed an empirical Bayes approach, where he used a Bayes rule to combine

the implied likelihood function of Kernohan’s tridl; (9) ~ o= ‘91) with a prior
distribution 7, (0) Z] —25 ¢(9 9’) Here ¢ (¢) is the denS|ty function of the

standard normal distribution, am;l ando;, j =2,...,41, are the estimators of
the log odds ratios and standard errors in the 40 other clinical trials. To obtain
meaningful estimates of; and &; in the analysis, nine entries of zero were
changed to 0.5; see Efron (1993).

We re-study this example, utilizing the purely frequentist CD combination
approach. Under the standard assumption that the data in each of these 41
independent clinical trials are from a four-category multinomial distribution, it
is easy to verify thatd;(y) = @("jf'), j=1,2,...,41, are a set of first-order
normal aCDs of the 41 clinical trialjs. We use the combined a&C{Ly (i.e., taking
ge(u, ... ,up) = Y [2d71(u)] in (3.1)), both with and without adaptive
weights, to summarize the combined information. Although there is no way to
theoretically compare our approach with Efron’s empirical Bayes approach, we
will discuss the similarities and differences of the final outcomes from these two
alternative approaches.

First, let us temporarily assume that the underlying valuésinfthese 41 clin-
ical trials are all the same. So, each trial receives the same weight in combination.

In this case, the combined aCDAg;y (9) = (Y, % 9 00y /(3L }1/2) =

®(7.9656 + 0.8876). The density curve off N(@) |s plotted in Flgure 2(a),
along with the posterior density curve (dashed line) obtained from Efron’s empiri-
cal Bayes approach. For easy illustration, we also include (in each plot) two dotted
curves that correspond to the aCD density of Kernohan's/ttigd) = H;(6) and
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FiG. 2. The solid curves in (a)—(d) are combined CD density curves, combined with (a) equal
weight to all 41 trials, (b) normal kernel weights, (c) O—1weights with «;, = 0.25, (d) 0-1weights
with «;, = 0.30. The dashed curves are the posterior density function (approximated ) from Figure 4
of Efron (1993).The two dotted curves (with peaksfromright to |l eft) correspond to the aCD density of
Kernohan'strial 21 (0) [i.e., Efron’s(1993)implied likelihood L% ()] and the average aCD densities
of the 40 other trials [ proportional to the empirical prior 7. () used in Efron (1993)].

the average aCD densities of the previous 40 trggl®) = & >71, 6li¢(95—,-9i);

note thath1(0) ~ L (0), Efron’s (1993) implied likelihoodL} (6), and g, ()

7.(0), the empirical prior used in Efron (1993). It is clear in Figure 2(a) that the
aCD curve ofH3y(0) is too far to the left, indicating a lot of weight has been
given to the 40 other trials. We believe that the assumption of the same underlying
values of9 in all of these 41 clinical trials is too strong; see also Efron (1996).

A more reasonable assumption is that some of the 40 other trials may not have
the same underlying trugas in Kernohan's trial. It is sensible to use the adaptive
combination methods proposed in Section 3.2, which downweight or exclude the
trials with the underlying parameter value away from that of Kernohan’s trial.
Three sets of adaptive weights are considered: one set of normal kernel weights

a)f’ x ¢(M1\_FRM<"), and two sets of 0 or 1 adaptive weiglaeb§ = L(nni;+2) With

I; = (H Y /2), H7H(1 — a,/2)). Here M; = H; (%) is the median of the aCD
H; of the ith trial, and following Remark 3.1, we take, = 0.25 and 030,
respectively, in the two sets be’s. The three corresponding combined CDs
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are, respectiverHj\VN (0) = ®(5.77880 — 0.1029), Hle (0) = ©(5.40076 —
0.1199) andHffN(e) = ®(5.30510 — 0.1698). Their density curves are plotted

in Figure 2(b)—(d). We also tried triangle and rectangular kernel weights, but
the results were very similar and are not presented here. A noteworthy feature
of the combined CD density curves is the following: when all the weights are
equal, the combined curve puts little mass to the right of 0, while all the rest put
substantial mass to the right of 0.

Comparing the three adaptively combined CDs with the posterior distribution
obtained by Efron [(1993), Figure 4] on the same data set [Figure 2(b)—(d)], we find
that they all have very similar features. Their density curves all peak within a small
range and between the peakshgfd) andg,(9), actually much closer ta1(9),
reflecting intuitive intent of such combinations. But there is also a quite notable
difference. The spans of all the combined CD densities are smaller than that of the
posterior density function. Note that in Efron’s empirical Bayes approach, all 40
other trials have equal contributions (as a part of the prior) to the final posterior
through Bayes formula. In the adaptive approach, the trials closer to Kernohan’'s
trial have more contribution (i.e., higher weights) than those trials farther away.
It seems that much more information from the 40 other clinical trials, especially
those withH ; (9) closer toH1(9), has been drawn in the adaptive CD combination
method.

5.3. Computationally intense methodology on alargedataset. One can utilize
CDs to find a way to apply statistical methodology involving heavy computations
on a large data set. Here, we illustrate the “split and combine” approach. We divide
the data into smaller data sets; after analyzing each sub-data set separately, we can
piece together useful information through combining CDs. For a computationally
intense methodology, such a method can result in tremendous saving. Suppose
the number of steps involved in a statistical methodologynis™, n being the
size of the data set; > 0. Suppose the data set is divided iktpieces, each of

size . The number of steps involved in carrying out the method on each subset is

c()¥t4. Thus, the total number of stepscis() ¢ = ‘”k$ If the effort involved

in combining CDs is ignored, there is a saving by a factor‘ofWe think that the
information loss due to this approach will be minimal. One question is how to
divide the data. Simple approaches include dividing the data based on their indices
(time or natural order index), random sampling or some other natural groupings.
For the purpose of demonstration, let us considdr-atatistic based robust
multivariate scale proposed by Oja (1983). L¥t, ..., X, } be a two-dimensional
data set. Oja’s robust multivariate scalefis= mediarfareas of al(%) triangles
formed by 3 data poinis For any given three data points1, y1), (x2, y2)
and (x3, y3), the area of their triangle is given b%/\det(tltztg) |, wheret; =
(1, x;, y1)’, for1 =1, 2, 3. To make inference on this scale parameter, it is natural
to use the bootstrap. But obtaining the bootstrap densit§,, o6 a formidable
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task when the sample size is large. For example, even with = 48 the
computation of4, involves evaluating the area of 4847 x 46/6 = 17,296
triangles. With 5000 (say) repeated bootstrapping, the total number of triangle
areas needed to be evaluated igt86nillion. If one adopts the “split and combine”
approach discussed above, say, randomly splitting the data set of size 48 into
two data sets of size 24, the number of triangle areas needed to be evaluated
is 2x 5000x (24 x 23 x 22/6) = 20.24 million. This is less than /4 of the
86.48 million. If we randomly split the data set of size 48 into three data sets of size
16 each, the number of triangle areas needed to be evaluated39@0x (16 x
15 x 14/6) = 8.4 million, less than 110 of the 8648 million. Since bootstrap
density functions are aCDs, the bootstrap density functions obtained from each
sub-dataset can be combined together, using the technigques of combining CDs. The
combined CD can be used to make inferences on the robust multivariate$scale
Figure 3 plots bootstrap density functions of the robust multivariate s;ale
based on a simulated two-dimensional data set of size 48. The data set was
generated with theth observation beingz!!! 4 7121, 71U — 7121y ' wherez!! and
ZEZ], s=1,...,48, are simulated from the Cauchy distributions with parameters
center= 0 and scale= 1 and center= 1 and scale= 1.3, respectively. The

density
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Fic. 3. Figure (a)is for density curves and (b) is for cumulative distribution curves. The solid,
dotted and dashed-line curves correspond to methods described in the main context with no split,
split into two pieces and split into three pieces, respectively.
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solid curve in Figure 3(a) is the bootstrap density functiomptbased on 5000
bootstrapped samples. It took 67720.75 seconds to generate the density curve
on our Ultra 2 Sparc Station using Splus. The dotted and broken curves are the
bootstrap density functions gf, using the “split and combine” method, where we
split the sample randomly into two and three pieces, respectively. It took 12,647.73
and 556119 seconds to generate these two density plots, including the combining
part. Hence, the “split and combine” method used less thdnahd 110 of the

time, respectively! From Figure 3, it is apparent that all three curves are quite
alike. They all seem to capture essential features of the bootstrap distribution of
the robust multivariate scalg,.

APPENDIX
A.1l. Proofsin Section 3.

PROOF OF LEMMA 3.1. LetT and W be independent random variables,
such thatT has the standard double exponential distribution whilesatisfies,
fort >0, PW<—-1t)=P(W>1t)= %Vk(t)e*’, where Vi (-) is a polynomial
of finite degree. We write, for > 0, P(T + W > 1) = =P(T + W > t|T > 0,
W>0)+3P(T+W>tT>0,W<0)+3P(T+W>t|T <O,W>0)=
I+ 11+ 111 (say). Now,

I_4P(W>t|T>O W>O)+ P(T+W=>t,W<tT=>0W=>0)

=ivie™ + %/ eIV (s) = V](s)]e ™ ds

%1 [Vk(fﬂ—/ [Vi(s) — Vk(s)]ds}

N=%P(T>t—W|T>0W<0)
=iPpT>t+W|T>0W=>0)

IRy

=1 fo e~ FIVe(s) — Vi(s)]e™ ds

e~ [/ {(Vi(s) = V{(s)}e™ zsds]

Similarly, lll = Z{e"[[{,>o Vi(s + 1)e=% ds). The proof is concluded by lettingy/
have the distribution o[’{ Y;,fork=1,2,..., successively. [

Before we prove Theorem 3.2, we first prove a lemma. This lemma borrows an
idea from Littell and Folks (1973).
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LEmMMA A.1. Let H.(u1,...,ur) be a function from [0, 1] to [0, 1],
monotonically nondecreasing in each coordinate. Also, suppose H.(U1,...,UyL)
has the U (0, 1) distribution when Uy, ..., Uy are independent U (0, 1) random
variables. Then for any us,...,uz in [0,1], He(u1,...,ur) > [15_ju, and
1— He(ua,...,up) = [T (L—up).

PrROOF In view of the monotonicity, it follows tha{U; < ui1, Uz < up,
...,Ur < ur} implies {H.(Uy,...,Ur) < H.(u1,...,ur)}. The first claim
follows if we takeUy, Uo, ..., Uy as independent/ (0, 1) random variables. The
second claim can be proved similarly via the facts §#at > u1,...,Ur > ur}
implies{l1— H.(Uy,...,U;) <1—H.(u1,...,ur)}andthatt H.(U1,...,Uyr)
follows U (0, 1) distribution whenUy, ..., U, are independent/ (0, 1) random
variables. O

PROOF OFTHEOREM3.2. InLemmaA.ltaka1 = Hi(x),...,ur = Hp (x).
The first result follows immediately from Lemma A.1. Natgn; — > 1 ;, where
m=n1+n2+---+nr. The second result follows from the first result.

The next two equalities related fr1 and Hg»> can be obtained from direct cal-
culations, appealing to the fact that the upper tail area oﬁgﬁgedistribution sat-

isfies lim,—, 1 3109 P(x3, > y) = —3, wherex3, is a x5, -distributed random
variable. Note, by Lemma 3.1, lim, 4 % log DEL(—y) = limy_ o0 % log(1 —
DE[(y)) = —1. Using this, it is seen that the last two claims also hold.

The proof of Theorem 3.5 critically depends on the following lemma.

LEMMA A.2. Under the condition of Theorem 3.5, with w} asin (3.5), one
has

suplGe,o+(t) = G, ,0 ()| — 0 in probability,
t
where 0@ = (Lo, ... o), 0¥ = 1if H; € #o and 0¥ = 0if H; € 1.

PROOF Let Y = {Y1,...,Y.} be ii.d. rv’s having the distributionfy,
independent of the original data. Cleardy’ — a)l.(o) in probability, for i =

2,..., L. Note that whenw; — w§0)| <§,foras>0andalli=2,...,L, we
have

L L L
PY<Y1+ZCO§O)Y1' +8> 17| 51) < PY<Y1+Zw;"Y,- §t>

i=2 i=2 i=2

L L
< PY<Y1+ZG)§0)Y1' -8 1Yl §t>-
i=2

i=2
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Using standard arguments, one deduces thaé|as 0,

L L
Py(Yl—l-Zw( )y, <z> PY(Y1+Zw§°’Y,- +8) 1Yl Sl‘)

i=2 i=2 i=2

sup — 0.

The lemma follows from combining the above assertioris.

PROOF OF THEOREM 3.5. For H; € o, SUP,_g,<s, l©] — w(°)| X
Fo‘l(H,-(x))—p>0 using the condition or$,,. For H; € #, and |x — 0g| < &y,
min{H;(x), 1— H;(x)} tends to 0 at an exponential rate. Therefd?ge,l(Hi x) =
O (n), since the tails ofp decay at an exponential rate as well. Using the assumed
condition onb,, and the kernel function, we deduce thgt — O in probability,
faster than any polynomial rate, fersuch thatH; € #¢1. Thus, for such arn,
SURy—go| <5, |w;"Fgl(Hl~ (y))| — 0in probability. The theorem now follows, utiliz-
ing Lemma A.2. O

A.2. Proofsin Section 4.

PROOF OFTHEOREM4.1. For simplicity, we assum@ = (—oo, +00); other
situations can be dealt with similarly. Note we only need to prove thatp) is
U (0, 1) distributed.

Define anL — 1 random vectoZ = (Z1, Z2, ..., Z1.-1)7, whereZ; =T, — Ty,
forj=12,...,L — 1. Sp the joint~density function & is f7(2) = fz(z1, z2,

Lzpe) = [ ]'[]L.;llh.,-(zj + w)hr(u)du and the conditional density of
Tp — 6o, given Z, is fr,z(1) = ]‘[JL.:‘llﬁj(Zj + Dh(t)/fz(Z). Also, for each
givenZ, we define a decreasing functié (y) = f;ool'[f.:_llﬁj (Zj+u)hp(u)du.
Itis clear that

Hp(0) = Kz(T. —0)/ fz(2).
So for anys, 0 <s < 1, we have

P{Hp(60) <s}= P{TL — 60> K; (s2(2)))

E[P{TL — o>K Ysrz@)12)]
LLhi(zi+ b
=E d
[ K71 (sf2(2) fz(2) t}
sz(Z)
= E =
[ fz(Z) ”} g

where the fourth equality is due to a monotonic variable transformation in the
integrationuu = Kz (). O
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PROOF OF THEOREM 4.3. Let6#y be the common value of the parameter.
To prove the claim, we show that for amy> 0, P(Hpgr (6o + (14 &)2an (@) >
l-a)—> 1 P(Hpp(Bp+(1—¢e)lay(@)) <1l—a)— 1, and similar results on the
lower side ofp. We establish the first claim below; others can be proved similarly.

Let us note that, under lifm

L
Z DE_l(CD(@[@o + A+ e)lan(a) — Tz]))
i=1 !
L
= Z DE_1<<I> <@[(l +ée)lan(a)][1+ Op(l)])>
i=1 !

Z (Wil + &) an @11+ 0,(D1/5 ) = [+ )%22/2][1+ 0, (D)].

Thus, by Lemma 3.1,
1— Hpe(fo+ L+ &)lan(@)) =0, (@t). O
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