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We introduce the notion of local uniform linear convexity of bounded convex
domains with respect to their Kobayashi distances.

1. Introduction

Recently, in [4] the author has proved that if B is an open unit ball in a Cartesian
product l2× l2 furnished with the lp-norm ‖ · ‖ and kB is the Kobayashi distance
on B, then the metric space (B,kB) is locally uniformly linearly convex.

In this paper, we introduce this kind of local uniform convexity in bounded
convex domains in complex reflexive Banach spaces and we apply this notion in
the fixed-point theory of holomorphic mappings.

2. Preliminaries

Throughout this paper all Banach spaces X will be complex and reflexive and
all domains D ⊂ X will be bounded and convex. By kD we always denote the
Kobayashi distance on D [16, 17] (see also [10, 12, 14, 15, 19]).

We now recall several useful properties of the Kobayashi distance kD, which
are common to all bounded and convex domains in reflexive Banach spaces.

Since D is bounded and convex, the Kobayashi and Caratheodory distances
are equal on D [7]. The Kobayashi distance kD is locally equivalent to the norm
[14].

If x, y,w,z ∈D and s∈ [0,1], then

kD
(
sx+ (1− s)y,sw+ (1− s)z

)≤max
{
kD(x,w),kD(y,z)

}
. (2.1)

Hence each open (closed) kD-ball in the metric space (B,kB) is convex [20].

Copyright © 2003 Hindawi Publishing Corporation
Abstract and Applied Analysis 2003:6 (2003) 367–373
2000 Mathematics Subject Classification: 32A10, 46G20, 47H09, 47H10
URL: http://dx.doi.org/10.1155/S1085337503212069

http://dx.doi.org/10.1155/S1085337503212069


368 Local uniform linear convexity of kD

A subset C of D is said to lie strictly inside D if dist‖·‖(C,∂D) > 0.
The basic fact about subsets, which lie strictly insideD, is the following: a sub-

set C of D is kD-bounded if and only if C lies strictly inside D ([14, Proposition
23]).

A point x on the boundary of a convex set D ∈ X is called an extreme point if
{x+ ty ∈ X :−1≤ t ≤ 1} ⊂D implies y = 0. If each boundary point of a convex
domain D is an extreme point, then D is called a strictly convex domain. If D is
strictly convex, then we can say more about linear convexity of balls in (D,kD).
In this case, each kD-ball is also strictly convex in linear sense [5, 23] (see also
[22]).

The open unit ball BH in a Hilbert space is called the Hilbert ball [6, 12, 13,
21].

3. Local uniform linear convexity for the Kobayashi distance

First, we introduce the following definition (see also [4, 18]).

Definition 3.1. Let D be a bounded and convex domain in a reflexive Banach
space X . The metric space (D,kD) is said to be a locally uniformly linearly convex
space if there exist w ∈D and the function

δ(w,·,·,·,·,·), (3.1)

such that for all 0 < R1, kD(w,z)≤ R1, 0 < R2 ≤ R≤ R3, and 0 < ε1 ≤ ε ≤ ε2 < 2,
we have

δ
(
w,R1,R2,R3,ε1,ε2

)
> 0,

kD(z,x)≤ R
kD(z, y)≤ R
kD(x, y)≥ εR


=⇒ kD

(
z,

1
2
x+

1
2
y
)
≤ (1− δ

(
w,R1,R2,R3,ε1,ε2

))
R.

(3.2)

The function δ(w,·,·,·,·,·) is called a modulus of linear convexity for the
Kobayashi distance kD.

It is easy to observe that the point w in the above definition of the local uni-
form linear convexity can be replaced by any other point w′ ∈D.

The Hilbert ball BH is the first known domain with this property [18] (see also
[19]). Moreover, in [4] it is shown that if B is the open unit ball in a Cartesian
product l2× l2 furnished with the lp-norm where 1 < p <∞ and p 	= 2, then the
metric space (B,kB) is also locally uniformly linearly convex.

The construction of domains which are locally uniformly convex in linear
sense in the Kobayashi distance is given in [3].
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4. Fixed points of holomorphic mappings

We begin this section by recalling some definitions.
A mapping f : D→D is kD-nonexpansive if

kD
(
f (x), f (y)

)≤ kD(x, y), (4.1)

for all x, y ∈D. Each holomorphic self-mapping f : D→D is kD-nonexpansive
[6, 10, 12].

If f : D→D is kD-nonexpansive, then for each 0 < t < 1 and a∈ B, the map-
ping ft,a = (1− t)a+ t f is a contraction. Therefore, for each x ∈D, the sequence
{ f nt,a(x)} tends to a unique fixed point yt,a in D. Additionally, we have
limt→1− ‖yt,a− ft,a(yt,a)‖ = 0 [8].

For kD-nonexpansive f : D→D, we call a sequence {xn} ⊂ B an approximat-
ing sequence if limn kD(xn, f (xn))= 0 [12].

We will also need the notion of an asymptotic center [9, 11, 12]. Let D be a
bounded convex domain in a reflexive Banach space X , {xn} a kD-bounded se-
quence in D, and C a nonempty, kD-closed, and convex subset of D. Consider the
functional r(·,{xn}) : D → [0,∞) defined by r(x,{xn}) = limsupn→∞ kD(x,xn).
Recall that a point z in C is said to be an asymptotic center of the sequence
{xn} with respect to C if r(z,{xn}) = inf{r(x,{xn}) : x ∈ C}. The infimum of
r(·,{xn}) over C is called the asymptotic radius of {xn} with respect to C and
denoted by r(C,{xn}). We observe that the function r(·,{xn}) is quasiconvex,
that is,

r
(
(1− t)x+ ty,

{
xn
})≤max

(
r
(
x,
{
xn
})
, r
(
y,
{
xn
}))

, (4.2)

for all x and y in D and 0≤ t ≤ 1 [19, 20].

Proposition 4.1. Let D be a bounded convex domain in a reflexive Banach space
X such that the metric space (D,kD) is locally uniformly linearly convex. Then each
kD-bounded sequence {xn} in D has a unique asymptotic center with respect to any
nonempty, kD-closed, and convex subset C of D.

Proof. Fix w ∈ D and let δ(w,·,·,·,·,·) be a modulus of linear convexity for
the Kobayashi distance kD. Let {xn} be a kD-bounded sequence in D. Hence the
sequence {xn} lies strictly inside D and therefore we have

0 < sup
n
kD
(
w,xn

)
+ 1= R1 < +∞. (4.3)

Next, the sets

Cn =
{
x ∈ C : r

(
x,
{
xn
})≤ r

(
C,
{
xn
})

+
1
n

}
(4.4)
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are nonempty, convex, and weakly compact since the function r(·,{xn}) is con-
tinuous and quasiconvex. Hence, r(·,{xn}) attains its minimum in C. Now, all
we have to show is that

r
(

1
2
x+

1
2
y,
{
xn
})

< max
(
r
(
x,
{
xn
})
, r
(
y,
{
xn
}))

(4.5)

for every x 	= y. To this end, let R2 =max(r(x,{xn}), r(y,{xn})). Then for each
0 < ε < 1, there exists nε such that

kD
(
x,xn

)≤ R2 + ε, kD
(
y,xn

)≤ R2 + ε, (4.6)

for all n≥ nε. Therefore, for R3 = R2 + 1 and ε1 = ε2 = kD(x, y)/(R2 + 1), we have

kD

(
1
2
x+

1
2
y,xn

)
≤ (1− δ

(
w,R1,R2,R3,ε1,ε2

))(
R2 + ε

)
,

r
(

1
2
x+

1
2
y,
{
xn
})≤ (1− δ

(
w,R1,R2,R3,ε1,ε2

))
R2 < R2.

(4.7)

This completes the proof. �

Now, we are ready to prove the following theorem.

Theorem 4.2. Let D be a bounded convex domain in a Banach space X such that
the metric space (D,kD) is locally uniformly linearly convex and let f : D→D be a
kD-nonexpansive mapping. Then the following statements are equivalent:

(i) f has a fixed point;
(ii) there exists a point x in D such that the sequence of iterates { f n(x)} is kD-

bounded;
(iii) the sequence of iterates { f n(x)} is kD-bounded for all x in D;
(iv) there exists a kD-bounded approximating sequence {xn} for f ;
(v) there exists a closed and f -invariant kD-ball;

(vi) there exists a nonempty, closed, and convex, kD-bounded and f -invariant
subset C of D.

Proof. To prove this theorem, it is sufficient to apply the asymptotic center
method and the following facts:

(1) each nonempty, closed, and convex, kD-bounded and f -invariant subset
C of D contains a kD-bounded approximating sequence for f ;

(2) if {xn} is a kD-bounded approximating sequence for f , then

r
(
f (y),

{
xn
})≤ r

(
y,
{
xn
})
, (4.8)

for each y ∈D;
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(3) if x ∈D has the kD-bounded sequence of iterates { f n(x)}, then

r
(
f (y),

{
f n(x)

})≤ r
(
y,
{
f n(x)

})
, (4.9)

for each y ∈D;
(4) by Proposition 4.1, every kD-bounded sequence {xn} in D has a unique

asymptotic center with respect to any nonempty, kD-closed, and convex
subset C of D. �

Corollary 4.3. Theorem 4.2 is valid for holomorphic self-mappings of D.

Proof. Each holomorphic self-mapping of D is kD-nonexpansive. �

Remark 4.4. Note that in the case of the open unit ball BH of a Hilbert space H ,
the analogous theorem and corollary are known [12, 13, 18, 19].

Now, we study the structure of the fixed-point set of a holomorphic mapping.
First, we recall two results from [5].

Lemma 4.5 ([5]). Let X be a complex reflexive Banach space and D a bounded
strictly convex domain in X . If f : D→D is kD-nonexpansive and has a fixed point,
then f has a fixed point in each nonempty, f -invariant, kD-closed, and convex
subset C of D.

Theorem 4.6 (see [5]). Let D be a bounded strictly convex domain in a com-
plex reflexive Banach space X . If f : D → D is holomorphic (kD-nonexpansive),
then Fix( f ) is either empty or a holomorphic (kD-nonexpansive) retract of D.

In the case of a locally uniformly linearly convex metric space (D,kD), we have
the following results—their proofs are practically the same of those given in [5]
and they are based on the Bruck method [1, 2].

Lemma 4.7. Let X be a complex reflexive Banach space and D a bounded convex
domain in X such that the metric space (D,kD) is locally uniformly linearly convex.
If f : D→D is kD-nonexpansive and has a fixed point, then f has a fixed point in
each nonempty, f -invariant, kD-closed, and convex subset C of D.

Theorem 4.8. Let D be a bounded convex domain in a complex reflexive Banach
space X such that the metric space (D,kD) is locally uniformly linearly convex. If
f : D → D is holomorphic (kD-nonexpansive), then Fix( f ) is either empty or a
holomorphic (kD-nonexpansive) retract of D.
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