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ITERATED SMOOTHED BOOTSTRAP CONFIDENCE INTERVALS
FOR POPULATION QUANTILES
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This paper investigates the effects of smoothed bootstrap iterations on
coverage probabilities of smoothed bootstrap and bootstregmfidence
intervals for population quantiles, and establishes the optimal kernel band-
widths at various stages of the smoothing procedures. The conventional
smoothed bootstrap and bootstramethods have been known to yield one-
sided coverage errors of orde@(n—1/2) and o(n=2/3), respectively, for
intervals based on the sample quantile of a random sample ofisivée
sharpen the latter result @(n —>/6) with proper choices of bandwidths at the
bootstrapping and Studentization steps. We show further that calibration of
the nominal coverage level by means of the iterated bootstrap succeeds in re-
ducing the coverage error of the smoothed bootstrap percentile interval to the
order0 (n~2/3) and that of the smoothed bootstrajmterval toO (n~58/57),
provided that bandwidths are selected of appropriate orders. Simulation re-
sults confirm our asymptotic findings, suggesting that the iterated smoothed
bootstraps method yields the most accurate coverage. On the other hand, the
iterated smoothed bootstrap percentile method interval has the advantage of
being shorter and more stable than the bootstriapervals.

1. Introduction. Itis generally known that under Bhattacharya and Ghosh'’s
(1978) smooth function model, the bootstrap percentile method confidence
interval is subject to a one-sided coverage error of o@dér—1/2), rendering it
indistinguishable from the classical normal approximation method. Hall (1986)
shows that Studentization can be employed to reduce this err@ (to'1).

The iterated bootstrap offers an alternative to error correction by calibrating the
nominal coverage level iteratively; see Beran (1987). Hall and Martin (1988)
show that each such iteration reduces the one-sided coverage error by an
order of O(n~1/?) successively. On the other hand, smoothing the bootstrap,
which amounts to drawing bootstrap samples from a kernel-smoothed empirical
distribution, instead of sampling with replacement from the raw data, does
not affect the coverage accuracy of bootstrap intervals in general. Polansky
and Schucany (1997) propose smoothed bootstrap strategies to yield intervals
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of 0(n~1) coverage error. Their methods, however, require sophisticated tuning
of the smoothing bandwidths, rendering the improvement less stable than that
resulting from Studentization or the iterated bootstrap.

In contrast to problems in the context of smooth function models, conventional
bootstrap confidence intervals for thgh population quantile, for a fixed
g € (0,1), have notably poor coverages; see Hall and Martin (1989). Here the
percentile method gives coverage error of ordefn—1/2), which cannot be
improved upon by nominal coverage calibration using the iterated bootstrap.
Indeed, more generally, thi8(n~1/2) coverage error is inherent in any confidence
interval procedure based directly on order statistics as a consequence of their
binomial-type discreteness. See, for example, De Angelis, Hall and Young (1993)
for a more detailed account of the above phenomenon. On the other hand, either the
smoothed bootstrap or Studentization extends considerably the domain from which
we derive the confidence limits, and may therefore be able to make asymptotic
improvement over the conventional bootstrap percentile method.

In the context of estimating the varianeg of the samplezth quantile, Hall,
DiCiccio and Romano (1989) show that sufficiently high-order smoothing of the
bootstrap succeeds in reducing the relative error of the unsmoothed bootstrap
estimate from0 (n=14) to 0 (n=1/2*¢) for arbitrarily smalle > 0. Falk and Janas
(1992) show that smoothing the bootstrap percentile method returns the same
order, O(n~/2), of coverage error as in the unsmoothed case. Studentization
of the sample quantile involves estimation @f which admits an expansion
n~lg(1—q) f(F~1(q))~% + 0(n=3/?) under proper regularity conditions, where
f = F' and F denotes the distribution function underlying the given random
sample. In practicer? has to be estimated from the sample by, for example,
bootstrapping or explicit estimation of the leading term in its expansion above. Hall
and Martin (1991) show that confidence intervals based on normal approximation
of the sample quantile Studentized by the unsmoothed bootstrap variance estimate
yield coverage error of orde®(n~Y?). Falk and Janas (1992) show that a
similar result holds when the variance is estimated by plugging in the kernel
density estimate off. However, application of the smoothed bootstrap to the
Studentized sample quantile in the latter case, which we shall term the smoothed
bootstraps method, succeeds in improving the error ordesto~2/3), if second-
order kernels are used in conjunction with appropriately selected bandwidths at
both the Studentization and bootstrapping steps; see Janas (1993). This result will
be sharpened in Section 2.4, where we prove that the smoothed bootstediped
can indeed yield a coverage error of precise o@ér—>/6).

We investigate further in this paper the asymptotic effects on coverage error
of iterating the smoothed bootstrap or bootstramethods, with the objective
of generating confidence intervals with improved coverage accuracy. De Angelis,
Hall and Young (1993) remark in passing without proof that iterating the smoothed
bootstrap percentile method might reduce coverage error. They mention neither the
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degree of improvement nor the choices of kernel bandwidths, and implementation
of the iterated smoothed bootstrap remains impractical. Iterating the smoothed
bootstraps has not been explored in the literature. We formalize the theory of
the iterated smoothed bootstrap and bootstrapethods by stating explicitly

the orders of their coverage errors, and derive therefrom the optimal sizes of
kernel bandwidths at the two levels of smoothed bootstrapping and also at the
Studentization step where applicable. Specifically, we show for the smoothed
bootstrap method that calibration of the nominal coverage level by one extra
level of smoothed bootstrapping can reduce the coverage error grom?/2)

to O (n—%/3), provided that the bandwidths are chosen of order ranging froff?

to n~1/12 at the outer level of bootstrapping, and of order'/3 at the inner
level. For the smoothed bootstrapnethod, such coverage calibration succeeds
in reducing the coverage error from(n=%%) to 0(n=°8/°7), provided that the
bandwidths are chosen of order?/1° at the outer level, of orden—1V57 at

the inner level and of order ranging fronT1%/19 to n=1/2 at the Studentization
step. The latter result signifies thus by far the best coverage accuracy achievable
by bootstrap confidence intervals proposed in the literature for the population
guantile. It also outperforms Beran and Hall's (1993) interpolated confidence
interval, which is based on a convex combination of sample guantiles and
yields a coverage error of orde?(n~1). Chen and Hall's (1993) smoothed
empirical likelihood interval, which is based on smoothing the standard empirical
likelihood procedure, has two-sided coverage error of order—1). They show

also that Bartlett correction reduces the error furtherote—2) and a simple
approximation to the correction results in error slightly smaller tiaa@m—1).
However, the one-sided coverage error of the smoothed empirical likelihood
interval, Bartlett-corrected or not, remains of ordetn—1/2). For, as we can

see from (6.10) and (6.14) of Chen and Hall (1993), the one-sided coverage
expansion for the interval consists of a nonvanishing term of ordeY?.

This term persists even after Bartlett correction, which affects only terms of
order O(n~1). Our iterated smoothed bootstrap and bootstraptervals thus
compare favorably with the smoothed empirical likelihood approach in terms of
one-sided coverage accuracy. Moreover, our approaches have the further advantage
of being extendable by additional bootstrap iterations to yield successively more
accurate coverages, subject only to availability of computer resources and the
extent to which asymptotic implications can be realized in practice.

Simulation results suggest that our two iterated bootstrap methods yield cover-
ages much more accurate than their noniterated counterparts. The improvement is
more significant in the non-Studentized case. In general our methods have accu-
racies comparable to the interpolation or smoothed empirical likelihood methods,
but improving at a faster rate asincreases. Despite its impressive coverage ac-
curacy, the iterated smoothed bootstramethod suffers, as expected, from the
problem of instability pertinent to variance estimation for a sample quantile, which
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often results in overly long and highly variable confidence intervals. On the other
hand, the iterated smoothed bootstrap percentile approach, albeit slightly less accu-
rate, is relatively much more stable than both the noniterated and iterated smoothed
bootstrapt: methods.

Success of the iterated bootstrap in the present context extends its scope
of application beyond the traditional regular problem settings and beyond the
conventional, unsmoothed bootstrap procedures, yielding asymptotic improve-
ment of a problem-specific nature. This confirms the potential of the iterated
bootstrap as a general strategy for improving upon the bootstrap not just in cases
where the conventional bootstrap works satisfactorily, such as in smooth function
model settings, but also in cases where it does not work as satisfactorily, such
as in the quantile case, and where a modified form of the bootstrap, such as the
smoothed bootstrap, is required.

Section 2.1 introduces notation and states the regularity conditions required
for the asymptotic theory. Sections 2.2 and 2.3 establish asymptotic expansions
for the coverage probabilities of the noniterated and iterated smoothed bootstrap
percentile method intervals, respectively, while their Studentized counterparts
are treated in Sections 2.4 and 2.5. Based on our asymptotic results, we derive
for each type of interval the optimal orders of kernel bandwidths at each level
of bootstrapping and, where applicable, at the Studentization step in order to
minimize coverage error. Section 2.6 discusses an alternative approach, which
bases the confidence set root on a smoothed version of the sample quantile,
to constructing bootstrap confidence intervals. Section 3 addresses the issue
of empirical determination of bandwidths and suggests a bootstrap solution to
the problem. Section 4 reports two simulation studies. The first demonstrates
the bootstrap procedure for setting optimal bandwidths. The second shows that the
iterated bootstrap improves upon the smoothed bootstrap and boatstiethods
in terms of coverage accuracy. The iterated smoothed bootstrap interval also excels
in terms of other indicators of interval performance. Section 5 concludes our
findings. All technical details are given in the Appendix.

2. Theory.

2.1. Notation and assumptions. Let X = {X3,..., X} be independent and
identically distributed from an unknown distributiofi with density f = F’.
The parameter of interest is thgh population quantileF~1(g) = inf{x € R:
F(x) = ¢}, for a fixedg € (0,1). We wish to construct a nominal level1«
upper confidence interval far—1(¢), where O< o < 1.

Let F, be the empirical distribution of¢, which assigns a probability mass
of n=1to eachX;,i =1,...,n, and letF, , be its kernel-smoothed version with

density f,, ,, such that

Fuy@=n"1Y"K(t—=X))/n) and fo,@) = )Y k((t — X)/n).

i=1 i=1
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for a kernel functionk, K(t) = fioo k(x)dx and a bandwidthy > 0. See
Silverman (1986) for a general exposition of kernel density estimation. Note that
the unsmoothed and smoothed samgtle quantiles are given, respectively, by
FY(q) andF, }(q).

Write g = min(g, 1 — ¢g). Let ® be the standard normal distribution function
and letp = @’ be its density. Define, far € (0, g), D1, D2 >0andj =1,2, ...,
Fj(e, D1, D7) to be the class of distribution functiorfs satisfying the following
smoothness conditions: )~ is j times continuously differentiable iy — ¢, g +
e), (i)) (F~1'(g) = D1 and (iii) maX—1,..jSUP,c(y—c 41e) |(FHP(p)] < D2.
It is clear that¥;;1(s, D1, D2) C ¥,(e, D1, D) for j =1,2,.... We shall
establish coverage expansions for our iterated and noniterated bootstrap intervals
underF € (g, D1, D») for the non-Studentized case aRde F4(s, D1, D2) for
the Studentized case.

We make the following assumptions on the kerhéhroughout the paper:

(A1) k is nonnegative, symmetric about zero and has compact suppaert],
fO( somea > 0;

(A2) k) exists and is bounded dr-a, a] for j =1, 2, 3, 4;

(A3) [ k(x)dx = [°2 x%k(x)dx =1.

Note that the above assumptions require thdie a proper density function,
symmetric about 0, on the internviata, a].

2.2. Smoothed bootstrap percentile method. Let XT = {XI,...,XI} be a
random sample simulated froi, ,. We may set in practicé?;r =Y+ W,
i =1,...,n, where theY; and theW; are independent random numbers drawn
from the distributionsF, and K, respectively. Denote by, the empirical
distribution of XT. Define

G,() =Pn*?(F, @) - F @) <1},  1€R.
The smoothed bootstrap version@j (¢) substitutesﬁ"M for F, and is given by

G =Pn?(Fi Y g) — Fyi(@) <11X).
Following Beran’s (1987) prepivoting idea, the radt?(F,1(¢) — F~1(¢)) can

be transformed, by prepivoting Witﬁn,n, into a random variable approximately
uniformly distributed ovef0, 1]. It is clear in the context of confidence interval
construction that the above action of prepivoting amounts to smoothed bootstrap
estimation of the quantile ofY?(F,;(q) — F~1(¢)). This defines a noniterated
smoothed bootstrap percentile upper confidence interval, of nominal level,1

to be

I = (=00, F; Y (q) —n~ Y26, (@)].
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Write for brevity o, = {g(1 — ¢)}*/?. The following theorem establishes an
asymptotic expansion for the distribution of the prepivoted root, and hence the
coverage probability ofy .

THEOREM1. Under conditions (A1)—(A3) and assuming that 1 oc n =27 with
1/4 < A, < 1/2,wehavethat, for « € (0, 1),

P{G y(n?[F,Hg) — FHg)]) = o}
=P(F(q) € I,4)

@) 29 -1 o, f'(F ()
:1—a+n_1/2( + )q>—1a2 o L«
20, F2(F~q)) (@79 (@)
FO(P +n~ 2t 4 n~Y22)
uniformly in F € F»(e, D1, D2), for any ¢ € (0, g) and D1, D2 > 0.

We see from Theorem 1 that , has coverage error of precise orde¢n—1/2),
provided thatF € #»(e, D1, D) and the bandwidth oc n =27 is chosen such that
1/4 < A, < 3/8. Falk and Janas (1992) obtain an expansion similar to (1) for
the coverage probability, up to ordetn—1/2), under the restrictive condition that
n = o(n=1/3). The expansion (1) in our Theorem 1 gives an error term that reveals
the explicit influence of the bandwidthon the coverage, which is crucial to our
subsequent study of the effects of bootstrap iterations.

2.3. Iterating the smoothed bootstrap percentile method. In standard situa-
tions, the iterated bootstrap has been known to be very effective in enhancing cov-
erage accuracy of confidence intervals. It operates by calibrating either the nominal
level or the interval end points, with the use of an additional level of bootstrapping.
We shall focus only on the former approach, which conforms exactly to Beran'’s
(1987) prepivoting idea.

Defineén,n as in Section 2.2 based on a generic smoothed bootstrap sathple
drawn from F;, ,. Let X* = {X],..., X?} be a generic outer-level smoothed
bootstrap sample drawn from, s, for a kernel bandwidti > 0, and letF, ; be
its empirical distribution. Define, foy > 0, H,, by H, ,(t) =n~ 1" K((r —
X7¥)/n), which corresponds to a smoothed empirical distributiotcof Similarly
we denote byX** a generic inner-level smoothed bootstrap sample drawn
from H,, n, and byH,’ , the (unsmoothed) empirical distribution &f**. Define

MO {1/2(H* L) - B Xg) <11%,X*),  teR.

Then the smoothed bootstrap estimates the distribution function of the prepivoted
root G, (nl/z[F—l(q) F~1(¢)]) by the conditional distribution/, s , say, of

(nl/2 F*ﬂ (q) — (q)]) given X. Prepivoting withJ, 4, leads to a twice-
preplvoted root/, s. U(Gn 2 (nY?[F1(q) — F~1(¢)])), which is asymptotically
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uniformly distributed ovef0, 1]. In the context of confidence interval construction,
this amounts to estimation of theth quantile ofn'/2(F1(q) — F~1(¢)) by

(J B 77(oz)) The corresponding iterated smoothed bootstrap upper confidence
mterval of nominal level - «, is

Ipo = (=00, Fy Hg) —n 2G5, (@)].

Note that in the above procedure we have allowed use of two different bandwidths,
B andpn, for the two levels of smoothed bootstrapping. This proves to be crucial

to achieving asymptotic improvement in terms of coverage accuracy by means
of the iterated bootstrap. The following theorem states in asymptotic terms how
close the twice-prepivoted root is to a uniform random variable, and hence
establishes the coverage errorigf, .

THEOREM 2. Assume the conditions in Theorem 1, that F € F>(¢, D1, D2)
for some e € (0,¢) and D1, D2 > 0, and that 8 ocn=2# with 0 < Ag < 1/3. Then
we have

P{Jn.p.n(Gnn(nY?[Fq) — FHg)]) = )
=P(F1(g) € 24}

=1l—a+ 0(172 —1—n_2n_4

FnY2pl2 L ml2g2 L —1g-3/2)
We see from Theorem 2 that the two levels of smoothed bootstrapping
contribute separately to the coverage errorZgf, which can be minimized to
achieveO (n=2%/3) by settingn ocn =13 andg ocn =24 with 1/12 < Ag < 2/9. The
iterated smoothed bootstrap method thus improves upon the nonitéjate'd/e
note, however, that application of the iterated smoothed bootstrap in the quantile
problem does not yield the same level of improvement as has been well known
in smooth function model situations, where each iteration of the (unsmoothed)
bootstrap reduces coverage error by an orded of—1/2).

2.4. Smoothed bootstrap-r method. We review in this section the smoothed
bootstrap: method and derive explicitly the optimal orders of bandwidths that
minimize its coverage error. Janas (1993) establishes that the smoothed baotstrap-
method yields coverage error of oragr —2/2). Our results sharpen those of Janas
(1993) by giving the precise order, namealy(n %), of the minimum coverage
error. Noting that

o2=\Var(F, X(¢)) =n"'q(1— ) f(F @) "+ 033,
we may estlmatean , on plugging in a kernel density estimate fbyby
-2
§2=q(1—q)(ng)? Zh CHg) — Xi)/E)L
i=1
for some bandwidtl§ > 0 and kernel functiotk, which is assumed to satisfy:
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(B1) h is nonnegative, symmetric about zero and has a compact supgork],
for someb > 0;

(B2) for some decompositiorh = xp < x1 < --- < x,, = b, h’ exists on each
interval (x;_1,x;), is bounded and is either strictly positive or strictly
negative there;

(B3) [X h(x)dx = [, x?h(x)dx =1

Recall thatxT = {XI, ..., XI} denotes a random sample froffy ,. Then the
smoothed bootstrap versionﬁff is given by
)

2= g1 - q)ne)? Zh (Fr q) — XT)/€)

Define, forr € R,
Kne() =P{nY?(F; Y (q) — F7X(q))/5: <1}
and
Rune ) =PnY2(Fi49) — Fy k@) /58 < 11).
Then the smoothed bootstrappper confidence interval of nominal level-kx is
I3 = (=00, F; Nq) —n Y%K, | . (@)].

Janas (1993) shows that if bothandk are chosen to be second-ord@rx n~1/3
andn oc n~Y°, the coverage error dg , achieves an order af(n~2/3). We shall
show that the minimum order of this coverage error is in fa¢t—>/), provided
that the orders of bandwidthg & are chosen properly.
Similar to Theorem 1, the following theorem establishes an asymptotic
expansmn for the distribution of the prepivoted rok, , ¢ (n/2[(F; (q) —
1(q))/s§]) and hence the coverage probability/gf, .

THEOREM 3. Assume conditions (A1)—(A3), (B1)—(B3),and that  oc n =27
and & occn™2¢, with0 < A, < 1/5 < A¢ < 1. Then, for & € (0, 1),

P{Kp.y.e(n?[(F, ) — F7H@))/3¢]) = o}
=P(FY(q) € I}
=1—a+ mn) *D11(F) + (n§) " *n?Da2(F)
+ 07 Y202D3 3(F) +n Da2(F) +n~ 421 Ds 1 (F)

+ O((n&) ™2 4 ng> 4 %2 4 n~ 129"
T R B T LI T T

)

F (nE) "Lt 4 0L Y202 4 ()L V2
FnV2EN202 L -3/2e-1 1/2+n*1/2§2n*5/2+(né)*3/2n2)
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uniformly in F € F4(e, D1, D2), for any ¢ € (0,g) and D3, D> > 0. Here, for
each j =1,...,5, D;;(F) denotes a smooth function of the density derivatives

{F(F X, F/(FYg), ..., FOF L)

We see from Theorem 3 thdg, has coverage error of ordad (n=°/9),
provided thatA, = 1/6 and 38 < A < 1/2. This suggests thafz, is
asymptotically more advantageous than béih and I>,. Note the different
choices of bandwidth orders here as compared to Janas’ (1993) recommendation,
which yields only arv(n~%/3) coverage error for 4.

It may be possible to further reduce the coverage error of either the iterated
smoothed bootstrap or the smoothed bootstrapethod if a higher-order kernel
function k is employed. In fact, Janas (1993) shows that the errdg gfcan be
made as small a® (n~1*¢), for anye > 0, based on kernels of sufficiently high
order. Similar results hold for the iterated smoothed bootstrap, suggesting that both
I, and I3, are essentially indistinguishable in terms of asymptotic coverage
accuracy when high-order kernels are used. Our discussion nevertheless focuses
on the practically more important second-order kernels, which have the virtue
of being nonnegative and therefore allow straightforward Monte Carlo simulation
from the resulting smoothed empirical distributions.

Studentization bysg requires no direct simulation from the kernel We
may therefore relax the second-order condition /omwithout inflicting extra
computational difficulty. Hall, DiCiccio and Romano (1989) show that use of a
higher-order kernet can actually speed up the convergence rat& oHowever,
we see from (2) that the best achievable coverage errdg gfis determined
critically by the (nn)~1 andn=1/25? terms. Increasing the order bfaffects only
terms involving its bandwidtl§, and can therefore not reduce the coverage error
further.

It would be intriguing to explore the possibility of iterating the smoothed
bootstraps method to produce even more accurate confidence intervals for
guantiles. We address this issue in the next section.

2.5. lterating the smoothed bootstrap-r method. We follow the definitions
used in Section 2.3 for bootstrap sampké5 X* and X**. The iterated smoothed
bootstrap version of? is given by

-2

§2=q(1— ) (&)} Y h((Hy 7 g) — X7¥)/8)
i=1
Define

Ky, e =P (H: Y — Hy M) /55 <)X, %%}, teR

Similar to the construction of the iterated smoothed bootstrap intefval
we setL, s, to be the conditional distribution oK;"n’S(nl/z[F*ﬂ (q) —
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ﬁn_,;}.(q)]/gg) given X, where

-2

532 =q(1—q)(n§)? Zh ) — X7)/E)

The required twice-prepivoted root is given by

Ly p.n.&(Knn.e(n2(F, Hg) — FH@)1/5¢)),

and the ath quantile of nY?(FY(q) — F~Y(¢))/s: is estimated by

K. g(Ln .60, WhereI?,“,,g andsg are defined as in Section 2.4. The cor-
respondlng iterated smoothed bootstragppper confidence interval, of nominal
level 1— «, is

Ino = (~00, F, Mq) —n™ Y25 K ) , é(A;,/lﬂ,n,S(a))]'

Note that construction ofis, involves three different bandwidthg at the
Studentization step3 at the outer level and at the inner level of smoothed
bootstrapping. The following theorem establishes the order of the coverage error
of 14, in terms of the three bandwidths.

THEOREM 4. Assume the conditions of Theorem 3, that F € F4(e, D1, D2)
for some e € (0,7) and D1, D2 > 0, and that B ocn =24 with 0 < Ag < 1/7.Then

P{Ly 0.6 (Kn.e (0M21F, (g) — FH(@)1/55)) = o)
=P{F(q) € Is4}
=1l—-a+ 0([(1177)_1 +n~32e (B2 + 128732
(&) 2+ n (B2 +nV2B752)
+n -1/2 2(,3 +n 1/213 7/2)

+ (n&) ™% 4 ng® €2 4 V2t
“1pU2 4 y=%2,-5/2 4, =3/2=1/2, -1

®3)

+n

+ (nE) "It 4 n— e V22

F (ny) LY 4~ Y2EY2,2 4321172
+n 2272 4 (ng) %),

We see from Theorem 4 that the iterated smoothed bootstraterval /4 o
can achieve am(n~1) coverage error. For instance, setting = 11/57, /2 <

Ag < 11/19 andAg = 2/19 guarantees a coverage error of orden ~>8°7).
The precise minimum order of coverage error/gf, can be derived from a more
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TABLE 1
Optimal bandwidth orders, on the — log,, scale, and corresponding
coverage errors of lj o, for j=1,2,3,4

—log,, (bandwidth)
Il,oc IZ,oc IS,oc I4,oz
Outer-level — [1/12,2/9] — 2/19
Inner-level (1/4,3/8] 1/3 1/6 11/57
Studentization step — — [3/8,1/2] [1/2,11/19]

Coverage error on=Y2)  o0m=23) o0om58 on5¥5)

detailed but uninspiring asymptotic expansion than that displayed in (3), which we
omit here for simplicity.

We remark that the above iterated smoothed bootstrapastruction gives
the fastest convergence rate of coverage as compared to other, smoothed or
unsmoothed, bootstrap constructions thus far proposed in the literature. Not even
the use of a high-order kernk] which typically yields a coverage error of order
O (n~1*€) for an arbitrarily smalk > 0 and a sufficiently high kernel order, is able
to surpass this result. Successive iterations of the smoothed bootstrap procedure
reduce the coverage error bf,, further. The forbidding task of managing a large
number of bandwidths in a single asymptotic expansion prevents us from exploring
this option further, although we recognize its potential in producing asymptotic
improvement. The interpolation method proposed by Beran and Hall (1993) gives
a confidence interval of) (n—1) coverage error, which cannot be improved upon
by higher-order interpolations.

We see from (3) that thé (n~58/57) coverage error ol ,, is determined strictly
by terms of ordera—1y=182, n=1y28~7/2 andn—3/2~°/2. Similar to the case of
smoothed bootstrap-construction, the coverage error bf, cannot be further
reduced by increasing the order of the kernel functiamsed for Studentization,
which affects only terms involving.

Table 1 above summarizes the optimal choices of bandwidth orders and
the corresponding one-sided coverage errors for the four intedyals 12,
I3q andly .

2.6. Smoothing the sample quantile: an alternative. Define

~ n ~ t ~
fre®@ =) Y k(= X0/¢) and Fue®= [ freds,
i=1 -
for a kernel functionkx and a bandwidth; > 0. A smoothed version of the
sample quantilé,~1(¢) may be defined byTnfg(q), which we term the smoothed
samplegth quantile. We now examine the effects on coverage error of basing
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the bootstrap confidence intervals on the rob‘tz(F (@) — F~1(g)) instead
of n¥/2(F(q) — F~1(¢)). Define

Guc () =P{n"2(F, }(q) — F (@) <1}, teR,

and G, ,; to be the smoothed bootstrap version @f , with F substituted

by ﬁn,,,. The corresponding smoothed bootstrap percentile upper confidence
interval, of nominal level + «, is

If, = (—o0, I:”n_,g(q) —n 1/2Gn ,17 C(a)].

The following theorem establishes an asymptotic expansion for the coverage
probability of I ,.

THEOREM 5. Suppose that F € F2(e, D1, D2) for some ¢ € (0,g) and
D1, D> > 0, and that « is a second-order nonnegative kernel function. Under
conditions (A1)—(A3) and assuming that 7 oc n~%7 with 1/4 < A, <1/3 and
¢ ocn~8¢ with A, > 3/8, we have, for o € (0, 1), that

@) P(F Y9 elf=1—a+nY2E fon Y2 + 0m®%4 + 17322,

for some nontrivial constant E independent of n, ¢.

We see from Theorem 5 thdf , has coverage error of precise order?/?
provided thatA, > 1/2. In any case, the order of the coverage error cannot
be reduced further by adjusting the bandwidgthThe best achievable coverage
errors of both/; , and I1 are of orderO (n~1/2), so that basing the smoothed
bootstrap interval on the smoothed sample quantile does not yield any asymptotic
improvement upon that derived from the sample quantile. We conjecture that
arguments similar to those proving Theorem 5 can be employed to show that the
smoothed sample quantile approach has no advantage either in the Studentized
case.

3. Empirical determination of bandwidths. We now turn to the problem
of empirical determination of the optimal bandwidths in practice. Many different
practical strategies have been proposed for bandwidth selection in other problem
settings, which often permit natural adaptation to our present context. Plausible
approaches include, for example, cross-validation, an extra level of bootstrapping
and plugging-in of sample quantities into asymptotic expansions of optimal
bandwidths, among others.

Despite its computational intensity, the bootstrap approach is arguably the most
straightforward method for setting optimal bandwidths. A smoothed bootstrap
procedure for setting bandwidths is as follows. First, we generate an outermost
level of smoothed bootstrap samples frdAm,y, for some bandwidthy > 0.
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The collection of such samples, denoted genericallyX; forms the basis

for our estimation of coverage probabilities and hence the determination of the
best bandwidths. With reference to the optimal orders of bandwidths provided in
Table 1, we set up a grid of pilot values of bandwidths for use in our procedure.
For example, when considerin} ,, we may selecis,’s to be evenly spaced
points within the rangéAn—2%/°, Bn=112] and,’s to be evenly spaced points
within the range[Cn~1/3, Dn=1/3], for someA,B > 0 andD > C > 0. The
outermost bandwidtly can be fixed to be some multipla/ say withM > 1,

of the largest pilot bandwidth attempted at the outer level of the smoothed
bootstrap. In our example we can set= MBn~Y12 This is in line with

our perception that the parent sample is drawn from an underlying distribution
smoother than the smoothed empirical distribution used for bootstrapping. For
each combinatioris, n) = (B, n;) and each samplé&:°, we construct/ , and
check if [:’n_,;(q) € I>,. The coverage probability of,,, for each bandwidth

pair (8, ns), is estimated by averaging over all sampl¥S. The required
bootstrap confidence interval , is then constructed using the pair of bandwidths
(Br, ns) that gives the minimum coverage error as estimated above. We note that
this procedure explicitly ensures that the bandwidths selected have the optimal
asymptotic orders as displayed in Table 1. Selection of bandwidths for construction
of the other three bootstrap intervals can be dealt with in a similar way.

4. Simulation studies. Two simulation studies were conducted to investigate
the finite-sample performances of our proposed intervals. The first study con-
centrated on intervals constructed using empirically determined bandwidths and
computed their resulting coverage probabilities. The second study investigated the
effects of the iterated smoothed bootstrap on coverage probabilities of both one-
and two-sided confidence intervals, with bandwidths fixed in advance. In both
studies, we chose = 0.05, 01, 0.9 and 095, and simulated 1000 random samples
of sizen from each of three underlying distributions—the standard normal distri-
bution, the double exponential distribution of unit rate and the standard lognormal
distribution—in order to estimate the coverage probabilities. The keknélaere
all taken to be the triangular density functien> 1 — |x|, defined or{—1, 1].

In the first study, we sey = 0.5, n = 15 and computed the coverage
probabilities of /1, and I3, constructed using bandwidths determined by the
smoothed bootstrap procedure suggested in Section 3. We attempted empirically a
wide range of values a#/ and found that the choic® = 1.5 yielded reasonable
results under most combinations Bfand«. We setM = 1.5 henceforth. Each
interval was constructed using 500 smoothed bootstrap samples, and its coverage
probability estimated from 500 outermost bootstrap samfés For /1 o, the
bandwidthy for final adoption was searched from 20 evenly spaced values between
0.2n=3/8 and 2=/, For I3, the pilot bandwidthg&, ) were selected from



450 Y.H.S.HO AND S. M. S. LEE

TABLE 2
Estimated coverage probabilitiesof /; o, j = 1, 3, with bandwidths
determined by smoothed bootstrap, for ¢ = 0.5 and
«a = 0.05,0.10,0.90, 0.95

Interval 1—-a¢=005 1-0¢=010 1-«=090 1-a=0.95

Standard normal dat#/ (0, 1)

o 0.057 0.137 0.957 0.955
I3 4 0.051 0.079 0.943 0.968
Double-exponential datg, exp(—|x|)

e 0.035 0.101 0.974 0.948
I3 4 0.058 0.112 0.904 0.955
Lognormal data, expv (0, 1)}

I 0.053 0.104 0.966 0.972
I34 0.071 0.094 0.809 0.893

the 20x 20 grid of evenly spaced values over the rectarf@l2:—1/2, 2, =3/8] x
[0.2n~1/6, 2,~1/6]. Table 2 reports the coverage probabilities of the two intervals,
which agree in general with our theoretical result that the Studentizets more
accurate than the non-Studentiz&d,. An exception is found for the lognormal
data, for which variance estimation is unstable, especially for small samples, and
renderslz , less accurate.

In the second study all four intervals,, i =1,...,4, were constructed for
the ¢th population quantiles, fog = 0.5 and 075. We also included for refer-
ence Beran and Hall's (1993) interpolated interval, denotedghy,, and Chen
and Hall's (1993) smoothed empirical likelihood intervals, denoted/dy, if
the interval is not Bartlett-corrected and By () o if it is. Three sample sizes,
n =15, 30 and 100, were considered. Each smoothed bootstrap or bootstrap-
terval was constructed using 1000 bootstrap samples. Each iterated interval was
constructed using 1500 outer-level and, for each outer-level sample, 1000 inner-
level bootstrap samples. For each bootstragerval, we estimated the Studentiz-
ing variance by its asymptotic expansion as provided in Sections 2.4 and 2.5, thus
avoiding the need for one more level of bootstrapping. Throughout the study, all
bandwidths were fixed to be their asymptotically optimal orders for convenience:
n=n"3for Iie; (B.n) = (1%, n"13) for Lo; (1,§) = (n= Y8, n71?)
for Is4; and (8, n,&) = (n=%/19,n=1Y57 n=Y2) for I,. For each empirical
likelihood interval, we fixed the bandwidth at1/2, by which Chen and Hall
(1993) have produced reasonable results. Tables 3 and 4 summarize the cover-
age figures foy = 0.5 and 075, respectively, for the cases= 0.05 and 095.
Coverage probabilities of two-sided intervals of nominal lev8l| @onstructed as
I.?o.g = 1. 005\ 1. 095, are also reported. Similar findings were obtainedxfef 0.1
and 09, and are therefore omitted from this paper. In the case of two-sided inter-
vals, we estimated also the means and variances of the interval lengths.
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TABLE 3
Estimated coverage probabilities of /; ,, for 1 — o = 0.05 (“lower”) and 0.95 (“upper”), and of

the 90%two-sided interval 12, o (“overall’), for j =1,2,3,4,BH, EL, EL(B)

Interval lower upper overall lower upper overall lower upper overall
n=15 n=230 n =100
Standard normal data) (0, 1)
Iy 0.096 0.894 0.798 0.089 0.901 0.812 0.082 0.913 0.831
I 0.067 0.938 0.871 0.064 0.941 0.877 0.059 0.952 0.893
I3g 0.057 0.932 0.875 0.054 0.935 0.881 0.058 0.935 0.877
144 0.049 0.942 0.893 0.037 0.927 0.890 0.051 0.940 0.889
IBH.« 0.046 0.952 0.906 0.051 0.950 0.899 0.046 0.950 0.904
IEL g 0.061 0.939 0.878 0.049 0.943 0.894 0.049 0.944 0.895

IeL(B),e 0.058 0.942 0.884 0.049 0945 0.896 0.047 0945 0.898
Double-exponential dat% exp(—|x|)

114 0.065 0.934 0.890 0.065 0.928 0.872 0.055 0.953 0.904
1o 0.046 0.954 0.908 0.050 0.950 0.887 0.044 0.964 0.914
I3 4 0.044 0.955 0.908 0.049 0.951 0.899 0.040 0.952 0.916
14 0.042 0.943 0.901 0.040 0.946 0.906 0.042 0.947 0.905
IBH, o 0.031 0.957 0.926 0.059 0.951 0.892 0.046 0.957 0.911

= 0.041 0.947 0.906 0.062 0.943 0.881 0.053 0.958 0.905
IeL (), 0.039 0951 0912 0.060 0.945 0.885 0.053 0.958 0.905

Lognormal data, ex@v (0, 1)}

I o 0.066 0.801 0.820 0.059 0.853 0.863 0.066 0.876 0.851
Iy o 0.059 0.873 0.825 0.052 0.900 0.868 0.057 0.933 0.860
I3 4 0.046 0.888 0.865 0.045 0.918 0.881 0.055 0.927 0.871
14,4 0.044 0.926 0.882 0.036 0.934 0.898 0.049 0.941 0.892

IBH, o 0.047 0.956 0.909 0.051 0.950 0.899 0.046 0.951 0.905
IEL o 0.062 0.940 0.878 0.052 0.945 0.893 0.053 0.945 0.892
IeL (), 0.060 0.943 0.883 0.051 0.946 0.895 0.053 0.945 0.892

Sample quantile of interest &~1(0.5).

We see from Tables 3 and 4 that, is much more accurate thdp, in most of
the cases although the latter is slightly shorter and less variable. This confirms
the finite-sample gain acquired by iterating the smoothed bootstrap percentile
method. Similar observations are found for the bootstrepses, where the effect
of iteration is more notable at the upper end point. However, the degree of
improvement of the iteratefy , over the noniterateds ,, is less remarkable than
that achieved by iterating the percentile method, which is not surprising given the
very satisfactory coverage already registered/fy. The coverage figures also
demonstrate thaky , competes closely witliz , in terms of coverage accuracy.
In generalls , has coverage probabilities comparable to those of the interpolated
intervals/gH, . Despite their asymptotically inferior one-sided coverage accuracy,
the empirical likelihood intervaldg, , and Ig (p),, are found to be slightly
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TABLE 4
Estimated coverage probabilities of 7 ., for 1 — o = 0.05 (*lower”) and 0.95 (“upper”), and of

the 90%two-sided interval 12, o (“overall’), for j =1,2,3,4,BH, EL, EL(B)

Interval lower upper overall lower upper overall lower upper overall
n=15 n=230 n =100
Standard normal data) (0, 1)
Iq 0.087 0.858 0.771 0.085 0.888 0.803 0.081 0.906 0.825
12 0.052 0.923 0.871 0.058 0.941 0.883 0.056 0.947 0.891
I3g 0.044 0.885 0.841 0.061 0.926 0.865 0.062 0.949 0.887
Iyo 0.042 0.905 0.863 0.043 0.930 0.887 0.058 0.962 0.904
IBH.« 0.039 0.979 0.940 0.053 0.950 0.897 0.046 0.944 0.898
IEL o 0.050 0.925 0.875 0.052 0.941 0.889 0.053 0.932 0.878
IEL(B),« 0.046 0.932 0.886 0.052 0.944 0.892 0.053 0.936 0.883
Double-exponential dat% exp(—|x|)

I o 0.089 0.862 0.773 0.079 0.848 0.769 0.068 0.883 0.815
Iy 0.062 0.914 0.852 0.048 0.911 0.863 0.049 0.926 0.877
I3 4 0.044 0.890 0.846 0.065 0.927 0.862 0.060 0.938 0.878
Ino 0.049 0.912 0.863 0.056 0.923 0.867 0.065 0.940 0.875

IBH,« 0.035 0.974 0.939 0.057 0.961 0.904 0.049 0.944 0.895
IEL o 0.044 0.933 0.889 0.061 0.950 0.889 0.053 0.928 0.875
IeL (), 0.044 0.939 0.895 0.057 0.952 0.895 0.052 0.931 0.879

Lognormal data, exv (0, 1)}

I 0.091 0.746  0.655 0.069 0.798 0.729 0.058 0.851 0.793
I3 o 0.045 0.847 0.802 0.052 0.906 0.854 0.052 0.937 0.885
I3 4 0.049 0.844 0.795 0.042 0.899 0.857 0.053 0.928 0.875
14,4 0.050 0.883 0.833 0.048 0.901 0.853 0.053 0.954 0.901
IBH, o 0.039 0.979 0.940 0.053 0.950 0.897 0.046 0.945 0.899
IEL o 0.051 0.918 0.867 0.053 0.944 0.891 0.051 0.933 0.882
I (), 0.044 0.922 0.878 0.053 0.949 0.896 0.051 0.934 0.883

Sample quantile of interest £~1(0.75).

more accurate than the bootstrap intervals. Nevertheless the accuracy of the latter
improves at a faster rate asncreases compared to that of the empirical likelihood
intervals. There is no clear winner in any case, especially for small samples. The
two-sided non-Studentized interval§, , and 13, 4 are usually shorter and more
stable compared to the Studentized intervgls, and/Z2, 5. Note lastly that’? o

is in general more accurate théé_(B)go.g, although both intervals have coverage

errors of orders slightly smaller thar?.

5. Concluson. We have examined the asymptotic effects of iterating the
smoothed bootstrap on confidence intervals for quantiles, and established the
optimal bandwidth orders which minimize the coverage error. Our construction
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combines two well-known techniques for modifying the conventional bootstrap,
smoothing and iteration, in a bootstrap procedure to produce very accurate
confidence intervals. Through iterating the smoothed bootstrap, the percentile and
bootstraps methods yield coverage errors of ordebsn—2/3) and O (n—28/57),
respectively. The latter indeed surpasses all bootstrap methods proposed thus far
in the literature as well as Beran and Hall's (1993) interpolated interval and Chen
and Hall's (1993) smoothed empirical likelihood intervals with or without Bartlett-
correction. The asymptotic gain acquired by iterating the bootstrap in the present
context is somewhat nonstandard in the sense that the reduction in coverage error
is of an order smaller tha® (n~1/2) as is commonly the case in regular settings.
Table 1 gives a summary of the nonstandard asymptotic improvement effected by
smoothed bootstrap iteration.

We have also discussed the effects of using smoothed sample quantiles instead
of sample quantiles in the construction of bootstrap intervals or using higher-
order instead of second-order kernels for Studentization in the construction of
bootstrapt intervals. Both approaches are shown to yield no asymptotic gain.

Empirical findings of our simulation study agree broadly with the asymptotic
theory. Bootstrap-intervals are in general more accurate than percentile method
intervals; and iterated intervals are more accurate than noniterated intervals. On
the other hand, the percentile method intervals do not require variance estimation
for the sample quantile and hence possess the extra advantage of being stable and
short compared to the bootstrajntervals of the same nominal level.

Bootstrap iteration requires an additional level of bootstrapping, resulting in
a computationally more intensive procedure. The apparent computational cost of
simulating two batches of outer-level bootstrap samplesXfis and theX*’s,
can be alleviated as follows. First simulate one single batch of sargiptedv*)’s,
whereY* = (Y], ..., Y;) and W* = (Wf, ..., W) denote independent random
samples fron¥,, and K, respectively. Combin&* and W* using the appropriate
bandwidths to form the smoothed bootstrap samplés= (Y; +nW;, ..., Y} +
nWy) and X* = (Y{ + W7, ..., Y, + BW,). Studentization does not pose a
computational problem due to the availability of an explicit asymptotic formula
for the variance of a sample quantile, which can be readily estimated in practice.

Optimal orders of kernel bandwidths in our construction are specific to the types
of intervals being considered. In general, the outer-level smoothed bootstrapping
step requires a bandwidth wider than the inner level. For the bootstragthod,
the bandwidth used for Studentization should be narrower than the bandwidths
required by both levels of bootstrapping. The iterated bootstrap typically imposes
stricter conditions on our choices of bandwidths. It would be interesting to
compare the optimal orders of bandwidths in the quantile problem with those
typically recommended for more conventional problems. For instance, density
estimation requires a bandwidth of the familiar orderl/>. Under smooth
function model settings, asymptotic improvement over the unsmoothed bootstrap
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can only be effected by a bandwidth of the ordet/# for the one-sided smoothed
bootstrap percentile method interval, and of the ordel/? for either the two-
sided smoothed bootstrap percentile method or bootstiraervals; see Polansky
and Schucany (1997).

While we acknowledge the importance of the issue of bandwidth selection and
have suggested a bootstrap approach to empirically setting optimal bandwidths,
our empirical experience derived from the second simulation study suggests that
significant improvement in terms of coverage accuracy can still be acquired, even
for small samples, by our simplistic specification of the bandwidths to an arbitrary
multiple, which we set as 1 in the above study, of their optimal orders.

APPENDIX

PROOF OFTHEOREM 1. We follow the proof of Theorem 3.1 in Falk and
Janas (1992). Define the distribution function of the standardized sagptiple
guantile by

A, r () =P F(FY Q) F ) — F Y@l jog <1}, teR.

Under the assumed continuity propertyfof Reiss [(1989), page 119] established
an Edgeworth expansion fax, r as

L 22~ 1))

8 _
Amﬂn=¢m+n*”K” 1
: oy 3o*q

(A.1) <2q—1 o, ' (F ) 2]
™ +2f2<F—1<q)))t o)
+om™h,

wheres, = 1+ ng — [nq] and [x] denotes the smallest integer greater than or
equal tox. Close examination of the proof of (A.1) shows that the expansion is
actually valid uniformly forF € F>(e, D1, D>) for anye € (0, g) and D1, D2 > 0,

a result analogous to Theorem 2.1 of Janas (1993). Such uniform validity carries
over to all the expansions which follow, and we presume this fact without mention.
We write A, for A, ¢ if f is the uniform density function over the interval 1].

To start with, we require the following bounds for the distances between different
versions of sample quantiles, distribution functions and density derivatives:

(A2)  FrHg) = Fle) = 0y +n7 Y22 407 h,

(A3)  F,Yq)—F g =0, ),

(A4)  Fuy(q) — Fulg) = 0p(n°+n~ 29",

(A.5) (D — 1D =0, +n~ Y2712 ford=0,1
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For details of the above bounds, see Falk and Janas (1992) for (A.2) and (A.3),
Zhou (1997) for (A.4) and Jones (1994) for (A.5).

Now we outline the key steps of the proof. Under the condition ghatz ~2»
with 1/4 < A, < 1/2, straightforward Taylor expansion in conjunction with the
bounds (A.2)—(A.5) gives that

P{Gn y(n?[F,Hg) — FH(g)]) < x}

n*/? -1 -1 -1
_ t»{ [f,, JFH @) (Frig) — FLg))
(A.6)

+ 2 h (PR ) - F )] < Ao
+0@? +nY2n'2),

Conditioning on the event that'/2/0,)(F,Y(q) — F~X(¢)) f(FX(q)) = u,
followed by integrating the conditional probability overe R with respect to the
distribution of the standardized sample quantile, the probability in (A.6) equals

/ P{ fun(uen)u/f(F ()

A7) + 102 (FY@))uPoy/f (F~ )
< AFOOIFHg) = un) A g (du),

whereu, = F~1(q) + un=Y20,/f (F~1(¢)). Reiss [(1989), page 119] argues
that conditional onF,~ Y(¢) = u,, X can be treated as a collection af
independent random variablds, ..., Y,, where {Y1,..., Y,,1-1} constitutes

a random sample from the right truncated densﬂyx)/F(un)l{x < Up},
Ying1 = un and {Yrug141, ..., Y,} is @ random sample from the left truncated
density f(x)/(1 — F(u,))1{x > u,}, with 1{-} denoting the indicator function.
It follows that the conditional probability in (A.7) equals the unconditional
probability thaty ! _; Ty, ui < A, 1(x) for a sum of independent random variables
Thui=Toui¥i). Let Mn.u and . be the mean and variance i 1Tn wis
respectively. We find by the delta method thet, = u{l+ R,(v)} ando, , =
|ula, (n), where

_12(29—1 3o, f'(F7(g))
_ . -12( 44 q q
Ry,(u)=n < Zo’q + ZfZ(F_l(q))

) + 0(772 +n_2n_4)
and

k(v)2dv \ Y2
[ k) ) 4 O Y2nY2 4 =312, 75/2)

f(F~Yg)

Standardizing_}"_1 Ty,u,i 0 Suu = QO 1 Tnu,i — Mn,u)/0on,. @and decomposing
the characteristic function af, , into factors contributed, respectively, by the

(1) = (nn)_l/z(
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partial sumszg’fl]_l Tou,jr Tou,ng) and Z’}meﬂ'i‘l Th.u,j, We can derive an
Edgeworth expansion for the distribution 8f , using standard arguments and
rewrite (A.7) as

/ P(Sn < O (1) + Op (1)) A, £ (dit)

mi
=/{CI>(19,,(M)) + Y DV, () O, () /!
i=1

(A.8) + 3" Puu®) (O <u>)<~>n(u>f/j!}An, 7(du)
j=0

n 0(772+n_277_4+n_1/2’71/2)
- /{d)(ﬁn(u)) + 5u ()} A, p (du)
+O0m*+n" 2 40 5% say,

wherew, (u) = (A, 1(x) — u)/(ula, W), O (1) = —Sign(u) R, (1) /an (w),

sign(w) £ (F~1(q)) [k(v)3dv } <z2 -1
(f(F~1(q)) [ k(v)2dv)3/2 6

i 0,,(n‘3/2n‘7/2),

Pru(2) = (n) "2 ¢ (2)
{ )

and them; are chosen such th&y=2 + n?np* + n¥/2y=Y2)®,, (u)™*+1 — 0, for
i=1,2.

Note that¢,(x) is bounded by terms of the forid, (u)|/ |0, ()| d (3, (1)),
for positive integersj, . For any fixedu € (—oo, 2y] U [2y/3,00) and any
fixed y < 0, [9,w)|/0, w)|‘¢ (¥, (u)) has orderO(n—"), for any fixedr > 0
and sufficiently largen. The same applies t@® (¥, (u)) if u > 2y/3, and to
1— dWy,(w) if u < 2y. Assuming without loss of generality;;l(x) <0
and writing y = A 1(x), it follows from the above bounds and (A.8) that the
integral (A.7) equals

2y/3 y
/ O (9 (1)) A, £ (dit) + / (@9 () — 1) A s (dun)
y 2y

2y/3
A9 [ @A @)+ Ay (5) + O 42 2
Yy

=1+, + 0+ Ay r ()
+ 0(172 + n*2n74 + nfl/znl/z) say.
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It follows from term-by-term integration with the aid of (A.1) that

L=~ + 0((m ™Y
(A.10) 1 [ k(v)2dv 1/2
— -1/2 =1/2( J "M\Y) «Y / —1/2
= @) 22 f(F—l(q))> V1AL () + o))
and
- —1 30, f'(F Hq))
(A.11) " 20, T 2P ) oW

F O +n 2yt n Y22
Inverting A,, and substituting into (A.1), we get

oy f'(F(9))
2f (F~Y(¢))?

The expansion (1) then follows by combining (A.6), (A.9)—(A.12), putting o
and taking the complement of the probability.]

(A12) Aus()=x+ n—l/z( )(d>‘l(x>)2¢>(<l>‘1(x)) +0@m™.

PROOF OF THEOREM 2. Arguing as in Janas (1993), we see that the
conditions onk and 8 imply that ]P’(ﬁn,ﬁ € F2(e, D1, D2)) =1 — o(n™*) for
any A > 0. It follows that, on substitution ol?“,,,ﬂ for F in (1), the iterated version
of the probability has the expansion

2 -1, og fy s (Fr 5(@))
20, fup(F, 5(@))?
+ 0p(772 +n—2n—4 +n—1/2n1/2)‘

F ) = x — n—l/z( )¢—1<x>2¢(<1>—1<x>)

(A.13)

It follows from the bounds (A.2)—(A.5) that, ; (e) differs from thexth quantile

of the prepivoted rooG, ,(n*?[F, X(q) — F~1(¢)]) by an order of0,(1? +
n=2n A4 n"Y2pY2 4 1282 4 n=18-3/2) Theorem 2 then follows by the delta
method. O

PROOF OF THEOREM 3. We denote in the sequel Wy, ;(F), C2,i(F),...
generic smooth functions of density derivatives(F~1(¢)), f'(F~1(q)),...,
FO(F~1(g)))}, for eachi =0,1,.... In cases wher€; ;(F) assumes the form
of a polynomial in a variable, we write C; ; (F) = C; ;(F)(x). As in (A.7), we
defineu, = F~1(q) + unY?0,/f (F~1(¢)) and write

(A14) K,e(x)= /P{fn,g(un)u/f(Ffl(q)) < x|E;YNg) = un) Ay s (du).



458 Y.H.S.HO AND S. M. S. LEE

Arguing as in the proof of Theorem 1, we show that the conditional distribution
of the standardized form of, ¢ (un)u/f (F~1(q)), given F,1(g) = u,, has an
Edgeworth expansion

D(y) + (n&)V2C10(F)(y)
+ (&) Co0(F) () +n Y2 2C5 0(F) (y)
+ (n&)2C40(F)(y) +n Y205 1(F)(y)
+0p(n~ 072 4 () Y22),

Plugging (A.15) into (A.14) and splitting the integral as in (A.9), we see in the
present context that

I + 11, = (n&) "1 Ce 0(F) (x)
+ (&) "32C7,0(F)(x) + (n&) "2Cg 0(F) (x)
+n " Co o(F)(x) + 1321 Cr01(F) (x)
+ 0(n—1 1/2+n—2;§—3/2+(n5)—5/2)

(A.15)

(A.16)

and
1,y = (n&) " C11.0(F)(x) +n~Y2C121(F)(x)
+ (n8)"¥2C130(F)(x) + n~ e Y2C141(F) (x)
+n~ 2620151 (F) (x) + n~Cr62(F) (x)
(A.17) + 0727 C170(F) (x) + £°C1g.2(F) (x)
+n Y2 C191(F)(x) + (n§)~2Ca0,0(F) (x)
+ 0(n—3/25—1/2 + (ng)_5/2 + n—1/253/2
+ n—zg—s/z + n1/2§9/2 + 55/2 + n3/2§19/2)'
It follows by noting (A.1) and combining (A.16) and (A.17) that
Kng(x) = ®(x) + (n8) " 1Co10(F) (x)
+n2Co21(F)(x) + (n§)™¥/2Ca3,0(F)(x)
+n 20041 (F) (x)
(A.18) +n 22 Co51 (F) (x) + 0¥ 1 Cop 1 (F) (x)
+ (n&)"2C27,0(F)(x) +n~1Cag2(F)(x) + £2C29.2(F) (x)
+n Y2 Cq01(F) (x)
+ 0(n72£_.73/2+ (ng_.)fS/Z+n1/2€_.9/2+€5/2+n3/2€19/2).
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Note that (A.18) extends the expansion given in Theorem 2.1 of Janas (1993)
by including higher-order terms. Arguments similar to those provided by Janas
(1993) can be used to show that (A.18) holds uniformlyia F3(e, D1, D2). The
assumptions (A1)-(A3) and that, < (0, 1/5) imply that ﬁn n & F3(e, D1, D)

with negligible probability. An asymptotlc expansion similar to (A.18) thus holds
for Kn n.£ (x), with F' substituted b)Fn - Standard Taylor expansion together with
bounds (A.2)-(A.5), with (A.5) strengthened to include cases?2, 3, yields an
expansion for the difference

Ko@) = K p()
=Kn’n’g(x)Jr0})((,155)—1774+n—1/2n4Jrn—?,/zgg_—lnl/zJrn—lnl/z
+(n$)—5/2+55/2+n§5+n—3/2 —5/2
+n_1/2§277_5/2+n_1/2§1/2 2—|—(n§) 3/2 2)
where
Rnn.& (¥) = {(n&) T Ca10(F)(x) +n~Y2Cap1(F)(x)
+ (n&)"¥2C330(F)(x) + n~ 1 Y2C41(F) (x)
+n 220551 (F) (x))
x [fan(F @) — f(FH@)]
+{n~Y2Ca61(F)(x) + n~ e Y2Cq71(F) (x)
+n 220581 (F) (x))
< [fr o (F @) — f/(F 7 @)]
+ {(n&) 1P Ca91(F)(x) +n 20 Cao a(F)Y (0} f , (Fy M)
+n"Y202Ca1(F) () ) (@)
Note, by conditioning and integrating as in (A.14), that
P{Kpn.e (n?[(Fy Hq) — FH(9))/5]) = o}
= [ Plne /£ (Fq)
(A19) — Rn.e(@) = Ky 1 (@) Fy (@) = ) A, g (du)
0((n§)_1n4+n 1/2 4+n_3/2§ 1 1/2
+n_lnl/2+(HS)_5/2+5§5/2+H§ +n—3/2 —5/2
+n’1/2€2n’5/2+n’1/2§1/2 2+(n€) 3/2 2)_
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Consider first the integral

Rume(y) = f Py e )it £ (F1Q)) — Ry (@) < Y1 F(q) = ttn) Ay (d).

Proceeding, with lengthy algebra, as in establishing the Edgeworth expansion
for the conditional probability in (A.7), we see that the conditional distributions
of the Standardizegfn,&(un)u/f(F_l(Q)) andfn,é (un)u/f(F_l(Q)) - kn,n,&(a)a

given thatF, (q) = u,, have the same Edgeworth expansion up);ﬂi(ns)‘z +
nY2g3/2 4 =32 =1/2) =1 4y~ 1el/2 =1 4 = 1e3/2)73) it follows, by lengthy
algebra again, that the extra tekm,  («) in (A.19) contributes only to thél,
component of the integral (A.14) throudlt,, , ¢ (), up to order

0((’/1%-)—5/2+n$5+$5/2+n—1/2n4
+n—1n1/2+n—3/2 =5/2 4 p=3/2g-1/2)~1
&)t + 0 Y202 4 () 151/2+n 1/2£1/2)2
Explicit expansion of the contribution d, , ¢ («) yields thatk, , ¢ (y) differs
from K, £(y) by
-1 -1.2 —1/2 2
(n) " Ca21(F)(y) + (n§) " n"Caz2(F)(y) + n= 7 n°Cag3(F)(y)
+n7 Cas 2(F)(y) + 1% 1 Cag 1(F) ()

up to the above order, uniformly ifi € F4(¢, D1, D2). Theorem 3 now follows by
puttingy = K”_,é(a) and taking the complement]

PROOF OFTHEOREM4. As in the proof of Theorem 2, whenfAg < 1/7,

we haveﬁ,“g ¢ Fa(e, D1, D2) with negligible probability. Application of the
bounds (A.2)—(A.4) and extending (A.5) to casés= 2,3 establish that the
bootstrap quantlleL ,.£(@) and the true quantile oK .p.e (nY2[(F N q) —

1(q))/Sg]) differ in probablllty by the error term as specified in (3). Theorem 4
then follows by the delta method [

_ PROOF OF THEOREM 5. Write W, (1) = G ¢ (tog/f(F~(g))) and

W, e () =Gy, ;(taq/fn ,,( (q))) for t € R. Standard Edgeworth expansion

gives that
A.20) W, (1) = () + {n"Y2E11(F) 4 ¢ E2.0(F) + nY2¢2E3 1(F)}¢ (1)
. + O(n_l+n3/2§4)

uniformly in F € Fa(e, D1, D) for any ¢ € (0,g) and D1, D> > 0, where
E;;(F) denotes a smooth function of the density derivatiygsF —1(q)), .. .,
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FO(F~1(g))} for eachj = 1, 2, 3. On substitution of;, , for F in (A.20) and
using (A.2)—(A.5), we have

Ul (@) =97 ()
+ 0, 03204 4 g2e 40 Y2 Y2 4 Y2202 4 730202
We obtain by the delta method that the coverage probabilitif gfequals

P{n?(F, () — F 1)) — W, p (@) A = W, Loy /f (F )}
oM +”3/2§4+772§ +n_1/277_1/2§ 4+ a2 2§ +77_3/2§2)

whereA = oy [1/ fu.n(F X)) — 1/f (F~1(9))]. ReplacingF, , by F, ; in (A.2),
using (A.3), (A.5) and noting the bounds assumed)pn, we have that the joint
cumulants of(nY/2(F (r(q) — F~Y(¢)), A) differ from those of(n'/?(F;1(¢) —

F~1(g)), A) by at mostO(n‘25/48). An expansion analogous to (A.21) holds
for the interval Iy, with the definition of A unchanged. Comparison with (1)
then implies that the joint cumulants 6f%?(F;(q) — F~1(¢q)), A) contribute
a term of precise orden—%2 to the coverage error o!la It follows that
the Edgeworth expansmns for the distributionsndf2(F ,;(q) F~1(g)) and

1/2(F ;@) — FHq) - (a)A also differ by an order ofi—1/2 precisely,

so that, by (A.21), the coverage probabilityigf, has the expansion stated in (4).
]

(A.21)
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