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We establish some inequalities of Simpson type involving Riemann-Liouville fractional integrals for mappings whose first
derivatives are h-convex.

1. Introduction In [2], Sarikaya et al. obtained inequalities for differen-

tiable convex mappings. The main inequality is as follows.
The following inequality is well known in the literature as

Simpson’ inequality. Theorem 3. Let f : I C R — R be a differentiable mapping

on I' such that f' € L,[a,b], where a,b € I witha < b. If
Theorem 1. Let f : [a,b] — R be four times con- |f'|9 is convex on [a,b], g > 1, then the following inequality
tinuously differentiable mapping on (a,b) and |f¥|l, =  holds:

SUP e (| f @ (x| < 0.
Then, the following inequality holds:
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In [1], Dragomir et al. proved the following inequality. 3 ' 7 (b)'q N |f’ (a)|q 1/g (3)
Theorem 2. Suppose f : [a,b] — R is a differentiable 4

mapping whose derivative is continuous on (a,b) and f' €
L,[a,b]. Then the following inequality holds:
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b_a"f’”l, where 1/p+1/q = 1.
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b In [3], Sarikaya et al. obtained the following inequality for
where ||f' I, = Iﬂ If'(x)ldx. s-convex function.
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Theorem 4. Let f : I C [0,00] — R be a differentiable
mapping on I° such that f' € L,[a,b], where a,b € I’ with
a<b. Iflf'lq is s-convex on [a,b], for some fixed s € [0,1]
and q > 1, then the following inequality holds:
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where 1/p+1/q = 1.

For recent refinements, counterparts, generalizations,
and inequalities of Simpson type, see [1-7].

In 2007, Varo$anec in [8] introduced a large class of func-
tions, the so-called h-convex functions. This class contains
several well-known classes of functions such as nonnegative
convex functions and s-convex functions. This class is defined
in the following way: a function f: I — R, 0 # I C R being
an interval, is called h-convex if

fltx+(1-y)<h®) fx)+h(1-t)f(y) 5

holds forall x, y € I,t € (0,1), whereh: ] — R,h # 0,and
J is an interval, (0,1) € J.

The aim of this paper is to establish inequalities of
Simpson type for h-convex mappings via fractional integrals
which are defined in the following way: left-sided and right-
sided Riemann-Liouville fractional integrals of the order « >
0 are defined by

I8 f (%) = ﬁ [ o pyar

(0<a<x<b),

(6)
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B f0= o L (t— ) £ (1) dt

(0<a<x<b),

where I'(«) =

I f (%)
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fo e “u*'du is the gamma function. Here is

=1, f(x) = f(x).
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2. Main Results

To prove our main results, we consider the following lemma.

Lemma 5. Let f: I ¢ R — R be an absolutely continuous
mapping on I° such that f' € L,[a,b], where a,b € I’ with
a < b. Then the following inequality holds:
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Proof. By integration by parts and by the change of the
variables, we have
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Similarly, we have
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From (8) and (9), we get (7). This completes the proof. [
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The following theorems give a new result of Simpson’s
inequality for h-convex functions via fractional integrals.

Theorem 6. Let f: I C R — R be a differentiable mapping
on I’ such that f' € L,[a,b], where a,b € I’ witha < b. If
| f'| is h-convex on [a, b], then the following inequality holds:
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Proof. From Lemma 5 and since | f ' is h-convex on [a, b], we
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where we used the fact that [t*/2-1/3| < 1/3 forall x € [0, 1].
The proof is completed. O

Corollary 7. Ifin Theorem 6 one takes h(t) = t then inequality
(10) reduces to the following inequality for the convex function:
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Corollary 8. If in Theorem 6 one takes h(t) = t° then
inequality (10) reduces to the following inequality for the s-
convex function:
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Corollary 9. If in Theorem 6 one takes h(t) = t and « = 1
then from the proof of Theorem 6 it follows that the following
inequality holds:
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Theorem 10. Let f: I C R — R be a differentiable mapping
on I’ such that f' € L,[a,b], where a,b € I' witha < b.
If |f'|1 is h-convex on [a,b] and q > 1, then the following
inequality holds:
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Proof. From Lemma 5 and the Hélder inequality, we have
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where 1/p+1/q = 1.
Because | f ' is h-convex, we have
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Using the fact that [¢%/2 — 1/3| = [1/3 — t*/2| < 1/3 for all
t € [0, 1] and using the last two inequalities in (16) we obtain
(15).

This completes the proof of the theorem. O
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Corollary 11. If in Theorem 10 one takes h(t) = t then
inequality (15) reduces to the following inequality for the convex
Sfunction:
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Corollary 12. If in Theorem 10 one takes h(t) = t° then
inequality (15) reduces to the following inequality for the s-
convex function:
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Theorem 13. Let f : I ¢ R — R be a differentiable mapping
on I' such that f' € L,[a,b], where a,b € I’ witha < b.
If |f'|9 is h-convex on [a,b] and q > 1, then the following

inequality holds:
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Proof. From Lemma 5 and the power mean inequality, we
have that the following inequality holds:
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By the h-convexity of | f'| and using the fact that [t%/2 —
1/3] = |1/3 -t%/2| < 1/3 forallt € [0, 1], we have
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Using the last two inequalities in (21) we obtain (20). This
completes the proof. O
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