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COMBINING INFORMATION FROM INDEPENDENT SOURCES
THROUGH CONFIDENCE DISTRIBUTIONS1

BY KESAR SINGH, MINGE XIE AND WILLIAM E. STRAWDERMAN

Rutgers University

This paper develops new methodology, together with related theories,
for combining information from independent studies through confidence
distributions. A formal definition of a confidence distribution and its
asymptotic counterpart (i.e., asymptotic confidence distribution) are given
and illustrated in the context of combining information. Two general
combination methods are developed: the first along the lines of combining
p-values, with some notable differences in regard to optimality of Bahadur
type efficiency; the second by multiplying and normalizing confidence
densities. The latter approach is inspired by the common approach of
multiplying likelihood functions for combining parametric information.
The paper also develops adaptive combining methods, with supporting
asymptotic theory which should be of practical interest. The key point of
the adaptive development is that the methods attempt to combine only the
correct information, downweighting or excluding studies containing little or
wrong information about the true parameter of interest. The combination
methodologies are illustrated in simulated and real data examples with a
variety of applications.

1. Introduction and motivations. Point estimators, confidence intervals and
p-values have long been fundamental tools for frequentist statisticians. Confidence
distributions (CDs), which can be viewed as “distribution estimators,” are often
convenient devices for constructing all the above statistical procedures plus more.
The basic notion of CDs traces back to the fiducial distribution of Fisher (1930);
however, it can be viewed as a pure frequentist concept. Indeed, as pointed out
in Schweder and Hjort (2002), the CD concept is “Neymannian interpretation of
Fisher’s fiducial distribution” [Neyman (1941)]. Its development has proceeded
from Fisher (1930) though recent contributions, just to name a few, of Efron
(1993, 1998), Fraser (1991, 1996), Lehmann (1993), Schweder and Hjort (2002)
and others. There is renewed interest in CDs [Schweder and Hjort (2002)],
partly because “statisticians will be asked to solve bigger and more complicated
problems” [Efron (1998)] and the development of CDs might hold a key to “our
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profession’s 250-year search for a dependable objective Bayes theory” [Efron
(1998) and Schweder and Hjort (2002)].

This paper is mainly focused on some new developments on the “combination”
aspect of CDs, where two natural approaches of combining CD information
from independent studies are considered. The first approach is from thep-value
combination scheme which dates back to Fisher (1932); see also Littell and Folks
(1973) and Marden (1991), among many others. The second approach is analogous
to multiplying likelihood functions in parametric inference. The two approaches
are compared in the case of combining asymptotic normality based CDs. We
require the resulting function of combined CDs to be a CD (or an asymptotic CD)
so that it can be used later on to make inferences, store information or combine
information in a sequential way.

For this purpose, we adopt a formal definition of CD developed by and
presented in Schweder and Hjort (2002), and extend it to obtain a formal definition
of asymptotic confidence distributions (aCDs). SupposeX1,X2, . . . ,Xn are n

independent random draws from a populationF and X is the sample space
corresponding to the data setXn = (X1,X2, . . . ,Xn)

T . Let θ be a parameter of
interest associated withF (F may contain other nuisance parameters), and let�

be the parameter space.

DEFINITION 1.1. A functionHn(·) = Hn(Xn, ·) onX×� → [0,1] is called a
confidence distribution (CD) for a parameterθ if (i) for each givenXn ∈ X, Hn(·)
is a continuous cumulative distribution function; (ii) at the true parameter value
θ = θ0, Hn(θ0) = Hn(Xn, θ0), as a function of the sampleXn, has the uniform
distributionU(0,1).

The functionHn(·) is called an asymptotic confidence distribution (aCD) if

requirement (ii) above is replaced by (ii)′: at θ = θ0, Hn(θ0)
W→ U(0,1) asn →

+∞, and the continuity requirement onHn(·) is dropped.

We call, when it exists,hn(θ) = H ′
n(θ) a CD density, also known as a confidence

density in the literature. This CD definition is the same as in Schweder and Hjort
(2002), except that we suppress possible nuisance parameter(s) for notational
simplicity. Our version, which was developed independently of Schweder and
Hjort (2002), was motivated by the observation (1.1) below. For everyα in
(0,1), let (−∞, ξn(α)] be a 100α% lower-side confidence interval, whereξn(α) =
ξn(Xn,α) is continuous and increasing inα for each sampleXn. ThenHn(·) =
ξ−1
n (·) is a CD in the usual Fisherian sense. In this case,

{Xn :Hn(θ) ≤ α} = {Xn : θ ≤ ξn(α)}
(1.1)

for anyα in (0,1) andθ in � ⊆ R.

Thus, at θ = θ0, Pr{Hn(θ0) ≤ α} = α and Hn(θ0) is U(0,1) distributed.
Definition 1.1 is very convenient for the purpose of verifying if a particular
function is a CD or an aCD.
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The notion of a CD (or aCD) is attractive for the purpose of combining
information. The main reasons are that there is a wealth of information onθ inside
a CD, the concept of CD (and particularly aCD) is quite broad, and the CDs are
relatively easy to construct and interpret. Section 2 provides a brief review of
materials related to the CDs along these views. See Schweder and Hjort (2002)
for an expanded discussion of the concept of CDs and the information contained
in CDs.

The main developments are in Sections 3 and 4. We provide in Section 3 a
general recipe by adopting a generalp-value combination scheme. Section 3.1
derives an optimal method for combining CDs associated with the same parameter,
where the optimality is in terms of the Bahadur slope. The optimal scheme is
notably different from that for combiningp-values. Section 3.2 proposes adaptive
combination methods, in the setting where the parameter values in some of the
prior studies are not necessarily the same as the parameter value in the current
study. The properties of adaptive consistency and adaptive efficiency are discussed.
Analogous to combining likelihood functions in likelihood inference, we study
in Section 4 a combination approach of multiplying CD densities. There we also
provide a comparison of the two different CD-combining approaches in the case of
normal type aCDs. Section 5 illustrates the methodology through three examples,
each of which has individual significance. The proofs are in the Appendix.

2. Examples and inferential information contained in a CD. The notion of
CDs and aCDs covers a broad range of examples, from regular parametric cases
to p-value functions, normalized likelihood functions, bootstrap distributions and
Bayesian posteriors, among others.

EXAMPLE 2.1. Normal mean and variance. SupposeX1,X2, . . . ,Xn is a
sample fromN(µ,σ 2), with both µ andσ 2 unknown. A CD forµ is Hn(y) =
Ftn−1(

y−�X
sn/

√
n
), where�X ands2

n are, respectively, the sample mean and variance, and
Ftn−1(·) is the cumulative distribution function of the Studenttn−1-distribution.

A CD for σ 2 is Hn(y) = 1 − Fχ2
n−1

(
(n−1)s2

n

y
) for y ≥ 0, whereFχ2

n−1
(·) is the

cumulative distribution function of theχ2
n−1-distribution.

EXAMPLE 2.2. p-value function. For any givenθ̃ , let pn(θ̃) = pn(Xn, θ̃) be
a p-value for a one-sided testK0: θ ≤ θ̃ versusK1: θ > θ̃ . Assume that thep-
value is available for all̃θ . The functionpn(·) is called ap-value function [Fraser
(1991)]. Typically, at the true valueθ = θ0, pn(θ0) as a function ofXn is exactly (or
asymptotically)U(0,1)-distributed. Also,Hn(·) = pn(·) for every fixed sample is
almost always a cumulative distribution function. Thus, usuallypn(·) satisfies the
requirements for a CD (or aCD).
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EXAMPLE 2.3. Likelihood functions. There is a connection between the
concepts of aCD and various types of likelihood functions, including likelihood
functions in single parameter families, profile likelihood functions, Efron’s implied
likelihood function and Schweder and Hjort’s reduced likelihood function, and so
on. In fact, one can easily conclude from Theorems 1 and 2 of Efron (1993) that in
an exponential family, both the profile likelihood and the implied likelihood [Efron
(1993)] are aCD densities after a normalization. Singh, Xie and Strawderman
(2001) provided a formal proof, with some specific conditions, which shows that
e�∗

n(θ) is proportional to an aCD density for the parameterθ , where �∗
n(θ) =

�n(θ) − �n(θ̂), �n(θ) is the log-profile likelihood function, and̂θ is the maximum
likelihood estimator ofθ . Schweder and Hjort (2002) proposed the reduced
likelihood function, which itself is proportional to a CD density for a specially
transformed parameter. Also see Welch and Peers (1963) and Fisher (1973) for
earlier accounts of likelihood function based CDs in single parameter families.

EXAMPLE 2.4. Bootstrap distribution. Let θ̂ be a consistent estimator ofθ .
In the basic bootstrap methodology the distribution ofθ̂ − θ is estimated by the
bootstrap distribution of̂θB − θ̂ , where θ̂B is the estimatorθ̂ computed on a
bootstrap sample. An aCD forθ is Hn(y) = PB(θ̂B ≥ 2θ̂ − y) = 1− PB(θ̂B − θ̂ ≤
θ̂ − y), wherePB(·) is the probability measure induced by bootstrapping. As
n → ∞, the limiting distribution of normalized̂θ is often symmetric. In this case,
due to the symmetry, the raw bootstrap distributionHn(y) = PB(θ̂B ≤ y) is also
an aCD forθ .

Other examples include a second-order accurate CD of the population mean
based on Hall’s [Hall (1992)] second-order accurate transformedt-statistic, an
aCD of the correlation coefficient based on Fisher’sz-score function, among
many others. See Schweder and Hjort (2002) for more examples and extended
discussion.

A CD contains a wealth of information, somewhat comparable to, but different
than, a Bayesian posterior distribution. A CD (or aCD) derived from a likelihood
function can also be interpreted as an objective Bayesian posterior. We give a
brief summary below of information in a CD related to some basic elements of
inference. The reader can find more details in Singh, Xie and Strawderman (2001).
This information is also scattered around in earlier publications, for example, in
Fisher (1973), Fraser (1991, 1996) and Schweder and Hjort (2002), among others.

• Confidence interval. From the definition, it is evident that the intervals
(−∞,H−1

n (1 − α)], [H−1
n (α),+∞) and(H−1

n (α/2),H−1
n (1 − α/2)) provide

100(1 − α)%-level confidence intervals of different kinds forθ , for any
α ∈ (0,1). The same is true for an aCD, where the confidence level is achieved
in limit.
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• Point estimation. Natural choices of point estimators of the parameterθ ,
givenHn(θ), include the medianMn = H−1

n (1/2), the mean̄θn = ∫ +∞
−∞ t dHn(t)

and the maximum point of the CD densityθ̂n = argmaxθ hn(θ), hn(θ) = H ′
n(θ).

Under some modest conditions one can prove that these point estimators are
consistent plus more.

• Hypothesis testing. From a CD, one can obtainp-values for various hypothesis
testing problems. Fraser (1991) developed some results on such a topic through
p-value functions. The natural line of thinking is to measure the support
that Hn(·) lends to a null hypothesisK0 : θ ∈ C. We perceive two types of
support: 1.Strong-support ps(C) = ∫

C dHn(θ). 2. Weak-support pw(C) =
supθ∈C 2min(Hn(θ),1− Hn(θ)). If K0 is of the type(−∞, θ0] or [θ0,∞) or a
union of finitely many intervals, the strong-supportps(C) leads to the classical
p-values. IfK0 is a singleton, that is,K0 is θ = θ0, then the weak-supportpw(C)

leads to the classicalp-values.

3. Combination of CDs through a monotonic function. In this section we
consider a basic methodology for combining CDs which essentially originates
from combiningp-values. However, there are some new twists, modifications and
extensions. Here one assumes that some past studies (with reasonably sensible
results) on the current parameter of interest exist. The CDs to be combined may be
based on different models. A nice feature of this combination method is that, after
combination, the resulting function is always an exact CD if the input CDs from
the individual studies are exact. Also, it does not require any information regarding
how the input CDs were obtained. Section 3.1 considers the perfect situation when
the common parameter had the same value in all previous studies on which the CDs
are based. Section 3.2 presents an adaptive combination approach which works
asymptotically, even when there exist some “wrong CDs” (CDs with underlying
true parameter values different fromθ0). For clarity, the presentation in this section
is restricted to CDs only. The entire development holds for aCDs with little or no
modification.

3.1. CD combination and Bahadur efficiency. Let H1(y), . . . ,HL(y) be L

independent CDs, with the same true parameter valueθ0 (sample sizes are
suppressed in the CD notation in the rest of this paper). Supposegc(u1, . . . , uL)

is any continuous function from[0,1]L to R that is monotonic in each coordinate.
A general way of combining, depending ongc(u1, . . . , uL), can be described
as follows: DefineHc(u1, . . . , uL) = Gc(gc(u1, . . . , uL)), where Gc(·) is the
continuous cumulative distribution function ofgc(U1, . . . ,UL), andU1, . . . ,UL

are independentU(0,1) distributed random variables. Denote

Hc(y) = Hc

(
H1(y), . . . ,HL(y)

)
.(3.1)

It is easy to verify thatHc(y) is a CD function for the parameterθ . We callHc(y) a
combined CD. If the objective is only to get a combined aCD, one may also allow
the abovegc function to involve sample estimates.



164 K. SINGH, M. XIE AND W. E. STRAWDERMAN

Let F0(·) be any continuous cumulative distribution function andF−1
0 (·) be its

inverse function. A convenient special case of the functiongc is

gc(u1, u2, . . . , uL) = F−1
0 (u1) + F−1

0 (u2) + · · · + F−1
0 (uL).(3.2)

In this case,Gc(·) = F0 ∗ · · · ∗ F0(·), where∗ stands for convolution. Just like the
p-value combination approach, this general CD combination recipe is simple and
easy to implement. Some examples ofF0 are:

• F0(t) = �(t) is the cumulative distribution function of the standard normal. In
this case

HNM(y) = �

(
1√
L

[
�−1(H1(y)

) + �−1(H2(y)
) + · · · + �−1(HL(y)

)])
.

• F0(t) = 1−e−t , for t ≥ 0, is the cumulative distribution function of the standard
exponential distribution (with mean 1). Or,F0(t) = et , for t ≤ 0, which is the
cumulative distribution function of the mirror image of the standard exponential
distribution. In these cases the combined CDs are, respectively,

HE1(y) = P

(
χ2

2L ≤ −2
L∑

i=1

log
(
1− Hi(y)

))

and

HE2(y) = P

(
χ2

2L ≥ −2
L∑

i=1

logHi(y)

)
,

whereχ2
2L is aχ2-distributed random variable with 2L degrees of freedom. The

recipe forHE2(y) corresponds to Fisher’s recipe of combiningp-values [Fisher
(1932)].

• F0(t) = 1
2et1(t≤0) + (1 − 1

2e−t )1(t≥0), denoted asDE(t) from now on, is the
cumulative distribution function of the standard double exponential distribution.
Here1(·) is the indicator function. In this case the combined CD is

HDE(y) = DEL

(
DE−1(H1(y)

) + · · · + DE−1(HL(y)
))

,

whereDEL(t) = DE ∗ · · · ∗ DE(t) is the convolution ofL copies ofDE(t).

Lemma 3.1 next gives an iterative formula to computeDEL(t). One critical
fact of this lemma is that the exponential parts of the tails ofDEL(t) are the same
as those ofDE(t). The proof of Lemma 3.1 is in the Appendix.

LEMMA 3.1. For t > 0 we have

1− DEL(t) = DEL(−t) = 1
2VL(t)e−t ,
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where VL(t) is a polynomial of degree L−1.This sequence of polynomials satisfies
the following recursive relation: for k = 2,3, . . . ,L,

2Vk(t) = Vk−1(t) +
∫ t

0
[Vk−1(s) − V ′

k−1(s)]ds

+
∫ ∞

0
[Vk−1(s) + Vk−1(t + s) − V ′

k−1(s)]e−2s ds.

In particular, V1(t) = 1 and V2(t) = 1+ t/2.

Littell and Folks (1973) established an optimality property, in terms of Bahadur
slope, within the class of combinedp-values based on monotonic combining
functions. Along the same line, we establish below an optimality result for the
combination of CDs.

Following Littell and Folks (1973), we define the concept of Bahadur slope
for a CD:

DEFINITION 3.1. Letn be the sample size corresponding to a CD function
H(·). We call a nonnegative functionS(t) = S(t; θ0) the Bahadur slope for the
CD function H(·) if for any ε > 0, S(−ε) = − limn→+∞ 1

n
logH(θ0 − ε) and

S(ε) = − limn→+∞ 1
n

log{1− H(θ0 + ε)} almost surely.

The Bahadur slope gives the rate, in exponential scale, at whichH(θ0 − ε) and
1− H(θ0 + ε) go to zero. The larger the slope, the faster its tails decay to zero. In
this sense, a CD with a larger Bahadur slope is asymptotically more efficient as a
“distribution-estimator” forθ0.

Supposen1, n2, . . . , nL, the sample sizes behind the CDsH1(y),H2(y),

. . . ,HL(y), go to infinity at the same rate. For notational simplicity, replacen1 byn

and writenj = {λj + o(1)}n for j = 1,2,3, . . . ,L; we always haveλ1 = 1. Let
Sj (t) be the Bahadur slope forHj(y), j = 1,2, . . . ,L, andSc(t) be the Bahadur
slope for their combined CD, sayHc(y). The next theorem provides an upper
bound forSc(t) [i.e., the fastest possible decay rate ofHc(y) tails] and indicates
when it is achieved. Its proof can be found in the Appendix.

THEOREM 3.2. Under θ = θ0, for any ε > 0, as n → +∞,

− lim inf
1

n
logHc(θ0 − ε) ≤

L∑
j=1

λjSj (−ε)

and

− lim inf
1

n
log

(
1− Hc(θ0 + ε)

) ≤
L∑

j=1

λjSj (ε)
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almost surely. If the slope function Sc(·) exists,

Sc(−ε) ≤
L∑

j=1

λjSj (−ε)
/ L∑

j=1

λj and Sc(ε) ≤
L∑

j=1

λjSj (ε)
/ L∑

j=1

λj .

Furthermore, almost surely, for any ε > 0,

SE1(ε) =
L∑

j=1

λjSj (ε)
/ L∑

j=1

λj and SE2(−ε) =
L∑

j=1

λjSj (−ε)
/ L∑

j=1

λj ;

SDE(−ε) =
L∑

j=1

λjSj (−ε)
/ L∑

j=1

λj and SDE(ε) =
L∑

j=1

λjSj (ε)
/ L∑

j=1

λj .

Here, SE1(t), SE2(t) and SDE(t) are the Bahadur slope functions of combined
CDs HE1(x), HE2(x) and HDE(x), respectively.

This theorem states that theDE(t) based combining approach is, in fact,
optimal in terms of achieving the largest possible value of Bahadur slopes on both
sides. The two combined CDsHE1(y) andHE2(y) can achieve the largest possible
slope value only in one of the two regions,θ > θ0 or θ < θ0. This phenomenon is
illustrated in Figure 1.

FIG. 1. A typical figure of density plots of HDE(·), HE1(·) and HE2(·), when we combine
independent CDs for the common mean parameter µ of N(µ,1.0) and N(µ,1.52); the true µ = 1
and the sample sizes are n1 = 30 and n2 = 40. The solid, dotted and dashed curves are the density
curves of HDE(·), HE1(·) and HE2(·), respectively.
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Note that, in thep-value combination case, Littell and Folks (1973) established
that Fisher’s way of combination is optimal in terms of having the largest possible
Bahadur slope. To our knowledge, no one has considered theDE(t) based
combination rule when combiningp-values. There is a notable difference between
combiningp-values and CDs. While for CDs one cares about the decay rates of
both tails, separately, a typicalp-value concept either involves only one tail of
the distribution of a test statistic or lumps its two tails together. TheDE(t) based
combination rule is quite natural when combining CDs, but not when combining
p-values.

3.2. Adaptive combination. The development in Section 3.1 is under the
assumption that all the CDsH1(y), . . . ,HL(y) are for the same parameterθ ,
with identical true valueθ = θ0. There may be doubts about the validity of this
assumption. For instance, letH1(y) be a CD forθ with true valueθ0, based on
a current study of sample sizen1. Let H2(y), . . . ,HL(y) be available CDs onθ
based on previous (independent) studies involving sample sizes{n2, . . . , nL}. One
could be less than certain that all earlier values ofθ were indeed equal to the
current value,θ = θ0. It will be problematic if one combines all the available CDs
when some of the studies had the underlying valueθ �= θ0. Indeed, the resulting
function of combination will not even be an aCD (under the true valueθ = θ0).
This can be demonstrated by a simple example of combining two CDs:H1(y) =
�(

y−θ̂1
σ/

√
n
) andH2(y) = �(

y−θ̂2
σ/

√
n
), whereσ is known,

√
n(θ̂1 − θ0) ∼ N(0, σ 2), and√

n(θ̂2− θ̃0) ∼ N(0, σ 2), for someθ̃0 �= θ0. The combined outcome by the normal-

based approach,HNM(y) = �(
2y−θ̂1−θ̂2√

2σ/
√

n
), is not uniformly distributed, even in

limit (n → ∞) when y = θ0. In this section we propose adaptive combination
approaches to remedy this problem and go on to establish related optimality
properties under a large sample setting.

Let H1(·) be a CD with true parameter valueθ = θ0, based on a current study.
TheL − 1 CDs from the previous studies onθ are separated into two sets:

H0 = {Hj :Hj has the underlying value ofθ = θ0, j = 2, . . . ,L},
H1 = {Hj :Hj has the underlying value ofθ �= θ0, j = 2, . . . ,L}.

The setH0 contains the “right” CDs andH1 contains the “wrong” CDs. We
assume, however, the information aboutH0 andH1 is unavailable to us.

The development of a general adaptive combination recipe starts with an
extension of the general combination method of Section 3.1, which includes a set
of weightsω = (ω1, . . . ,ωL), ω1 ≡ 1. Our intention is to select a set of adaptive
weights that can filter out the “wrong” CDs (inH1) and keep the “right” CDs
(in H0) asymptotically.
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Although it could be much more general, for simplicity, we let

gc,ω(u1, . . . , uL) =
L∑

j=1

ωjF
−1
0 (uj ),(3.3)

where F0(·) is a continuous cumulative distribution function with a bounded
density. LetGc,ω(t) = F0(t) ∗ F0(

t
ω2

) ∗ · · · ∗ F0(
t

ωL
) and Hc,ω(u1, . . . , uL) =

Gc,ω(gc,ω(u1, . . . , uL)). We define

Hc,ω(y) = Hc,ω

(
H1(y),H2(y), . . . ,HL(y)

)
.

Define the weight vectorω0 as(1,ω
(0)
2 , . . . ,ω

(0)
L ), whereω

(0)
j = 1 for Hj ∈ H0,

andω
(0)
j = 0 for Hj ∈ H1. The combined CD functionH(0)

c (y) = Hc,ω0(y) is our
target which combinesH1 with the CDs inH0. Of course, we lack the knowledge
of H0 andH1, soω0 is unknown. Thus, we need to determine the adaptive weights,
denoted byω∗ = (1,ω∗

2, . . . ,ω
∗
L), converging toω0, from the available information

in the CDs. LetH ∗
c (y) = Hc,ω∗(y). One would hope thatH ∗

c (y) is at least an aCD.

DEFINITION 3.2. A combination method is adaptively consistent ifH ∗
c (y) is

an aCD forθ = θ0.

Supposen1, n2, . . . , nL go to infinity at the same rate. Again, we letn = n1 and
write ni = {λi + o(1)}n, for i = 1,2, . . . ,L; λ1 = 1. We define below adaptive
slope efficiency.

DEFINITION 3.3. A combination method is adaptively slope efficient if for
anyε > 0,

− lim
n→+∞

1

n
logH ∗

c (−ε) = ∑
j : Hj∈{H1}∪H0

λjSj (−ε),

− lim
n→+∞

1

n
log{1− H ∗

c (ε)} = ∑
j : Hj∈{H1}∪H0

λjSj (ε).

HereSj (t) is the Bahadur slope ofHj(x), all assumed to exist.

Let Ii be a confidence interval derived fromHi(·), for i = 1,2, . . . ,L. Suppose,
asn → ∞, the lengths of theseL confidence intervals all go to zero almost surely.
Then, for all largen, it is expected thatI1 ∩ Ij = ∅ for j such thatHj ∈ H1. This
suggests that in order to get rid of the CDs inH1 whenn is large, we should take
ω∗

j = 1(I1∩Ij �=∅) for j = 2, . . . ,L, where1(·) is the indicator function. With this
choice of data-dependent weights, we have the following theorem. The theorem
can be easily proved using the Borel–Cantelli lemma and its proof is omitted.
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THEOREM 3.3. Assume that the intervals Ij lie within an ε-neighborhood of
the corresponding true value of θ , for all large n almost surely, and for any fixed
ε > 0. In addition, assume that, for each j such that Hj ∈ H0, we have

+∞∑
n=1

P(I1 ∩ Ij = ∅) < +∞.(3.4)

Then if ω∗
j = I(I1∩Ij �=∅) for j = 1,2, . . . ,L, we have supy |H ∗

c (y) − H
(0)
c (y)| = 0,

for all large n almost surely.

Note that H
(0)
c (y) is the “target” combined CD. From Theorem 3.3 we

immediately have the following corollary.

COROLLARY 3.4. Under the assumptions of Theorem 3.3, the adaptive
combination recipe described in this section, with the adapting weights ω∗

j =
1(I1∩Ij �=∅) for j = 2, . . . ,L, is adaptively consistent. Furthermore, if F0(t) =
DE(t) in (3.3),this combination method is also adaptively slope efficient.

REMARK 3.1. A simple example is to takeIi = (H−1
i (αn/2),H−1

i (1 −
αn/2)), i = 1,2, . . . ,L. It follows thatP(I1 ∩ Ij = ∅) ≤ 1− (1− αn)

2 ≤ 2αn for
eachj such thatHj ∈ H0. Thus,

∑+∞
n=1 αn < ∞ is a sufficient condition for (3.4).

However, this bound is typically very conservative. To see this, consider the basic
example ofz-based CD for unknown normal mean with known varianceσ 2.
Let Hi(y) = �(

√
n(y − �Xi)/σ), where�Xi is the sample mean in theith study,

andzαn/2 is the normal critical value of levelαn/2. We haveP(I1 ∩ Ij = ∅) =
2(1−�(

√
2zαn/2)), which could be a lot smaller than 2αn. Considering this issue,

we recommend a somewhat substantial value forαn in applications.

A feature that may be regarded as undesirable with the above adaptive method
is the fact that it assigns weights either 0 or 1 to the CDs. We propose below
the use of kernel function based weights, which take values between 0 and 1.
Under some regularity conditions, we will show that the weighted adaptive
combination method with the kernel based weights is adaptively consistent and
“locally efficient” (Theorem 3.5).

Let K(t) be a symmetric kernel function,
∫

K(t) dt = 1,
∫

tK(t) dt = 0 and∫
t2K(t) dt = 1. In the present context we also require that the tails of the kernel

function tend to zero at an exponential rate. Some examples are the normal kernel
K(t) = φ(t), the triangle kernel and the rectangular kernel function, among others.

In order to use the kernel function, some measure of “distance” betweenH1(y)

and Hj(y), j = 2, . . . ,L, is needed. For illustrative purposes, we useθ̂1 − θ̂j ,
where θ̂i , i = 1, . . . ,L, are point estimators obtained fromHi(y), respectively.
We assumeθ̂i , for i = 1,2, . . . ,L, converge in probability to their respective
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underlying values ofθ , sayθ0,i , at the same polynomial rate. Fori = 1 or i such
thatHi ∈ H0, θ0,i ≡ θ0. Let bn → 0 be such that|θ̂i − θ0,i | = op(bn). We define
the kernel function based weights as

ω∗
j = K

(
θ̂1 − θ̂j

bn

)/
K(0) for j = 1,2, . . . ,L.(3.5)

Among many other possibilities, one set of convenient choices isθ̂i = H−1
i (1

2) and
bn = √

Rn, whereRn = H−1
1 (3

4) − H−1
1 (1

4) is the interquartile range ofH1(y).
Under the above setting, we have the following theorem; its proof is in the

Appendix.

THEOREM 3.5. Let δn > 0 be a sequence such that Hi(θ0 ± δn) are bounded
away from 0 and 1, in probability, for i = 1 and i with Hi ∈ H0. Suppose F0
in (3.3) is selected such that min{F0(t),1−F0(t)} tends to zero, exponentially fast
as |t | → ∞. Then, with ω∗

j as defined in (3.5),one has

sup
x∈[θ0−δn,θ0+δn]

∣∣H ∗
c (y) − H(0)

c (y)
∣∣ → 0 in probability, as n → +∞.

Theorem 3.5 suggests that in a local neighborhood ofθ0, H ∗
c (y) andH

(0)
c (y)

are close for largen. Recall thatH(0)
c (y) is the target that combinesH1 with the

CDs inH0. The following conclusion is immediate from Theorem 3.5.

COROLLARY 3.6. Under the setting of Theorem 3.5,with ω∗
j as in (3.5), the

adaptive combination method described in this section is adaptively consistent.

The result in Theorem 3.5 is a local result depending onδn, which is typically
O(n−1/2). For a set of general kernel weights of the form (3.5), we cannot get
an anticipated adaptive slope efficiency result for the adaptive DE combination
method. But, for the rectangular kernel, this optimality result does hold, since in
this case the weightω∗

j becomes either 1 or 0 for all largen, almost surely. The
proof of the following corollary is similar to that of Theorem 3.4 and is omitted.

COROLLARY 3.7. Under the setting of Theorem 3.5,with ω∗
j as in (3.5) and

K(t) = {1/(2
√

3)}1(|t |<√
3), the adaptive combination method described in this

section with F0(t) = DE(t) is adaptively slope efficient if
∑∞

n=1 P(|θ̂j − θ0,j | >√
3

2 bn) < ∞ for j = 1,2, . . . ,L.

4. Combination of CDs through multiplying CD densities. Normalized
likelihood functions (as a function of the parameter) are an important source of
obtaining CD or aCD densities. In fact, it was Fisher who prescribed the use
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of normalized likelihood functions for obtaining his fiducial distributions; see,
for example, Fisher (1973). Multiplying likelihood functions from independent
sources constitutes a standard method for combining parametric information.
Naturally, this suggests multiplying CD densities and normalizing to possibly
derive combined CDs as follows:

HP (θ) =
∫
(−∞,θ)∩�

h∗(y) dy
/∫

(−∞,∞)∩�
h∗(y) dy,(4.1)

where h∗(y) = ∏L
i=1 hi(y) and hi(y) are CD densities fromL independent

studies. Schweder and Hjort (2002) suggested multiplying their reduced likelihood
functions for combined estimation, which is closely related to the approach
of (4.1). However, they did not require normalization and, strictly speaking, the
reduced likelihood function, in general, is not a CD density forθ (it is only
proportional to a CD density for a specially transformed parameter).

Unfortunately, the combined functionHP (·) may not necessarily be a CD or
even an aCD function in general. But we do have some quite general affirmative
results. We first present here a basic result pertaining toHP (·). Let T1, T2, . . . , TL

be a set of statistics fromL independent samples. SupposeH̃i(·), i = 1,2, . . . ,L,
are the cumulative distribution functions ofTi − θ with density functionsh̃i(·)
which are entirely free of parameters. Thus, one hasL CDs of θ , given by
Hi(θ) = 1− H̃i(Ti − θ) with corresponding CD densitieshi(θ) = h̃i(Ti − θ).

THEOREM 4.1. In the above setting, HP (θ) is an exact CD of θ .

An elementary proof of this theorem is given in the Appendix. This theorem
can also be proved using the general theory relating best equivariant procedures
and Bayes procedures relative to right invariant Haar measure [see, e.g., Berger
(1985), Chapter 6 for the Bayes invariance theory]. Using this Bayes-equivariance
connection, or directly, one can also obtain an exact CD for the scale parameter
θ , but it requires one to replaceh∗(y) in (4.1) with h∗∗(y)/y, whereh∗∗(y) =∏L

i=1{yhi(y)}.
The original method of (4.1) does not yield an exact CD for a scale parameter.

Let us consider a simple example.

EXAMPLE 4.1. Consider theU [0, θ ] distribution with unknownθ . Let
Hi(θ) = 1 − (Yi

θ
)ni over θ ≥ Yi , i = 1,2, be the input CDs, whereY1 andY2 are

maxima of two independent samples of sizesn1 andn2. The multiplication method
(4.1) yieldsHP (θ) = (Y

θ
)n1+n2+1, overθ ≥ Y = max(Y1, Y2). This HP (θ) is not

an exact CD, though it is an aCD.

The setting for Theorem 4.1 is limited. But it allows an asymptotic extension
that covers a wide range of problems, including those involving the normal and
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“heavy tailed” asymptotics, as well as other nonstandard asymptotics such as that
in Example 4.1.

Let H̃i,a be an asymptotic (weak limit) cumulative distribution function of
ξi = nα

i
Ti−θ
Vi

, where(Ti,Vi) are statistics based on independent samples of sizes

ni , i = 1, . . . ,L. Denoteh̃i,a(·) = H̃ ′
i,a(·). One has aCD densities given by

hi,a(θ) = nα
i

Vi

h̃i,a

(
nα

i

Ti − θ

Vi

)
.(4.2)

Let ξi have uniformly bounded exact densitiesh̃i,e(·), for i = 1, . . . ,L, and
define hi,e(·) as in (4.2) with h̃i,a replaced byh̃i,e(·). Assume the regularity
conditions: (a) h̃i,e(·) → h̃i,a(·) uniformly on compact sets. (b)̃hi,e(·) are
uniformly integrable. (c)Vi → τ2

i , a positive quantity, in probability, fori =
1, . . . ,L. DefineHP (·) by (4.1) wherehi(·) is eitherhi,a(·) or hi,e(·).

THEOREM 4.2. In the above setting, HP (·) is an aCD.

The proof is based on standard asymptotics using Theorem 4.1 on combination
of Hi,a ’s and is not presented here. We would like to remark that, due to the
special form of the normal density, in the usual case of normal asymptotics (α = 1

2,
H̃i,a = �), the combined functionHP (·), with hi(·) = hi,a(·) in (4.1), is an aCD
without requiring the regularity conditions (a) and (b).

For the purpose of comparing the two different combination approaches given
by (3.1) and (4.1), we now specialize to asymptotic normality based aCDs
where both methods can apply. Letξi = √

ni
Ti−θ
Vi

. The normality based aCD

is Hi,a(θ) = 1 − H̃i,a(ξi) = 1 − �(ξi) with aCD densityhi,a(θ) = h̃i,a(ξi) =√
ni

Vi
φ(ξi). Consider the combined functionHP (·) with input aCD densitieshi,a(·)

or hi,e(·). It is straightforward to verify thatHP (·) in this special case is the same
as (or asymptotically equivalent to)

HAN(θ) = 1− �

([
L∑

i=1

ni

Vi

]1/2

(θ̂c − θ)

)
,

whereθ̂c = (
∑L

i=1
ni

Vi
Ti)/

∑L
i=1(

ni

Vi
) is the asymptotically optimal linear combina-

tion of Ti , i = 1,2, . . . ,L. In light of this remark, it is evident that the large sample
comparison presented below betweenHAN andHDE also holds betweenHP and
HDE . Note thatHAN is, in fact, a member of the rich class of combining methods
introduced in Section 3.1, where we pickgc(u1, . . . , uL) = ∑L

i=1[( ni

Vi
)1/2�−1(ui)]

in (3.1).
The concept of the Bahadur slope, which is at the heart of Section 3, is still

well defined for aCDs andHDE(·) still has the slope optimality. However, the
concept of slope loses its appeal on aCDs since one can alter the slope of an aCD
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by tampering with its tails, while keeping it an aCD. Nevertheless, if the input
CDs are the normal based aCDs mentioned above, it is straightforward to show
thatHDE andHAN have the same slope (achieving the upper bound). This result is
noteworthy in the special case whenTi ’s are means of normal samples andVi = σ 2

i

are the known variances, whereHAN is an exact CD. In this case,HAN is derived
from a UMVUE estimator.

Next we address the following question: How doHDE andHAN compare in
terms of the lengths of their derived equal-tail, two-sided asymptotic confidence
intervals? Let us define�DE(α) = H−1

DE(1−α)−H−1
DE(α) and�AN(α) = H−1

AN(1−
α)−H−1

AN(α). Also, we assume, as in Section 3, thatn1 = n andnj/n are bounded
below and above, forj = 2, . . . ,L. Let lim∗ be the limit as(n,α) → (∞,0). A key
aspect of lim∗ is the fact that it allowsα to converge to 0, at an arbitrary rate; of
course, slow rates are better from a practical viewpoint. The proof is given in the
Appendix.

THEOREM 4.3. lim∗[�DE(α)/�AN(α)] = 1 in probability.

Hence, for combining large sample normality based aCDs, the three combining
methodsHDE , HP andHAN are equivalent in the above sense. When the input
aCDs are derived from profile likelihood functions, theHP -method amounts to
multiplying profile likelihood functions, in which case (in view of the standard
likelihood inference)HP may have a minor edge overHDE when a finer
comparison is employed. On the other hand,HDE has its global appeal, especially
when nothing is known about how the input CDs were derived. It always returns
an exact CD when the input CDs are exact. Also,HDE preserves the second-order
accuracy when the input CDs are second-order accurate (a somewhat nontrivial
result, not presented here). Aspects of second-order asymptotics onHP are not
known to us, whileHAN ignores second-order corrections.

The adaptive combining in Section 3.2 carries over toHAN , sinceHAN(·) is a
member of the rich class of combining methods introduced there. Also, one can
turn HP into an adaptively combined CD by replacingh∗(y) in (4.1) withh∗

ω(y),
whereh∗

ω(y) = ∏L
i=1 h

ωi

i (y) or
∏L

i=1 hi(ωiy). The adaptive weightsωi are chosen
such thatωi → 1 for the “right” CDs (inH0) andωi → 0 for the “wrong” CDs
(in H1). Some results along the line of Section 3.2 can be derived.

We close this section with the emerging recommendation that while normal type
aCDs can be combined by any of the methodsHDE , HP or HAN , exact CDs and
higher-order accurate CDs should generally be combined by theDE method.

5. Examples.

5.1. The common mean problem. The so-called common mean problem
of making inference on the common mean, sayµ, of two or more normal
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populations of possibly different variances, also known as the Behrens–Fisher
problem, has attracted a lot of attention in the literature. In the large sample
setting, it is well known that the Graybill–Deal estimator,µ̂GD = {(n2/s

2
2)�X1 +

(n1/s
2
1)�X2}/{(n1/s

2
1) + (n2/s

2
2)}, is asymptotically efficient. In the small sample

setting, there is still research going on attempting to find efficient exact confidence
intervals for µ. In particular, Jordan and Krishnamoorthy [(1996), through
combining statistics] and Yu, Sun and Sinha [(1999), through combining two-sided
p-values] proposed efficient exact confidence intervals for the common meanµ;
however, there is a small but nonzero chance that these intervals do not exist.

Let us consider the CD based method, first under large sample settings. In

this case, we start with normal based aCDsH1a(y) = �(
y−�X1
s1/

√
n1

) andH2a(y) =
�(

y−�X2
s2/

√
n2

). Following Section 4.2, we would like to prescribe the combined CDs

HAN(y) [or HP (y), which is the same]. It is interesting to note that this combined
CD is the same as the CD directly derived from the Graybill–Deal estimator. Thus,
the confidence intervals derived fromHAN(θ) are asymptotically shortest.

If one wants to obtain exact confidence intervals forµ, one can turn to
the recipe prescribed in Section 3.1. Clearly, exact CDs forµ based on

two independent normal samples areH1(y) = Ftn1−1(
y−�X1
s1/

√
n1

) and H2(y) =
Ftn2−1(

y−�X2
s2/

√
n2

), respectively; see Example 2.1. By Theorem 3.2, the DE based

approach will be Bahadur optimal among all exact CD based approaches of
Section 3. The resulting exact confidence interval forµ, with coverage 1− α, is
(qα/2, q1−α/2), whereqs is thes-quantile of the CD functionHDE(y). This exact
confidence interval forµ always exists at every levelα.

We carried out a simulation study of 1000 replications to examine the coverage
of the CD based approaches, under three sets of sample sizes(n1, n2) = (3,4),
(30,40) or (100,140) and two sets of (true) variances(σ 2

1 , σ 2
2 ) = (1,1.52)

or (1,3.52). The coverage of constructed 95% confidence intervals is right on
target around 95% in the six cases for theHDE based exact method. However,
the Graybill–Deal (i.e., aCDHAN or HP ) based method leads to serious
under-coverage (84.8% and 85.9%) in the two cases with small sample sizes
(n1, n2) = (3,4), and notable under-coverage (93.3% and 93.6%) in the two cases
with moderate sample sizes(n1, n2) = (30,40). So, in small sample cases, the
exact CD based approach is substantially better, in terms of coverage.

Theorem 4.3 suggests that, under a large sample setting, the DE based approach
and the Graybill–Deal estimator (equivalently,HAN or HP ) based approach will
have similar lengths for confidence intervals with high asymptotic coverage. We
carried out a simulation study to compare the lengths in the two cases with large
sample size(n1, n2) = (100,140), at confidence level 95%. We found that the
lengths corresponding to theHDE based method, on average, are slightly higher
than those corresponding to the Graybill–Deal estimator, but they are not too
far apart. The average ratio of the lengths, in the 1000 simulations, is 1.034 for
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(σ 2
1 , σ 2

2 ) = (1,1.52) and 1.081 for(σ 2
1 , σ 2

2 ) = (1,3.52). Similar ratios were also
obtained for the 90% and 99% confidence intervals under the same setting. The
simulation results seem to endorse our recommendation at the end of Section 4.

5.2. Adaptive combination of odds ratios in ulcer data. Efron [(1993),
Section 5] studied an example of combining independent studies. The example
concerns a randomized clinical trial studying a new surgical treatment for stomach
ulcers [Kernohan, Anderson, McKelvey and Kennedy (1984)] in which there
are 9 successes and 12 failures among 21 patients in treatment groups, and 7
successes and 17 failures among 24 patients in the control group. The parameter
of interest is the log odds ratio of the treatment. Based on the data, the estimated
log odds ratio isθ̂1 = log( 9

12/
7
17) = 0.600, with estimated standard errorσ̂1 =

(1
9 + 1

12 + 1
7 + 1

17)
1/2 = 0.629. In addition to Kernohan’s trial, there were 40 other

randomized trials of the same treatment between 1980 and 1989 [see Table 1 of
Efron (1996) for the complete data]. The question of interest is how to combine
the information in these 40 studies with that in Kernohan’s trial. Efron (1993)
employed an empirical Bayes approach, where he used a Bayes rule to combine

the implied likelihood function of Kernohan’s trialL∗
x(θ) ≈ 1

σ̂1
φ(θ−θ̂1

σ̂1
) with a prior

distribution πe(θ) ∝ ∑41
j=2

1
σ̂i

φ(
θ−θ̂j

σ̂j
). Here φ(t) is the density function of the

standard normal distribution, and̂θj and σ̂j , j = 2, . . . ,41, are the estimators of
the log odds ratios and standard errors in the 40 other clinical trials. To obtain
meaningful estimates of̂θj and σ̂j in the analysis, nine entries of zero were
changed to 0.5; see Efron (1993).

We re-study this example, utilizing the purely frequentist CD combination
approach. Under the standard assumption that the data in each of these 41
independent clinical trials are from a four-category multinomial distribution, it

is easy to verify thatHj(y) = �(
y−θ̂j

σ̂j
), j = 1,2, . . . ,41, are a set of first-order

normal aCDs of the 41 clinical trials. We use the combined aCDHAN (i.e., taking
gc(u1, . . . , uL) = ∑41

i=1[ 1
σ̂i

�−1(ui)] in (3.1)), both with and without adaptive
weights, to summarize the combined information. Although there is no way to
theoretically compare our approach with Efron’s empirical Bayes approach, we
will discuss the similarities and differences of the final outcomes from these two
alternative approaches.

First, let us temporarily assume that the underlying values ofθ in these 41 clin-
ical trials are all the same. So, each trial receives the same weight in combination.

In this case, the combined aCD isHS
AN(θ) = �({∑41

i=1
1
σ̂i

θ−θ̂i

σ̂i
}/{∑41

i=1
1
σ̂2

i

}1/2) =
�(7.965(θ + 0.8876)). The density curve ofHS

AN(θ) is plotted in Figure 2(a),
along with the posterior density curve (dashed line) obtained from Efron’s empiri-
cal Bayes approach. For easy illustration, we also include (in each plot) two dotted
curves that correspond to the aCD density of Kernohan’s trialh1(θ) = H ′

1(θ) and
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FIG. 2. The solid curves in (a)–(d) are combined CD density curves, combined with (a) equal
weight to all 41 trials, (b) normal kernel weights, (c) 0–1weights with αn = 0.25, (d) 0–1weights
with αn = 0.30.The dashed curves are the posterior density function (approximated ) from Figure 4
of Efron (1993).The two dotted curves (with peaks from right to left) correspond to the aCD density of
Kernohan’s trial h1(θ) [i.e., Efron’s (1993)implied likelihood L∗

x(θ)] and the average aCD densities
of the 40 other trials [ proportional to the empirical prior πe(θ) used in Efron (1993)].

the average aCD densities of the previous 40 trialsga(θ) = 1
41

∑41
i=2

1
σ̂i

φ( θ−θ̂i

σ̂i
);

note thath1(θ) ≈ L∗
x(θ), Efron’s (1993) implied likelihoodL∗

x(θ), andga(θ) ∝
πe(θ), the empirical prior used in Efron (1993). It is clear in Figure 2(a) that the
aCD curve ofHS

AN(θ) is too far to the left, indicating a lot of weight has been
given to the 40 other trials. We believe that the assumption of the same underlying
values ofθ in all of these 41 clinical trials is too strong; see also Efron (1996).

A more reasonable assumption is that some of the 40 other trials may not have
the same underlying trueθ as in Kernohan’s trial. It is sensible to use the adaptive
combination methods proposed in Section 3.2, which downweight or exclude the
trials with the underlying parameter value away from that of Kernohan’s trial.
Three sets of adaptive weights are considered: one set of normal kernel weights
ωN

j ∝ φ(
M1−Mj√

R
), and two sets of 0 or 1 adaptive weightsωI

j = 1(I1∩Ij �=∅) with

Ii = (H−1
i (αn/2),H−1

i (1 − αn/2)). HereMi = Hi(
1
2) is the median of the aCD

Hi of the ith trial, and following Remark 3.1, we takeαn = 0.25 and 0.30,
respectively, in the two sets ofωI

j ’s. The three corresponding combined CDs
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are, respectively,HN
AN(θ) = �(5.7788(θ − 0.1029)), H

I1
AN(θ) = �(5.4007(θ −

0.1199)) andH
I2
AN(θ) = �(5.3051(θ − 0.1698)). Their density curves are plotted

in Figure 2(b)–(d). We also tried triangle and rectangular kernel weights, but
the results were very similar and are not presented here. A noteworthy feature
of the combined CD density curves is the following: when all the weights are
equal, the combined curve puts little mass to the right of 0, while all the rest put
substantial mass to the right of 0.

Comparing the three adaptively combined CDs with the posterior distribution
obtained by Efron [(1993), Figure 4] on the same data set [Figure 2(b)–(d)], we find
that they all have very similar features. Their density curves all peak within a small
range and between the peaks ofh1(θ) andga(θ), actually much closer toh1(θ),
reflecting intuitive intent of such combinations. But there is also a quite notable
difference. The spans of all the combined CD densities are smaller than that of the
posterior density function. Note that in Efron’s empirical Bayes approach, all 40
other trials have equal contributions (as a part of the prior) to the final posterior
through Bayes formula. In the adaptive approach, the trials closer to Kernohan’s
trial have more contribution (i.e., higher weights) than those trials farther away.
It seems that much more information from the 40 other clinical trials, especially
those withHj(θ) closer toH1(θ), has been drawn in the adaptive CD combination
method.

5.3. Computationally intense methodology on a large data set. One can utilize
CDs to find a way to apply statistical methodology involving heavy computations
on a large data set. Here, we illustrate the “split and combine” approach. We divide
the data into smaller data sets; after analyzing each sub-data set separately, we can
piece together useful information through combining CDs. For a computationally
intense methodology, such a method can result in tremendous saving. Suppose
the number of steps involved in a statistical methodology iscn1+a , n being the
size of the data set,a > 0. Suppose the data set is divided intok pieces, each of
size n

k
. The number of steps involved in carrying out the method on each subset is

c(n
k
)1+a . Thus, the total number of steps isck(n

k
)1+a = cn1+a

ka . If the effort involved
in combining CDs is ignored, there is a saving by a factor ofka . We think that the
information loss due to this approach will be minimal. One question is how to
divide the data. Simple approaches include dividing the data based on their indices
(time or natural order index), random sampling or some other natural groupings.

For the purpose of demonstration, let us consider aU -statistic based robust
multivariate scale proposed by Oja (1983). Let{X1, . . . ,Xn} be a two-dimensional
data set. Oja’s robust multivariate scale isSn = median{areas of all

(
n
3

)
triangles

formed by 3 data points}. For any given three data points(x1, y1), (x2, y2)

and (x3, y3), the area of their triangle is given by12|det( t1t2t3 ) |, where tl =
(1, xl, yl)

′, for l = 1,2,3. To make inference on this scale parameter, it is natural
to use the bootstrap. But obtaining the bootstrap density ofSn is a formidable
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task when the sample sizen is large. For example, even withn = 48 the
computation ofSn involves evaluating the area of 48× 47 × 46/6 = 17,296
triangles. With 5000 (say) repeated bootstrapping, the total number of triangle
areas needed to be evaluated is 86.48 million. If one adopts the “split and combine”
approach discussed above, say, randomly splitting the data set of size 48 into
two data sets of size 24, the number of triangle areas needed to be evaluated
is 2× 5000× (24× 23× 22/6) = 20.24 million. This is less than 1/4 of the
86.48 million. If we randomly split the data set of size 48 into three data sets of size
16 each, the number of triangle areas needed to be evaluated is 3× 5000× (16×
15× 14/6) = 8.4 million, less than 1/10 of the 86.48 million. Since bootstrap
density functions are aCDs, the bootstrap density functions obtained from each
sub-dataset can be combined together, using the techniques of combining CDs. The
combined CD can be used to make inferences on the robust multivariate scaleSn.

Figure 3 plots bootstrap density functions of the robust multivariate scaleSn

based on a simulated two-dimensional data set of size 48. The data set was
generated with thesth observation being(z[1]

s + z[2]
s , z[1]

s − z[2]
s ), wherez[1]

s and
z[2]
s , s = 1, . . . ,48, are simulated from the Cauchy distributions with parameters

center= 0 and scale= 1 and center= 1 and scale= 1.3, respectively. The

(a) (b)

FIG. 3. Figure (a) is for density curves and (b) is for cumulative distribution curves. The solid,
dotted and dashed-line curves correspond to methods described in the main context with no split,
split into two pieces and split into three pieces, respectively.



COMBINING CONFIDENCE DISTRIBUTIONS 179

solid curve in Figure 3(a) is the bootstrap density function ofSn based on 5000
bootstrapped samples. It took 67720.75 seconds to generate the density curve
on our Ultra 2 Sparc Station using Splus. The dotted and broken curves are the
bootstrap density functions ofSn using the “split and combine” method, where we
split the sample randomly into two and three pieces, respectively. It took 12,647.73
and 5561.19 seconds to generate these two density plots, including the combining
part. Hence, the “split and combine” method used less than 1/4 and 1/10 of the
time, respectively! From Figure 3, it is apparent that all three curves are quite
alike. They all seem to capture essential features of the bootstrap distribution of
the robust multivariate scaleSn.

APPENDIX

A.1. Proofs in Section 3.

PROOF OF LEMMA 3.1. Let T and W be independent random variables,
such thatT has the standard double exponential distribution whileW satisfies,
for t > 0, P(W ≤ −t) = P(W > t) = 1

2Vk(t)e
−t , whereVk(·) is a polynomial

of finite degree. We write, fort > 0, P(T + W > t) = 1
4P(T + W > t |T > 0,

W > 0) + 1
4P(T + W > t |T > 0,W < 0) + 1

4P(T + W > t |T < 0,W > 0) =
I + II + III (say). Now,

I = 1
4P(W > t |T > 0,W > 0) + 1

4P(T + W > t,W ≤ t |T > 0,W > 0)

= 1
4Vk(t)e

−t + 1
4

∫ t

0
e−(t−s)[Vk(s) − V ′

k(s)]e−s ds

= 1
4e−t

[
Vk(t) +

∫ t

0
[Vk(s) − V ′

k(s)]ds

]
,

II = 1
4P(T > t − W |T > 0,W < 0)

= 1
4P(T > t + W |T > 0,W > 0)

= 1
4

∫ ∞
0

e−(t+s)[Vk(s) − V ′
k(s)]e−s ds

= 1
4e−t

[∫ ∞
0

{Vk(s) − V ′
k(s)}e−2s ds

]
.

Similarly, III = 1
4e−t [∫ ∞

0 Vk(s + t)e−2s ds]. The proof is concluded by lettingW
have the distribution of

∑k
1 Yi , for k = 1,2, . . . , successively. �

Before we prove Theorem 3.2, we first prove a lemma. This lemma borrows an
idea from Littell and Folks (1973).
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LEMMA A.1. Let Hc(u1, . . . , uL) be a function from [0,1]L to [0,1],
monotonically nondecreasing in each coordinate. Also, suppose Hc(U1, . . . ,UL)

has the U(0,1) distribution when U1, . . . ,UL are independent U(0,1) random
variables. Then for any u1, . . . , uL in [0,1], Hc(u1, . . . , uL) ≥ ∏L

�=1 u� and
1− Hc(u1, . . . , uL) ≥ ∏L

�=1(1− ul).

PROOF. In view of the monotonicity, it follows that{U1 ≤ u1,U2 ≤ u2,

. . . ,UL ≤ uL} implies {Hc(U1, . . . ,UL) ≤ Hc(u1, . . . , uL)}. The first claim
follows if we takeU1,U2, . . . ,UL as independentU(0,1) random variables. The
second claim can be proved similarly via the facts that{U1 ≥ u1, . . . ,UL ≥ uL}
implies{1−Hc(U1, . . . ,UL) ≤ 1−Hc(u1, . . . , uL)} and that 1−Hc(U1, . . . ,UL)

follows U(0,1) distribution whenU1, . . . ,UL are independentU(0,1) random
variables. �

PROOF OFTHEOREM3.2. In Lemma A.1 takeu1 = H1(x), . . . , uL = HL(x).
The first result follows immediately from Lemma A.1. Notem/n1 → ∑

λj , where
m = n1 + n2 + · · · + nL. The second result follows from the first result.

The next two equalities related toHE1 andHE2 can be obtained from direct cal-
culations, appealing to the fact that the upper tail area of theχ2

2L-distribution sat-
isfies limy→+∞ 1

y
logP(χ2

2L > y) = −1
2, whereχ2

2L is aχ2
2L-distributed random

variable. Note, by Lemma 3.1, limy→+∞ 1
y

logDEL(−y) = limy→+∞ 1
y

log(1 −
DEL(y)) = −1. Using this, it is seen that the last two claims also hold.�

The proof of Theorem 3.5 critically depends on the following lemma.

LEMMA A.2. Under the condition of Theorem 3.5, with ω∗
n as in (3.5), one

has

sup
t

|Gc,ω∗(t) − Gc,ω(0) (t)| → 0 in probability,

where ω(0) = (1,ω
(0)
2 , . . . ,ω

(0)
L ), ω

(0)
j = 1 if Hj ∈ H0 and ω

(0)
j = 0 if Hj ∈ H1.

PROOF. Let Y = {Y1, . . . , YL} be i.i.d. r.v.’s having the distributionF0,
independent of the original data. Clearlyω∗

i → ω
(0)
i in probability, for i =

2, . . . ,L. Note that when|ω∗
i − ω

(0)
i | < δ, for a δ > 0 and alli = 2, . . . ,L, we

have

PY

(
Y1 +

L∑
i=2

ω
(0)
i Yi + δ

L∑
i=2

|Yi | ≤ t

)
≤ PY

(
Y1 +

L∑
i=2

ω∗
i Yi ≤ t

)

≤ PY

(
Y1 +

L∑
i=2

ω
(0)
i Yi − δ

L∑
i=2

|Yi | ≤ t

)
.
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Using standard arguments, one deduces that, as|δ| → 0,

sup
t

∣∣∣∣∣PY

(
Y1 +

L∑
i=2

ω
(0)
i Yi ≤ t

)
− PY

(
Y1 +

L∑
i=2

ω
(0)
i Yi + δ

L∑
i=2

|Yi | ≤ t

)∣∣∣∣∣ → 0.

The lemma follows from combining the above assertions.�

PROOF OF THEOREM 3.5. For Hi ∈ H0, sup|x−θ0|≤δn
|ω∗

i − ω
(0)
i | ×

F−1
0 (Hi(x))

p→0 using the condition onδn. For Hi ∈ H1 and |x − θ0| ≤ δn,
min{Hi(x),1−Hi(x)} tends to 0 at an exponential rate. Therefore,F−1

0 (Hi(x)) =
O(n), since the tails ofF0 decay at an exponential rate as well. Using the assumed
condition onbn and the kernel function, we deduce thatω∗

i → 0 in probability,
faster than any polynomial rate, fori such thatHi ∈ H1. Thus, for such ani,
sup|y−θ0|≤δn

|ω∗
i F

−1
0 (Hi(y))| → 0 in probability. The theorem now follows, utiliz-

ing Lemma A.2. �

A.2. Proofs in Section 4.

PROOF OFTHEOREM 4.1. For simplicity, we assume� = (−∞,+∞); other
situations can be dealt with similarly. Note we only need to prove thatHP (θ0) is
U(0,1) distributed.

Define anL−1 random vectorZ = (Z1,Z2, . . . ,ZL−1)
T , whereZj = Tj − TL,

for j = 1,2, . . . ,L − 1. So the joint density function ofZ is fZ(z) = fZ(z1, z2,

. . . , zL−1) = ∫ +∞
−∞

∏L−1
j=1 h̃j (zj + u)h̃L(u) du and the conditional density of

TL − θ0, given Z, is fTL|Z(t) = ∏L−1
j=1 h̃j (Zj + t)h̃L(t)/fZ(Z). Also, for each

givenZ, we define a decreasing functionKZ(γ ) = ∫ +∞
γ

∏L−1
j=1 h̃j (Zj +u)h̃L(u) du.

It is clear that

HP (θ) = KZ(TL − θ)/fZ(Z).

So for anys, 0< s < 1, we have

P {HP (θ0) ≤ s} = P
{
TL − θ0 ≥ K−1

Z

(
sfZ(Z)

)}
= E

[
P

{
TL − θ0 ≥ K−1

Z

(
sfZ(Z)

)|Z}]
= E

[∫ ∞
K−1

Z (sfZ(Z))

∏L−1
j=1 h̃j (Zj + t)h̃L(t)

fZ(Z)
dt

]

= E

[∫ sfZ(Z)

0

1

fZ(Z)
du

]
= s,

where the fourth equality is due to a monotonic variable transformation in the
integration:u = KZ(t). �



182 K. SINGH, M. XIE AND W. E. STRAWDERMAN

PROOF OF THEOREM 4.3. Let θ0 be the common value of the parameter.
To prove the claim, we show that for anyε > 0, P(HDE(θ0 + (1 + ε)�AN(α)) >

1−α) → 1, P (HDE(θ0+ (1−ε)�AN(α)) < 1−α) → 1, and similar results on the
lower side ofθ0. We establish the first claim below; others can be proved similarly.

Let us note that, under lim∗,

L∑
i=1

DE−1
(
�

(√
ni

τi

[θ0 + (1+ ε)�AN(α) − Ti]
))

=
L∑

i=1

DE−1
(
�

(√
ni

τi

[(1+ ε)�AN(α)][1+ op(1)]
))

=
L∑

i=1

1

2

{√
ni[(1+ ε)�AN(α)][1+ op(1)]/τi

}2 = [(1+ ε)2z2
α/2][1+ op(1)].

Thus, by Lemma 3.1,

1− HDE

(
θ0 + (1+ ε)�AN(α)

) = op(α1+ε). �

Acknowledgments. The comments of the referees and the editors ofThe
Annals of Statistics greatly helped us improve the focus, presentation and some
contents of the article.

REFERENCES

BERGER, J. O. (1985).Statistical Decision Theory and Bayesian Analysis, 2nd ed. Springer, New
York.

EFRON, B. (1993). Bayes and likelihood calculations from confidence intervals.Biometrika 80 3–26.
EFRON, B. (1996). Empirical Bayes methods for combining likelihoods (with discussion).J. Amer.

Statist. Assoc. 91 538–565.
EFRON, B. (1998). R. A. Fisher in the 21st century (with discussion).Statist. Sci. 13 95–122.
FISHER, R. A. (1930). Inverse probability.Proc. Cambridge Philos. Soc. 26 528–535.
FISHER, R. A. (1932). Statistical Methods for Research Workers, 4th ed. Oliver and Boyd,

Edinburgh.
FISHER, R. A. (1973).Statistical Methods and Scientific Inference, 3rd ed. Hafner Press, New York.
FRASER, D. A. S. (1991). Statistical inference: Likelihood to significance.J. Amer. Statist. Assoc.

86 258–265.
FRASER, D. A. S. (1996). Comments on “Pivotal inference and the fiducial argument,” by

G. A. Barnard.Internat. Statist. Rev. 64 231–235.
HALL , P. (1992). On the removal of skewness by transformation.J. Roy. Statist. Soc. Ser. B 54

221–228.
JORDAN, S. M. and KRISHNAMOORTHY, K. (1996). Exact confidence intervals for the common

mean of several normal populations.Biometrics 52 77–86.
KERNOHAN, R. M., ANDERSON, J. R., MCKELVEY, S. T. and KENNEDY, T. L. (1984). A

controlled trial of bipolar electrocoagulation in patients with upper gastrointestinal
bleeding.British J. Surgery 71 889–891.

LEHMANN, E. L. (1993). The Fisher, Neyman–Pearson theories of testing hypotheses: One theory
or two?J. Amer. Statist. Assoc. 88 1242–1249.



COMBINING CONFIDENCE DISTRIBUTIONS 183

LITTELL , R. C. and FOLKS, J. L. (1973). Asymptotic optimality of Fisher’s method of combining
independent tests. II.J. Amer. Statist. Assoc. 68 193–194.

MARDEN, J. I. (1991). Sensitive and sturdyp-values.Ann. Statist. 19 918–934.
NEYMAN , J. (1941). Fiducial argument and the theory of confidence intervals.Biometrika 32

128–150.
OJA, H. (1983). Descriptive statistics for multivariate distributions.Statist. Probab. Lett. 1 327–332.
SCHWEDER, T. and HJORT, N. L. (2002). Confidence and likelihood.Scand. J. Statist. 29 309–332.
SINGH, K., XIE, M. and STRAWDERMAN. W. (2001). Confidence distributions—concept, theory

and applications. Technical report, Dept. Statistics, Rutgers Univ. Revised 2004.
WELCH, B. L. and PEERS, H. W. (1963). On formulae for confidence points based on integrals of

weighted likelihoods.J. Roy. Statist. Soc. Ser. B 25 318–329.
YU, P. L. H., SUN, Y. and SINHA , B. K. (1999). On exact confidence intervals for the common

mean of several normal populations.J. Statist. Plann. Inference 81 263–277.

K. SINGH

M. X IE

W. E. STRAWDERMAN

DEPARTMENT OFSTATISTICS

RUTGERS—THE STATE UNIVERSITY

OF NEW JERSEY

HILL CENTER, BUSCH CAMPUS

PISCATAWAY, NEW JERSEY08854
USA
E-MAIL : kesar@stat.rutgers.edu

mxie@stat.rutgers.edu
straw@stat.rutgers.edu


