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We prove some results concerning Arens regularity and amenability of the Banach algebra 𝑀
𝜑
(𝐴) of all 𝜑-multipliers on a given

Banach algebra𝐴.We also consider 𝜑-multipliers in the general topological module setting and investigate some of their properties.
We discuss the 𝜑-strict and 𝜑-uniform topologies on 𝑀

𝜑
(𝐴). A characterization of 𝜑-multipliers on 𝐿

1
(𝐺)-module 𝐿

𝑝
(𝐺), where

𝐺 is a compact group, is given.

1. Introduction

The concept of a multiplier was introduced by Helgason [1]
as follows. Let 𝐴 be a commutative and semisimple Banach
algebra and let Δ(𝐴) be its maximal ideal space. Let𝐴 denote
the Gelfand representation of𝐴 as a subalgebra of the algebra
of continuous functions on Δ(𝐴). A bounded continuous
function𝑔 onΔ(𝐴) is amultiplier on𝐴 if𝑔𝐴 ⊆ 𝐴.The general
theory of multipliers on faithful Banach algebras was devel-
oped by Wang [2] and Birtel [3].

Recall that a mapping 𝑇 : 𝐴 → 𝐴 is called a left (resp.,
right) multiplier on 𝐴 if

𝑇 (𝑥𝑦) = 𝑇 (𝑥) 𝑦 (resp., 𝑇 (𝑥𝑦) = 𝑥𝑇 (𝑦)) (1)

for all 𝑥, 𝑦 ∈ 𝐴. We say 𝑇 is a multiplier on𝐴 if it is both a left
multiplier and a right multiplier on 𝐴.

We denote with 𝑀(𝐴) the algebra of all multipliers on 𝐴.
A Banach algebra 𝐴 is called left (resp., right) faithful if,

for all 𝑥 ∈ 𝐴, 𝑥𝐴 = {0} (resp., 𝐴𝑥 = {0}) implies that 𝑥 = 0; 𝐴
is called faithful if it is both left and right faithful.

In [4]we generalized the concept ofmultipliers on faithful
Banach algebras to𝜑-multipliers as follows. Let𝐴 be a Banach
algebra and let 𝜑 : 𝐴 → 𝐴 be an algebra homomorphism. A
linear continuous mapping 𝑇 : 𝐴 → 𝐴 is called a left (resp.,
right) 𝜑-multiplier on 𝐴 if

𝑇 (𝑥𝑦) = 𝑇 (𝑥) 𝜑 (𝑦) (resp., 𝑇 (𝑥𝑦) = 𝜑 (𝑥) 𝑇 (𝑦)) (2)

for all 𝑥, 𝑦 ∈ 𝐴. We say 𝑇 is a 𝜑-multiplier on 𝐴 if it is both a
left 𝜑-multiplier and a right 𝜑-multiplier on 𝐴. We denote

by 𝑀𝜑(𝐴) (resp.,𝑀𝑙
𝜑
(𝐴),𝑀

𝑟

𝜑
(𝐴)) the collection of all 𝜑-mul-

tipliers (resp., left 𝜑-multipliers, right 𝜑-multipliers) on 𝐴.
It turns out that this concept is considerably more general

than the concept of multipliers on Banach algebras. Also by
using some well-known homomorphisms like Jordan homo-
morphism, spectrum preserving homomorphism, and idem-
potent preserving homomorphism, we can transfer these
useful properties from homomorphism 𝜑 to the algebra of 𝜑-
multipliers.

In [4], we studied various properties of 𝜑-multipliers, for
instance, the faithfulness of the Banach algebra 𝑀𝜑(𝐴) and
the existence of a bounded approximate identity in the range
of a 𝜑-multiplier. Finally, as an example, we have character-
ized 𝜑-multipliers on 𝐿1(𝐺).

In Section 2 we are concerned by Arens regularity and
amenability of the Banach algebra 𝑀𝜑(𝐴) under some suit-
able conditions. We introduce the notion of Jordan 𝜑-multi-
plier and prove that every Jordan 𝜑-multiplier is a 𝜑-multi-
plier whenever the range of 𝜑 is dense in the algebra.

In Section 3 we extend the notion of 𝜑-multipliers on
Banach algebras to topological modules and investigate some
of their properties. We discuss the 𝜑-strict and 𝜑-uniform
topologies on 𝑀𝜑(𝐴) and apply our results to 𝐿1(𝐺)-module
𝐿𝑝(𝐺).

Let 𝑋 be a topological vector space and let 𝐴 be a topo-
logical algebra, both over the same field K (= R or C). Then
𝑋 is called a topological left𝐴-module if it is a left𝐴-module
and themodulemultiplication (𝑎, 𝑥) → 𝑎⋅𝑥 from𝐴×𝑋 into
𝑋 is separately continuous. If 𝑏(𝐴)denotes the collection of all
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bounded sets in𝐴, thenmodulemultiplication (𝑎, 𝑥) → 𝑎⋅𝑥

is called 𝑏(𝐴)-hypocontinuous [5] if, given any neighborhood
𝐺 of 0 in 𝑋 and any 𝐷 ∈ 𝑏(𝐴), there exists a neighborhood
𝐻 of 0 in 𝑋 such that 𝐷 ⋅ 𝐻 ⊆ 𝐺. Clearly, joint continuity ⇒

hypocontinuity ⇒ separate continuity. A mapping 𝜓 from a
left𝐴-module𝑋 into another left𝐴-module 𝑌 is called an𝐴-
module homomorphism if 𝜓(𝑎 ⋅ 𝑥) = 𝑎 ⋅ 𝜓(𝑥) for all 𝑎 ∈ 𝐴

and 𝑥 ∈ 𝑋.

2. Some Properties of 𝜑-Multipliers on
Banach Algebras

Let us start with the following result proved in [4].

Theorem 1 (see [4,Theorem 2.2]). Let𝐴 be a faithful commu-
tative Banach algebra and let 𝜑 be an idempotent homomor-
phism on 𝐴. Then 𝑀𝜑(𝐴) is a Banach algebra. Moreover, if
𝐴
2
= 𝐴 and 𝜑 ∘ 𝑇 = 𝑇 ∘ 𝜑 for all 𝑇 ∈ 𝑀𝜑(𝐴), then 𝑀𝜑(𝐴) is a

faithful commutative Banach algebra.

Definition 2. Let 𝐴 be a Banach algebra and let 𝜑 be a homo-
morphism from 𝐴 to 𝐴. The mapping 𝑇 : 𝐴 → 𝐴 is called
a left (resp., right) Jordan 𝜑-multiplier on 𝐴 if for all 𝑥 ∈ 𝐴

𝑇 (𝑥
2
) = 𝑇 (𝑥) 𝜑 (𝑥) (resp., 𝑇 (𝑥

2
) = 𝜑 (𝑥) 𝑇 (𝑥)) . (3)

𝑇 is called a Jordan 𝜑-multiplier on𝐴 if it is both a left Jordan
𝜑-multiplier and a right Jordan 𝜑-multiplier on 𝐴.

Theorem 3. Let 𝐴 be a faithful commutative Banach algebra
and let 𝜑 be a homomorphism from 𝐴 to 𝐴 with dense range.
Then𝑇 is a𝜑-multiplier if and only if𝑇 is a Jordan𝜑-multiplier.

Proof. It is clear that every 𝜑-multiplier is a Jordan 𝜑-multi-
plier. Conversely, suppose 𝑇 is a Jordan 𝜑-multiplier. Then

𝑇 ((𝑥 + 𝑦)
2
) = 𝜑 (𝑥 + 𝑦) 𝑇 (𝑥 + 𝑦)

= 𝜑 (𝑥) 𝑇 (𝑥) + 𝜑 (𝑥) 𝑇 (𝑦)

+ 𝜑 (𝑦) 𝑇 (𝑥) + 𝜑 (𝑦) 𝑇 (𝑦)

(4)

for all 𝑥, 𝑦 ∈ 𝐴.
On the other hand, we have

𝑇 ((𝑥 + 𝑦)
2
) = 𝑇 (𝑥

2
+ 2𝑥𝑦 + 𝑦

2
)

= 𝜑 (𝑥) 𝑇 (𝑥) + 2𝑇 (𝑥𝑦) + 𝜑 (𝑦) 𝑇 (𝑦) .

(5)

Comparing (4), (5) we obtain

2𝑇 (𝑥𝑦) = 𝜑 (𝑥) 𝑇 (𝑦) + 𝜑 (𝑦) 𝑇 (𝑥) . (6)

From (6) and using commutativity of 𝐴, for each sequence
{𝑧𝑛}
∞

𝑛=1
⊂ 𝐴 we have

2𝑇 (𝑥𝑦𝑧𝑛) = 𝜑 (𝑦) 𝑇 (𝑥𝑧𝑛) + 𝜑 (𝑥𝑧𝑛) 𝑇 (𝑦)

=
𝜑 (𝑦) [𝜑 (𝑥) 𝑇 (𝑧𝑛) + 𝜑 (𝑧𝑛) 𝑇 (𝑥)]

2

+ 𝜑 (𝑥𝑧𝑛) 𝑇 (𝑦) ,

(7)

so we have

2𝑇 (𝑥𝑦𝑧𝑛) = [𝜑 (𝑦) 𝜑 (𝑥) 𝑇 (𝑧𝑛) + 𝜑 (𝑦) 𝜑 (𝑧𝑛) 𝑇 (𝑥)

+ 2𝜑 (𝑥) 𝜑 (𝑧𝑛) 𝑇 (𝑦)] ⋅ 2
−1

;

(8)

similarly by using (6) we have

2𝑇 (𝑥𝑦𝑧𝑛) = [𝜑 (𝑥) 𝜑 (𝑦) 𝑇 (𝑧𝑛) + 𝜑 (𝑥) 𝜑 (𝑧𝑛) 𝑇 (𝑦)

+ 2𝜑 (𝑦) 𝜑 (𝑧𝑛) 𝑇 (𝑥)] ⋅ 2
−1

;

(9)

comparing (8), (9) we obtain

lim
𝑛→∞

𝜑 (𝑥) 𝜑 (𝑧𝑛) 𝑇 (𝑦) = lim
𝑛→∞

𝜑 (𝑦) 𝜑 (𝑧𝑛) 𝑇 (𝑥) (10)

for all 𝑥, 𝑦, 𝑧𝑛 ∈ 𝐴. Since 𝜑 has dense range and𝐴 is a faithful
commutative Banach algebra, we have

𝜑 (𝑥) 𝑇 (𝑦) = 𝑇 (𝑥) 𝜑 (𝑦) ; (11)

hence 𝑇 is a 𝜑-multiplier.

We mention that Theorem 3 holds for certain noncom-
mutative cases, but not in general. For instance, Zalar has
proved in [6] that any left (right) Jordan multiplier on a 2-
torsion free semiprime ring is a left (right) multiplier. Vuk-
man [7] has shown that an additive map 𝜑 : 𝑅 → 𝑅, where
𝑅 is a 2-torsion free semiprime ring, with the property that
2𝜑(𝑎
2
) = 𝑎𝜑(𝑎) + 𝜑(𝑎)𝑎 for all 𝑎 ∈ 𝐴, is a multiplier.

The following example shows that, in general, the above
theoremneed not hold for noncommutative Banach algebras.

Example 4. Consider the subalgebra

A =

{{

{{

{

(

𝑎 𝑏 𝑐

0 𝑎 𝑑

0 0 𝑎

) | 𝑎, 𝑏, 𝑐, 𝑑 ∈ C
}}

}}

}

(12)

of the algebra of all 3 × 3 matrices. It is obvious that A is a
Banach algebra with respect to the norm given by

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

𝑎 𝑏 𝑐

0 𝑎 𝑑

0 0 𝑎

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= |𝑎| + |𝑏| + |𝑐| + |𝑑| . (13)

Let

𝑋 = (

0 1 0

0 0 0

0 0 0

) (14)

and define a continuous linear map 𝜑 : A → A by 𝜑(𝐴) =

𝐴𝑋+𝑋𝐴. By a straightforward calculation one can prove that

𝐵𝐴𝑋 + 𝑋𝐴𝐵 = 𝐵𝑋𝐴 + 𝐴𝑋𝐵, 𝐴, 𝐵 ∈ A. (15)

If 󸀠∘󸀠 denotes the Jordan product 𝐴 ∘ 𝐵 = 𝐴𝐵 + 𝐵𝐴, then we
have 𝜑(𝐴 ∘ 𝐵) = 𝐴 ∘ 𝜑(𝐵) for each 𝐴, 𝐵 ∈ A and hence 𝜑 is a
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right Jordan multiplier. Also 𝐴 ∘ 𝜑(𝐵) = 𝜑(1) for all 𝐴, 𝐵 ∈ A
with 𝐴 ∘ 𝐵 = 1. If we consider

𝐴 = (

0 0 0

0 0 1

0 0 0

) (16)

then 𝜑(𝐴) ̸= 0 and 𝐴𝜑(1) = 0, where 0, 1 are the zero matrix
and the identity matrix, respectively. Thus 𝜑 is not a right
multiplier.

Lemma 5 (see [8]). Let 𝐴 be an amenable Banach algebra
and let 𝜓 be a continuous homomorphism of 𝐴 onto a dense
subalgebra of a Banach algebra 𝐵. Then 𝐵 is amenable.

Theorem6. (a) Let𝐴 be a unital commutative Banach algebra
and let 𝜑 be an idempotent homomorphism on 𝐴 such that 𝜑
commutes with each 𝑆 ∈ 𝑀𝜑(𝐴). If 𝐴 is Arens regular then
𝑀𝜑(𝐴) is Arens regular.

(b) Let 𝐴 be a commutative Banach algebra and let 𝜑 be as
in part (a). If 𝐴 is amenable then 𝑀𝜑(𝐴) is amenable.

Proof. (a) Define 𝜇 : 𝐴 → 𝑀𝜑(𝐴) by 𝜇(𝑎) =
𝑎
𝜑, where

𝑎
𝜑(𝑏) = 𝜑(𝑎𝑏). The homomorphism 𝜇 is onto. Namely, if 𝑆 ∈

𝑀𝜑(𝐴), then 𝑆 =
𝑆(𝑒)

𝜑. Of course, 𝜇∗∗ : 𝐴
∗∗

→ (𝑀𝜑(𝐴))
∗∗

has the same property, as well. Let 𝐹󸀠, 𝐺󸀠 ∈ (𝑀𝜑(𝐴))
∗∗. Then

there exist 𝐹, 𝐺 ∈ 𝐴
∗∗ such that 𝜇∗∗(𝐹) = 𝐹

󸀠, 𝜇∗∗(𝐺) = 𝐺
󸀠.

Let ∘ and ∘
󸀠 be two Arens multiplications on the second dual

𝐴
∗∗. Thus,

𝐹
󸀠
∘ 𝐺
󸀠
= 𝜇
∗∗

(𝐹) ∘ 𝜇
∗∗

(𝐺) = 𝜇
∗∗

(𝐹 ∘ 𝐺) = 𝜇
∗∗

(𝐹∘
󸀠
𝐺)

= 𝜇
∗∗

(𝐹) ∘
󸀠
𝜇
∗∗

(𝐺) = 𝐹
󸀠
∘
󸀠
𝐺
󸀠
.

(17)

(b) Let𝑇 ∈ 𝑀𝜑(𝐴) and {𝑒𝛼 : 𝛼 ∈ 𝐼} be a bounded approx-
imate identity in 𝐴 (see [9]). A simple computation shows
that 𝑇 = lim𝛼 𝑇(𝑒

𝛼
)
𝜑, which means 𝜇(𝐴) = 𝑀𝜑(𝐴). So by

Lemma 5 we conclude that 𝑀𝜑(𝐴) is amenable.

Theorem 7. Let𝐴 be a unital Banach algebra and let 𝜑 : 𝐴 →

𝐴 be a spectrum preserving homomorphism with dense range.
Then each 𝑇 ∈ 𝑀𝜑(𝐴) is spectrum preserving.

Proof. Let 𝑎 ∈ 𝐴 and 𝜆 ∉ 𝜎(𝑇(𝑎)). Since 𝜑 has dense
range, there exists a sequence {𝑐𝑛}𝑛 ∈ 𝐴 such that (𝑇(𝑎) −

𝜆)lim𝑛𝜑(𝑐𝑛) = 1. Thus

(𝜑 (𝑎) − 𝜆) lim
𝑛

𝑇 (𝑐𝑛)

= lim
𝑛

(𝜑 (𝑎) − 𝜆) 𝑇 (𝑐𝑛) = lim
𝑛

𝜑 (𝑎 − 𝜆) 𝑇 (𝑐𝑛)

= lim
𝑛

𝑇 (𝑎 − 𝜆) 𝜑 (𝑐𝑛) = (𝑇 (𝑎) − 𝜆) lim
𝑛

𝜑 (𝑐𝑛)

= 1.

(18)

Similarly lim𝑛𝑇(𝑐𝑛)(𝜑(𝑎) − 𝜆) = 1. Thus 𝜆 ∉ 𝜎(𝜑(𝑎)). Since
𝜎(𝜑(𝑎)) = 𝜎(𝑎), we have 𝜆 ∉ 𝜎(𝑎).

Now, let 𝜆 ∉ 𝜎(𝑎). Then there exists 𝑏 ∈ 𝐴 such that (𝑎 −

𝜆)𝑏 = 1. Thus

(𝑇 (𝑎) − 𝜆) 𝜑 (𝑏) = 𝑇 (𝑎 − 𝜆) 𝜑 (𝑏) = 𝑇 ((𝑎 − 𝜆) 𝑏) = 1. (19)

Similarly 𝜑(𝑏)(𝑇(𝑎) − 𝜆) = 1. Hence 𝜆 ∉ 𝜎(𝑇(𝑎)), which
means 𝜎(𝑇(𝑎)) = 𝜎(𝑎).

3. 𝜑-Multipliers on Topological Modules and
Their Properties

Now, we consider 𝜑-multipliers in the general topological
module setting and investigate some of their properties.

Definition 8. Let 𝐴 be a topological algebra and let 𝑋,𝑌 be
two topological 𝐴-bimodules and let 𝜑 be a nonzero and
continuous idempotent 𝐴-module homomorphism on 𝑋. A
linear and boundedmapping𝑇 : 𝑋 → 𝑌 is called a left (resp.,
right) 𝜑-multiplier if 𝑇(𝑎 ⋅ 𝑥) = 𝑇(𝜑(𝑥)) ⋅ 𝑎 (resp., 𝑇(𝑥 ⋅ 𝑎) =

𝑎 ⋅ 𝑇(𝜑(𝑥))) for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑋. We say 𝑇 is a 𝜑-multi-
plier if it is both a left 𝜑-multiplier and a right 𝜑-multiplier.

We denote by 𝑀𝜑(𝑋, 𝑌) (resp., 𝑀𝑙
𝜑
(𝑋, 𝑌),𝑀

𝑟

𝜑
(𝑋, 𝑌)) the

collection of all 𝜑-multipliers (resp., left 𝜑-multipliers, right
𝜑-multipliers).

It is easy to check that 𝜑 ∈ 𝑀𝜑(𝑋,𝑋). So𝑀𝜑(𝑋,𝑋) ̸= {0}.

Example 9. Let𝐴 be a topological algebra,𝑋 an𝐴-bimodule,
and 𝜑 an idempotent 𝐴-module homomorphism on 𝑋. For
each 𝑎 ∈ 𝐴 the mapping

𝑎
𝜑 : 𝑋 → 𝑋 defined by

𝑎
𝜑(𝑥) =

𝑎 ⋅ 𝜑(𝑥) is a left 𝜑-multiplier on 𝑋.

Proof. Let 𝑎, 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝑋,

𝑎
𝜑 (𝑏 ⋅ 𝑥) = 𝑎 ⋅ 𝜑 (𝑏 ⋅ 𝑥) = 𝑎 ⋅ 𝑏 ⋅ 𝜑 (𝑥) = 𝑏 ⋅ 𝑎 ⋅ 𝜑 (𝜑 (𝑥))

= 𝑏 ⋅
𝑎
𝜑 (𝜑 (𝑥)) ,

𝑎
𝜑 (𝑥 ⋅ 𝑏) = 𝑎 ⋅ 𝜑 (𝑥 ⋅ 𝑏) = 𝑎 ⋅ 𝜑 (𝑥) ⋅ 𝑏 = 𝑎 ⋅ 𝜑 (𝜑 (𝑥)) ⋅ 𝑏

=
𝑎
𝜑 (𝜑 (𝑥)) ⋅ 𝑏.

(20)

Hence
𝑎
𝜑 ∈ 𝑀𝜑(𝑋,𝑋).

In the sequel,𝐴 denotes a topological algebra and𝑋,𝑌 are
two topological 𝐴-bimodules. In general, 𝜑 is an 𝐴-module
homomorphism on 𝑋 such that it is also idempotent, linear,
and continuous. Sometimes 𝜑 is on 𝐴; it will be mentioned
when this happens.

Lemma 10. 𝑀
𝑙

𝜑
(𝑋, 𝑌) is a left 𝐴-module.

Proof. 𝑀
𝑙

𝜑
(𝑋, 𝑌) denotes the vector space of all left 𝜑-multi-

pliers from𝑋 to 𝑌. Let 𝑇 ∈ 𝑀
𝑙

𝜑
(𝑋, 𝑌) and 𝑎 ∈ 𝐴 be arbitrary.

Define 𝑎∗𝑇 as (𝑎∗𝑇)(𝑥) := 𝑇(𝑥 ⋅𝑎)where 𝑥 ∈ 𝑋 is arbitrary.
Since the equalities

(𝑎 ∗ 𝑇) (𝑏 ⋅ 𝑥) = 𝑇 (𝑏 ⋅ 𝑥 ⋅ 𝑎) = 𝑏 ⋅ 𝑇 (𝜑 (𝑥 ⋅ 𝑎))

= 𝑏 ⋅ 𝑇 (𝜑 (𝑥) ⋅ 𝑎) = 𝑏 ⋅ (𝑎 ∗ 𝑇) (𝜑 (𝑥))

(21)



4 Abstract and Applied Analysis

hold for all 𝑏 ∈ 𝐴 and 𝑥 ∈ 𝑋, we conclude that 𝑎 ∗ 𝑇 is a left
𝜑-multiplier. Then, since 𝑋 is an 𝐴-bimodule and 𝑇 is linear,
𝑀
𝑙

𝜑
(𝑋, 𝑌) is a left 𝐴-module.

Definition 11. An 𝐴-bimodule 𝑋 is said to be commutative if
𝑎 ⋅ 𝑥 = 𝑥 ⋅ 𝑎 holds for all 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑋.

Definition 12 (see [10, 11]). Let 𝑋 be a left (resp., right) 𝐴-
module. 𝐴 is said to be left (resp., right) faithful in 𝑋 if, for
any 𝑥 ∈ 𝐴, 𝑎 ⋅ 𝑥 = 0 (resp., 𝑥 ⋅ 𝑎 = 0) for all 𝑎 ∈ 𝐴 implies that
𝑥 = 0. If 𝑋 is an 𝐴-bimodule then 𝐴 is said to be faithful in
𝑋 if it is both left and right faithful in 𝑋.

The following definition generalizes Definition 12.

Definition 13. Let𝑋 be a left (resp., right)𝐴-module.𝐴 is said
to be left (resp., right) 𝜑-faithful in 𝑋 if, for any 𝑥 ∈ 𝐴, 𝜑(𝑎) ⋅

𝑥 = 0 (resp., 𝑥 ⋅ 𝜑(𝑎) = 0) for all 𝑎 ∈ 𝐴 implies that 𝑥 = 0. If
𝑋 is an𝐴-bimodule then𝐴 is said to be 𝜑-faithful in𝑋 if it is
both left and right 𝜑-faithful in 𝑋.

Definition 14. Let 𝐴 be a topological algebra, 𝑋 a commuta-
tive𝐴-bimodule, and 𝜑 an idempotent𝐴-module homomor-
phism on 𝐴. For any 𝑥 ∈ 𝑋, define

𝑥
𝜑 : 𝐴 󳨀→ 𝑋 by

𝑥
𝜑 (𝑎) = 𝑥 ⋅ 𝜑 (𝑎) , 𝑎 ∈ 𝐴. (22)

It is easy to see that
𝑥
𝜑 ∈ 𝑀

𝑙

𝜑
(𝐴,𝑋). Now, we define 𝜓 : 𝑋 →

𝑀
𝑙

𝜑
(𝐴,𝑋), by 𝜓(𝑥) =

𝑥
𝜑.

Lemma 15. Let 𝐴 be a topological algebra with an approxi-
mate identity {𝑒𝜆 : 𝜆 ∈ 𝐼} and let 𝑋 be a topological 𝐴-
bimodule. If 𝐴 is 𝜑-faithful in 𝑋 and 𝜓 : 𝑋 → 𝑀

𝑙

𝜑
(𝐴,𝑋) is

onto, then 𝐴 is left faithful in 𝑀
𝑙

𝜑
(𝐴,𝑋).

Proof. Let 𝑇 ∈ 𝑀
𝑙

𝜑
(𝐴,𝑋). In view of Lemma 10, it is enough

to show that 𝑇 = 0 if 𝑎 ∗ 𝑇 = 0 for all 𝑎 ∈ 𝐴. Since 𝜓 is onto,
there exist 𝑥 ∈ 𝑋 such that 𝑇 =

𝑥
𝜑. Therefore for any 𝑏 ∈ 𝐴

and 𝜆 ∈ 𝐼,

𝑥 ⋅ 𝜑 (𝑏 ⋅ 𝑒𝜆) =
𝑥
𝜑 (𝑏 ⋅ 𝑒𝜆) = (𝑒𝜆 ∗ 𝑥𝜑) (𝑏) = 0. (23)

The continuity of𝜑 implies that𝑥⋅𝜑(𝑏) = 0. Now, since𝐴 is𝜑-
faithful in𝑋, we conclude that 𝑥 = 0. Hence 𝑇 =

𝑥
𝜑 = 0.

Definition 16. Let 𝐴 be a Hausdorff topological algebra and
(𝑋, 𝜏) a Hausdorff topological 𝐴-bimodule. Let 𝜑 be an
𝐴-module homomorphism on 𝐴. The 𝜑-uniform operator
topology 𝑢𝜑 (resp., 𝜑-strong operator topology 𝑠𝜑) on 𝑀

𝑙

𝜑
(𝐴,

𝑋) is defined as the linear topology which has a base of
neighborhoods of 0 consisting of all sets of the form

𝑁(𝜑 (𝐵) , 𝑉) = {𝑇 ∈ 𝑀
𝑙

𝜑
(𝐴,𝑋) : 𝑇 (𝜑 (𝐵)) ⊆ 𝑉} , (24)

where 𝐵 is a bounded (resp., finite) subset of 𝐴 and 𝑉 is a
neighborhood of 0 in 𝑋. Clearly 𝑠𝜑 ≤ 𝑢𝜑.

Theorem 17. Let 𝜑 be an 𝐴-module homomorphism on 𝐴

and let (𝑋, 𝜏) be a topological𝐴-bimodule with 𝑏(𝐴)-hypocon-
tinuous module multiplication.

Then (𝑀
𝑙

𝜑
(𝐴,𝑋), 𝑠𝜑) and (𝑀

𝑙

𝜑
(𝐴,𝑋), 𝑢𝜑) are topological

left 𝐴-modules.

Proof. By Lemma 10, 𝑀𝑙
𝜑
(𝐴,𝑋) is a left 𝐴-module. Now, let

us prove that the module multiplication (𝑎, 𝑇) → 𝑎∗𝑇 from
𝐴 × 𝑀

𝑙

𝜑
(𝐴,𝑋) into 𝑀

𝑙

𝜑
(𝐴,𝑋) is separately continuous in 𝑢𝜑-

topology. Let 𝑇 ∈ 𝑀
𝑙

𝜑
(𝐴,𝑋) and {𝑎𝛼 : 𝛼 ∈ 𝐼} be a net in 𝐴

with 𝑎𝛼 → 𝑎 ∈ 𝐴 and let 𝐷 be a bounded subset of 𝐴 and
let 𝑉 be a neighborhood of 0 in 𝑋. By 𝑏(𝐴)-hypocontinuity,
there exists a balanced neighborhood 𝐻 of 0 in 𝑋 such that
𝜑(𝐷)⋅𝐻 ⊂ 𝑉. Since𝑇 and 𝜑 are continuous, there exist 𝛼0 ∈ 𝐼

such that

(𝑎𝛼 ∗ 𝑇) (𝜑 (𝑏)) − (𝑎 ∗ 𝑇) (𝜑 (𝑏))

= 𝑇 (𝜑 (𝑏) ⋅ 𝑎𝛼) − 𝑇 (𝜑 (𝑏) ⋅ 𝑎)

= 𝜑 (𝑏) ⋅ [𝑇 (𝜑 (𝑎𝛼)) − 𝑇 (𝜑 (𝑎))]

∈ 𝜑 (𝐷) ⋅ 𝐻 ⊂ 𝑉

(25)

for all 𝑏 ∈ 𝐷 and 𝛼 ≥ 𝛼0. Hence 𝑎𝛼 ∗ 𝑇→ 𝑢
𝜑

𝑎 ∗ 𝑇.
Next, let 𝑎 ∈ 𝐴 and {𝑇𝛼 : 𝛼 ∈ 𝐼} be a net in𝑀

𝑙

𝜑
(𝐴,𝑋) such

that 𝑇𝛼→ 𝑢
𝜑

𝑇 ∈ 𝑀
𝑙

𝜑
(𝐴,𝑋) and let 𝐷 be a bounded subset of

𝐴 and let𝑉 be a neighborhood of 0 in𝑋. Since the mappings
𝜑 and 𝑅𝑎(𝑥) = 𝑥𝑎 are continuous, it follows that 𝜑(𝐷) ⋅ 𝑎 is a
bounded subset in 𝐴. So there exist 𝛼0 ∈ 𝐼 such that

(𝑎 ∗ 𝑇𝛼 − 𝑎 ∗ 𝑇) (𝜑 (𝑏)) = 𝑇𝛼 (𝜑 (𝑏) ⋅ 𝑎) − 𝑇 (𝜑 (𝑏) ⋅ 𝑎)

= (𝑇𝛼 − 𝑇) (𝜑 (𝐷) ⋅ 𝑎) ⊆ 𝑉

(26)

for all 𝛼 ≥ 𝛼0 and 𝑏 ∈ 𝐷. Hence 𝑎 ∗ 𝑇𝛼→ 𝑢
𝜑

𝑎 ∗ 𝑇. That
means (𝑀

𝑙

𝜑
(𝐴,𝑋), 𝑢𝜑) is a left topological module. A similar

computation shows that (𝑀
𝑙

𝜑
(𝐴,𝑋), 𝑠𝜑) is a left topological

module.

Lemma 18. Let 𝐴 be a topological algebra with an approxi-
mate identity {𝑒𝜆 : 𝜆 ∈ 𝐼} and let (𝑋, 𝜏) be a commutative
𝐴-bimodule and 𝜑 an idempotent 𝐴-module homomorphism
on 𝐴. Then 𝜓(𝑋)

𝑠
𝜑 = 𝑀

𝑙

𝜑
(𝐴,𝑋).

Proof. Let 𝑇 ∈ 𝑀
𝑙

𝜑
(𝐴,𝑋), and let 𝐵 be a finite subset of𝐴 and

let 𝑉 be a neighborhood of 0 in 𝑋. For each 𝑎 ∈ 𝐴 we have
𝑒𝜆𝜑(𝑎) → 𝜑(𝑎). Then, since 𝑇 is continuous and 𝐵 is finite,
there exist 𝜆0 ∈ 𝐼 such that 𝑇(𝑒𝜆𝜑(𝑎)) − 𝑇(𝜑(𝑎)) ∈ 𝑉, for all
𝑎 ∈ 𝐵 and 𝜆 ≥ 𝜆0. Then, for any 𝑎 ∈ 𝐵 and 𝜆 ≥ 𝜆0

{𝑇(𝜑(𝑒𝜆))}
𝜆

𝜑 (𝜑 (𝑎)) − 𝑇 (𝜑 (𝑎))

= 𝑇 (𝜑 (𝑒𝜆)) ⋅ 𝜑 (𝜑 (𝑎)) − 𝑇 (𝜑 (𝑎))

= 𝑇 (𝑒𝜆𝜑 (𝑎)) − 𝑇 (𝜑 (𝑎)) ∈ 𝑉.

(27)

Therefore
{𝑇(𝜑(𝑒

𝜆
))}
𝜆

𝜑→ 𝑠
𝜑

𝑇.

Theorem 19. Let 𝐴 be a topological algebra with an approx-
imate identity {𝑒𝜆 : 𝜆 ∈ 𝐼} and let 𝑋 be a commutative
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topological 𝐴-bimodule such that (𝑋, 𝜏) is complete. Suppose
𝜑 is an idempotent 𝐴-module homomorphism on 𝐴 and 𝐴 is
𝜑-faithful in 𝑋. Then (𝑋, 𝜏) is isomorphic to (𝑀

𝑙

𝜑
(𝐴,𝑋), 𝑠𝜑).

Proof. Let 𝜓 be as in Definition 14. It is obvious that 𝜓 is a
continuous module homomorphism. We first show that 𝜓 is
onto. In view of Lemma 18, it is enough to prove that 𝜓(𝑋) is
𝑠𝜑-closed. Let 𝑇 ∈ 𝜓(𝑋)

𝑠
𝜑 . Then there exists a net {𝑥𝛼}𝛼 ⊆ 𝑋

such that
𝑥
𝛼

𝜑→ 𝑠
𝜑

𝑇. It follows that the net {𝑥𝛼 ⋅ 𝜑(𝑎)}𝛼 =

{
𝑥
𝛼

𝜑(𝜑(𝑎))}
𝛼
is 𝜏-Cauchy in𝑋 for every 𝑎 ∈ 𝐴. Now, since𝐴 is

𝜑-faithful in 𝑋, the net {𝑥𝛼} is 𝜏-Cauchy in 𝑋. By complete-
ness of (𝑋, 𝜏), there exist 𝑥 ∈ 𝑋 such that 𝑥𝛼 → 𝑥. Hence
𝑥
𝛼

𝜑→ 𝑠
𝜑 𝑥

𝜑. By uniqueness of limit in Hausdorff space 𝑇 =

𝑥
𝜑. Therefore 𝜓(𝑋) is 𝑠𝜑-closed.

To show that 𝜓 is one-to-one, let 𝑥, 𝑦 ∈ 𝑋 such that
𝑥
𝜑 =

𝑦
𝜑.Then for any 𝑎 ∈ 𝐴, (𝑥−𝑦) ⋅𝜑(𝑎) = 0. Since𝐴 is 𝜑-faithful
in 𝑋, this implies that 𝑥 = 𝑦. Thus 𝜓 is one-to-one.

Definition 20. Let 𝐴 be a topological algebra and let 𝑋 be
a topological 𝐴-bimodule. The uniform topology 𝛾𝜑 (strict
topology 𝛽𝜑) on 𝑀

𝑙

𝜑
(𝐴,𝑋) is defined as the linear topology

which has a base of neighborhoods of 0 consisting of all sets

𝑁
󸀠
(𝜑 (𝐷) , 𝐺) = {𝑇 ∈ 𝑀

𝑙

𝜑
(𝐴,𝑋) : 𝜑 (𝐷) ∗ 𝑇 ⊂ 𝐺} , (28)

where 𝐷 is a bounded (finite) subset of 𝐴 and 𝐺 is a
neighborhood of 0 in (𝑀

𝑙

𝜑
(𝐴,𝑋), 𝑢𝜑)[(𝑀

𝑙

𝜑
(𝐴,𝑋), 𝑠𝜑)].

Lemma 21. Let 𝐴 be a topological algebra with a bounded
approximate identity {𝑒𝜆 : 𝜆 ∈ 𝐼} and let 𝑋 be a topological
𝐴-bimodule. Then 𝑢𝜑 = 𝛾𝜑 and 𝑠𝜑 = 𝛽𝜑.

Proof. Let {𝑇𝛼}𝛼 be a net in𝑀
𝑙

𝜑
(𝐴,𝑋)with 𝑇𝛼→ 𝑢

𝜑

𝑇. Let𝐺 =

𝑁(𝜑(𝐶), 𝑉) be a neighborhood of 0 in 𝑢𝜑-topology. Since 𝜑

is continuous, 𝜑(𝐶)𝜑(𝐷) is a bounded subset of 𝐴 for each
bounded subset 𝐷 of 𝐴. Then there exist 𝛼0 such that

(𝜑 (𝐷) ∗ (𝑇𝛼 − 𝑇)) (𝜑 (𝐶)) = (𝑇𝛼 − 𝑇) (𝜑 (𝐶) 𝜑 (𝐷)) ∈ 𝑉

(29)

for all 𝛼 ≥ 𝛼0. That means 𝜑(𝐷) ∗ (𝑇𝛼 − 𝑇) ∈ 𝐺. Hence
𝑇𝛼→ 𝛾

𝜑

𝑇.
Conversely, let {𝑇𝛼}𝛼 be a net in𝑀

𝑙

𝜑
(𝐴,𝑋)with 𝑇𝛼→ 𝛾

𝜑

𝑇.
Let 𝐷 be a bounded subset of 𝐴 and let 𝑉 be a closed neigh-
borhood of 0 in 𝑋. Choose 𝐶 = {𝑒𝜆}𝜆. Then there exist 𝛼0

such that

(𝑇𝛼 − 𝑇) (𝜑 (𝐷)) = lim
𝜆

(𝑇𝛼 − 𝑇) (𝜑 (𝐶) 𝜑 (𝐷))

= lim
𝜆

(𝜑 (𝐷) ∗ (𝑇𝛼 − 𝑇)) (𝜑 (𝐶)) ∈ 𝑉

(30)

for all 𝛼 ≥ 𝛼0. That means 𝑇𝛼 − 𝑇 ∈ 𝑁(𝜑(𝐷), 𝑉). Hence
𝑇𝛼→ 𝑢

𝜑

𝑇.

At the end we characterize the 𝜑-multipliers on 𝐿𝑝(𝐺),
where 𝐺 is a compact Abelian group. Of course, 𝐿𝑝(𝐺) is a

Banach algebra and several authors studied its multipliers.
For instance, Larsen [5] showed that a linear transformation
𝑇 : 𝐿𝑝(𝐺) → 𝐿𝑝(𝐺), where 𝐺 is a locally compact Abelian
group, is a multiplier if and only if there exists a unique 𝜑 ∈

𝐿∞(𝐺) such that 𝑇𝑓 = 𝜑𝑓 for each 𝑓 ∈ 𝐿𝑝(𝐺).
However, we now consider 𝐿𝑝(𝐺) as a left Banachmodule

over the group algebra 𝐿1(𝐺). Namely, the algebra 𝐿1(𝐺) acts
on 𝐿𝑝(𝐺) through the convolution 𝐿1(𝐺) ∗ 𝐿𝑝(𝐺) = 𝐿𝑝(𝐺).

Example 22. Let 𝐺 be a compact Abelian group and let 𝜑 :

𝐿1(𝐺) → 𝐿𝑝(𝐺) be an idempotent 𝐿1(𝐺)-module homo-
morphism with dense range. If 𝑇 : 𝐿𝑝(𝐺) → 𝐿𝑝(𝐺) is a
𝜑-multiplier then there exists a unique function 𝐻𝑇 ∈ 𝐿𝑝(𝐺)

such that

𝑇 (𝜑 (𝑓)) = 𝜑 (𝑓) ∗ 𝐻𝑇, (𝑓 ∈ 𝐿1 (𝐺)) . (31)

Proof. Let {𝑒𝛽}𝛽 be a bounded approximate identity in
𝐿1(𝐺). Then {𝑇(𝜑(𝑒𝛽))}𝛽 ⊆ Ball(𝐿𝑞(𝐺))

∗. By the Alaoglu
theorem, there exists a function 𝐻𝑇 ∈ 𝐿𝑝(𝐺) such that
𝑇(𝜑(𝑒𝛽))→ weak∗𝐻𝑇. Then for each 𝑓 ∈ 𝐿1(𝐺)

𝜑 (𝑓) ∗ 𝑇 (𝜑 (𝑒𝛽)) 󳨀→weak∗𝜑 (𝑓) ∗ 𝐻𝑇. (32)

On the other hand, since 𝑇 is a 𝜑-multiplier,

𝜑 (𝑓) ∗ 𝑇 (𝜑 (𝑒𝛽)) = 𝑇 (𝜑 (𝑓 ∗ 𝑒𝛽)) 󳨀→ 𝑇 (𝜑 (𝑓)) (33)

for each𝑓 ∈ 𝐿1(𝐺). By uniqueness of limit,𝑇(𝜑(𝑓)) = 𝜑(𝑓)∗

𝐻𝑇.
To show that 𝐻𝑇 is unique, let 𝜓 be a second function in

𝐿𝑝(𝐺) such that 𝑇(𝜑(𝑓)) = 𝜑(𝑓) ∗ 𝜓 for each 𝑓 ∈ 𝐿1(𝐺).
Since 𝜑 has dense range,𝑇(𝜑(𝑓)) = 𝑓∗𝜓 for each𝑓 ∈ 𝐿1(𝐺).
Therefore

𝑓 (𝛾)
̂

(𝜓 − 𝐻𝑇) (𝛾) = 0 (34)

for each 𝑓 ∈ 𝐿1(𝐺) and 𝛾 ∈ 𝐺. By compactness of 𝐺, for each
𝛾 ∈ 𝐺 there exist 𝑓 ∈ 𝐿1(𝐺) such that 𝑓(𝛾) ̸= 0. Hence the
semisimplicity of 𝐿𝑝(𝐺) implies that 𝐻𝑇 = 𝜓.
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