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Suppose 𝐶 is a cone contained in real vector space 𝑉. When does 𝑉 contain a hyperplane 𝐻 that intersects each of the 0-rays in𝐶\{0} exactly once?We build on results found in Aliprantis, Tourky, and Klee Jr.’s work to give a partial answer to this question.We
also present an example of a salient, closed Banach space cone 𝐶 for which there does not exist a hyperplane that intersects each
0-ray in 𝐶 \ {0} exactly once.

1. Introduction

Let 𝑉 be a vector space of finite or infinite dimension over
the reals. A 0-ray ⊂ 𝑉 is an open ray whose source is the
origin. We consider the origin of 𝑉, {0}, to be a 0-ray. For us,
a cone𝐶 ⊂ 𝑉 is any union of 0-rays (precise definitions for 0-
rays and cones are given in Section 2). Many results involving
cones, especially convex cones, require the existence of a
hyperplane 𝐻 which intersects each 0-ray of 𝐶 \ {0} exactly
once. For example, see Garrett Birkhoff ’s original proof of
his Projective Contraction Mapping Theorem [1], which is
discussed in detail in [2]. There seems to be a relatively small
amount of literature on the existence of such hyperplanes.
Perhaps themost accessible source is Aliprantis and Tourky’s,
“Cones and Duality” [3]. On the other hand, there is a large
body of literature on closely related topics: on the separation
of convex bodies by hyperplanes (the various separation
versions of theHann-BanachTheorem) and on the support of
cones and convex sets by hyperplanes: Aliprantis and Border
[4] or Klee Jr. [5].

Sections 2 and 3 consist of definitions and lemmas which
lead to our main results, which are found in Section 4. In
Theorem 21 we show that there exists a linear functional𝐿 such that 𝐿 > 0 on 𝐶 \ {0} if and only if there exists
a hyperplane 𝐻 which intersects each 0-ray exactly once.
Our theorem is a slight generalization of a similar result for
cone bases (cone bases are defined in Definition 16), given by

Aliprantis andTourky:Theorem 1.47, page 40 of [3], whichwe
present asTheorem 20. Aliprantis and Tourky’s results, which
involve cone bases, require convexity, whereas ours, which
replace cone bases with hyperplanes, do not. We explore the
relationship of hyperplanes to cone bases, Lemmas 14 and 15,
as well as Corollary 22.Theorem 24 gives an alternative proof
of Aliprantis and Tourky’s previously cited Theorem 1.47.
These results, combinedwith results of Klee Jr. [5, 6], on linear
functionals, give a partial answer to when one should expect
such a cone-intersecting hyperplane to exist. We end our
short paper in Section 5 with an interesting counterexample
involving Banach space cones. Before we prove our results,
we include the following illustrative example.

Example 1. Let 𝑉 = R𝑛. Let 𝐶 = R𝑛≥0 be the cone of
nonnegative vectors:

R
𝑛
≥0

= {(𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ R
𝑛 | 𝑥𝑖 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑛} . (1)

Let 𝐿 : R𝑛 → R be the linear functional defined as follows:

𝐿 (𝑥1, 𝑥2, . . . , 𝑥𝑛) =
𝑛∑
𝑖=1

𝑥𝑖. (2)
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So, 𝐿 > 0 onR𝑛≥0 \ {0}. Let𝐻 = {𝑥 ∈ R𝑛 | 𝐿(𝑥) = 1}. It is easy
to see that the hyperplane𝐻 intersects each 0-ray

[𝑥] = {𝜆𝑥 | 𝜆 > 0} (3)

of R𝑛≥0 \ {0} exactly once, at the point 𝑥/𝐿(𝑥).
The following is clear. If 𝑥 ∈ R𝑛≥0 \ {0} and we let 𝑥𝐻 =

𝑥/𝐿(𝑥), then 𝑥 = 𝐿(𝑥)𝑥𝐻.
Notes. 𝐻 ∩ R𝑛≥0 has a nice geometric interpretation; it is
standard 𝑛 − 1 simplex; in probability theory 𝐻 ∩ R𝑛≥0 is the
space of all possible probability distributions for processes
with 𝑛 possible outcomes.

2. Cones, 0-Rays, and Hyperplanes

Let 𝑉 be a real linear space, that is, any real vector space of
finite or infinite dimension. Geometrically speaking, a cone
is a subset of 𝑉 which can be represented as a union of rays
emanating from a single source point. If that source point is
considered to be part of the cone, we say the cone is pointed.
In this paperwewill always assume that the source of the cone
is the null vector (the origin 0) of𝑉. This assumption leads to
the concise algebraic definition.

Definition 2. A subset 𝐶 of a vector space𝑉 is called a cone if
it is closed under positive scaling, that is, if 𝜆𝐶 ⊂ 𝐶whenever𝜆 > 0.
Definition 3. The ray emanating from the origin and passing
through the point V ∈ 𝑉 is denoted by [V]. As a point set,

[V] = {𝜆V | 𝜆 > 0} . (4)

Such a ray will be called a 0-ray to emphasize its source.

The reason for the strict inequality in Definition 3 is to
make 0-rays into equivalence classes.

Proposition 4. Let 𝑉 be a vector space of any dimension.

(1) The 0-rays partition 𝑉 into equivalence classes.
(2) If 𝑐 is an element of cone 𝐶 ⊂ 𝑉, then [𝑐] ⊂ 𝐶. Hence,

any cone is partitioned by its 0-rays.
(3) Suppose V, 𝑤 ∈ 𝑉.Then, [V] = [𝑤] if and only if V = 𝜆𝑤

for some 𝜆 > 0.
(4) 0-ray [0] ⊂ 𝑉 consists of single point 0.

Proof.

Proof of (1). Let V, 𝑤 ∈ 𝑉. Since V ∈ [V] it follows that⋃V∈𝑉[V] = 𝑉. If [V] ∩ [𝑤] ̸= 0, then ∃𝑥 ∈ [V] ∩ [𝑤]. But
then 𝑥 = 𝜆VV = 𝜆𝑤𝑤 for some 𝜆V, 𝜆𝑤 > 0. This allows us to
write V = (𝜆𝑤/𝜆V)𝑤. But then

[V] = {𝜆𝜆𝑤𝜆V 𝑤 | 𝜆 > 0} = [𝑤] . (5)

Proof of (2) and (3). These two results are a trivial conse-
quence of part (1) and the definitions of cones and 0-rays.

Proof of (4). This result is a trivial consequence of the
definition of a 0-ray.

Definition 5. The cone opposite to 𝐶 is denoted by −𝐶,
algebraically: −𝐶 = {−𝑐 | 𝑐 ∈ 𝐶}.
Definition 6. The cone 𝐶 is salient (or bounded) if 𝐶⋂−𝐶 ⊂{0}.
Definition 7. One will say that the cone 𝐶 is closed if it is a
closed subset in 𝑉’s topology.
Definition 8. If 𝑆 ⊂ 𝑉, then Span(𝑆) is the smallest vector
space in𝑉 containing 𝑆. Alternatively, Span(𝑆) is the set of all
finite linear combinations of vectors from 𝑆.

The following proposition indicates why salient cones are
sometimes called bounded.

Proposition 9. If 𝐶 is a salient and closed cone contained in
normed vector space 𝑉, then 𝐶 contains no lines.

Proof. Let V0 and V1 be any two distinct points on a line 𝐿
contained in 𝐶. Then 𝐿 = {V0 + (V1 − V0)𝑡 | 𝑡 ∈ R}. Since 𝐶 is
closed under positive scaling the following two sequences

{ V0 + (V1 − V0) 𝑛󵄩󵄩󵄩󵄩V0 + (V1 − V0) 𝑛󵄩󵄩󵄩󵄩}
∞

𝑛=1

,

{ V0 + (V1 − V0) (−𝑛)󵄩󵄩󵄩󵄩V0 + (V1 − V0) (−𝑛)󵄩󵄩󵄩󵄩}
∞

𝑛=1

(6)

are contained in 𝐶. They also are contained in Span({V0, V1}),
which, being a finite dimensional, is complete. Since
Span({V0, V1}) is complete and 𝐶 is closed, these two
sequences converge, respectively, to the following two points
in 𝐶:

V1 − V0󵄩󵄩󵄩󵄩V1 − V0
󵄩󵄩󵄩󵄩 ,

− V1 − V0󵄩󵄩󵄩󵄩V1 − V0
󵄩󵄩󵄩󵄩 .

(7)

This contradicts 𝐶 being salient.

In Proposition 9 the requirement “𝐶 is closed” is neces-
sary as the following example shows.

Example 10. Consider the open upper half plane: H ={(𝑥, 𝑦) ∈ R2 | 𝑦 > 0}.H is closed under positive scaling soH
is a cone. Since (𝑥, 𝑦) ∈ H ⇔ 𝑦 > 0 it follows that −(𝑥, 𝑦) =(−𝑥, −𝑦) ∉ H and soH ∩ −H = 0. ThusH is a salient cone
contained in R2, a Banach space. However, coneH contains
every line 𝑦 = 𝑘 for each 𝑘 > 0.H is not a counterexample to
Proposition 9 sinceH is not topologically closed.

The topologically closed upper half plane,H = {(𝑥, 𝑦) ∈
R2 | 𝑦 ≥ 0}, is a Banach space cone which contains every
line 𝑦 = 𝑘 for each 𝑘 ≥ 0. H is not a counterexample to
Proposition 9 since H is not salient: (𝑥, 0) and −(𝑥, 0) ∈ H
for each 𝑥 ∈ R.
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Definition 11. If V ∈ 𝑉 and𝑊 is a vector subspace of 𝑉, then
one calls V +𝑊 a hyperplane.

The following standard result, regarding the smallest
hyperplane generated by a subset S, of a vector space 𝑉, is
useful.

Lemma 12. LetS be any subset of vector space𝑉. Let 𝑠0 be any
fixed element of S and let

𝑊 = Span {𝑠1 − 𝑠2 | 𝑠1, 𝑠2 ∈ S} . (8)

Then 𝑠0 +𝑊 is the smallest hyperplane containing S.

Proof. 𝑊 is a vector subspace of𝑉. So 𝑠0 +𝑊 is a hyperplane.
Let 𝑠 ∈ S.Then, 𝑠 = 𝑠0+(𝑠−𝑠0) ∈ 𝑠0+𝑊. SoS ⊂ 𝑠0+𝑊. Now,
let 𝐻󸀠 be any hyperplane that contains S. Since S ⊂ 𝐻󸀠, we
canwrite𝐻󸀠 = 𝑠0+𝑊󸀠, for some vector subspace𝑊󸀠 ⊂ 𝑉. But
then, −𝑠0 +𝐻󸀠 = 𝑊󸀠. This implies −𝑠0 + 𝑆 ⊂ 𝑊󸀠. If 𝑠1, 𝑠2 ∈ S,
then

(−𝑠0 + 𝑠1) − (−𝑠0 + 𝑠2) = 𝑠1 − 𝑠2 ∈ 𝑊󸀠. (9)

So𝑊 ⊂ 𝑊󸀠. Hence, 𝑠0 +𝑊 ⊂ 𝑠0 +𝑊󸀠 = 𝐻󸀠.
The following standard result about convex sets is stated

without proof. See Klee [7] or Lay [8] for details.

Proposition 13. Suppose S is a convex set contained in 𝑉. If𝑠1, 𝑠2, . . . , 𝑠𝑛 ∈ S and 𝛼1, 𝛼2, . . . , 𝛼𝑛 are positive real numbers,
then

∑𝑛𝑖=1 𝛼𝑖𝑠𝑖∑𝑛𝑖=1 𝛼𝑖 ∈ S. (10)

3. Intersection Lemmas

Lemma 14. Suppose that 𝐶 is a cone contained in 𝑉, a vector
space over the reals of finite or infinite dimension, and that there
exists linear functional 𝐿 from𝑉 to the reals such that 0 < 𝐿(𝑐)
for each 𝑐 ∈ 𝐶 \ {0}. Let 𝐻 = {𝑥 ∈ 𝑉 | 𝐿(𝑥) = 1}. For each𝑐 ∈ 𝐶 \ {0}, let

𝑐
𝐿 (𝑐) = 𝑐𝐻 (11)

be the central projection of 𝑐 onto𝐻. Then

(1) 𝐶 is salient.

Suppose 𝑐, 𝑐󸀠 ∈ 𝐶 \ {0}; then
(2) 𝑐𝐻 = (𝑐󸀠)𝐻 if and only if [𝑐] = [𝑐󸀠];
(3) (𝑐𝐻)𝐻 = 𝑐𝐻;
(4) [𝑐𝐻] = [𝑐];
(5) 𝐻 intersects each 0-ray [𝑐] in𝐶\{0} once and only once;

in particular, [𝑐] ∩ 𝐻 = {𝑐𝐻};
(6) 𝐻 = 𝐿−1(1) = 𝑐𝐻 + ker(𝐿), so that 𝐻 is a hyperplane

in 𝑉.

Proof. (1) If 𝑥 ∈ 𝐶⋂−𝐶 \ {0}, then −𝑥 ∈ 𝐶⋂−𝐶 \ {0}. But
then 𝐿(𝑥) > 0 and 𝐿(−𝑥) = −𝐿(𝑥) > 0, which is impossible.
So 𝐶⋂−𝐶 ⊂ {0}, implying 𝐶 is salient.

(2) Let 𝑐, 𝑐󸀠 ∈ 𝐶 \ {0}. Then 𝐿(𝑐), 𝐿(𝑐󸀠) > 0. If 𝑐𝐻 = (𝑐󸀠)𝐻,
then 𝑐/𝐿(𝑐) = 𝑐󸀠/𝐿(𝑐󸀠), which implies [𝑐󸀠] ∩ [𝑐] ̸= 0. By
Proposition 4, part (1), the 0-rays are equivalence classes.
Hence, [𝑐] = [𝑐󸀠].

On the other hand, if [𝑐󸀠] = [𝑐], then there exists 𝜆 > 0
such that 𝑐󸀠 = 𝜆𝑐. But then

(𝑐󸀠)𝐻 = 𝑐󸀠
𝐿 (𝑐󸀠) =

𝜆𝑐
𝐿 (𝜆𝑐) =

𝜆𝑐
𝜆𝐿 (𝑐) =

𝑐
𝐿 (𝑐) = 𝑐𝐻. (12)

(3)

(𝑐𝐻)𝐻 = ( 𝑐
𝐿 (𝑐))

𝐻 = 𝑐/𝐿 (𝑐)
𝐿 (𝑐/𝐿 (𝑐)) =

𝑐/𝐿 (𝑐)
(𝐿 (𝑐) /𝐿 (𝑐))

= 𝑐
𝐿 (𝑐) = 𝑐𝐻.

(13)

(4) 𝑐𝐻 = 𝑐/𝐿(𝑐), so [𝑐𝐻] ∩ [𝑐] ̸= 0. The 0-rays are
equivalence classes, by Proposition 4, part (1), so [𝑐𝐻] = [𝑐].

(5) 𝑐𝐻 ∈ [𝑐] by part (4) of this lemma. 𝑐𝐻 ∈ 𝐻 because

𝐿 (𝑐𝐻) = 𝐿( 𝑐
𝐿 (𝑐)) =

𝐿 (𝑐)
𝐿 (𝑐) = 1. (14)

So {𝑐𝐻} ⊂ [𝑐] ∩ 𝐻. The following shows [𝑐] ∩ 𝐻 ⊂ {𝑐𝐻}. Let𝑐󸀠 ∈ [𝑐]∩𝐻. By part (4) of this lemma, [𝑐] = [𝑐𝐻]. So, 𝑐󸀠 = 𝜆𝑐𝐻
for some 𝜆 > 0. 𝑐󸀠 is in𝐻. So, 𝐿(𝑐󸀠) = 𝐿(𝜆𝑐𝐻) = 𝜆𝐿(𝑐𝐻) = 1.
By (14), 𝐿(𝑐𝐻) = 1, so 𝜆 = 1 and 𝑐󸀠 = 𝑐𝐻.

(6) We can use the following elementary, standard result:
if 𝐿 is any linear functional (not identically zero) from 𝑉 to
R, then 𝐿−1(𝑟) is a hyperplane ∀𝑟 ∈ R. Moreover, 𝐿−1(𝑟) can
always be written in form V𝑟 +ker(𝐿), where V𝑟 is any element
of 𝐿−1(𝑟). To prove this, simply use the linearity of 𝐿 and note
that 𝐿 being nonidentically zero implies 𝐿−1(𝑟) ̸= 0. To prove(6), note that𝐻 = 𝐿−1(1) and 𝑐𝐻 ∈ 𝐿−1(1).
Lemma 15. Suppose that 𝐶 is a cone contained in 𝑉, an
arbitrary vector space of finite or infinite dimension; that𝐶 con-
tains at least one nonzero vector; and that there exists hyper-
plane𝐻 which intersects every 0-ray in 𝐶 \ {0} exactly once.

(1) Then there exists linear functional 𝐿 mapping 𝑉 to the
reals such that 𝐿 > 0 on 𝐶 \ {0}.

One can sharpen this result. For each 𝑑 ∈ 𝐶 \ {0}, let 𝑑𝐻 be the
unique intersection of 0-ray [𝑑] and hyperplane 𝐻. In other
words, [𝑑] ∩ 𝐻 = {𝑑𝐻}.

(2) Linear functional 𝐿, mentioned in part (1), can be
chosen so that ∀𝑑 ∈ 𝐶 \ {0}; we have 𝑑 = 𝐿(𝑑)𝑑𝐻.
With this choice of 𝐿, we have 𝐿 > 0 on 𝐶 \ {0} and𝐿 = 1 on 𝐶 ∩ 𝐻.

Proof. The representative Figure 1 serves to illustrate some
of the arguments detailed in this proof. In Figure 1 the
vector space 𝑉 is represented as R2; the cone 𝐶 as R2≥0; the
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hyperplane 𝐻 as the solution to 𝑥 + 2𝑦 = 4; the nonzero
element of 𝐶 \ {0} as 𝑐; and the vector subspace −𝑐 + 𝐻 as
the solution to 𝑥+2𝑦 = 0. In our proof the basis for subspace−𝑐+𝐻will be denoted byB−𝑐+𝐻; in the figure it is represented
by {𝑏}. In our proof the basis for 𝑉 will be denoted by B;
in Figure 1 it is represented by {𝑏, 𝑐}. The linear functional𝐿, mentioned above (in part (2) of this lemma), is given by𝐿(𝑥, 𝑦) = (𝑥 + 2𝑦)/4.

Let 𝑐 ∈ 𝐻 ∩ 𝐶 \ {0}, such a 𝑐 exists by this lemma’s main
assumption.

Claim 1. −𝑐 +𝐻 is a vector subspace of 𝑉. Proof is as follows:
since 𝐻 is hyperplane there exists vector V ∈ 𝑉 and vector
subspace𝑊 ⊂ 𝑉 such that𝐻 = V+𝑊. But then, 𝑐 = V+𝑤𝑐 for
some𝑤𝑐 ∈ 𝑊. Hence−𝑐+𝐻 = −(V+𝑤𝑐)+V+𝑊 = 𝑤𝑐+𝑊 = 𝑊.

Claim 2. 𝑐 ∉ −𝑐 + 𝐻. Proof is as follows: if 𝑐 ∈ −𝑐 + 𝐻 then𝑐 = −𝑐 + ℎ𝑐 for some ℎ𝑐 ∈ 𝐻, but then 2𝑐 = ℎ𝑐 ∈ [𝑐]. That
means 𝑐, 2𝑐 ∈ 𝐻∩ [𝑐]. This contradicts with the fact that each
ray intersects𝐻 exactly once. So claim 2 is proven.

LetB−𝑐+𝐻 be a basis for −𝑐 +𝐻. Since 𝑐 ∉ −𝑐 +𝐻, which
is a vector subspace of 𝑉, the set B−𝑐+𝐻 ∪ {𝑐} forms a basis
for Span(−𝑐 +𝐻, 𝑐). Since𝐻 ⊂ Span(−𝑐 +𝐻, 𝑐) it follows that𝐶 ⊂ Span(−𝑐 + 𝐻, 𝑐).

If Span(−𝑐 + 𝐻, 𝑐) = 𝑉, let B = B−𝑐+𝐻 ∪ {𝑐}. If
Span(−𝑐+𝐻, 𝑐) is a proper vector subspace of𝑉we can extend
the basisB−𝑐+𝐻∪ {𝑐} to a basisB for𝑉. SeeTheorem 4.72 in
[9] regarding extensions of bases.

For each 𝑥 ∈ 𝑉 we define 𝐿(𝑥) as follows. We can write 𝑥
uniquely as a finite linear combination of basis elements from
B:

𝑥 = 𝛼𝑥𝑐 +
𝑛𝑥∑
𝑖=1

𝛼𝑖𝑏𝑖, (15)

where 𝑐, 𝑏𝑖 ∈B. Define 𝐿(𝑥) = 𝛼𝑥.
If 𝑑 ∈ 𝐶 \ {0} then, by this lemma’s assumption, the set[𝑑] ∩ 𝐻 contains a single element, which we will call 𝑑𝐻. So{𝑑𝐻} = [𝑑] ∩ 𝐻. Since 𝑑𝐻 ∈ 𝐻 = 𝑐 + (−𝑐 + 𝐻) we must have𝑑𝐻 = 𝑐 + ∑𝑛𝑑𝑖=1 𝛼𝑖𝑏𝑖 with 𝑏𝑖 ∈ B−𝑐+𝐻. By Proposition 4, part

(1), [𝑑] = [𝑑𝐻], so there exists 𝛼𝑑 > 0 such that 𝑑 = 𝛼𝑑𝑑𝐻.
So 𝑑 = 𝛼𝑑𝑑𝐻 = 𝛼𝑑𝑐 + 𝛼𝑑∑𝑛𝑑𝑖=1 𝛼𝑖𝑏𝑖. So 𝐿(𝑑) = 𝛼𝑑 > 0 and
𝑑 = 𝐿(𝑑)𝑑𝐻. Hence, if 𝑑 ∈ 𝐶 ∩ 𝐻, then 𝑑𝐻 = 𝑑 and 𝐿(𝑑) = 1.

The following definition comes from Aliprantis and
Tourky [3].

Definition 16. B is a base for the cone 𝐶 if B is a convex
subset of 𝐶 \ {0} and if for each 𝑐 ∈ 𝐶 \ {0} there exists a
unique 𝑏 ∈ 𝐵 and a unique 𝜆 > 0 such that 𝑐 = 𝜆𝑏.
Proposition 17. IfB is a base for cone 𝐶 and 𝑐 ∈ 𝐶\ {0}, then
B intersects 0-ray [𝑐] in exactly one point.

Proof. By the definition of a cone base, 𝑐 = 𝜆𝑏 for a unique𝑏 ∈ B and a unique 𝜆 > 0. But then 𝑏 = 𝑐/𝜆 ∈ [𝑐]. If 𝑏󸀠 ∈
B∩[𝑐], then since [𝑐] is a 0-ray, 𝑏󸀠 = 𝜆󸀠𝑐 for some 𝜆󸀠 > 0. But
then 𝑏󸀠/𝜆󸀠 = 𝑐. Uniqueness forces 𝑏󸀠 = 𝑏.
Lemma 18. Suppose B is a base for cone 𝐶 ⊂ 𝑉. Let 𝐻B be
the smallest hyperplane containingB.Then𝐻B intersects each
0-ray in 𝐶 \ {0} exactly once. Moreover,𝐻B ∩ 𝐶 =B.

Proof. Suppose [𝑐] is a 0-ray in 𝐶\ {0}. SinceB is a cone base𝑐 = 𝜆𝑐𝑏 for a unique 𝜆𝑐 > 0 and a unique 𝑏 ∈ B. So we can
write [𝑐] in terms of 𝑏: [𝑐] = {𝜆𝑏 | 𝜆 > 0}. This means every
element in 𝐻B ∩ [𝑐] can be written in the form 𝜆𝑏 for some𝜆 > 0. We will show that if 𝜆𝑏 ∈ 𝐻B ∩ [𝑐], then 𝜆 = 1, which
will prove the lemma.

By Lemma 12, we can write𝐻B in the form𝐻B = 𝑏 +𝑊,
where𝑊 = Span{𝑏1 − 𝑏2 | 𝑏1, 𝑏2 ∈ B}. So, if 𝜆𝑏 ∈ 𝐻B ∩ [𝑐],
we can write

𝜆𝑏 = 𝑏 + 𝑛∑
𝑖−1

𝛼𝑖 (𝑏𝑖,1 − 𝑏𝑖,2) (16)

with 𝛼𝑖 ∈ R, 𝛼𝑖 ̸= 0, and 𝑏𝑖,𝑗 ∈ B, 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2.
A little algebra transforms (16) into

𝑏 = 𝑛∑
𝑖=1

𝛼𝑖𝜆 − 1 (𝑏𝑖,1 − 𝑏𝑖,2) (17)

provided 𝜆 ̸= 1. We can rewrite (17) in the following form:

𝑏 = 𝑛∑
𝑖=1

𝛽𝑖 (𝑏𝑖,1 − 𝑏𝑖,2) , (18)

where all coefficients 𝛽𝑖 are positive by letting
𝛽𝑖 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛼𝑖𝜆 − 1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 (19)

and by relabeling 𝑏𝑖,𝑗 if necessary, that is, by switching 𝑏𝑖,1 with𝑏𝑖,2 when 𝛼𝑖/(𝜆 − 1) < 0.
We can simplify (18) by letting 𝛽 = ∑𝑛𝑖=1 𝛽𝑖 and rear-

ranging terms:

𝑏 = 𝛽∑𝑛𝑖=1 𝛽𝑖 (𝑏𝑖,1 − 𝑏𝑖,2)∑𝑛𝑖=1 𝛽𝑖
= 𝛽(∑𝑛𝑖=1 𝛽𝑖𝑏𝑖,1∑𝑛𝑖=1 𝛽𝑖 − ∑𝑛𝑖=1 𝛽𝑖𝑏𝑖,2∑𝑛𝑖=1 𝛽𝑖 ) = 𝛽 (𝑏1 − 𝑏2) ,

(20)
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ℬ

bb2 = {(1 − 𝛾)b + 𝛾b2 | 𝛾 ∈ [0, 1]}

b = 𝛽(b1 − b2)

Figure 2

where

𝑏1 = ∑
𝑛
𝑖=1 𝛽𝑖𝑏𝑖,1∑𝑛𝑖=1 𝛽𝑖 ,

𝑏2 = ∑
𝑛
𝑖=1 𝛽𝑖𝑏𝑖,2∑𝑛𝑖=1 𝛽𝑖 .

(21)

B is convex. So Proposition 13 implies 𝑏1, 𝑏2 ∈ B. Since𝑏, 𝑏2 ∈B, if 𝛾 ∈ [0, 1], the convexity ofB implies

(1 − 𝛾) 𝑏 + 𝛾𝑏2 ∈B. (22)

We expand (22) using (20):

(1 − 𝛾) 𝑏 + 𝛾𝑏2 = (1 − 𝛾) 𝛽 (𝑏1 − 𝑏2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑏

+ 𝛾𝑏2
= (1 − 𝛾) 𝛽𝑏1 − (1 − 𝛾) 𝛽𝑏2 + 𝛾𝑏2
= (1 − 𝛾) 𝛽𝑏1 + (𝛾 − (1 − 𝛾) 𝛽) 𝑏2
∈B.

(23)

We find a 𝛾 ∈ (0, 1) such that the coefficient of 𝑏2 in the
third line of (23) is zero.That is, we find the intersection of line
segment 𝑏 𝑏2 = {(1−𝛾)𝑏+𝛾𝑏2 | 𝛾 ∈ [0, 1]}, which is contained
inB by convexity, with the 0-ray [𝑏1]. See Figure 2.

Here is the algebra:

𝛾 − (1 − 𝛾) 𝛽 = 0,
𝛾 − 𝛽 + 𝛾𝛽 = 0,

𝛾 (1 + 𝛽) − 𝛽 = 0,
𝛾 = 𝛽

1 + 𝛽 ∈ (0, 1) .
(24)

So, with this choice of 𝛾, (23) becomes

(1 − 𝛾) 𝛽𝑏1 = (1 − 𝛽
1 + 𝛽)𝛽𝑏1

= (1 + 𝛽1 + 𝛽 −
𝛽

1 + 𝛽)𝛽𝑏1 =
𝛽

1 + 𝛽𝑏1 ∈B.
(25)

But 𝛽 > 0, which implies 𝛽/(1 + 𝛽) ∈ (0, 1). So 𝑏1 ̸= (𝛽/(1 +𝛽))𝑏1, which means we can write 𝑏1 ∈ B ⊂ 𝐶 as multiples of

two distinct elements from B, namely, 𝑏1 and (𝛽/(1 + 𝛽))𝑏1.
That is, 𝑏1 = 1𝑏1 and 𝑏1 = ((1 + 𝛽)/𝛽)((𝛽/(1 + 𝛽))𝑏1). This
contradictsB being a cone base. Hence, our assumption that𝜆 ̸= 1must have been wrong.

Lemma 19. Suppose that 𝐶 is a convex cone and 𝐻 is a
hyperplane which intersects each 0-ray in 𝐶 \ {0} exactly once.
Then 𝐶 ∩ 𝐻 is cone base for 𝐶.
Proof. 𝐶 is convex by assumption. Hyperplanes are always
convex. Since the intersection of convex sets is convex,𝐻∩𝐶
is convex. If 𝑐 ∈ 𝐶 \ {0} then set 𝐻 ∩ [𝑐] contains a single,
unique point, say ℎ𝑐. Since ℎ𝑐 ∈ [𝑐], there exists 𝜆1 > 0 such
that ℎ𝑐 = 𝜆1𝑐. Since 𝑐 ̸= 0, 𝜆1 is unique. Let 𝜆 = 1/𝜆1. Then𝑐 = 𝜆ℎ𝑐 with ℎ𝑐 being unique with respect to𝐻∩𝐶 and 𝜆 > 0
being unique with respect to ℎ𝑐.
4. Intersection Theorems

Theorem 20, below, can be found in Aliprantis and Tourky
[3]. It relies on convexity.

Theorem 20. Suppose that convex cone 𝐶 is a subset of 𝑉, an
arbitrary vector space of finite or infinite dimension, and that𝐶 contains at least one nonzero vector. Then the following are
equivalent.

(1) There exists baseB for cone 𝐶.
(2) There exists a linear functional on 𝑉 which is strictly

positive on 𝐶 \ {0}.
Proof.

Sketch. The linear functional is defined as follows. Suppose𝑐 ∈ 𝐶 \ {0}. SinceB is a cone base for 𝐶 there exists a unique𝜆𝑐 > 0 and a unique 𝑏𝑐 ∈B such that 𝑐 = 𝜆𝑐𝑏𝑐. Define 𝑓(𝑐) =𝜆𝑐. Aliprantis and Tourky use the convexity ofB to show that
functional 𝑓 is linear. For details and the rest of the proof, see
Aliprantis and Tourky [3], Theorem 1.47, page 40.

Theorem 21, below, is a slight generalization of The-
orem 20. Our version of the theorem does not require
convexity and it replaces the cone base by an intersecting
hyperplane.

Theorem21. Suppose that cone𝐶 is a subset of𝑉, an arbitrary
vector space of finite or infinite dimension, and that 𝐶 contains
at least one nonzero vector. Then the following are equivalent.

(1) There exists a linear functional on 𝑉 which is strictly
positive on 𝐶 \ {0}.

(2) There exists hyperplane 𝐻 such that 𝐻 intersects each
0-ray in 𝐶 \ {0} exactly once.

Proof. (1) is equivalent to (2) is proven in Lemmas 14 and 15.

Corollary 22. If cone 𝐶 has a cone base, then both of the
following are true.
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(1) There exists a linear functional on 𝑉 which is strictly
positive on 𝐶 \ {0}.

(2) There exists hyperplane 𝐻 such that 𝐻 intersects each
0-ray in 𝐶 \ {0} exactly once.

Proof. Lemma 18 combined with Theorem 21 proves Corol-
lary 22.

The converse of Corollary 22 is not true as the following
example shows.

Example 23. Let 𝑒1 = (1, 0) and 𝑒2 = (0, 1). Let 𝐶 be the
nonconvex cone [𝑒1] ∪ [𝑒2] ⊂ R2. Hyperplane 𝐻 = {𝑒1 +𝛼(𝑒2 − 𝑒1) | 𝛼 ∈ R} intersects each 0-ray in 𝐶 \ {0} exactly
once. However no cone base exists for 𝐶.

If the cone 𝐶 is convex, then the converse of Corollary 22
is true. See Theorem 24.

Theorem 24. Suppose that convex cone 𝐶 is a subset of 𝑉, an
arbitrary vector space of finite or infinite dimension, and that𝐶 contains at least one nonzero vector. Then the following are
equivalent.

(1) There exists baseB for cone 𝐶.
(2) There exists a linear functional on 𝑉 which is strictly

positive on 𝐶 \ {0}.
(3) There exists hyperplane 𝐻 such that 𝐻 intersects each

0-ray in 𝐶 \ {0} exactly once.
Suppose (1), (2), or (3) holds. Let 𝐻B be the smallest

hyperplane containing baseB. Then

(i) 𝐻B ∩ 𝐶 =B;
(ii) 𝐻B will intersect each 0-ray in 𝐶 \ {0} exactly once.

Proof. (1) is equivalent to (2) is proven in Lemmas 18 and
19. For an alternative proof that (1) is equivalent to (2)
see Aliprantis and Tourky [3], Theorem 1.47, page 40. (2) is
equivalent to (3) as proven in Lemmas 14 and 15. (i) and (ii)
are proven in Lemma 18.

Corollary 25. If 𝐶 is a convex, salient, closed cone in finite
dimensional normed linear space 𝑉, then there exists hyper-
plane 𝐻 such that 𝐻 intersects each 0-ray in 𝐶 exactly once.𝐻 ∩ 𝐶 is compact.

Proof. According to Corollary 3.8 of Aliprantis and Tourky
[3], Klee Jr. [6] proved that every convex, salient, closed
cone 𝐶 in a finite dimensional normed linear space has a
compact base,B. But thenTheorem 24 implies there exists a
hyperplane,𝐻, which intersects each 0-ray in 𝐶 exactly once
and𝐻 ∩ 𝐶 =B.

Remark 26. Klee Jr.’s paper, “Separation Properties of Convex
Cones” [5], much referenced in the literature, shows that a
closed, salient, convex cone 𝐶 in a separable normed linear
space will have associated to it a linear functional which is
strictly positive on 𝐶 \ {0}. However, the following example
shows that given an arbitrary salient cone𝐶 in a Banach space

𝑉, we cannot always find a strictly positive linear functional
on 𝐶 \ {0}. ByTheorem 24, this means we cannot always find
hyperplane𝐻 which intersects every 0-ray in 𝐶 \ {0} exactly
once.

5. Banach Space Counterexample

We cannot always find hyperplane 𝐻 which intersects every
0-ray of a closed cone 𝐶 exactly once, even if the underlying
vector space is Banach, as the following example, based
upon Problem 6, page 42 of [3], shows. By Theorem 21, the
existence of such a hyperplane is equivalent to the existence
of a nonzero linear functional on 𝑉 which is strictly positive
on 𝐶 \ {0}.
Example 27. Let𝑉 = 𝐵(Ω) = the set of all bounded functions
from Ω = an uncountable set, to R. 𝑉 equipped with the sup
norm (if 𝜙 ∈ 𝐵(Ω), then ‖𝜙‖∞ = sup𝜔∈Ω|𝜙(𝜔)|), is an 𝑙∞
Banach Space. Let𝐶 = all the bounded nonnegative functions
fromΩ to R. For each 𝐴 ⊂ Ω let

𝜒𝐴 (𝑥) = {{{
1, 𝑥 ∈ 𝐴;
0, 𝑥 ∉ 𝐴. (26)

Then 𝜒𝐴 ∈ 𝐶, for each 𝐴 ⊂ Ω. Note that 𝜒0 = 0, and if𝐴 ̸= 0, then ‖𝜒𝐴‖∞ = 1. If 𝐴, 𝐵 are subsets of Ω, we have
the following identity:

𝜒𝐴∪𝐵 = 𝜒𝐴 + 𝜒𝐵 − 𝜒𝐴∩𝐵. (27)

If𝐴 ⊂ 𝐵, thenwe canwrite𝐵 as disjoint union𝐵 = 𝐴∪(𝐵−𝐴).
Equation (27) implies

𝜒𝐵 = 𝜒𝐴∪(𝐵−𝐴) = 𝜒𝐴 + 𝜒𝐵−𝐴 − 𝜒𝐴∩(𝐵−𝐴) = 𝜒𝐴 + 𝜒𝐵−𝐴. (28)

Suppose 𝐿 is any linear functional on𝑉; that 𝐴 ⊂ 𝐵 ⊂ Ω; and
that 𝐹 is any finite subset ofΩ. Then (28) implies

𝐿 (𝜒𝐵) = 𝐿 (𝜒𝐵\𝐴) + 𝐿 (𝜒𝐴) , (29)

𝐿 (𝜒𝐹) = ∑
𝜔∈𝐹

𝐿 (𝜒𝜔) . (30)

Let us suppose that linear functional 𝐿 > 0 on all of 𝐶 \ {0}. If𝐴 is strictly contained in 𝐵, then (29) implies

𝐿 (𝜒𝐵) > 𝐿 (𝜒𝐴) . (31)

Let 𝑆1/𝑛 = {𝜔 ∈ Ω | 𝐿(𝜒𝜔) > 1/𝑛}. If the cardinality of 𝑆1/𝑛
is infinite, then 𝐿(𝜒𝑆1/𝑛) must be infinite. We can see this as
follows. Let 𝐹 ⊂ 𝑆1/𝑛 be a finite set. By (30) and the definition
of 𝑆1/𝑛, 𝐿(𝜒𝐹) > |𝐹|/𝑛, where |𝐹| is the size of 𝐹. By (31),𝐿(𝜒𝑆1/𝑛) > 𝐿(𝜒𝐹). So, if 𝑆1/𝑛 is infinite, then 𝐿(𝜒𝑆1/𝑛) must be
infinite. However, 𝐿 : 𝑉 → R. So 𝐿(𝜒𝑆1/𝑛)must be real, which
means 𝑆1/𝑛 must be finite. But then 𝑆 = ⋃∞𝑛=1 𝑆1/𝑛 is at most
countable. This implies Ω \ 𝑆 ̸= 0. Suppose 𝜔0 ∈ Ω \ 𝑆. Then𝐿(𝜒𝜔0) = 0, which contradicts 𝐿 > 0 on 𝐶 \ {0}.
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