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In 1988, Parker and Sochacki announced a theorem which proved that the Picard itera-
tion, properly modified, generates the Taylor series solution to any ordinary differential
equation (ODE) on 1" with a polynomial generator. In this paper, we present an analo-
gous theorem for partial differential equations (PDEs) with polynomial generators and
analytic initial conditions. Since the domain of a solution of a PDE is a subset of ", we
identify one component of the domain to achieve the analogy with ODEs. The generator
for the PDE must be a polynomial and autonomous with respect to this component,
and no partial derivative with respect to this component can appear in the domain of
the generator. The initial conditions must be given in the designated component at zero
and must be analytic in the nondesignated components. The power series solution of
such a PDE, whose existence is guaranteed by the Cauchy theorem, can be generated
to arbitrary degree by Picard iteration. As in the ODE case these conditions can be met,
for a broad class of PDEs, through polynomial projections.

1. Introduction

In [6] the authors developed a completely explicit notation for presenting ordinary
differential equations (ODEs) with polynomial generators that allowed them to make a
reasonably transparent proof for the following theorem.

If F is a polynomial from Q" into K", then the kth Picard iterate for the ODE

y'=Foy;  y(0)=x, (1.1)
defined by

t
P = x, pk(r)=x+f0 Fopi. (12)

is the (k — 1)st degree Maclaurin polynomial plus a polynomial all of whose terms have
degree greater than k — 1.
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48 A Picard-Maclaurin theorem for initial value PDEs

The notation developed translates directly to implementation of the algorithm arising
from the proof of this theorem in either a symbolic or numeric computing environment.

To avoid ambiguity in proving a similar theorem for initial value partial differential
equations (PDEs) and to afford direct translation of the resulting algorithm to either a
symbolic or numeric computing environment we will again introduce a formal notation.

In order to realize the full impact of the theory on applications it is important to
have a precise definition for a polynomial functional F on R" (Df = Q") since the
components of the generator and the iterates of the solution are polynomial functionals.
However, we note that their roles within any computing environment are different. The
components of the generator must be stored and accessed; the iterates of the solution
must be tracked.

We offer here a definition that translates directly into a (numerical) computing envi-
ronment.

Definition 1.1. Suppose that n € N. Let n denote {k | k € N and k < n}.
Ey={h|h:n— {OJUN}. (1.3)
Elements of E,, will define the exponents for the terms of polynomial functionals on 9i".

Definition 1.2. Suppose thatn € N and F : " — N.
The statement that “F is a polynomial functional on 9" means that there is a finite
subset, A, of E,, and A : {0}UA — R, so that if x € R", then

F(o)=AO+ Y A [, (1.4)

HeA i=1

The three main structural differences between the PDE problem and the ODE prob-
lem are

(1) the initial conditions are analytic functions;
(2) the PDE need be autonomous only in the designated component; and
(3) the presence of partial derivatives in the domain of the generator for the PDE.

For computational reasons it is important to have a formal notation for these partial
derivatives.

Definition 1.3. Let ® = {h | there is m € Nso that h : m — N}. Suppose u : K" — N,
v € O, and D, = m and the range of v, R, satisfies max R, < n. Then

dyu = dy(1y (du) (-~ (dvimyu) --))- (1.5)

To illustrate, consider a function u : %2 — 9. It is common to denote the first
component of a typical element of D, as x, the second component as y and, for instance,
to write one of the third partial derivatives as u,yy. We prefer dy12u. To translate to the
formalism suggested above, let v(1) = 1, v(2) = 1, and v(3) = 2. The partial derivative
is then denoted as d,u.
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To set the stage for the presentation of a PDE as our theorem applies to it, consider
the following PDE on %* (from gas dynamics) as it might be typically presented.

Example 1.4.
w; = —(wu)x — (wv)y,
u,:uux—i—vuy—i—uxx—}-uyy—%wx, (1.6)
x2y

Vr = UVx +VVy +Vxx +Vyy — ——Wy.
w

Let (1) =1, B(1) =2, x(1) =3, ¢(1) = 2, and ¢(2) = 2, and y(1) = 3 and
y(2) = 3. For (¢, x, y) in the common domains of w, u, and v, this translates into the
formalism as

dow(t,x,y) = —dg(wu)(t,x,y) —d, (wv)(t,x,y),
dau(t,X, ,V) =M(t,.x, y)dﬂu(t’xv )’)‘f‘v(t’X, y)dxu(t7x7y)+d¢u(t7x7 y)

.5y = —50 (e, 5, y)
u(t,x,y) ————dgwl(t,x,y),
T TR, R (1.7)
dov(t,x,y) =u(t,x,y)dgv(t,x,y)+v(t,x,y)dyv(t,x,y)+dpv(t, x,y)
2
y
+dyv(t,x,y)—mdxw(t,x,y).

In order to meet the conditions of the hypothesis of our theorem we convert the
products to polynomials by differentiating, project 1/w into a polynomial by letting
z = 1/w, and identify the component in which the equation must be autonomous and
whose partial derivatives cannot appear in the domain of the generator as the first
component. Under these conditions the PDE (suppressing (¢, x, y)) is

diyw = —udgw —wdgu —vd, w —wdy v,
dlu=udﬁu+vdxu+d¢u+dyu—xzyzdﬂw, (1.8)
div = udgv +vdyv+dyv+dyv—x*yzd,w, .
diz = —2*(—udgw — wdgu —vdy w —wdy v).

In some computing environments it is advantageous to write the last equation of the
PDE as

diz = 2udgw + > wdgu + 22 vd, w + 22 wd, v. (1.9)

We note the solution U has four components given by U; = w, U = u, Uz = v, and
U4 = z, and each of these components has domain a subset of 9R3. Thus, the PDE can
be written as

diUy = —UpdgUy — UydgUs — Usd, Uy — Uy d, Us,
d1Us = UpdgUs + Usdy Uy +dyUs +d, Uy — Usxydg Uy,
d1Uz = UpdgUs + Usd, Us +dyUs +d, Us — Usx*yd, Uy,
d1Uy = U}UsrdgUy + U U dg Uy + U3 Usdy Uy +UZ U1 dy Us.

(1.10)
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Notice that the second and the third components of the generator are evolutionary in
x and y, whereas its first and fourth components are autonomous. Thus the polynomial
functionals that express the projections of the generator can be given domains %8, 9%!1,
?Tt”, and 5)%8, and degrees 2,5, 5, and 4, respectively. (Actually the domains of the
projections of the generator into the second and the third components can be taken to
be %19, but in our own programming, we typically allow space for all components of
the solution and build in flexibility to accommodate the partial derivatives present.)

Finally, we illustrate the use of Definitions 1.1 and 1.2 by considering the second
equation. The domain of the generator in the second component has two components
for the second and the third components of an element of Dy, four components for U
(although U is not acted upon), and five components for the pertinent partial derivatives.
We reserve the first six components, then designate the final five components. This can
be formalized by identifying appropriate functions, v, and &, from {rn : n € N and 6 <
n <11} into ® and from {n :n € N and 6 < n < 11} into 4. Letting

{(1, 0),(2,0),(3,0),(4,1),(5,0),(6,0),(7,0), (8, 1),(9,0), (10, 0), (11,0)},
{(1,0), (2,0),(3,0),(4,0),(5,1),(6,0),(7,0),(8,0),(9,0), (10,0), (11, 1)},
{(1,0), (2,0),(3,0),(4,0),(5,0),(6,0),(7,0),(8,0), (9, 1), (10, 0), (11,0)},
{ }
{ }

(1,0), (2,0), (3,0), (4,0), (5,0), (6,0, (7,0), (8,0), (9,0), (10, 1), (11, 0)
(1,2),(2,1),(3,0), (4,0), (5,0), (6, 1), (7,1),(8,0), (9,0), (10,0), (11, 0)
Ar={p,0,1,0,¥},
v ={(7,8),8,8),9,¢),(10,y), (11, )},
8 =1{(7.1,(,2),09,2),(10,2),(11,2)},
A2 =1{(0,0),(p, 1), (0, 1), (z, 1), (@, 1), (¥, =D},

0
o
T
1)
v

k]
’

(1.11)
(note A» C Eq1) gives the second equation as

di Uz(t,xl,XQ)

2 6 11
=40+ Z(Az(u)l_[xll:(k)l_[l]k—2(t’xlaXZ)M(k)l_[duz(k)Uaz(k)(taXl,xz)ﬂ(k)>.

HEA, k=1 k=3 k=7
(1.12)

2. Theorems

Since the presentation of the problem is dependent on the designation of a particular
component, we adopt, for an element of )", the notation (¢, x). t will denote the desig-
nated component and x will consist of the other m — 1 components; we will denote the
components of x as x1, x2, ..., x,—1. I will denote the identity function in the designated
component. We will write the right-hand side of aPDE as P(x, U (¢, x),d,U (¢, x)). This
is done to emphasize that we demarcate the domain of the generator into components
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accepting the non-designated components of the domain, components of the solution,
and partial derivatives of components of the solution.

THEOREM 2.1. Let n € N and m € N. Suppose that k <n, O, C{f | thereis j € N
sothat f:j—{l|leNandl <l <m}}, ng € N so that ny >m—14n, Ay is a
ﬁnitesubset_ofEnk, andifngy >m—1l+4+nthenvp:{jljeNandm—1+n< j <
ngt—> Oranddy:{jljeNandm—1+n < j<ny}—n, and Ay : {0}UA; — N.
Let U : RN — R" be so that if (t,x) € Dy,

dUi(t, x)
m—1 m—l+4n oM '
=Ak(0)+z Ak(lvb)l_[x;t(j) l_[ Uj—m+1(l,x)u(j) 1_[ dvk(j)U(sk(j)(t,x)M(]) s
HEA| j=1 j=m j=m+n
2.1)
and Uy (0, x) is analytic. Let ay(x) denote Ui (0, x).
Define, for k € n, px.1 by if (t,x) € Dy
P, 1(t, x) = ag(x) (2.2)
and forl > 1
t m—1 .m—1+n ]
Pia(t. x) = ap(x) + / A+ D | A [T T (piemeracro )"
0 HEAL j=1 j=m
ni .
x [T (duwihpsa—rod )"
j=m+n
(2.3)

Then ifk en andr,s € N, (t,x) € Dy, prr(t,x) = br,o(x)—i-Z?’:l br,i(x)t’., and
pk,s(t» x)= BS,O(X)+ ?Szl Bs,i(x)tl; then if Q < min(r, s), br,Q(x) = Br,Q(x)-

Before proving this theorem we note that, by the Cauchy theorem the PDE must
have a unique analytic solution. Also, since components of the generator for the PDE
and the iterates for the solution are both polynomial functionals, it is important to
distinguish between them. We will write the functionals for the generator as indicated
in the example. Also note that b, ;(x) and By ;(x) are power series in x. Using these
series as coefficients for powers of ¢ we write the iterates for the solution in powers of
the designated component, 7.

Proof. The proof will use induction on the powers of the designated component. Let
1 <k <n and for/ > 1 consider pi .
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If (¢, x) € W™ then

' m—1 m—1+n
() w(j)
pratt. ) =aco)+ 110+ 2 [ [T TT (ot 0)
e j= j=m

ng .
< I] (due(y Pscya—1 o (L))"
j=m+n
2.4)

Every term from the integral, since the integration is done with respect to the identity
in the designated component, must have a power of at least 1 on 7. Therefore, the zero
degree term in ¢ must be the initial condition, a power series in the components of x.
Thus any pair of iterates agree in the zero power term.

Let Q € {0}UN and suppose that if r,s > Q and (¢, x) € Dy, pr r(t,x) = ar(x)+
Y0 i (O, and prs(t,x) = ax(x) + Y8 By i (0, then a (1) + Y2, bri (01,
and ak(x)+ZiQ= | Bs,,-(x)ti have identical terms. Consider / > Q +1 and

' m—1 m—1+n
— wn(j) wn(j)
Pi(t,x) = ar(x) + /O Ar(0)+ §Aﬁ Akuwl"[lx, [T (pimmsrizro )
HeM| j= j=m

ng .
< [T (duihpscciri- o(1,x))"
j=m+n
(2.5)
If j € n, define fj; and g;; by if (1,x) € Dy, fj1(t,x) = a;(x) + 22 by; (x)r and
8j1(t,x) = ?Z:Q_H by,i (x)t'. Then

Pk, 0+1(,x)
¢ m—1 .m—l—i-n #(J)
=ak<x)+/ A0+ Y (A T TT (fi-mir.0+8i-mi1.0) o (L. x)
0 neA j=1 j=m
ng (
w(j)
< [T w0 +8gsi.e)o,0) |,
j=m+n
(2.6)
Dr,i(t,x)
' m—1 ~m—l+n wQp)
=ak(x)+/ A0+ (A [T T (i-meri-1+8j-miri-1)o(L.x)
0 X .
HENL Jj=1 J=m

ng .
< [T (@i (s +gscina) o d.x)"”
j=m+n
2.7)
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Differentiating over sums and expanding the resulting integrands using the binomial
theorem (Cb b!/al(b—a)!), we get

Pk, 0+1(, x)

t m—1 _m=l+n .
=ai(x) +/ Ar(0)+ Z Ar() l_[ xj.j“(j) l_[ (fj—m+1,QO(I,x))'u(])
0 ek j=l1 j=m
wu(j) . . .
+3 | Y (fjmmar0o 1)) 7 (gj—mrr.00 (. 1))
i=1
x 1_[ ( wii) (.o, x))’“”)
j=m+n
wu(j) L
w(j)—i
+Z( Pdy ) fn.oo U, X))
i
X (du(p&sin.oo 1,0)) | ]
(2.8)
and
Pr,i(t, x)
t m—1+n .
:ak(.x)+/ Ak(0)+ Z Ak(l/l/) l_[ x“(/) l_[ (fj—m—i—l,l—l O(I, x))//’«(])
0 HEAL j=m
w(j) ‘ i .
+Z Cfl(])(fj,l—lo(l,X))Mj l(gj,l_lo(l,x))l
i=1
ng .
< I1 (dvk(j)(fak(j),l—1O(I,x))”(’)>
Jj=m+n+2
n(j) G S
+2 (Ci d(j) Sor(pi-10 (I,X))
i=1
x (du()88c(jy.i—1) 0 (1, )’
2.9)

From the induction hypothesis, for any j and i, fj; 10, x) = fj po(l,x), and
therefore, dy ) fj1—10 (U, x) = dy) fj,0 o (I,x). The power of the identity in the des-
ignated component in any term of g; ;1 o(/,x) or gj oo (I, x) is at least O + 1. Since
the differential operators reduce only powers of components of x, the same is true
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for dy(j)gji—10(,x) and dy(j)gj, 0 o (I,x). Thus, the term having factor 12+ must
come from integrating powers of f; ;1o (I, x) and powers of d,(jy fj,i—10(/, x) which
we have just shown to be identical to the corresponding powers of f; ¢ o ([, x) and
dy(jy fj, 00, x). Hence the induction is continued.

Define V by if 1 <k <n and (¢, x) € Dy then

m—1

Vet x) =ar)+ Y [ bi+ D ,(,]_[x"(’) 1, (2.10)

JjeN 0€Ag,j
that is, if / € N then

m—1

fra(t, x)—ak(x)+z bi+ Y. b]U]_[x"(’) 1. @2.11)

[ASV V]

(Note that A ; C Ej;;—1.) From the induction just established, V' is well defined.
Consider 1 <k <N,le N,and d\ V. If (t,x) € Dy,

d\ Vi =di fia+di (Vi — fii)- (2.12)

From the fundamental theorem of calculus

m—1 m—14n

dipes = A0+ Y | A [T TT (pjemerimr o))"
HEN j=1 j=m
(2.13)
< [T (duypacri—to )"
Jj=m+n
If1<j<nthenp;;= fj;+gj; thus
di fei+di8k.1
m—1 ) m—1+n v
= (4@ + > (A 1 TT (fiemrri—1+8j-miri1)o(.x)
neA j=1 j=m
x ]_[ gy (Foeipa—1 + 8se(jy-1) o (1, )) "
j=m+n
(2.14)

From the argument in the induction, all terms having degree no greater than [ — 1 in
t are terms of dy fx;(t,x). All terms of d; (Vi — fk,;) have degree at least / and the
terms of V;(z,x) of degree no greater than / — 1 are identical to those of f;; 1(z, x).
Therefore, since arbitrarily high powers of d; Vi (¢, x) satisfy the PDE, Vj solves the
same PDE as Uy, and V = U by the uniqueness in the premise. O
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If the generator is a polynomial on the appropriate space and the initial conditions
are polynomials then, as in the ODE case, the computational implementation follows
directly from the proof of the theorem since only polynomial algebra and the power
rule are involved. On the other hand, even if the initial conditions are polynomial, if the
generator is analytic but not a polynomial, and a polynomial projection is necessary to
achieve a polynomial generator, then the initial conditions for the corresponding com-
ponents of the solution are analytic, but need not be polynomials. For example, consider
w in Example 1.4 and suppose that w(0, x, y) = x24y%. Then z(0, x,y) = 1/(x*+y?)
which is not polynomial. In a symbolic computing environment this problem is easily
addressed. However, in a numeric computing environment an analytic function cannot
be entered.

Even in a numeric computing environment Theorem 2.1 solves PDEs with polyno-
mial generators and polynomial initial conditions, an interesting and extensive class
of problems. However, the theorem would carry even greater impact if analytic initial
conditions and/or generators that can be projected as polynomials could also be in-
cluded. Theorem 2.2 addresses this issue. We introduce A as the “exponent finder” for
the presentation of the solution in order to distinguish it from A, the “exponent finder”
for the generator.

THEOREM 2.2. Suppose U is as in the premise to Theorem 2.1 and if (t,x) € Dy and
1 <k <n then

Uet.x) = [ bo+ > bogl_[x”“) +> i+ > ,G]_[x"(’) ¢l

oeAk0 JjeN 0EAL |
(2.15)

Forre N, 1<k<n, je NU{0}, M =max{dimD, |1 <s <n}, and T’y j, = {a |
o € Ay j and Z;";lla(i) <r+M)} and if (t,x) € Dy, then

Tir(t.0) = | bo+ D bog]‘[xf’(” +> oo+ > ;al_[x"(” /i

o€l o,r jer €Tk jr
(2.16)
and
m—1 )
Wi (00 = [ bo+ D boo [[ 77
o€ly0,r i=1
t m—1 ) m—1+n .
+/ A0+ Y | Aw) Hx;f(]) [T (T-mirr o(l,x))"
0 MEAL j=1 j=m
< [T (@i Tsiyr—ro.0)"
Jj=m+n
(2.17)

Then Wi 41 = Ti 41 or the degree of Wi y41 — Tk r+1 is greater than r + 1.
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Proof. Let U be as in the premise to Theorem 2.1 and define forr € N and k € n, R
so that Uy = T, + Rk . Then for (¢,x) € 0™, each term of Ry ,(¢,x) has degree at
least r + M +1.

t m—1+n )
Ui(t.x) = ap(x) + /0 A0+ Y Ak(m]"[x"(” [T Wj—msro. )"
HEA j=m

< [T (dwihUsyod.x)* ] |

Jj=m+n
(2.18)
then we have
Ui(t, x)
m—14n
— a0+ f A0+ Ak(m]_[x"‘” H (T + Rjmsr ) o (1,0
HEA

n(j)
x 1_[ (vk(n (Toe(jy.r + Rse(j.r) o (1, X)) )

Jj=m+n
(2.19)
Expanding as in the proof of Theorem 2.1 using the binomial theorem,
Uk (2, x)
t m—1 _m=1+n .
:ak(x)-l-f Ar(0)+ Z Ar() fom 1—[ (Tj,mH,ro(I,x))“(])
0 HEA j=1 j=m
nG) , " |
+Z Ciu(j)(Tl'—erLro(I’x))M P (Rjmirro( )
i=1
x 1_[ ( w(i) (Toeiy.ro (I, x))“(’))
j=m+n
u(j) -
j n(j)—i
+> (C;L(J)d‘)k(j)Tsk(j)JO(LX))
i=1
X (dve(jy Rs(jy.r 0, )’
(2.20)

Each term of the binomial expansion which has R; (.) , as a factor has degree greater
than » + M. Any term containing a partial derivative of Rs (., as a factor, since the
order of the equation is M, has degree greater than r. Thus any term from the integral
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arising from these terms has degree greater than r + 1 because of the additional power
of ¢ from the power rule. Let ay ,(x) denote the terms of ax(x) of degree less than or
equal to r +1.

Thus
m—14n )
Uk, x) =ag (x)+ / A0 Y Ak<u)1'[x’*(” [T (Ty=msrror )
0 nehy j=m

(2.21)
plus terms of degree greater than r + 1. Since

m—1 m—1+n

ak,r<x>+/ A+ (A [T T (@merr o (40) ) | = Wi, 20,

HEAL j=1 j=m
(2.22)
and T} ,41(t, x) is the (r 4 1)st degree truncation of Uy (¢, x), the conclusion is estab-
lished. O

Theorem 2.2 shows that if iterates are truncated properly, then succeeding iterates
continue to generate the Maclaurin series. This makes it possible to implement the
iteration in a numeric computing environment.

3. Examples

In this section, we consider four well-studied PDEs and illustrate the usefulness of the
theorems and ideas presented in the last section. Our main goal is to show how the
results of the last section provide a method for obtaining polynomial solutions in ¢
with coefficients that are functions of x. We use the software package Maple to obtain
symbolic results. We stress that all the presented results could have been obtained in a
numerical environment using Theorem 2.2.

Example 3.1 (Burger’s equation). Consider the equation
diu = —udpu; u(0,x) = f(x). (3.1

It is well known that Burger’s equation can produce solutions with discontinuities
and that many numerical techniques exhibit a Gibbs phenomenon for sharp fronts. If
f is twice differentiable then the fourth modified Picard iterate (the modification is
to truncate to all powers of the first component less than the number of the iterate;
Theorem 2.2 guarantees that these are terms of the power series for the solution and
Theorem 2.1 that they will be carried forward in the iteration) is given by

—1 1 X
<3f(x)2f’(x)f”(x) 3f(x)f’(x)3)t

(3.2)
+ (f(x)f’(x)2+

1 ) /
m)f = fQ)f )t + f(x).
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Higher degree Maclaurin polynomials are easily generated and do have high compu-
tational utility, but because of the space occupied by the printout, are not presented here.

To model a sharp front that will propagate over time, the initial condition used was
f(x) =24 (2/m)arctan(x). The results from using only the third degree truncation
of the fourth Picard iterate with a time step of 0.25 are presented in Figure 3.1. (Note
that the initial condition is updated after each time step to what the iterate from the
previous time step pairs (0.25, x) with.) We note the smooth movement of the front in
Figure 3.1.

2.57

0.5 1

12 -8 -4 0 4 .8

FIGURE 3.1. Graph of third degree Maclaurin polynomials for Burger’s equation
using modified Picard iteration at r = 0.25, 0.5, 0.75, and 1.0.

Of course, there need not be a unique polynomial projection for a given PDE. In [6]
the authors show that for ODEs one may be able to choose a polynomial projection
that reduces the number of components of the generator or a polynomial projection
that reduces the degree of the generator. In that paper it was shown by example that
using a polynomial projection that reduces the degree may give more accurate numerical
results. However, using a polynomial projection that reduces the degree of the generator
usually increases the number of components of the generator.

The following examples show that one can reduce the number of partial derivatives
needed by choosing an appropriate polynomial generator. When working in a symbolic
environment, at least for these examples, this reduces the computations and computa-
tional time needed to generate the modified Picard iterates.

Example 3.2 (The wave equation). Consider the wave equation
diu(t,x) =a(da(bdou))(t,x);  u(,x)=px),  du0,x)=qx), ((3.3)

where a and b are functions of x only. This can be converted to a form to which
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our theorem applies in at least two ways. One is by using the polynomial projection
v = dju. This projection gives the system

diu =v; div =adybdru+abdyu,

(3.4)
u(0,x) = p(x); v(0,x) = q(x).

If one makes the additional polynomial projection w = d>u, the system that results is

diu =v; div =adrbw +abdyw; diw =dhv,

3.5
u@©,x)=px);  vOxX)=gx);  wO,x)=p'x). G
This second system has more components, but the second system is first order and
thus less computationally demanding than the first system. The second system generated
the modified Picard iterates significantly faster than the first system. Of course, the
modified Picard iterates, being the Maclaurin polynomials for u, are the same for
both systems.
The third degree Maclaurin polynomial for u(¢, x) in this system is

1 o 1 2
P +q )1+ 5 (a(x)b (xX)p (x)+m>t

| (3.6)
+ (ga(x)b’(x)q’(xwr

1 >t3
6a(x)b(x)q"(x))

Another projection of (3.3) is obtained by letting w = bdu. This gives the polynomial
system

diu =v; div=adrw; diw = bdyv,

/ (3.7)

u(0,x) = p(x); v(0,x) =q(x); w(0,x) = bp'(x).
To model a sharp front that will cause reflections, b(x) was set to 24 (2 /) arctan(x)
and a(x) was set to 1. A strength of Picard iteration is that one does not have to introduce
boundary conditions in wave propagation to obtain numerical results. Therefore, there
are no spurious reflections from boundaries. To show this p(x) is set to cos(x) +
sin(2x —w/4) and ¢(x) is set to 0. The graphical results for the data obtained from
using only the second degree Maclaurin polynomials in ¢ and updating the coefficients
by setting p(x) to u(5/32,x), g(x) to dju(5/32,x) and w(0, x) to the update of p’(x)
are presented in Figure 3.2.

Example 3.3 (The Sine-Gordon equation). The Sine-Gordon equation has the form

di1u = dyu+sinou; u(0,x) = p(x), diu(0,x) =q(x). 3.8)
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(a) The graph of the parameter b for the wave equation runs.

L

(c) Graph of second degree Maclaurin polynomials for the wave equation using
modified Picard iteration at t = 0(-), 4h(o), 8h(+) and 114(3) for h =5/32.

FIGURE 3.2.
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In order to use the theorems from Section 2 the polynomial projection we use is v = dju,
y = sinou, and z = cosou. Again, in order to reduce the amount of differentiation, we
also let w = dou. The resulting system is

diu =v; u(0,x) = p(x),
div=dyw+y; v(0,x) =g (x),
dyw = dov; w(0,x) = p'(x), (3.9)
diy=zv;  y(0,x)=sin(px)),
diz=—yv;  z(0,x)=cos(p(x)).

This system is only a second degree polynomial system. Thus it is straightforward to
program and requires little computing time. The second degree Maclaurin polynomial
for u(z,x) is

1 /" L. 2
(Ep (x)—i—i sm(p(x)))t +gx)t+ p(x). (3.10)

Again boundary conditions do not have to be introduced to obtain numerical results. The
graphical results in Figure 3.3 are from updating p and g as explained in Example 3.2
with p(x) set to sin(x) and g (x) set to O, but using a time step of 1.25.

Example 3.4 (Euler’s inviscid gas equations). The one dimensional system of equa-
tions is
dip+d2(pv) =0; p(0,x) = p(x),

3.11
dl(,OU)+dz(pv2)+62d2,0=0; v(0,x) =¢q(x), G-1D

where p represents the density, v represents the velocity and ¢ represents the speed
of sound for the medium. To use the theorems, we make the polynomial projection
w = 1/p and the products are differentiated giving the polynomial system

dlpz—vdzp—pdzv; p(O,X)ZP(X),

div = —vdyrv — Cwds p; v(0,x) =q(x), (3.12)

diw = wzvdzp—i—wzpdzv; w(0,x) = .
px)

Of course other polynomial projections are possible. For example, one could let z = pv.
It is well known that “shocks” can develop in the above equations. The modified Picard
process presented here does not converge at the shocks, thereby giving numerical evi-
dence of the development of the shock.
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(a) The graph of the initial condition for the Sine-Gordon equation runs.

(b) Graph of second degree Maclaurin polynomials for the Sine-Gordon equa-
tion using modified Picard iteration at r = h(-), 2h(o), 3h(+), and 3.25h(0)
for h =1.25.

FIGURE 3.3.

The third degree Maclaurin polynomial for v(¢, x) is
p(x) = (p()qg' (x)+ p'(x)q(x) p(x))t
+ (6 p(x)q(x)q" (x) +6 p(x)q' (x)*+3cp" (x)
+12p(x)?p (0)g(x)g' (x) +3 p(x)*q (x)* p" (x))1?

+((2P ) qx)e* =2 p(x)*p" (x)q(x)*q' () =2 p(x)°¢ (x)°
—4p(x)*q'(x)q(x)q" (x) =2 p(x)q (x)c* P’ (x)?
—6p' (x)q(x)q'(x) p(x)* —4 p'(x)q (x) p(x)c? p” (x)
—2p (0)g(x)* p(x)*q" (x) =2 p(x)2q' (x)c* p” (x)
—2p(x)2q" (x)c*p'(x)) /6p(x)?)t.

(3.13)
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