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Abstract. Some strong convergence theorems are established for the Ishikawa
iteration processes for accretive operators in uniformly smooth Banach spaces.

1. Introduction and Preliminaries

Let X be a real Banach space with a dual X∗ and normalized duality
mapping J : X → 2X

∗
, defined by

Jx = {f ∈ X∗ : < f, x >= ‖f‖‖x‖, ‖f‖ = ‖x‖},
where < ·, · > denotes the generalized duality pairing.

It is well known that if X∗ is strictly convex, then J is single-valued and
such that J(tx) = tJx for all t ≥ 0, x ∈ X. If X is uniformly smooth, then
J is uniformly continuous on bounded subsets of X.

An operator A with domain D(A) and kernel N(A) is said to be “ac-
cretive” if, for every x, y ∈ D(A), there exists j(x − y) ∈ J(x − y) such
that

(1.1) < Ax−Ay, j(x− y) >≥ 0.

It is said to be “strongly accretive” if, in addition, there is a strictly increas-
ing function ψ : R+ → R+ such that ψ(0) = 0 and

(1.2) < Ax−Ay, j(x− y) >≥ ψ(‖x− y‖)‖x− y‖.
The operator A is “uniformly accretive” if there is a fixed positive constant

k > 0 such that

(1.3) < Ax−Ay, j(x− y) >≥ k‖x− y‖.
Furthermore, if N(A) 	= φ and the inequalities (1.1), (1.2) and (1.3) hold

for any x ∈ D(A) but y ∈ N(A), then the corresponding operator A is said
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to be “quasi-accretive”, “strongly quasi-accretive”, and “uniformly quasi-
accretive”, respectively. Such operators have been extensively studied and
used by various authors (see, e.g., [1]-[3]).

A quasi-accretive operator A is said to satisfy “Condition (I)” if, for any
x ∈ D(A), p ∈ N(A), and any j(x− p) ∈ J(x− p) the equality < Ax, j(x−
p) >= 0 holds if and only if Ax = Ap = 0.

Recently, Xu and Roach [29] studied the characteristic conditions for the
convergence of the steepest descent approximation process

(∗)
{
x0 ∈ X,
xn+1 = xn − tnAxn, n > 0,

where tn ∈ (0,∞),
∞∑
n=0
tn = ∞, and tn → 0 (n → ∞), for all n ≥ 0. They

proved the following two theorems.

Theorem A. ([29]) Let X be a uniformly smooth Banach space and let
A : D(A) = X → X be a quasi-accretive, bounded operator which satisfies
the condition (I). Then, for any initial value x0 ∈ D(A), there are positive
real numbers T (x0) such that the steepest descent approximation method (∗),
with tn ≤ T (x0) for any n, converges strongly to a solution x∗ of the equation
Ax = 0 if and only if there is a strictly increasing function ψ : R+ →
R+, ψ(0) = 0, such that

< Axn −Ax∗, J(xn − x∗) >≥ ψ(‖xn − x∗‖)‖xn − x∗‖.
In what follows, F (T ) is the fixed point set of the operator T.

Theorem B. ([29]) Let X be a uniformly convex Banach space, D ⊂ X a
nonempty closed convex subset of X, and T : D → D a quasi-nonexpansive
mapping (that is, F (T ) 	= ∅ and ‖Tx − Ty‖ ≤ ‖x − y‖ for all x ∈ D and
y ∈ F (T )). Then, for any initial value x0 ∈ D, the Mann type iterative
process


x0 ∈ D,
xn+1 = (1 − tn)xn + tnTxn, n ≥ 0, 0 < tn < 1,

∞∑
n=0
tn = +∞,

converges strongly to a fixed point x∗ of T if and only if there is a strictly
increasing function f : R+ → R+, f(0) = 0, such that

‖xn − Txn‖ ≥ f(d(xn, F (T )), n ≥ 0.

One question arises naturally: Can the Ishikawa type iterative process be
extended to the above theorems A and B?

In this paper we give an answer to this question.
To establish our main results, we need some special geometric properties

of Banach spaces. Recall that a Banach space X is said to be “uniformly
convex” if δX(ε), the modulus of convexity of X , which is defined by

δX(ε) = inf
{
1 − 1

2
‖x+ y‖ : ‖x‖ = 1, ‖y‖ = 1, ‖x− y‖ ≥ ε

}
,
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satisfies δX(0) = 0 and δX(ε) > 0 for any 0 < ε ≤ 2. A Banach space X is
said to be “uniformly smooth” if the modulus of smoothness of X, defined
by

ρX(τ) = sup{1
2
‖x+ y‖ + 1

2
‖x− y‖ − 1 : ‖x‖ = 1 ‖y‖ ≤ τ},

satisfies

(1.4) lim
τ→0

ρX(τ)
τ

= 0.

It is well known that every Hilbert space H, the Lebesgue spaces Lp (1 <
p <∞), and the Sobolev spaces W p

m (1 < p <∞) are uniformly convex and
uniformly smooth.

Lemma 1.1. (Xu and Roach [28]) Let X be a real uniformly smooth Banach
space. Then

(1.5) ‖x+ y‖2 ≤ ‖x‖2 + 2 < y, Jx > +Kmax{‖x‖ + ‖y‖, c
2
}ρX(‖y‖),

for all x, y ∈ X, where K and c are positive constants.

Remark 1.1. In [19, p. 89] Reich established an inequality analogous to
(1.5). Reich’s inequality reads as follows.

Let X be uniformly smooth. Then there is a continuous nondecreasing
function β : [0,∞) −→ [0,∞) such that β(0) = 0, β(ct) ≤ cβ(t) for c ≥ 1,
and

(RI) ‖x+ y‖2 ≤ ‖x‖2 + 2 < y, Jx > +max{‖x‖, 1}‖y‖β(‖y‖)
for all x and y in X.

We point out that, in some sense, Reich’s inequality (RI) is a special case
of inequality (1.5). To see this, take

β(t) =

{
Kmax

{
1 + t, c2

} ρX(t)
t , if t > 0,

0, if t = 0.

It is easy to verify that β : [0,∞) −→ [0,∞) is a continuous nondecreasing
function satisfying β(at) ≤ a2c0β(t) for a ≥ 1, where c0 is a fixed pos-
itive constant. For such a function β, inequality (1.5) implies inequality
(RI). Since ρX(t) possesses many more nice properties than β(t), inequality
(1.5) reveals much more information.

Lemma 1.2. (Xu and Roach [28]) Let X be a real uniformly convex Banach
space. Then

(1.6) ‖x+ y‖2 ≥ ‖x‖2 + 2 < y, j(x) > +σ(x, y),

where j(x) ∈ Jx, and

σ(x, y) = c
∫ 1

0

(‖x+ ty‖ ∨ ‖x‖)2
t

δX

(
t‖y‖

2(‖x+ ty‖ ∨ ‖x‖)
)
dt

with c a positive constant.
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Lemma 1.3. Let X be a real uniformly convex Banach space. Then

(1.7) ‖x− y‖2 ≤ ‖x‖2 − 2 < y, j(x− y) >,
for all x, y ∈ X.
Proof. Inequality (1.7) follows from the fact that the normalized duality
mapping is the subdifferential of ‖x‖2/2.
Lemma 1.4. Let {ρn}∞

n=0 be a nonnegative real sequence satisfying

ρn+1 ≤ (1 − λn)ρn + σn
with λn ∈ [0, 1],

∞∑
n=0
λn = ∞, and σn = o(λn). Then ρn → 0, as n→ ∞.

Proof. See [20, Theorem, p. 336].

We denote by B(0, r) the open ball with center at zero and radius r > 0.

2. Main Results

Theorem 2.1. Let X be a real uniformly smooth Banach space, and let
A : X → X be a bounded quasi-accretive operator. Assume that there exists a
strictly increasing and surjective function ψ : [0,∞) = R+ → R+, ψ(0) = 0,
such that

(2.1)
{
< Ax0 −Ax∗, J(x0 − x∗) >≥ ψ(‖x0 − x∗‖)‖x0 − x∗‖,
< Ayn −Ax∗, J(yn − x∗) >≥ ψ(‖yn − x∗‖)‖yn − x∗‖,

for any x∗ ∈ N(A), where {xn}∞
n=0 is defined by

(IS)



x0 ∈ X,
xn+1 = xn − αnAyn − αnβnAxn,
yn = xn − βnAxn, n ≥ 0,

where {αn} and {βn} are two real sequences satisfying the following condi-
tions.
(i) 0 < αn ≤ T (x0) = min

{
β, ψ

−1(‖Ax0‖)
4M(x0)

}
and 0 ≤ βn ≤ T1(x0) =

min
{
β, δ

M(x0)
, T (x0)

}
for all n ≥ 0;

(ii)
∞∑
n=0
αn = ∞;

(iii) αn → 0, βn → 0 as n→ ∞. where

M(x0) = sup
{
‖Ay‖ : ‖y − x0‖ ≤ 6ψ−1(‖Ax0‖)

}
,

β = max

{
β > 0 : β−1ρX(2βM(x0)) ≤ ‖Ax0‖ψ−1(‖Ax0‖)

Kmax{6ψ−1(‖Ax0‖), c2}

}
,

and δ is some fixed positive constant such that

‖Jx− Jy‖ < ‖Ax0‖ψ−1(‖Ax0‖)
2M(x0)

whenever ‖x− y‖ < δ for all x, y ∈ B(0, ψ−1(‖Ax0‖)).



APPROXIMATING THE ZEROS OF ACCRETIVE OPERATORS 157

Then the Ishikawa iteration process {xn}∞
n=0 defined by (IS) converges strongly

to a solution x∗ of the equation Ax = 0.

Proof. Since ψ : R+ → R+ is strictly increasing and surjective, ψ is certainly
bijective. Hence ψ−1(‖Ax0‖) is well-defined. Let

M(x0) = sup{‖Ay‖ : ‖y − x0‖ ≤ 6ψ−1(‖Ax0‖)}.
Clearly, ‖Ax0‖ ≤ M(x0). If M(x0) = 0, then Ax0 = 0, and, by (IS), we
know that yn = xn = x0. From (2.1) we have

0 =< Ax0 −Ax∗, J(x0 − x∗) >≥ ψ(‖x0 − x∗‖)‖x0 − x∗‖,
so that x∗ = x0 and hence xn → x∗ as n→ ∞.

Suppose that ‖Ax0‖ > 0. Then M(x0) > 0. Since ρX(τ)
τ is continuous and

nondecreasing, and ρX(τ)
τ → 0 as τ → 0, we can choose the largest β such

that

β−1ρX(2βM(x0)) ≤ ψ−1(‖Ax0‖)‖Ax0‖
Kmax{6ψ−1(‖Ax0‖), c2}

.

Let

T (x0) = min

{
β,
ψ−1(‖Ax0‖)
4M(x0)

}
.

Since X is uniformly smooth, J is uniformly continuous on the open ball
B(0, ψ−1(‖Ax0‖)). Hence, for

ε0 =
‖Ax0‖ψ−1(‖Ax0‖)

2M(x0)
> 0,

there is some fixed δ > 0 such that for all x, y ∈ B(0, ψ−1(‖Ax0‖), and
‖x− y‖ < δ, we have

‖Jx− Jy‖ < ‖Ax0‖ψ−1(‖Ax0‖)
2M(x0)

.

Let T1(x0) = min{β, δ
M(x0)

, T (x0)}. We now consider two possible cases.

Case 1. There exists positive integer n0 such that

(C1) ‖xn − x∗‖ ≥ 2ψ−1(‖Ax0‖)
for all n ≥ n0.

It follows from (2.1) that ‖x0 − x∗‖ ≤ ψ−1(‖Ax0‖). Without loss of
generality we may assume that ‖xn0−1 − x∗‖ < 2ψ−1(‖Ax0‖). Thus, we
have

‖xn0−1 − x0‖ ≤ ‖xn0−1 − x∗‖ + ‖x∗ − x0‖ < 3ψ−1(‖Ax0‖).
So, ‖Axn0−1‖ ≤M(x0). By (IS) we obtain

‖yn0−1 − x∗‖ ≤ ‖xn0−1 − x∗‖ + βn0−1‖Axn0−1‖
≤ 2ψ−1(‖Ax0‖) + ψ−1(‖Ax0‖)
= 3ψ−1(‖Ax0‖).
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Therefore, ‖yn0−1 − x0‖ ≤ 4ψ−1(‖Ax0‖) and hence ‖Ayn0−1‖ ≤ M(x0).
Consequently,

‖xn0 − x∗‖ ≤ ‖xn0−1 − x∗‖ + αn0−1‖Ayn0−1‖ + αn0−1βn0−1‖Axn0−1‖
≤ 4ψ−1(‖Ax0‖),

and ‖xn0 − x0‖ ≤ 5ψ−1(‖Ax0‖). So, ‖Axn0‖ ≤M(x0). Thus, we get that

‖yn0 − x∗‖ ≤ ‖xn0 − x∗‖ + βn0‖Axn0‖
≤ 5ψ−1(‖Ax0‖).

and ‖yn0 − x0‖ ≤ 6ψ−1(‖Ax0‖). Hence ‖Ayn0‖ ≤ M(x0). On the other
hand,

‖yn0 − x∗‖ ≥ ‖xn0 − x∗‖ − βn0‖Axn0‖
≥ 2ψ−1(‖Ax0‖) − ψ−1(‖Ax0‖)
= ψ−1(‖Ax0‖).

Since ψ is increasing, we have

ψ(‖yn0 − x∗‖) ≥ ‖Ax0‖.
Using the inequality (1.5), we obtain

(2.2)

‖xn0+1 − x∗‖2
= ‖xn0 − x∗ − αn0(Ayn0 −Ax∗) − αn0βn0(Axn0 −Ax∗)‖2
≤ ‖xn0 − x∗‖2 − 2αn0 < Ayn0 −Ax∗, J(xn0 − x∗) >

+Kmax{‖xn0 − x∗‖ + αn0‖Ayn0‖ + αn0βn0‖Axn0‖,
c

2
}

ρXαn0(‖Ayn0‖ + βn0‖Axn0‖)
− 2αn0 < Ayn0 −Ax∗, J(xn0 − x∗) − J(yn0 − x∗) >
− 2αn0 < Ayn0 −Ax∗, J(yn0 − x∗) >

+Kmax{6ψ−1(‖Ax0‖), c2}ρX(2αn0M(x0))

≤ ‖xn0 − x∗‖2 + 2αn0an0 − 2αn0ψ(‖yn0 − x∗‖)‖yn0 − x∗‖
+Kmax{6ψ−1(‖Ax0‖), c2}ρX(2αn0M(x0)),

where an0 =< Ayn0 −Ax∗, J(xn0 − x∗) − J(yn0 − x∗) >.
Noting that ‖xn0 − yn0‖ ≤ βn0‖Axn0‖ < δ, we know that

|an0 | ≤ ‖Ayn0‖‖J(xn0 − x∗) − J(yn0 − x∗)‖

≤M(x0)
‖Ax0‖ψ−1(‖Ax0‖)

2M(x0)

=
1
2
‖Ax0‖ψ−1(‖Ax0‖).

(2.3)
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Substituting (2.3) in (2.2) yields

‖xn0+1 − x∗‖2 ≤ ‖xn0 − x∗‖2 + αn0‖Ax0‖ψ−1(‖Ax0‖)
− 2αn0‖Ax0‖ψ−1(‖Ax0‖)
+Kmax{6ψ−1(‖Ax0‖), c2}ρX(2αn0M(x0))

≤ ‖xn0 − x∗‖2 − αn0(‖Ax0‖ψ−1(‖Ax0‖)
−Kmax{6ψ−1(‖Ax0‖), c2}ρX(2βM(x0))β−1)

≤ ‖xn0 − x∗‖2.
In the same way, we can prove that

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ ≤ · · · ≤ ‖xn0 − x∗‖
for all n ≥ n0. Hence lim

n→∞ ‖xn − x∗‖ exists, and let

l = lim
n→∞ ‖xn − x∗‖.

Now we want to show that l = 0. If not, assume that l > 0 , then, by
(IS), we have

l = lim
n→∞(‖xn − x∗‖ − βn‖Axn‖)

≤ lim
n→∞ inf ‖yn − x∗‖ ≤ lim

n→∞ sup ‖yn − x∗‖
≤ lim

n→∞(‖xn − x∗‖ + βn‖Axn‖) = l.
So, lim

n→∞ ‖yn − x∗‖ = l.

We can choose positive integer N1 such that ‖yn − x∗‖ > l
2 and ψ(‖yn −

x∗‖) > ψ( l2) for all n > N1.
From (IS) we know that {Ayn} is a bounded sequence.
Let M1 = sup

n>0
{‖Ayn‖}, M2 = sup

n>0
{‖xn − x∗‖}, M3 = sup

n>0
{‖Ayn‖}, M4 =

M1+M3, andM5 = Kmax{M2+M4,
c
2}. Again, using the inequality (1.5),

we have
‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − 2αn < Ayn −Ax∗, J(xn − x∗) >

− 2αnβn < Axn −Ax∗, J(xn − x∗) >
+Kmax{‖xn − x∗‖ + αn‖Ayn‖
+ αnβn‖Axn‖, c2}ρXαn(‖Ayn‖ + βn‖Axn‖)

≤ ‖xn − x∗‖2 + 2αn‖Ayn‖‖J(xn − x∗) − J(yn − x∗)‖
− 2αnψ(‖yn − x∗‖)‖yn − x∗‖
+Kmax{M4 +M2,

c

2
}ρX(2αnM4)

≤ ‖xn − x∗‖2 + 2αnbn − αnlψ( l2) +M5ρX(2αnM4)

= ‖xn − x∗‖2 + 2αnbn − αnlψ( l2) +M5ρX(αnM4),
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where bn = M1‖J(xn − x∗) − J(yn − x∗)‖. Observing that ‖yn − xn‖ =
βn‖Axn‖ → 0 as n→ ∞, we see that bn → 0 as n→ ∞, since J is uniformly
continuous on bounded sets of X.

At this point we choose positive integer N2 such that

2bn +
M5ρX(αnM4)

αn
<
l

2
ψ(
l

2
),

for all n ≥ N2. Then (2.4) yields

‖xn+1 − x∗‖ ≤ ‖xn − x∗‖2 − αn l2ψ(
l

2
),

thus
l

2
ψ(
l

2
)αn ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

for all n ≥ N2, and hence l
2ψ(

l
2)

∞∑
n=N2

αn ≤ ‖xN2 − x∗‖2, which contradicts

∞∑
n=0
αn = ∞. So, l = 0. From (C1) we see that 0 ≥ 2ψ−1(‖Ax0‖). Hence

ψ−1(‖Ax0‖) = 0 and ‖Ax0‖ = 0, which contradicts ‖Ax0‖ > 0. This con-
tradiction shows that Case 1 is impossible.

Case 2. There exists an infinite subsequence {xnk
} of {xn} such that

(C2) ‖xnk
− x∗‖ < 2ψ−1(‖Ax0‖).

We are going to show

‖xnk+m − x∗‖ ≤ 2ψ−1(‖Ax0‖)

for all positive integers m ≥ 1.
First of all, we prove that

‖xnk+1 − x∗‖ ≤ 2ψ−1(‖Ax0‖)

If not, ‖xnk+1 − x∗‖ > 2ψ−1(‖Ax0‖). Observing

‖xnk
− x0‖ ≤ ‖xnk

− x∗‖ + ‖x∗ − x0‖ ≤ 3ψ−1(‖Ax0‖),

we have ‖Axnk
‖ ≤M(x0). Hence

‖ynk
− x∗‖ ≤ ‖xnk

− x∗‖ + βnk
‖Axnk

‖ ≤ 3ψ−1(‖Ax0‖)

and

‖ynk
− x0‖ ≤ ‖ynk

− x∗‖ + ‖x∗ − x0‖ ≤ 4ψ−1(‖Ax0‖),
so that ‖Aynk

‖) ≤M(x0).
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On the other hand, by (IS) we have

‖ynk
− x∗‖ ≥ ‖xnk

− x∗‖ − βnk
‖Axnk

‖
≥ ‖xnk+1 − x∗‖ − αnk

‖Aynk
‖

− βnk
‖Axnk

‖ − αnk
βnk

‖Axnk
‖

≥ 2ψ−1(‖Ax0‖) − 1
4
ψ−1(‖Ax0‖)

− 1
4
ψ−1(‖Ax0‖) − 1

2
ψ−1(‖Ax0‖)

= ψ−1(‖Ax0‖).

Hence ψ(‖ynk
− x∗‖) ≥ ‖Ax0‖.

Using the inequality (1.5), we get

‖xnk+1 − x∗‖2 ≤ ‖xnk
− x∗‖2 − 2αnk

< Aynk
−Ax∗, J(xnk

− x∗) >
− 2αnk

βnk
< Axnk

−Ax∗, J(xnk
− x∗) >

+Kmax{‖xnk
− x∗‖

+ αnk
‖Aynk

‖ + αnk
βnk

‖Axnk
‖, c
2
}ρX(2αnk

M(x0))

≤ ‖xnk
− x∗‖2 + αnk

‖Aynk
‖‖J(xnk

− x∗) − J(ynk
− x∗)‖

− 2αnk
ψ(‖ynk

− x∗‖)‖ynk
− x∗‖

+Kmax{6ψ−1(‖Ax0‖), c2}ρX(2αnk
M(x0))

≤ ‖xnk
− x∗‖2 + 2αnk

M(x0)
‖Ax0‖ψ−1(‖Ax0‖)

2M(x0)
− 2αnk

ψ−1(‖Ax0‖)‖Ax0‖
+Kmax{6ψ−1(‖Ax0‖), c2}ρX(2αnk

M(x0))

≤ ‖xnk
− x∗‖2 − αnk

(‖Ax0‖ψ−1(‖Ax0‖)

−Kmax{6ψ−1(‖Ax0‖), c2}ρX(2βM(x0))
β

)

≤ ‖xnk
− x∗‖2.

Hence, ‖xnk+1 −x∗‖ ≤ ‖xnk
−x∗‖ < 2ψ−1(‖Ax0‖), which is a contradiction.

By induction, we can prove that

‖xnk+m − x∗‖ ≤ 2ψ−1(‖Ax0‖)

for all m ≥ 1. Hence {xn} is a bounded sequence, so are {Axn}, {yn} and
{Ayn}.

Let α = inf
n>0

‖yn − x∗‖. Then α = 0. If not, assume that α > 0. Then

ψ(‖yn − x∗‖) ≥ ψ(α) > 0.
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Again, using (1.5), we have

‖xn+1 − x∗‖2
≤ ‖xn − x∗‖2 − 2αn < Ayn −Ax∗, J(xn − x∗) >

− 2αnβn < Axn −Ax∗, J(xn − x∗) >
+Kmax{‖xn − x∗‖ + αn‖Ayn‖
+ αnβn‖Axn‖, c2}ρX(αn(‖Ayn‖ + βn‖Axn‖))

≤ ‖xn − x∗‖2 + 2αn‖Ayn‖‖J(xn − x∗) − J(yn − x∗)‖
− 2αnψ(‖yn − x∗‖)‖yn − x∗‖
+Kmax{M4 +M2,

c

2
}ρX(2αnM4)

≤ ‖xn − x∗‖2 + 2αnM1‖J(xn − x∗) − J(yn − x∗)‖
− 2αnαψ(α) + c1ρX(αn)

≤ ‖xn − x∗‖2 − αn(2αψ(α)

− 2M1‖J(xn − x∗) − J(yn − x∗)‖ − c1 ρX(αn)
αn

),

(2.4)

where c1 is some positive constant.
Since ‖J(xn − x∗) − J(yn − x∗)‖ → 0 and ρX(αn)

αn
→ 0 as n→ ∞, we can

choose a positive integer N3 such that

2M1‖J(xn − x∗) − J(yn − x∗)‖ + c1 ρX(αn)
αn

< αψ(α)

for all n ≥ N3. Thus (2.5) yields

‖xn+1 − x∗‖2 ≤ ‖xn − x∗‖2 − αψ(α)αn, n ≥ N3.

Hence αψ(α)
∞∑

n=N3

αn ≤ ‖xN3 − x∗‖2, which contradicts with
∞∑
n=0
αn =

∞. This contradiction shows that α = 0. Consequently, there exists an
infinite subsequence {ynj} of {yn} such that ynj → x∗ as j → ∞, and hence
xnj → x∗ as j → ∞. As in the proof of the boundedness for {xn} we can
prove that xn → x∗ as n→ ∞.

Remark 2.1. In the same way, as [29], we can prove that if xn → x∗ ∈ N(A)
as n→ ∞ and A : X → X is quasi-accretive and satisfies condition (I), then
there exists a strictly increasing function ψ : [0,∞) → [0,∞), ψ(0) = 0,
such that

< Ayn −Ax∗, J(yn − x∗) >≥ ψ(‖yn − x∗‖)‖yn − x∗‖.
But, such a function ψ is not surjective. From our Theorem 1, we can deduce
the sufficiency of the Theorem 1 of [29]. In fact, the proof of the sufficiency
of Theorem 1 of [29] has some mistakes. The authors of [29] did not require
that the function ψ be surjective. Since x0 is arbitrarily chosen, it is possible
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that ‖Ax0‖ 	∈ R(ψ) (the range of ψ). In this case, ψ−1(‖Ax0‖) is not well
defined.

Remark 2.2. From our Theorem 1, we can deduce the relevant results of
Tan and Xu [23] and Chidume [6-11].

Remark 2.3. We would like to point out that Theorem 2.1 is closely re-
lated to the well known strong convergence theorems in [4], [18]. Although
they can’t be deduced directly from Theorem 2.1, we can yield those results
with our new approach. The detailed discussion of the relationship between
Theorem 2.1 and the corresponding strong convergence theorems will be
presented in a subsequent paper.

In the sequel, we prove the convergence theorems of the Ishikawa iteration
processes for quasi-nonexpansive operators.

Let C be a nonempty bounded closed convex subset of Banach space X.
An operator T : C → C is said to be quasi-nonexpansive, if the fixed point
set F (T ) of T is nonempty, and

‖Tx− Ty‖ ≤ ‖x− y‖

for all x ∈ C but y ∈ F (T ).
The operator T is said to satisfy “Condition (A)” if there is a nonde-

creasing function f : R+ → R+, f(0) = 0, f(r) > 0 for all r > 0, such
that

‖x− Tx‖ ≥ f(d(x, F (T ))), x ∈ C,
where d(x, F (T )) = inf{‖x− z‖ : z ∈ F (T )} (see, e.g., [16]).

We study the following Ishikawa iteration process:

(I′)



x0 ∈ C
xn+1 = (1 − αn)xn + αnTyn
yn = (1 − βn)xn + βnTxn, n > 0

where {αn} and {βn} are real sequences satisfying:
(i) 0 < αn, βn < 1;

(ii)
∞∑
n=0
αn = ∞;

(iii) αn → 0, βn → 0 asn→ ∞.
Let A = I − T. Then (I’) yields

(I′′)



x0 ∈ C,
xn+1 = xn − αnAyn − αnβnAxn,
yn = xn − βnAxn, n > 0.

We also need the following lemmas.

Lemma 2.1. For any y ∈ F (T ), lim
n→∞ ‖xn − y‖ exists.
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Proof. From (I ′), we have

‖xn+1 − y‖ ≤ (1 − αn)‖xn − y‖ + αn‖yn − y‖
≤ (1 − αn)‖xn − y‖ + αn((1 − βn)‖xn − y‖ + βn‖Txn − Ty‖)
≤ (1 − αn)‖xn − y‖ + αn‖xn − y‖
= ‖xn − y‖.

Lemma 2.2. (Xu and Roach [29]) Let X be a real uniformly convex Banach
space and let C be a nonempty closed convex subset of X. Assume T : C → C
is quasi-nonexpansive. Let A = I − T . Then

< Ax−Ay, j(x− y) >≥ c

2
‖x− y‖2

∫ ‖Ax−Ay‖
2‖x−y‖

0

δX(ε)
ε
dε,

where j(x− y) ∈ J(x− y), δX(ε) is the modulus of convexity of X, and c is
a fixed positive constant.

Now we prove:

Theorem 2.2. Let X be a real uniformly convex Banach space, and let C
be a nonempty bounded closed convex subset of X. Assume that T : C → C
is quasi-nonexpansive. If T satisfies the condition (A), then the Ishikawa
type iteration sequence {xn}∞

n=0 defined by (I ′′) converges strongly to some
fixed point of T .

Proof. We consider the following two possible cases.
Case a. inf

n>0
‖xn − y‖ = 0, y ∈ F (T ).

In this case, there exists subsequence {xnj} of {xn} such that xnj → y as
j → ∞. By Lemma 2.1, we know that xn → y as n→ ∞.

Case b. inf
n>0

‖xn − y‖ = α > 0, y ∈ F (T ).
In this case, we again consider two possible cases.

Case b1. inf
n>0

‖Axn‖ = 0.

In this case, there exists subsequence {Axnj} of {Axn} such that Axnj → 0
as j → ∞. Since T satisfies the condition (A) we have

‖Axnj‖ = ‖xnj − Txnj‖ ≥ f(d(xnj , F (T )).

Hence f(d(xnj , F (T )) → 0 as j → ∞.
Since f : R+ → R+ is nondecreasing and f(r) > 0 for all r > 0, so,

d(xnj , F (T )) → 0 as j → ∞. By Lemma 2.1, we see that lim
n→∞ d(xn, F (T ))

exists. Hence d(xn, F (T )) → 0.
At this point we can choose a subsequence {xnk

} of {xn} and {pk} ⊂ F (T ),
respectively, such that

‖xnk
− pk‖ < 2−k for all k ≥ 1.

By Lemma 2.1, we see that

‖xnk+1 − pk‖ ≤ ‖xnk
− pk‖ < 2−k,
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so that

‖pk+1 − pk‖ ≤ ‖xnk+1 − pk+1‖ + ‖xnk+1 − pk‖
≤ 2−(k+1) + 2−k

< 2−k+1

for all k ≥ 1. Hence {pk} must be a Cauchy sequence. Thus we can assume
pk → p as k → ∞.

Since F (T ) is closed, we know that p ∈ F (T ). Therefore, xnk
→ p as

k → ∞ and hence xn → p as n→ ∞, since lim
n→∞ ‖xn − p‖ exists.

Case b2. inf
n>0

‖Axn‖ = r > 0.

Let Q = sup
n>0

‖xn − y‖ > 0, y ∈ F (T ). Then

0 <
r

2Q
≤ ‖Axn −Ay‖

2‖xn − y‖ ≤ 1.

Applying Lemma 2.2 we obtain

< Axn −Ay, j(xn − y) > ≥ c

2
‖xn − y‖2

∫ r
2Q

0

δX(ε)
ε
dε

≥ k‖xn − y‖2,
(2.5)

where

0 < k < min{1, c
2

∫ r
2Q

0

δX(ε)
ε
dε}.

Using Lemma 1.3, (I ′′) and (2.6) we have

‖xn+1 − y‖2
≤ ‖xn − y‖2 − 2αn < Ayn −Ay, j(xn+1 − y) >

− 2αnβn < Axn, j(xn+1 − y) >
≤ ‖xn − y‖2 − 2αn < Ayn −Axn+1, j(xn+1 − y) >

− 2αnβn < Axn, j(xn+1 − y) >
− 2αn < Axn+1 −Ay, j(xn+1 − y) >
− 2αnβn < Axn, j(xn+1 − y) >

≤ ‖xn − y‖2 − 2αncn − 2αnk‖xn+1 − y‖2
− 2αnβn < Axn, j(xn+1 − y) >,

(2.6)

where cn =< Ayn −Axn+1, j(xn+1 − y) >.
We show cn → 0 as n→ ∞. Indeed, since

‖Ayn −Axn+1‖
≤ 2‖yn − xn+1‖
≤ 2βn‖Axn‖ + 2αn‖Ayn‖ + 2αnβn‖Axn‖

→ 0 asn→ ∞,

(2.7)
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and ‖j(xn+1 − y)‖ = ‖xn+1 − y‖ is bounded, cn → 0 as n → ∞. Let
dn =< Axn, j(xn+1 − y) > and

σn =
−2αn(cn + βndn)

1 + 2kαn
.

From (2.7) we get

‖xn+1 − y‖2 ≤ 1
1 + 2kαn

‖xn − y‖2 + σn

= (1 − 2kαn +
4k2α2n

1 + 2kαn
)‖xn − y‖2 + σn

≤ (1 − kαn)‖xn − y‖2 + σn.

Set ρn = ‖xn − y‖2, λn = kαn. Then, λn ∈ [0, 1],
∞∑
n=0
λn = ∞, and σn =

o(λn). By Lemma 1.4, we see that ρn → 0 as n→ ∞, i.e., xn → y as n→ ∞,
which contradicts with inf

n>0
‖xn − y‖ = α > 0.

From the above discussion, we know that {xn} converges strongly to some
fixed point of T.

In the same way, we can prove

Theorem 2.3. Let X and C be as in Theorem 2.2, and let T : C → C be
a quasi-nonexpansion with T (C) compact. Then the conclusion of Theorem
2.2 is still true.
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