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Many statistical practices involve choosing between a full model and
reduced models where some coefficients are reduced to zero. Data were used
to select a model with estimated coefficients. Is it possible to do so and still
come up with an estimator always better than the traditional estimator based
on the full model? The James—Stein estimator is such an estimator, having
a property called minimaxity. However, the estimator considers only one
reduced model, namely the origin. Hence it reduces no coefficient estimator
to zero or every coefficient estimator to zero. In many applications including
wavelet analysis, what should be more desirable is to reduce to zero only
the estimators smaller than a threshold, called thresholding in this paper. Is it
possible to construct this kind of estimators which are minimax?

In this paper, we construct such minimax estimators which perform
thresholding. We apply our recommended estimator to the wavelet analysis
and show that it performs the best among the well-known estimators aiming
simultaneously at estimation and model selection. Some of our estimators are
also shown to be asymptotically optimal.

1. Introduction. In virtually all statistical activities, one constructs a model

to summarize the data. Not only could the model provide a good and effective
way of summarizing the data, the model if correct often provides more accurate
prediction. This point has been argued forcefully in Gauch (1993). Is there a way
to use the data to select a reduced model so that if the reduced model is correct,
the model-based estimator will improve on the naive estimator (constructed using
a full model) and yet never do worse than the naive estimator even if the full
model is actually the only correct model? James—Stein estimation (1961) provides
such a striking result under the normality assumption. Any estimator such as the
James—Stein estimator that does no worse than the naive estimator is said to be
minimax. See the precise discussion right before Lemma 1 of Section 2. The
problem with the James—Stein positive part estimator is, however, that it selects
only between two models: the origin and the full model. It is possible to construct
estimators similar to the James—Stein positive part to select between the full model
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and another linear subspace. However, it always chooses between the two. The
nice idea of George (19864, b) in multiple shrinkage does allow the data to choose
among several models; it, however, does not do thresholding, as is the aim of the
paper.

Models based on wavelets are very important in many statistical applications.
Using these models involves model selection among the full model or the models
with smaller dimensions where some of the wavelet coefficients are zero. Is there a
way to select areduced model so that the estimator based on it does no worse in any
case than the naive estimator based on the full model, but improves substantially
upon the naive estimator when the reduced model is correct? Again, the James—
Stein estimator provides such a solution. However, it selects either the origin or
the full model. Furthermore, the ideal estimator should do thresholding; namely, it
gives zero as an estimate for the components which are smaller than a threshold,
and preserves (or shrinks) the other components. However, to the best knowledge
of the authors, no such minimax estimators have been constructed. In this paper,
we provide minimax estimators which perform thresholding simultaneously.

Section 2 develops the new estimator for the canonical form of the model by
solving Stein’s differential inequality. Sections 3 and 4 provide an approximate
Bayesian justification and an empirical Bayes interpretation. Section 5 applies the
result to wavelet analysis. The proposed method outperforms several prominent
procedures in the statistical wavelet literature. Asymptotic optimality of some of
our estimators is established in Section 6.

2. New estimators for a canonical model. In this section we shall consider
the canonical form of the problem of a multinormal mean estimation problem
under squared error loss. Hence we shall assume that our observation

Z=(Z1,....,Za) ~N@®, 1)

has ad-dimensional normal distribution with mean= (64, ..., 6;), and a known
covariance identity matrix. The case when the variance 4f is not known will
be discussed briefly at the end of Section 5.

The connection of this problem with wavelet analysis will be pointed out in
Sections 5 and 6. In shorg; and6; represent the wavelet coefficients of the
data and the true curve in the same resolution, respectively. Furtherthise,
the dimension of a resolution. For now, we shall seek an estimatérhzsed
on Z. We shall, without loss of generality, consider an estimator of the form
8(Z) = (81(2), ...,84(2)), where,

0i(Z)=2Z;+ gi(Z),

whereg(Z): RY — R, and search fog(Z) = (g1(2), ..., ga(Z)). To insure that
the new estimator (perhaps with some thresholding) does betterah@rhich
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does no thresholding), we shall compare trsk of §(Z) to the risk of Z with
respect to thé> norm. Namely,

d
E|8(Z) - 01>=E Y (5:(2) - 6)°.
i=1

It is obvious that the risk ofZ is thend. We shall say one iss good as the
other if the former has a risk no greater than the latter for eeeMoreover, one
dominates the other if it is as good as the other and has smaller risk for shme
Also we shall say that an estimatsrictly dominates the other if the former has a
smaller risk for every. Note thatZ is a minimax estimator, that is, it minimizes
sup, £/8°(Z) — 0|2 among alls®(Z). Consequently any(Z) is as good a¥ if
and only if it is minimax.

To construct an estimator that domina#&swe use the following lemma.

LEMMA 1 [Stein (1981)]. Supposethat g: R? — R“ isa measurable function
with g; () as the ith component. If for every i, g;(-) is almost differentiable with
respect to the ith component and

d

then
EgllZ +¢(2) — 61> = Eg{d + 2V - g(Z) + 1 2(D) 1%},
where V- g(Z) = 0 %442 Henceif g(Z) solvesthe differential inequality
(1) 2V-2(Z)+ 18(2)|1> <0,
the estimator Z + g(Z) strictly dominates Z.
REMARK. g;(z) is said to be almost differentiable with respectztoif for
almostallz;, j # i, gi (z) can be written as a one-dimensional integral of a function

with respect ta;;. For suche;’s, j # i, gi(Z) is also called absolutely continuous
with respect ta; in Berger (1980).

To motivate the proposed estimator, note that the James—Stein positive estimator

has the form
N d—2
- (12 4
1Z11%/ +

with ¢ = max(c,0) for any numberc. This estimator, however, truncates
independently of the magnitude ¢f;|. Indeed, it truncates all or none of the
coordinates. To construct an estimator that truncates only the coordinates with
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small|Z;|, it seems necessary to replate 2 by a decreasing functian(| Z;|) of
|Z;| and consider
A h(|Z;
G = (1_ ( l|>> Z.
D /4

where D, independent of, is yet to be determined. [In a somewhat different ap-
proach, Beran and Diimbgen (1998) construct a modulation estimator correspond-
ing to a monotonic shrinkage factor.] With such a fonéﬁ, =0if h(|Z;]) = D,
which has a better chance of being satisfied wWihis small.

We consider the simple choié&|Z;|) = a|Z;|~%/3, and letD = £|Z;|*3. This
leads to the untruncated versiémwith theith component

(2  6(Z)=Zi +g(Z)  whereg(Z)=—aD tsignz;)|z;|*3.

Here and later sigi¥;) denotes the sign ;. It is possible to use other decreasing
functionsh (| Z;]) and otherD.
In general, we consider, for a fixgtl< 2, an estimator of the form

3) b =Zi +gi(Z),
where

sign(Z;)|z;|#~1
a—

d
5 and D=>|zF.

i=1

4 gi(Z)=—

Although at first glance it may seem hard to justify this estimator, it has a Bayesian
and empirical Bayes justification in Sections 3 and 4. It contains, as a special case
with g8 = 2, the James—Stein estimator. Now we have:

THEOREM2. Ford>3and1< B <2,6(Z)isminimaxifand only if

Eo(DYY 4 17,12
0<a<2p—yint 2P LizalZil )
0 Eg(D=23_11Zi|*F~2)

28.

ProoF  Obviously forZ; # 0, Vj # i, gi(Z) can be written as the one-
dimensional integral of

a%gi(Z) =B(—a)(~1)D7?|Z|% 7P + (B — (=)D (1Z:|P7?)
with respect taZ;. (The only concern is aZ; = 0.) Consider only nonzerd;’s,
j #i.Sincep > 1, this function, however, is integrable with respectdoeven
over an integral including zero. It takes some effort to prove E{ag%gi (2)])is
finite. However, one only needs to focus @n close to zero. Using the spherical-
like transformation? = 3" | Z;|#, we may show that i > 3 andg > 1, both terms
in the above displayed expression are integrable.
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Now
d
(21> =a’D™%Y " |Z;|%# 2.
i=1
Hence
EolZ+g(Z)—6|><d  foreveryd
if and only if
Eg{2V -g(Z) +g(2)II?} <0  for everyd,
that is,

d
Eg (a ((2/3)0—2 > 1z %2

i=1
d d
(5) - (28-2D7') |Z,~|ﬂ—2) +a’D7?y" |z,-|2ﬁ—2> <0
i=1 i=1
for everyé,
which is equivalent to the condition stated in the theorem.
THEOREM3. Theestimator §(Z) with the ith component given in (3) and (4)

isminimax provided 0 <a <2(f —1)d —2fand1<p <2.Unlessg=2anda
is taken to the upper bound, 6(Z) dominates Z.

PROOF By the correlation inequality

d d d
d(z|z,-|2ﬂ—2> < (Dziﬁ—z)(DziW).
i=1 i=1 i=1
Strict inequality holds almost surely #f < 2. Hence
Eg(D 122 | EDTMYNZiP?
Eg(D=2Y011Z;i[P=2) ~ (1/d)Eg D=1 Y| Z;1F~2

Hence if 0< a < 2(8 —1)d — 28, the condition in Theorem 2 is satisfied, implying
minimaxity of 6(Z). The rest of the statement of the theorem is now obvioQs.

d.

The following theorem is a generalization of Theorem 6.2 on page 302 of
Lehmann (1983) and Theorem 5.4 on page 356 of Lehmann and Casella (1998).
It shows that taking the positive part will improve the estimator componentwise.
Specifically for an estimata1(2), ..., 64(Z)) where

6:(2)=(1-hi(2))Z;,
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the positive part estimator éf(Z) is denoted as
07(2)=(1-hi(2)) Zi.
THEOREM 4. Assume that #;(Z) is symmetric with respect to the ith
coordinate. Then
Eg(0; — 6;)% < Eg(6; — 0,)°.
Furthermore, if
(6) Py(hi(Z) > 1) >0,
then

Eq(0; — §i+)2 < Eg(6; — 6>

PROOF  Simple calculation shows that
() Eo(6i — 6% — Eg(6; — 6)° = Eo((6;)° — 67) — 260, Eg (6 — 6)).
Let us calculate the expectation by conditioning(Z). Forh; (Z) < 1, §i+ =6;.
Hence it is sufficient to condition oy (z) = b whereb > 1 and show that
Eqg(6;")? = 621hi(Z) = b) — 26, E¢ (8" — 6;1hi(Z) = b) <0,
or equivalently,
—Eg(0|hi(Z) = b) + 20;(1 — b)Eg(Z;|hi(Z) = b) <O.
Obviously, the last inequality is satisfied if we can show
6;Eg(Z;i|hi(Z) =b) > 0.
We may further condition o ; = z; for j # i and it suffices to establish
(8) 0;Eo(Zilhi(Z)=b,Z; =z, ] #1i)>0.

Given thatZ; = z;, j # i, consider only the case whekg(Z) = b has solutions.
Due to symmetry ofi; (Z), these solutions are in pairs. Ly, k € K, denote the
solutions. Hence the left-hand side of (8) equals

0:iEo(Zi|Z; =Ly, k € K)

=Y 0:Eo(Zi|Zi = ) Po(Zi = 23| Zi = £yi. k € K).
keK

Note that

0; yke)’k@‘ —6; yke—)’k@'

(9) OiEo(Zi|Zi = £yk) = eV + o= Vi
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which is symmetric ir9; y, and is increasing fo#; y, > 0. Hence (9) is bounded
below by zero, a bound obtained by substituting, = 0 in (9). Consequently we
establish that (7) is nonpositive, implying tht in as good a$.

The strict inequality of the theorem can be established by noting that the right-
hand side of (7) is bounded above By[(5;")? — 2] which by (6) is strictly
negative. [

Theorem 4 implies the following corollary.

COROLLARY 5. Under the assumptions on @ and g in Theorem 3, 4+ with
the ith component

(10) 0 =1 —aD YZi)P?) 7,

strictly dominates Z.

It is interesting to note that the estimator (10), fér< 2, does give zero
as the estimator when the;| are small. When applied to wavelet analysis, it
truncates the small wavelet coefficients and shrinks the large wavelet coefficients.
The estimator lies in a data-chosen reduced model.

Moreover, forg = 2, Theorem 3 reduces to the classical result of Stein (1981)
and (10) to the positive part James—Stein estimator. The upper boundoof
domination stated in Theorem 3 works onhgit- 1 andd > 8/(8 — 1). We know
that for g < % 6 fails to dominateZ because of the calculations leading to (11)

below. We are unable to prove thatdominatesZ for % < B < 1. However, for
suchg’s, § has a smaller Bayes risk thanif the condition (11) below is satisfied.

A remark about an explicit formula for a. In wavelet analysis, a vast majority
of the wavelet coefficients of a reasonably smooth function are zero. Consequently,
it seems good to choose an estimator that shrinks a lot and henceaulsirger
than the upper bound in Theorem 3 is desirable. Although Theorem 2 provides
the largest possible for domination in the frequentist sense, the bound is difficult
to evaluate in computation and hence difficult to use in a real application. Hence
we took an alternative approach by assuming thatre independently identically
distributed (i.i.d.)N (0, 2). It can be shown by a detailed calculation [see Zhou
and Hwang (2003)] that the estimator (3) and (4) has a smaller Bayes risithan
for all 72 if and only if

d d 2
(11) 0<a<a,3=2/E|:Z|§i|2ﬂ_2/<2|§i|ﬂ> i|
i=1 i=1

whereé; are i.i.d. standard normal random variables.
What is the value ofig? It is easy to numerically calculate the bousg by

simulatingé;, which we did fora up to 100. It is shown thatg, g = %, is at least
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as big ag5/3)(d — 2). Using Berger’s (1976) tail minimaxity argument, we come
to the conclusion that™, with theith component

~2/3

i (5/3)(d —2)7;
(12) 9,-:(1— S >+zl~,

would possibly dominate . For variousd’s includingd = 50 this was shown to
be true numerically.

To derive a general formula farg for all 8, we then establish that the limit of
ag/d asd — oo equals, for 12 < 8 < 2,

(13) Cp =4[ ((B+1)/2)]/[VT (28 - 1)/2)]
It may be tempting to use? — 2)Cg. However, we recommend
(14) a=(0.97)(d —2)Cg,

so that ai8 = 4/3, (14) becomess/3)(d — 2). Berger’s tail minimaxity argument
and many numerical studies indicate that thisnables (10) to have a better risk
thanZ.

3. Approximate Bayesian justification. It would seem interesting to justify
the proposed estimation from a Bayesian point of view. To do so, we consider a
prior of the form
1, 101l <1,

0) =
"O=1 10010 1005 > 1,

where||0]15 = (X 116;11#)}/#, andc is a positive constant which can be specified to
match the constantin (10). In general the Bayes estimator is given by

Z +Viogm(Z),
wherem(Z) is the marginal probability density function &f, namely,
e~ /12017
m(Z) = f ‘e / Wﬂ'(@)d@.

The following approximation follows from Brown (1971), which asserts that
Viogm(Z) can be approximated by logz(Z). The proof is given in the
Appendix.

THEOREM6. With 7 (6) and m(X) given above,
| V;logm(Z) B
Zi|>+00 Vilogm(Z) ~
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Hence by Theorem 6, théth component of the Bayes estimator equals
approximately

_ cBlZi)Ptsign(Zi)
pVAL

This is similar to the untruncated versionéin (2) and (3).

Zi+V; |Og7T(Z) =7

4. Empirical Bayes justification. Based on several signals and images,
Mallat (1989) proposed a prior for the wavelet coefficiefitas the exponential
power distribution with the probability density function (p.d.f.) of the form

(15) £ (&) = kel
wherea andp < 2 are positive constants and

k=p/(22T(1/B))

is the normalization constant. See also Vidakovic [(1999), page 194]. Using the
method of moments, Mallat estimated the values @ndg to be 1.39 and 1.14
for a particular graph. Howevar, andg are typically unknown.

It seems reasonable to derive an empirical Bayes estimator based on this class
of prior distributions. First we assume thais known. Then the Bayes estimator
of §; is

. logm(Z).

]

Z; + 0
‘Az
Similar to the argument in Theorem 6 and noting thatdot 2,

_16:47Z:181aP . —16:18 JaP
eI+ Zil" P =10l fah g asy; — oo,

the Bayes estimator can be approximated by

B

(16) Zi+ N logn(Z;) = Z; — | Z;|P~Lsign(Z;).
9Z; ab

l
Note that, under the assumption tlaais known, the above expression is also the
asymptotic expression of the maximum likelihood estimata#; dfy maximizing
the joint p.d.f. of(Z;, 6;). See Proposition 1 of Antoniadis, Leporini and Pesquet
(2002) as well as (8.23) of Vidakovic (1999). In the latter reference, the sigh of
of (16) is missing due to a minor typographical error.

Sincea is unknown, it seems reasonable to replade (16) by an estimator.

Assume thab;’s are observable. Then by (15) the joint density@f. ..., 6;) is

[L]de—zaeiﬂ/aﬂ)‘
201" (1/B)
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Differentiating this p.d.f. with respect togives the maximum likelihood estimator
of a? as

17 (B216;1P)/d.

However,6; is unknown and hence the above expression can be further estimated
by (16). Forg < 2, the second term in (16) has a smaller order than the first when
|Z;| is large. Replacing; by the dominating first tern¥; in (16) leads to an
estimator o as(8x|Z;|?)/d.
Substituting this into (16) gives
i — ———1Z;i1P tsign(z)),
sz 4l sz

which is exactly theAestimatoéi in (2) and (3) witha = d. Hence we have
succeeded in deriving as an empirical Bayes estimator whgnis large.

5. Connection to the wavelet analysisand the numerical results. Wavelets
have become a very important tool in many areas including mathematics, applied
mathematics, statistics and signal processing. They are also applied to numerous
other areas of science such as chemometrics and genetics.

In statistics, wavelets have been applied to function estimation with amazing
results of being able to catch the sharp change of a function. Celebrated
contributions by Donoho and Johnstone (1994, 1995) focus on developing
thresholding techniques and asymptotic theories. In the 1994 paper, relative
to the oracle risk, their VisuShrink is shown to be asymptotically optimal.
Further in the 1995 paper, the expected squared error loss of their SureShrink is
shown to achieves the global asymptotic minimax rate over Besov spaces. Cai
(1999) improved on their result by establishing that Block James—Stein (BlockJS)
thresholding achieves exactly the asymptotic global or local minimax rate over
various classes of Besov spaces.

Now specifically letY = (Y1, ..., Y,)’ be samples of a functiofi, satisfying

(18) Yi = ft) +ei,

wherer; = (i — 1)/n ande; are i.i.d.N(0, 02). Hereo? is assumed to be known
and is taken to be 1 without loss of generality. See a comment at the end of
the paper regarding the unknown case. One wishes to choose an estimate

f=(f(t), ..., ft,)) so that its risk function
(19) EIlf - fI?=EY (ft) — f@)
iz

is as small as possible. Many discrete wavelet transformations are orthogonal
transformations. See Donoho and Johnstone (1995). Consequently, there exists an
orthogonal matrixW such that the wavelet coefficients Bfand f areZ = WY

andd = W f. Obviously the component; of Z are independent, having a normal
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distribution with mear®; and standard deviation 1. Hence previous sections apply
and exhibit many good estimators @f Note that, by orthogonality of¥, for

any estimatoB(Z) of 6, its risk function is identical td¥’§(Z) as an estimator

of f = W’6. Hence the good estimators in previous sections can be inversely
transformed to estimatg well.

In all the applications to wavelets discussed in this paper, the estimators
(including our proposed estimator) apply separately to the wavelet coefficients of
the same resolution. Hence in (12), for examplas taken to be the number of
coefficients of a resolution when applied to the resolution. In all the literature that
we are aware of, this has been the case as well.

In addition to considering the estimator (12), which is a special case of (10)
with 8 = 4/3, we also propose a modification (10) with an estimatedrhe
estimatorg for g is constructed by minimizing, for each resolution, the Stein
unbiased risk estimator (SURE) for the risk of (10). The quantity SURE is basically
the expression inside the expectation on the right-hand side of (A.4) summing
overi, 1 <i <d, except that: is replaced byig. [Note thatD in (A.4) depends
on B as well.] The resultant estimator is denoted as

(20) 65 =(10)  with 8 replaced by3.

Figure 1 gives six true curves (made famous by Donoho and Johnstone) from
which the data are generated. For these six cases, Figure 2 plots the ratios of the

Blocks Bumps Doppler
10 25 6
8
20 4
6
2
4 15
0
2 10
2
0
2 > 4
4 0 6
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500
HeaviSine PiecePolynomial PieceRegular
6 10 8
4 8 6
2
6 4
0 4
2
2 2
4 0 0
6 2 2
8 4 4
0 500 1000 1500 0 500 1000 1500 0 500 1000 1500

FIG. 1. Thecurvesrepresent the true curves f(¢) in (18).
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FIG. 2. Ineach of the six cases corresponding to Blocks, Bumps, and so on, the eight curves plot
the risk functions, from top to bottom, when n = 64,128 ...,8192.For each curve (see, eg., the
top curve on the left), the circles “0” from left to right give, with respect to n, the relative risks of
Visushrink, Block James-Stein, SureShrink and the proposed methods (12) and (20).

risks of the aforementioned estimatorss#ipthe risk of Y. Since most relative

risks are less than 1, this indicates that most estimators perform better than the
raw datay. Our estimator®™ in (12) andé® in (20), however, are the ones that
are consistently better than. Furthermore, our estimatots™ and 6° virtually
dominate all the other estimators in risk. Generaily,performs better thad+
virtually in all cases.

As shown in Figure 2, the difference in risks betwéenandd® is quite minor.
Sinced* is computationally less intensive, we focus &h for the rest of the
numerical studies.

Picturewise, our estimator does slightly better than other estimators. See
Figure 3 for an example. Note that the picture correspondimy tdistinguishes
most clearly the first and second bumps from the right.

Based on asymptotic calculation, the next section also recommends a choice
of a in (21). It would seem interesting to comment on its numerical performance.
The difference between the's defined in (14) and (22) is very small when
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VisuShrink (simulated risk = 2.41) SureShrink (simulated risk = 1.13)
10 10

o N A O @

80 0 20 40 60 80

BlockJS (simulated risk = 1.94) Proposed Method (12) (simulated risk = 0.86)
10 10

o N A O @

80 0 20 40 60 80

Fic. 3. Solid lines represent the true curves, and dotted lines represent the curves corresponding
to various estimators. The simulated risk is based on 500 simulations.

64 < n <8192 and wherB is estimated by minimizing SURE. Consequently, for
suchg, the risk functions of the two estimators with differers are very similar,
with a difference virtually bounded by 0.02. The finite sample estimator [where
a is defined in (14)] has a smaller risk about 75% of the time.

The James—Stein estimator produces very attractive risk functions, sometimes
as good as the proposed estimator (12). However, it does not seem to produce good
graphs. Compare Figures 4 and 5.

In the simulation studies we use the procedures MultiVisu and MultiHybrid
which are VisuShrink and SureShrink in WavelLab802. See http://www-stat.
stanford.edutwavelab. We use Symmlet 8 to do wavelet transformation. In
Figure 2 signal-to-noise ratio (SNR) is taken to be 3. Results are similar for other
SNRs. To include the block thresholding result of Cai (1999), we choose the lowest
integer resolution level > log,(logn) + 1.

A comment about thecasewhereo? isnot knowntobel. Wheno is known
and is not equal to 1, a simple transformation applied to the problem suggests that
(10) be modified withz replaced byzo?. Wheno is unknown, one could then
estimates by &, the proposed estimator ferin Donoho and Johnstone [(1995),
page 1218]. With this modification in (12) (and even with the SURE estim@led



114

H. H. ZHOU AND J. T. G. HWANG
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FIG. 4. Proposed estimator (12) applied to reconstruct Figure 1.
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FIG. 5. James-Sein positive part applied to reconstruct Figure 1.
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the resultant estimators are not minimax according to some numerical simulations.
However, they still perform the best or nearly the best among all the estimators
studied in Figure 2.

6. Asymptotic optimality. To study the asymptotic rate of a wavelet analysis
estimator, it is customary to assume the model

(22) Yi= () + ¢, i=1,...,n,

wheret; = (i — 1)/n andg; are assumed to be i.i&N (0, 1). The estimatorf
for f(-) that can be proved asymptotically optimal applies estimator (10) with

(22) a=dRInd) > P/, 0<B<2,
and
mpg = E|g;|P =2/°T (B +2)/2) /7

to the wavelet coefficientg; of each resolution with dimensionality of the
wavelet transformation of thi's. After applying the estimator to each resolution
one at a time to come up with the new wavelet coefficient estimators, one then uses
the wavelet base function to obtain one functjpin the usual way.

To state the theorem, we usg , to denote the Besov space with smoothness
and shape parametepsandq. The definition of the Besov clas] (M) with
respect to the wavelet coefficients is given in (A.19). Now the asymptotic theorem
is given below.

THEOREM 7. Assume that the wavelet v is ¢-regular, that is, v has ¢
vanishing moments and ¢ continuous derivatives. Then there exists a constant C
independent of n and f such that

1 A
(23) sup E [ |f(t)— f@)2dt < C(nn)t—F/2p=2/ @D
feBy (M) /O

foraIIM>0,0<a<r,qzlandp>max(ﬂ,%,1).

The asymptotic optimality stated in (23) is as good as what has been established
for hard and soft thresholding estimators in Donoho and Johnstone (1994), the
Garrott method in Gao (1998) and Theorem 4 in Cai (1999) and the SCAD method
in Antoniadis and Fan (2001). However, the real advantage of our estimator is in
the finite sample risk as reported in Section 5. Also our estimators are constructed
to be minimax and hence have finite risk functions uniformly smaller than the risk
of Z. This estimatop* for 8 = 4/3, however, has a risk very similar to (12). See
Section 5.
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APPENDIX

PROOF OFTHEOREMG6. Assume thatZ;| > 1. We have

Vilogm(Z) i n(Z) (3/dZi)m(Z)
Zil—o0 Vilogn(Z)  |Zil>+oom(Z) (3/dZ)m(Z)
We shall prove only

mz) _
1Zil>oo T(Z)
since
im  9/3Zom(Z) _
|Zi|—>00 (0/0Zi)7(Z)
can be similarly established.
Now

1 2
— ... = ,—/2lZ-9]
m(Z)_/ /( —Zn)l’e 7 (0)do

e~ WDNZ=61? 49

1
:/‘”‘/HOIIﬁSlm

1
o (1/21Z-0] d6

1
Y e
I615>1 (V27 )7 loN
=m1+ my, say.

Obviously, agZ;| — +o0, m1 has an exponentially decreasing tail. Hence

mi

im =0.
|Zi| =400 T (Z)

By the change of variablé = Z + y, we have

Bc
1 VA
ma/7(Z) :// = W2l dy
1Z+ylg>1 (/21 )P ||Z+y||gc

To prove the theorem, it suffices to show the above expression convergesto 1. In
doing so, we shall apply the dominated convergence theorem to show that we may
pass to the limit inside the above integral. After passing to the limit, it is obvious
that the integral becomes 1.

The only argument left is to show that the dominated convergence theorem can
be applied. To do so, we seek an upper bo#iig) for

IZIg"/1Z +yllg"  when||Z +ylg>1.
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Now for || Z + ylig > 1,

1ZII5 < CpIZ + Y1l + Iy 150,
that is,

1ZI15¢ Iyl5e
___JL_<C(1 r——i—>§CALHWM5-

1Z+ 5~ 1Z+

Hence if we takeC,(1+ |l yll") asF(y), then

1 2
=@/l
e F(y)dy < 4o0.
/ Az+y,3>l (\/ 2 )p

Consequently, we may apply the dominated convergence theorem, which com-
pletes the proof. O

PROOF OFTHEOREM 7. Before relating to model (21), we shall work on the
canonical form:

Z,=6; +o0¢;, i=12,...,d,

whereo > 0 and thes;’s are independently identically distributed standard normal
random errors. Heré = (44, . .., 6;) denotes the estimator in (10) withdefined
in (22). For the rest of the papé€r denotes a generic quantity independent/ of
and the unknown parameters. Hence @hgbelow are not necessarily identical.

We shall first prove Lemma A.1 below. Inequality (A.1) will be applied
to the lower resolutions in the wavelet regression. The other two inequalities
(A.2) and (A.3) are for higher resolutions]

LEMMA A1, ForanyO< B <2,0<6 < 1,andsome C > 0, independent of
d and the 6;' s, we have

d

(A.1) Y E@; —6)? < Co?d(Ind)* P12
i=1

and

E®; —0)% < C(0? +o2d° Y(na)=Y?)

d
. 2—B\#
51918 < ﬂ(—) 8%mad.
| ;| iI|F <o 28 mg

(A.2)

Here and belowng denotes the expectation of:|#, defined right above the
statement of Theorem 7. Furthermore, for any B < 1, there exist€ > 0 such
that

(A.3) E®; —0:)? < Co®Ind.
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PrOOF OFLEMMA A.1. Without loss of generality we will prove the theorem
for the caser = 1. By Stein’s identity,

E@®; —6;)% = E[1—|— (22 -2)I;
(A.4)

27,1262 Z: |2 ZZﬂZ
+(a|D|2 _up 1)\ | P | )If]-

Here I; denotes the indicator functi0|1i(a|Z,-|/3‘2 > D) and If =1- 1.
Consequently

(A.5) =1 if|1Z*®<a/D
and
(A.6) =1 ifa|z;7?/D<1
From (A.4) and after some straightforward calculations,
d ~
EY (6 —6)°
i=1
d
(A7) :d+E[Z(|Z,~|Z_ﬁ|Z,-|’3 — 2
i=1
a|zi|ﬁ—2(a|z,~|ﬁ 2P )
2B—1)+2 .
t—5 ) B-1)+28

Using this and the upper bounds in (A.5) and (A.6), we conclude that (A.7) is
bounded above by

d
alZi|P  alz;|P 1Z;|P o
d+E 218 —1ld < C(nd)@ P24,
+LZlD+D+ 5 | +2B=1d=C(nd)
completing the proof of (A.1).
To derive (A.2), note that

EQ4 (22 =2L;) =602 + E(—Z? + 2)I.
This and (A.4) imply that

. Z;1F=2\?
E@; —6)* =07+ E{[(%) 7% — Z,-Z}If}

” 2(8 — 1)“'2 i +2]1f}

(5]
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Using (A.7), one can establish that the last expression is bounded above by
2 c Ak
0f+ E[(-2(B—- 1)+ 2]+ E2B )
(A.8)

IS <02+ E[(4+2B)If]

<602+ 8EIf.
We shall show under the condition in (A.2) that
(A.9) EIf <C(16:1? + d*t(logd)~/?).

This and (A.8) obviously establish (A.2). To prove (A.9), we shall consider two
cases: (i) < B <1 and (i) 1< B < 2. For case (i) note that, for ars/> 0,
EIf equals

P(alZi|P~? < D)= P(D > al|Zi|P~%,1Zi| < Ind)"?/(1+5))
+P(D=alZiP7%,1Zi| = QInd)?/(1+6)).
Obviously the last expression is bounded above by
(A10)  P(D=>Q@Q+8%Fdmg)+ P(1Zi| = 2Ind)?/(1+9)).
Now the second term is bounded above by
(A.11) C(16:i1?+ (@*~*Vind) ™)

by a result in Donoho and Johnstone (1994). To find an upper bound for the first
term in (A.10), note that by a simple calculus argument

1ZilP <&l +16:17,
due to O< B8 < 1. Hence the first term of (A.10) is bounded above by
d
P(Z il > A+ 8)> P dmp =) |9,-|ﬁ).
i=1

Replacing Y 16;|# by the assumed upper bound in (A.2), the last displayed
expression is bounded above by

d
(A.12) P<Z|e,-|f’ >dmg[(1+8)%7F — (2—,8)52]>.
i=1
Using the inequality
148> F >1+@2-B)s,
one concludes that the quantity inside the bracket is bounded below by
1+2-p)© —68% > 1
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Hence the probability (A.12) decays exponentially fast. This and (A.11) then
establish (A.9) for 0< 8 < 1.

To complete the proof for (A.2), all we need to do is to prove (A.9) for case (ii),
l<pg<?2.

Similarly to the argument for case (i), all we need to do is to show that the first
termin (A.10) is bounded by (A.11). Now applying the triangle inequality,

1/ 1/
DYP < (Y leal?) " + (D 1el)
to the first term of (A.10) and using some straightforward algebraic manipulation,
we obtain

P(D > (1+8)%7F dmp)

d o P 8
cr{ o o[- Tt )
i=1

(A.13)

Note that
(2-pB)s
2p

and consequently the quantity inside the brackets is bounded below by

L+ 8)EPF =14

_ B
[+ Zz—ﬂﬁ«s 52| 21+ @-p6- 522> 1

Now this shows that the probability on the right-hand side decreases exponentially
fast. Hence inequality (A.9) is established for case (ii) and the proof for (A.2) is
now completed.

To prove (A.3) for O< g < 1, we may rewrite (A.4) as

2
A 2 .
E@ —6)?=1+E(Z} - 2)L; + E(|zi|2ﬁ‘2(§ + —Dﬂf)li‘)
(A.14)

Z; p-2
+2(1—ﬂ)E[| 'D “1;]

Inequality (A.3), sharper than (A.1), can be possibly established due to the critical
assumptiorg < 1, which implies that

—(2-28)/(2—-B)
Note that the last term in (A.14) is obviously bounded above by -2 8).
Furthermore, replackz;|%#=2 in the third term on the right-hand side of (A.14)
by the upper bound in (A.15) and replaﬁ’§ in the second term by the upper
bound

(A.15) 17,262 < (i

2/(2—-p)
) whenl; =1,

122 < (ﬁ
D
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which follows easily for (A.5). We then obtain an upper bound for (A.14):
2/(2—PB) 2B-2)/(2-B) , ;42
a a a Ba
1+ E(— E|l|—= — 42—
ciz) Hl5) (R
)2/(2—/9)

)If] +2(1-B)

5(3—2ﬂ)+CE<%

Here in the last inequality2:/ D? was replaced by 242/ D2. To establish (A.3),
obviously the only thing left to do is

a\2/@=B)
(A.16) E(—) < CIn(d).
D
This inequality can be established if we can show that
d\2/2=B)
(A.17) E(B) <C,

since the definition of and a simple calculation show that
a?/C=PB) — 4%/ 2P In(d).

To prove (A.17), we apply Anderson’s theorem [Anderson (1955)] which
implies that| Z;| is stochastically larger tham; |. Hence

E(%)z/(Z—ﬁ) 5 E[d/(z |€i|ﬁ)]2/(2_ﬂ)’

which is bounded by + B. Here

A=E[d/(Y |si|ﬂ)]2/(2_ﬂ)1( i el < dmﬂ/z)
i=1

and

i=1

= efa/ () Sl > amy/2)

and as beforé (-) denotes the indicator function.
Now B is obviously bounded above by
2/mg)? %P < C.

Also by the Cauchy—Schwarz inequality
d

A%< E[d/<2|5,-|’3)]4/(2_ﬁ)P< 3 el 5dm5/2> <C.

1=

Here the last inequality holds since the probability decays exponentially fast. This
completes the proof for (A.17) and consequently for (A.3)1
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Now we apply Lemma A.1 to the wavelet regression. We only prove the case
0 < B < 2. For 8 = 0 the proof is similar and simpler. Equivalently we shall
consider the model

(A.18) Zik=0jk+eji/n,  k=1...,2,

where thed's are wavelet coefficients of the functiofy and theg j;'s are i.i.d.
standard normal random variables. For the details of reasoning supporting the
above statement, see, for example, Section 9.2 of Cai (1999), following the ideas
of Donoho and Johnstone (1994, 1995). Also assumeéthdive in the Besov
spaceB; (M) with smoothnese and shape parametepsandg, that is,

q/p
(A.19) szq(a+l/2—1/p)<z |9jk|p> < M1
j k

for some positive constants p, ¢ andM. The estimatof beloyv for model (A.18)
refers to (20) withz defined in (22) and? = 1/x. For such &, the total risk can
be decomposed into the sum of the following three quantities:

Ri=Y Y E@j—00%

j<jo k

Ry= Y Y E@j—0;1>
J>j>jo k

R3= Z ZE(éjk—ejk)z,
ji=J k

where jo = [log,(CsnY?*+D)] andC; is a positive constant to be specified later.
Applying (A.1) to R1, which corresponds to the risk of low resolution, we establish
by some simple calculation

(A.20) R1 < C(Inn)@ P12, ~2e/@a+1)
For j > jo, (A.19) implies

P < ppPo—ipla+l/2=1/p) _ arpojo—jp(a+

(A.21) > 10kl < MP2 i@t /Zlp) — ppppipmirletl/2)
k

Furthermore, fop > B

2iptl/d) < g=iB@tl/2) < gmioB@tl/2) _ () ~Batl/2) 5B,

ChooseCs > 0 such that

2—B\f/ 1 \?
MP C(l/2+a)ﬂ=( ) ( > _
/Cs 26 ) \2a4+1) ™"
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This then implies that

MP ;8
Z 101" < (1/2+a)ﬁ —a2r0pl ©

S(zz—ﬂﬂ) (ZalJrl)mﬂzjaﬂ’

satisfying the condition in (A.2) fod = 2/ ands = (2« + 1)~ 1.
Now for p > 2 we give an upper bound for the total risk.
From (A.2) we obtain

J=Jjo k
and from Hdlder’s inequality the first term is bounded above by

2/p
Z 2J'(1—2/P)<Z|9jk|p) .
k

Jj=Jjo
Then inequality (A.21) gives
Ro+ Ry < C Y 21020 j2@tl/2=1/p) y (y=2/ et D))
Jj=Jo
—C Z o—j2 +0(n—20l/(201+1))
Jj=Jo
—20/(a+1)

<Cn

This and (A.20) imply (23) for < g <2 andp > 2.

Note that for8 = 2 the proof can be found in Donoho and Johnstone (1995).
For B £ 2 our proof is very different and much more involved.

To complete the proof of the theorem, we now focus on the casg & 2 and
2> p >max1/a, B} and establish (23). We similarly decompose the risk of
as the sum o1, R> and R3. Note that the bound foR1 in (A.20) is still valid.
Inequalities (A.2) and (A.3) imply

Rox T XA o)

Jzjzjo k "

for some constant§ > 0. Furthermore, the inequality
Y oxinA< AT i, x>0,A>01>¢t>0,

implies

Z ZQ Iogn <|Ogn>l_l7/2 Z ZIGJ-kIP.

I>j>jo k n J>j>jo k
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Some simple calculations, using (A.21), establish

1-p/2
Ry < C(IOgn) ! Z 2—Jjp(a+1/2-1/p) + 0(n72a/(2a+l))
" J>j>jo
(A.22)
< C(logn)}—P/2p—22/@a+D)

From Hoélder’s inequality, it can be seen thiag is bounded above by

2/p
2. (ijkif’) :
izjo \ k

Similarly to (A.22), we obtain the upper bound Bf,

R3<C Z 2—j2(oe+l/2—l/p) — O(n—Zoz/(Zoz—f—l))’
j=J

whereJ is taken to be logn. Thus for 0< g <2 and 2> p > max1/«, B}, we
have

sup E||f — 62 < Clogn)t—F/2p=2/Ga+D),
feBg,q
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