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In uniform spaces (X, 2) with symmetric structures determined by the & -families of pseudometrics which define uniformity in
these spaces, the new symmetric and asymmetric structures determined by the 7-families of generalized pseudodistances on X
are constructed; using these structures the set-valued contractions of two kinds of Nadler type are defined and the new and general
theorems concerning the existence of fixed points and endpoints for such contractions are proved. Moreover, using these new
structures, the single-valued contractions of two kinds of Banach type are defined and the new and general versions of the Banach
uniqueness and iterate approximation of fixed point theorem for uniform spaces are established. Contractions defined and studied
here are not necessarily continuous. One of the main key ideas in this paper is the application of our fixed point and endpoint
version of Caristi type theorem for dissipative set-valued dynamic systems without lower semicontinuous entropies in uniform
spaces with structures determined by _7-families. Results are new also in locally convex and metric spaces. Examples are provided.

1. Introduction

The concepts of the symmetric and asymmetric structures
became established and investigated in mathematics and in
theoretical computer science and are some creative ideas in
fixed point theory by which some fascinating results have
been achieved. In the proofs of these results, some deep
methods based on those symmetric and asymmetric struc-
tures do play very important roles. The range of important
applications of these results is enormous.

Let (X, D) be a uniform space with uniformity defined
by a saturated family @ = {d, : « € &} of pseudometrics
d, : X* - [0;00), @ € o/, uniformly continuous on X*
(2-family, for short); here &/ is a nonempty index set.

It was discovered that the J7-families of generalized pseu-
dodistances defined below generalize: metrics d, distances of
Tataru [1], w-distances of Kada et al. [2], T-distances of Suzuki
[3], and 7-functions of Lin and Du [4] in metric spaces (X, d)
and also -families of pseudometrics and distances of Vilyi
[5] in uniform spaces (X, 9).

Definition 1 (see [6]). Let (X, D) be a Hausdorff uniform
space.

(a) The family 7 = {J, : « € &} of maps J, : X -
[0;00), & € o, is said to be a 7-family of generalized
pseudodistances on X (7-family, for short) if the
following two conditions hold:

(1) Vacepfvx,y,zex {Ja(x,2) < (5, y)+ Iy, z)}.

(f2) For any sequences (x,, : m € N)
and (y,, : m € N) in X such that
V(XE&Z? {limnaoosupm>n]a(xn’ xm) = 0} and
Ve lim,, , o Jo (X, ¥,,) = 0}, the following
holds V., {lim,, , . d,(x,,, ¥,,) = O}.

(b) Define

Jxoy =17 7 ={l,: X* = [0;00), a € o} o
1
is a #-family on X}.
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Definition 2. Let (X, d) be a metric space.

(a) Then ¥ = {J : X* — [0;00)} is said to be a JF-family
on X if J is a generalized pseudodistance on X; that
is, the following two conditions hold:

D) Vyyzex Ux2) <J(x,p) +(y, 2)}

(J2) For any sequences (x,, : m € N) and (y,, : m €
N) in X such that lim,,_, . sup,,.,J(x,,x,,) =0
and lim,, _, .,J(x,,,%,,) = 0, the following holds
lim,, _, d(x,, y,,) =0.

(b) Define x4y = {7 : F = {J : X? - [0;00)}isa
F-family on X}.

In the following remark, we list some basic properties of
J .
(X9)

Remark 3. Let (X, 2) be a Hausdorff uniform space.
(a) D = {d“ T € ﬂ} € J](X,Q) and \J](X,g) * {9}

(b) ([7, Remark 1.1]) Let .# = {J, : X* — [0;00), a €
At € dixg) fx# y,xy€ X, then3,y {J,(x,y) >
0V J,(y,x)> 0}

(@ Let 7 = {J, : X* > [000),a € A} € Jxq). If
Ve Vxex Uu(x,x) = 0}, then, for each @ € &, ],
is quasipseudometric; examples of 7 = {J, : X* —
[0;00), € oA} € Jix.a) such that the maps J,, o« € ¢,
are not quasipseudometrics are given in Section 4.

Definition 4. Let (X, D) be a Hausdorff uniform space. 7 =
{Jy : X? 5 [0;00),a € A} € J(x ) is said to be admissible
ifXg, + @ where

XS ={x € X:Voey {Jo (x,x) = 0}}. )

Remark 5. It is a remarkable fact that @-family is admissible
and X¢, = X. Indeed, we have that X = X,UX", where X, =
{x € X: 3,y 1],(x,x) > 0}}. Therefore, by Definition 4, we
get the following X?g ={x € X:Vyey {d,(x,x)=0}} = X.

Let 2% denote the family of all nonempty subsets of a
space X. A set-valued dynamic system is defined as a pair
(X, T), where X is a certain space and T is a set-valued map
T : X — 2% in particular, a set-valued dynamic system
includes the usual dynamic system (X, T) where T: X — X
is a single-valued map.

Let (X, T) be a set-valued dynamic system. By Fix(T") and
End(T) we denote the sets of all fixed points and endpoints
of T, respectively; that is, Fix(T) = {w € X : w € T(w)}
and End(T) = {w € X : {w} = T(w)}. A dynamic process
or a trajectory starting at w, € X or a motion of the system
(X,T) at w, is a sequence (w,, : m € {0} U N) defined by
w,, € T(w,,_;) for m € N (see, Aubin and Siegel [8], Aubin
and Ekeland [9], Aubin and Frankowska [10], and Yuan [11]).

Recall that a map w : X — [0;+00] is proper if its
effective domain, dom(w) = {x : w(x) # +00}, is nonempty.

Caristi’s fixed point theorem [12] concerning dissipative
single-valued dynamic systems (T, X) in metric spaces (X, d)
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with lower semicontinuous entropies w : X — [0;+00]
is equivalent to Ekeland’s variational principle [13-15] pro-
viding approximate solutions of nonconvex minimization
problems concerning lower semicontinuous maps w : X —
[0; +00].

Theorem 6. Let (X, d) be a complete metric space.

(I) (Caristi [12]) Let w : X — [0;+00] be a map which is
proper lower semicontinuous and let (T, X) be a single-
valued dynamic system satisfying the condition

Viex (0T (x)+d(xT(x)) <w(x)}. (3)

Then Fix(T) # @ (i.e., there exists w € X such that
T(w) = w).

(I) (Ekeland [13-15]) Let w : X — [0;+00] be a map
which is proper lower semicontinuous. For every € > 0
and for every x, € dom(w), there exists u € X such
that w(u) + ed(xy, u) < w(xy) and V,cxy {0(u) <
w(x) + ed(x,u)}.

Let (X, 9) be a sequentially complete uniform space. We
say thatasetY € 2% is closed in X if Y = cly(Y), where cl(Y),
the closure of Y in X, denotes the set of all w € X for which
there exists a sequence (w,, : m € N) in Y which converges to
w. IfasetY € 2% is closed in X, then (Y, @) is a sequentially
complete uniform space.

Define CI(X) = {Y € 2% : v = cly(Y)}; that is, CI(X)
denotes the class of all nonempty closed subsets of X.

The following fixed point and endpoint version of Caristi
type theorem for dissipative set-valued dynamic systems
without lower semicontinuous entropies in uniform spaces
with structures determined by 7 € Jx g is included in a
more general result [6, Theorem 4.5].

Theorem 7. Let (X, D) be a Hausdor(f sequentially complete
uniform space and let f = {J, : X? - [0;00), a € I} €
J(x o) be admissible.

(I) (Fixed point theorem) Assume the following.

(Al) The family Q = {w, : X — [0;00], a € o}
satisfies Dg, = [,y dom(w,) # 2.

(A2) Y = {e,, a € o} is a family of finite positive num-
bers.

(A3) (X, T) is a set-valued dynamic system.

(A4) For each x € X, Qg yr(x) is a set defined by

QJ,Q,Y;T (%)

=y €T NXG : Vaeo {0a (9) +&da (%) < 0 (0}
(4)

(A5) Foreachx € Xg,, theset Q 7 o y,r(x) is nonempty.

(A6) For each x € Xf}, the set Q 7 o y,r(x) is a closed
subset in X.

Then, there exists w € Dg N XSV such that w € T(w) (i.e.,
Vyew Uy(w,w) =0} and w € Fix(T)).
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(I) (Endpoint theorem) Assume, in addition, that

(A7) for each x € X}, each dynamic process (w,, :
m € {0} U N) starting at wy = x and
satisfying V,,ciopon {Wie1 € T(wy,)} satisfies
VoneiopoN Wii1 € Qg oy (W)}

Then, there exists w € Dy, NX° such that {w} = T(w) (i.e.,
Yoew Unu(w,w) =0} andw € End (T)).

It is known that a weaker condition than continuity is
lower semicontinuity.

Definition 8. Let (X, &) be a Hausdorff sequentially complete
uniform space. Let E € X, E # @ andlet f: E — [0;00].
The map f is lower semicontinuous on E with respect to X
(written: f is (E, X)-Iscwhen E # X and f isIsc when E = X)
iftheset {y € E: f(y) < c}is a closed subset in X for each
¢ € [0;00).

The following alternative characterizations of lower semi-
continuity hold.

Theorem 9. Let (X, D) be a Hausdorff sequentially complete
uniform space. Let EC X, E # @ andlet f: E — [0;00]. The
following conditions are equivalent.

(Z1) The map f is lower semicontinuous on E with respect
to X.

(Z2) For each x, € E,
f () < liminf f (x); (5)

here

liminf f (x)=sup{inf{f (x):x€ En(U\ {x,})}:

X — Xg, X€X
U openin X, x, €U, (6)

En(U\{x}) # 2}

(23) The map f is sequentially lower semicontinuous on E
with respect to X; that is, for each x, € E,

f (%) <liminff (x,,) )

for any sequence (x,, : m € N) in X such that
Ve lim,, , d,(x,,, %) = 0}; here

liminff (x,,) = sup {inf {f (x,,) :m>n} :neN}.  (g)

Remark 10 (see [6, Remark 4.6]). The following hold.

(a) A special case of condition (A6) is a condition (A6))
defined by

(A6') for each (x,a) € X} x g, the map w,(-) +
eJo(x,) « T(x) N XG5 — [0;00] is (T(x) N
X}, X)-Isc.

(b) If 7 = 9, then a special case of condition (A6) is a
condition (A6"") defined by

(A6") for each (x,a) € X x o, the map w,(-) +
e,dy (%) : T(x) — [0;00]is (T(x), X)-lsc.

(c) Theorem 7(I) esentially generalizes Theorem 6(I)
even in metric spaces.

A classic result of Banach [16], from 1922, is the milestone
in the history of fixed point theory and its applications.

Theorem 11 (Banach [16]). Let (X,d) be a complete metric
space. Assume that the single-valued dynamic system (X, T) is
(d, A)-contraction; that is,

{d(T(x),T(y)) <M (x,y)}. (9

Then T has a unique fixed point w in X (i.e., T(w) = w and
Fix(T) = {w}) and, for each w, € X, the sequence (w,, =
T (wp) : m € N) satisfies lim dw,w,,) = 0.

El)tE [O;l)vx,yeX

m — 00

In a slightly different direction is the following elegant
result of Nadler on set-valued dynamic systems.

Theorem 12 (Nadler [17, Theorem 5]). Let (X,d) be a com-
plete metric space, let CB(X) denotes the class of all nonempty
closed and bounded subsets of X, and let H? . (CB(X))* —
[0; 00) be defined by

d
Vapecaxy H (A, B)

ucA veB

(10)
= max {supd (u, B),supd (v, A)} ,

where ¥, xVvecpix) 14w, V) = inf,yd(u, z)}. Assume that
the set-valued dynamic system (X, T) satisfying T : X —
CB(X) is (H%, \)-contraction; that is,

Fieroin) Ve pex {Hd (T(x),T(y) <A (x, )’)} Y
Then Fix(T) # @ (i.e., there exists w € X such thatw € T(w)).

Remark 13. Let (X, d) be a complete metric space.

(a) It is well known that Caristi’s fixed point theorem
[12] yields Banach’s [16] and Nadler’s [17, Theorem 5]
results.

(b) Maps T' : (X,d) — (X,d) satisfying (3) are not
necessarily continuous.

(c) Itis well known that (CB(X), H%)isa complete metric
space and that the continuity of maps T' : (X,d) —
(X,d)and T : (X,d) — (CB(X), Hd) satisfying
conditions (9) and (11) plays an important role in the
proofs of Theorems 11 and 12, respectively.

Contractions (3) of Caristi, (9) of Banach, (11) of Nadler,
and others are among the most important notions in fixed
point theory, as well as in its numerous applications. As one
will see from the literature, the known results about them



have been achieved by employing complicated machineries
from various branches of mathematics and the answers for
many basic problems about them are still missing. Moreover,
examples show that these fundamental results are not optimal
even in metric spaces.

The several authors have made essential progress in these
problems and have solved many cases, and similar methods
and ideas have since been applied in greater generality; see
for example [1-67] and the references cited therein. However,
the complete solutions of some key open problems are still
missing.

In this paper we show that there are complementary
approaches to generalize the Nadler and Banach statements
concerning uniform, locally convex, and metric spaces. They
involve mixed properties of asymmetric structures and fixed
point theory. One of the key ideas in this paper is that in
(X, D) the families 7 = {], : X? - [0;00), a € I} €
J(x @) construct the symmetric and asymmetric structures on
X which generalize the symmetric structure determined by
2 ={d, : « € g} on X and then, by subtle techniques, we
may use stated above Theorem 7.

More precisely, let (X, 2) be a Hausdorff uniform space.
For 7 ={J,: X? - [0;00), a € o} € Jixz)and v € {1,2},
let the distance ?f{ on CI(X) be defined as in Definitions
15 and 23, and let the distance %7 on X be defined as in
Definitions 29 and 33.

This paper has two aims.

(1) To determine # = {J, : X > [0;00), @ €
A} € Jx ), various classes of not necessarily contin-
uous set-valued dynamic systems (X,T) satisfying
T : (X7 — (CX),%7),v € {1,2}, and
the conditions guaranteeing that the maps x —
infcr(Ju(x,2), @ € o, attains its global optimal
minimum at a point w (not necessarily unique)
satisfying V., {J,(w, T(w)) = 0} and w e Fix(T)
orw € End(T).

(2) To determine # = {J, : X? - [0;00), a € I} €
J(x.2) various classes of not necessarily continuous
single-valued dynamic systems (X, T) satisfying T' :
X, 7 - X 93{), v € {1,2}, and the conditions
guaranteeing that the maps x — ], (x,T(x)), a« € ¢,
attains its unique global optimal approximate mini-
mum at w satisfying J,(w, T(w)) = 0, ¢ € &, T(w) =
w and Vg {lim,, , J,(w,w,,) = lim,,_,  J.(w,,
w) = lim,_, d,(w,w,) = 0}, where (w,, =
T (w,) : m € N) and w,, € X is arbitrary.

Remark 14. (a) The methods of this paper provide a way to
compute the fixed point and endpoint theorems in uniform,
locally convex and metric spaces with structures determined
by 7 =1{],: X* = [0;00), a € o} € Jx2)-

(b) Theorems 17, 20, 21, 22, 25, 26, 27, 31, 34 and Examples
1-4 and 5-7 shows that our fixed point and endpoint results
are new in uniform and locally convex spaces and even in
metric spaces, are different from fixed point and endpoint
results given in the literature, and their proofs are simpler.
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2. Fixed Point and Endpoint Theorems for
Set-Valued Contractions (of Nadler Type) in
Uniform and Metric Spaces

The following definitions will be much used in the sequel.

Definition 15. Let (X, D) be a Hausdorft sequentially com-
plete uniform space, assume that # = {J, : X? - [0;00),
o € .Q{} € J](X,@)’ let

{J, W, V) =inf{J, (u,2) : z € V}},
(12)

vaGMVuEXVVECl(X)

and let v € {1,2}.

(a) Define on CI(X) the distance %{, %"f = {Hfa :
CI(X)* — [0;00], « € &}, as follows:

VetV ABeCi(x)

HY_ (A, B) = max {sup]“ (u, B) , supJ, (2, A)} ifv=1,

ucA z€B

VaEMvA,BECI(X) 11—[5“ (A,B) = SuIIZLx (u, B)} ifv=2.
ue
(13)

(b) Let a set-valued dynamic system (X, T) satisty T :
X — CI(X).If (X, T) satisfies

vaedax\ae[O;l)vx,yeX {Hix (T (x) T (y)) < Aoc]oc (x’ y)} >
(14)

then we say that (X, T) is a (7/{ , \)-contraction on X
forA={A, €[0;1), a € o}

Remark 16. Each (%{ ,\)-contraction on X is (%‘f ,N)-
contraction on X but converse does not hold.

One can prove the following characterizations of
(# { , \)-contractions (X, T):

Theorem 17. Let (X, D) be a Hausdorff sequentially complete
uniform space, ¥ = {J, : X*> — [0;00),& € &} € Jxg) and
v € {1,2}. Suppose also the following.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).
(I) There exists a family A = {A, € [0;1), « € I} such
that (X, T) isa (%’f, A)-contraction on X.
(III) The family T = {y, € (0;1), a« € o} satisfies
Vaegf {Aoc < Va}-
The following hold.

(BD) Ve Viex Iy € T(x) : (3, T(y)) < Aol p)} =
T(x)}.

(B2) Ve Vsex {Ura(x) # @} where
Upe () ={y € T(x) : yJo (%, ) < Jo (6, T (%))}
aed, xeX
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(B3) Ve Vex 1Uro(x) € Vi (x)} where

VF,oc(x) = {y € T(x) : ]oc (y’T(y))+(YDC_A’tX)]lX (x’y)

<J,(xTx)}, aed, xeX

(16)

(B4) ¥y xexY,yeree) 10 < T TGO ~Jo (3, T(») < (14
PRTACRY)S

(B5) vtxe.szfvxeryeT(x) {]oc(y’T(y)) + ]a(x,)/) P ]a(x:
T(x))}.

Proof. Let the family Q7 = {w/ : X — [0;00), a € &/} be
defined by

VeerVaex {0 (%) = Jo (6, T ()} 17)

Proof of (BI). By assumption (II) and Definitions 15(a) and
15(b),

ueT(x)

vae@lvx,yeX { sup ]oc (u’ T (y))

ueT(x)

< max <| sup J, (u, T (y)),
zeT(y)

sup J, (2, T (x))}

sAa]a(x,y)} ifv=1,

Vae&fvx,yex { sup ]a (M,T (y)) < /\oc]oc (x’ y)} ifv=2.

u€T(x)

(18)

Using this, we may thus conclude that

Veerthesyerer oL 0)< 0 1, (0 T()
ue X
(19)
<Aualsn) |
and hence
VaearVeex (T < {y € T(0): 0] () < Aa (% 2)}]-

(20)

On the other hand it is clear that

VeV iex ‘H)’ €T (x): wf ()/) <Aoo (x’y)} C T(x)} .
(21)

By applying (20) and (21), we obtain (B1).

Proof of (B2). By (12), we have

Ve Vrex {w;f (x) = inf J, (x, y)}. (22)
y€eT(x)

Further, by assumption (III), V., {y, € (0;1)}. Hence, for
arbitrary and fixed « € &/ and x € X, by (22) and definition
of infimum, we obtain that

: _ .7
EI}’OET()C) {Yoc]oc (X, )’0) < yé?(fx)]“ (X, y) = Wy (X)} - (23)

Consequently,
VaedvxEXHyOET(x) {yO € UF,oc (x)} . (24)

So we have proved (B2).

Proof of (B3). Leta € o, x € X,and y, € U ,(x) be arbitrary
and fixed. Then, by (B2), we have y, € T(x) and

Yo (%, ¥0) S @ (x). (25)

Clearly, by (B1), property y, € T(x) implies v/ (y,) <
Ao J o (x, ¥y). Thus

_Aa]a (.X, )’0) < _wf (yO) . (26)
Using (25) and (26) we obtain
(sz_/loc) ]oc (x>yo) < wf (x)_wf ()/o) (27)

We proved that
VaeMVxEX {Ur,zx (x) < {y €T (X) : (Ya - Aac) ]zx (x’ )/)

<ol (x) -] (0}
(28)

Therefore, (B3) holds.

Proof of (B4). Let « € &, x € X, and y € T(x) be arbitrary
and fixed. Then, by (Bl), since y € T(x), we obtain wf (y) <
Ao Jo(x, v). This and (22) imply

_wf (y) = _/\oc]oc (X, y) = _Aawf (x) Z _wf (x) . (29)
Therefore,
VeeaVaexVyerw  {0<w@l () -l (y)}  (30)
holds. Next, it follows from (22) and (B1) that

vtxé.szivxéxvyeT(x) {wf (X) - w{ (y) < w{ (x) + (Uf (y)

< (14 40) Jo (%, 9) |-
(31)

This shows that (B4) holds.
Proof of (B5). By (30) and (22),

vaedvxEvaeT(x) {w({ ('x) - w;f (y) < wf (X) S ]OL (X, y)} :
(32)

Therefore, (B5) holds. O



Definition 18. Let (X, D) be a Hausdorft sequentially com-
plete uniform space and let .7 = {J, : X? - [0;00), « €
A} € Jix ). We say that the family 7 is continuous in X if,

for each x, € X and for each sequence (x,, : m € N) in X
such that

Vaew ], Jim dq (%, %) =0}, (33)
we have

Y e {li,,nl)iglof]a (%> X9) = lim infJ, (%, x,,,) = 0}.
(34)

Remark 19. The family 9 is continuous in X.
Assertion (B5) says that, for each x € X, the set

Qur (x) ={y € T (%) : Voew {Ja (0T ()

+a (%) 2 Jo (6. T D}
(35)

has the property
2 # Qi (x) =T (x) € CI(X). (36)

LetY = {g,, « € &} be afamily of positive numbers satisfying
Ve 1€ € (0;1)} and, for each x € X, let the the set
Qy y,r(x) be defined by

Qyvyr(x)= {y eT(x)N Xg, :
vaed {]oc (y’T(y)) (37)
+e.y (6, y) <, (x,T(x))}} )

Now, for (%‘f ,A)-contractions (X, T), we can give the
following characterizations of the sets Qg y.r(x), x € X,
defined in (37).

Theorem 20. Let (X, D) be a Hausdor{f sequentially complete
uniform space, F = {J, : X? - [0;00), @ € o} € Jx.2)
and v € {1, 2}. Suppose also the following.

(I) Z is admissible.

(II) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).

(III) There exists a family A = {1, € [0;1), o € o} such
that (X, T) isa (7/{, A)-contraction on X.

(IV) For each family T = {y, € (0;1), « € o} satisfying
Ve Ao < Vol and for each x € X, let the set
Qyr_ar(x) be defined by

Qyrar(x) = {y eT(x)N ng :
Vaer Ua (00T ()
+ (th - Aoc) ](x (X, )/)
<Jo (6 T ()}

(38)
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The following hold.

(C) If there exists a family T° = {y) € (0;1), a € o}
satisfying ¥oey (Ao < yo} and such that

Ve {{yeT@nX5 -
Veew  {¥e)a (%) (39)
< (m 7))} # o),

then Vxexg, {Qj,rO—A;T(x) + o}

(C2) If there exists a family ' = {yg € (0;1), x € A}
satisfying Voey 1Aq < 2} and such that, for each
(x,) € Xg, x o, the map

Jo T )+ (ve = Aa) Ja (x,7) : T (x) N X5 — [0500)
(40)

is (T(x) N X%, X)-Isc, then, for each x € Xg,,
Qg ro_p;r(x) is a closed subset in X.

(C3) Let the family ¥ be continuous in X. Then, for each
family T = {y, € (0;1), o € o} satisfyingV, ey {A, <
Y.} and for each x € X}, Qg r_ar(x) is a closed subset
in X.

(C4) Let F = D. If there exists a family T° = {y° €
(0;1), a € o} satisfying Voey {Aq < Yot and such
that

Viex {{y €T (x):
(41)
Vaew (10 (x7) <dy (6. T ()]} # 2],

then vxex {Q@)FO_A;T(.X) ?E Q}.

(C5) Let 7 = D. Then, for each family T = {y, € (0;1), « €
A} satisfying Voey {Aq < Vo) and for each x € X,
Qg r_ar(x) is a closed subset in X.

Proof. Let the family Q7 = {wf : X — [0;00), a € o} be
defined by

VeeoVeex {07 (%) = Jo (06, T (x))} (42)
Proof of (C1). Denote

Viex ‘IUrO,gf (x) = ﬂ Uro o (X)} ,

aed
(43)
Voex {VW ) =[] Viow (x)} .
aed
Then, by (B2), (B3), and (IV),
Vyexs {Uroy () N XS € Vi (x) N X5
(44)

= Qj,l"o—A;T (X)} .
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Hence, we conclude that, for each x € X}, the set
Q7 ro_p;r(x) is nonempty whenever V. X9, {Uro (x) N ng #
@}

Proof of (C2). The assertion follows immediately from
Remark 10(a).

Proof of (C3). The assertion also follows from Remark 10(a).
Indeed, let x, € X be arbitrary and fixed and let a sequence
(x,, + m € N)in X be convergent to x,; that is, let
Ve lim,,_, d, (%0, x,,) = 0}.

IfmeN,z e T(x,,) and @ € & are arbitrary and fixed,
then, by (71),

vueT(xo) {w(’f (xo) =Ju (xo’ T (xo)) S o (xo’ ”)
(45)
< Ty (%05 %) + Jo (X0 2) + T (2, 10) }
This gives
w({ (xO) < ]oc (xo’xm) +]£X (xm’z)+]oc (Z’T(xO))‘ (46)
Hence

wf (xO) < ]oc (xO’xm) + ]oc ('xm’z) + sup ]tx (M,T (xO)) .

u€T(x,,)
(47)
Furthermore, this holds for each z € T(x,,) and, thus, by (12),

@y (%) < Joe (%00 %) + @ (x) + sup T (16T (xp)).

ueT(x,,)

(48)
However, (X, T) is (% { , \)-contraction on X. Therefore,
sup J,, (u,T (xo))

ueT(x,,)

<max<l sup ]a(u’T(xO))’ sup ]ot(z”l—‘(xm))]>

uET(xm) zeT(xO)
<Ay (X xy)  ifv=1,
sup ]oc (u’T (XO)) < AzxLx ('xm’xO) iftv=2.
ueT(x,,)
(49)

Consequently, we obtain that

w;f (xO) < ]oc (x0>xm) + w({ (xm) + sup ]OL (u’T (xo))

ueT(xm)

< ]oc (xO’xm) + w({ ('xm) + /\a]zx ('xm’xO) .

(50)
Since the family # is continuous, this implies
Wl (xo) <liminf @/ (x,,). (51)

Therefore, for each o € <, wf(-) islscin X.

Moreover, if m € N, x € X, and « € & are arbitrary and
fixed, then, by (71),

]oc (x’ xO) < ]oc (x’ xm) + ]oc (xm’ xO) . (52)

Since 7 is continuous, this gives
Jo (3. 9) < liminf T, (x,,,). (53)

that is, for each (x, @) € X x o/, the map J,(x, ) is Isc in X.
Using these two facts, in particular, we have that, for each
(x, ) € Xg, x o, the map

W ()+ (Yo = Ae) Jo (6,7) : T () N X — [0500]  (54)

is (T(x) N X%, X)-Isc; that is, (A6') holds.
Proof of (C4). This follows from (C1).

Proof of (C5). This follows from (C3) and Remarks 3(a) and
19. O]

We use notations and auxiliary Theorems 17 and 20 above
in proving the following basic fixed point and endpoint
theorem for set-valued contractions with respect to 7 €
J(x ) (of Nadler-type) in uniform spaces (X, 9).

Theorem 21. Let (X, D) be a Hausdor({f sequentially complete
uniform space, f = {J, : X? 5 [0;00), a € A} € Jixa
and v € {1, 2}. Suppose also the following.

() 7 is admissible.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).

(IIT) There exists a family A = {A, € [0;1), a € &} such
that (X, T) isa (%’{, A)-contraction on X.

(IV) For each family T = {y, € (0;1), a € &} satisfying
Ve Ao < Vo) and for each x € X, let the set
Qg r_a;r(x) be defined by

Qyr_ar (%)
={y e T NXS :Yeey {1, (1T ()
+ (yoc - /\a) Ja (X, )’)
<o (6T ()}
(V) There exists a family T° = {0 € (0;1), a € o}
satisfying Yooy {Aq < O} and such that, for each
x € X?j, Qg ro_p;r(x) is a nonempty closed subset in
The following hold,

(E1) (Fixed point theorem) Fix(T) # @ and there exists
w € Fix(T) satisfying ¥ oy {J,(w, w) = 0}.



(E2) (Endpoint theorem) If, for each x € XS,, each dynamic
process (w,, m € {0} U N) starting at w, =
x and satisfying ¥, cioon {Wme1 € T(wy,)} satisfies
Voeiopn (Wii1 € Qg ro_pr(w,,)} then End (T) #+ @
and vwe End (T)vtxegf {]vc(w’ w) = 0}

Proof. The proof will be broken into five steps.

Step 1. Let the family o = {wf : X — [0;00), a € o} be
defined by

Voeaaex  J0f () = Jo (6T ()} (56)

The family Q7 satisfies the assumption (Al) of Theorem 7;
that is, Doy = [aeyy dom(w?) # @.
Indeed, by (B1),

Veex {fyeT):

Voew {07 (9) <A Jy (5 9)}} =T ()}
(57)

Also, by Definition 1, 7 = {J, : X2 5 [0;00), « € o/} and,
by definition of (X, T), V,cx {@ # T(x)}. Hence we conclude
thatV, .y {@ # T(x) € Dgr}.

Step 2. The assumptions (A5) and (A6) of Theorem 7 hold
where Y = {e, = 12— A, @ € o/} and Q7 is defined in
Step 1.

Indeed, by assumption (V) (ie, by assumption
vx€X} {2 # Qg ro_pr(x) € CI(X)}) it follows that

Vxexj, {Q # Qz 0y (%)

= {y € T(x)ﬂX?] :
(58)

Veew 107 () + (vo = Ao) Ju (%)

<w] ()} e cl}.

Step 3. There exists w € X% such that w € T(w).
This is a consequence of (I)-(V), Steps 1 and 2, and
Theorem 7.

Step 4. We now observe that V,cg,q(m) Vaes {/o(w, w) = 0}
Otherwise, 3, cpna(r)Tagear o, (Woowp) > 0} Conse-
quently, for each v € {1,2},

Ja (wp> wp) = Hf% ({fwo} {wo})

= Hfao (T (wp), T (wy)) < A, Ja, (wor wy) s
(59)

which is absurd.

Step 5. The assertions hold.
This follows from assumptions of Theorem 17, Steps 1-4,
definition of X?g, and Theorem 7. OJ
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As a corollary of the above Theorems 17, 20, and 21 we
have the following new fixed point and endpoint theorem for
set-valued contractions with respect to Z-families (of Nadle-
type) in uniform spaces (X, 9).

Theorem 22. Let (X, D) be a Hausdor{f sequentially complete
uniform space and let v € {1,2}. Suppose also the following.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).

(IT) There exists a family A = {A, € [0;1), « € &/} such
that (X, T) isa (%?, A)-contraction on X.

(II) For each family T = {y, € (0;1), a« € o} satisfying
Ve Ay < Vo) and for each x € X, let the set
Qg r_ax(x) be defined by

Qg r-ar (x) = {)’ €T (x):
Vaea {da (1T () + (Ya = Aa) do (%, ¥)

<dy (x,T(x)}}.
(60)

(IV) There exists a family ’= {yg € (0;1), o € I} satisfy-
ing Ve Ihg < YO} and such that ¥,y {Qg o_p7(x)
+ o}

The following hold.

(F1) (Closedness property) For each x € X, Qg ro_(x) is
a closed subset in X.

(F2) (Fixed point theorem) Fix(T) + @.

(F3) (Endpoint theorem) If, for each x € X, each dynamic
process (w,, m € {0} U N) starting at w, =
x and satisfying ¥, cioon {Wnme1 € T(wy,)} satisfies

VmE{O}UN {wm+1 € Q@,I‘O—A;T(wm)}’ then End (T) ?é
.

We now state consequences of the above in metric spaces.
Definition 23. Let (X, d) be a complete metric space, let . =
{J:X> > [0;00)} € Jix4)> andlet v € {1,2}.

(a) Let

VueXVVeQ(X) {J] (W, V) =inf{] (u,z): z € V}}. (61)

Define Hf : CI(X)* — [0;00] as follows:

VY a,Beci(x) HY (A, B)

max {sup](u,B),sup](z,A)} , ifv=1,

ueA z€B

sup J (u, B),

ueA

if v=2.
(62)

(b) Let a set-valued dynamic system (X, T) satisty T :
X — CI(X).If (X, T) satisfies

EI/\E[O;l)vx,yeX {H{ (T (X) T (y)) < A] (X, y)} ’ (63)

then we say that (X, T) is a (H{, A)-contraction on X.
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(c) Let Xg, = {x € X : J(x,x) = 0}. ¥ is said to be
admissible ifXg, + .

(d) We say that 7 is continuous in X if, for each x, € X
and for each sequence (x,, : m € N) in X such that
lim,, ,  d(x,,,x,) = 0, we have

lim inf J (x,,,, %o) = lim inf J (g, x,,) = 0. (64)

Remark 24. Let @ = {d : X*> — [0;00)}. It is clear that D is
JF-family; 9 is admissible; 9 is continuous; and ng =X.

As corollaries from Theorems 17, 20, and 21 and their
proofs we get the following three theorems concerning
contractions with respect to . € Jy, (of Nadler-type) in
metric spaces (X, d).

Theorem 25. Let (X, d) be a complete metric space, F = {] :
X2 > [0;00)} € Jixq4) and v € {1,2}. Suppose also the
following.

(I) 7 is admissible.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl(X).

(IIT) There exists A € (0;1) such that (X, T) is a (H{,A)—
contraction on X.

(IV) For each y € (0; 1) satisfying A < y and for each x € X
let the set Q 7 y-n1(X) be defined by

Qryar® ={yeT@nX5:J (5T (y)

+(y=N)J (%) <J (6T )}

(65)

The following hold.

(G1) If there exists y° € (0;1) satisfying A < y° and such
that

Ve {fyeTx)nx5:
’ (66)
(% y) < T (T ()} # 2},

then Vsexy {Qppoar(x) # o}

(G2) If there exists y° € (0;1) satisfying A < y° and such
that, for each x € Xg,, the map

JGTE) + (Y =A)T (6 : T (x) N X5 — [0500) (67)

is (T(x) n X},X)-lsc, then, for each x € X},
Q j)yo,/\;T(x) is a closed subset in X.

(G3) Let 7 be continuous in X. Then, for each y € (0,1)
satisfying A < y and for each x € X;,, Qyy-nr(x)isa
closed subset in X.

Theorem 26. Let (X,d) be a complete metric space, f = {] :
X2 5 [0;00)} € Jixq4y and v € {1,2}. Suppose also the
following.

(I) 7 is admissible.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).

(III) There exists A € (0;1) such that (X,T) is a (H{,A)-
contraction on X.

(IV) For each y € (0; 1) satisfying A < y and for each x € X
let the set Q 7 ,,_y.r(x) be defined by

Qpyorr ) ={y e T NX5: ] (5T (y))

+(y=NT (xy) <T T ()}

(68)

(V) There exists y° € (0;1) satisfying A < y° such that, for
each x € X}, Qg yo_r1(x) is a nonempty closed subset
in X.

The following hold.
(K1) (Fixed point theorem) Fix(T) # @ and there exists
w € Fix(T) such that J(w, w) = 0.

(K2) (Endpoint theorem) If, for each x € X}, each dynamic
process (w,, m € {0} U N) starting at w, =
x and satisfying ¥, cioon {Wime1 € T(wy,)} satisfies
Y e lojuN (W, € Qf,yo_A;T(wm)}, then End (T) + @
and Ve gna 1y {J(w, w) = 0}

Theorem 27. Let (X, d) be a complete metric space, & = {d :
X2 5 [0;00)} and v € {1,2}. Suppose also the following.

(I) A set-valued dynamic system (X, T) satisfies T : X —
Cl (X).

(IT) There exists A € (0;1) such that (X,T) is a (H?,)L)-
contraction on X.

(II) For each y € (0; 1) satisfying A < y and for each x € X
let the set Qg ,,_y,r(x) be defined by

Qg - (%) = yeTx):d(y.T(y))
+(y-A)d(x,y) <d(xT (x))}.

(69)

The following hold.

(L1) (Nonemptness and closedness property) For each y €
(0;1) satisfying A <y and for each x € X, Qg ,,_y,r(x)
is a nonempty closed subset in X.

(L2) (Fixed point theorem) Fix(T) + @.

(L3) (Endpoint theorem) If there exists y° € (0; 1) satisfying
A < y° and such that, for each x € X, each dynamic
process (w,, m € {0} U N) starting at w, =
x and satisfying V,,cjun {Wnme1 € T(wy,)} satisfies
Vmeopun {Wis1 € Qg yporr(wy,)}, then End (T) # 2.

Remark 28. Theorem 27(L2) generalizes Theorem12 (see
Examples 5 and 6).
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3. Fixed Point Theorems for Single-Valued
Contractions (of Banach-Type) in Uniform
and Metric Spaces

Definition 29. Let (X, D) be a Hausdorff sequentially com-
plete uniform space, assume that . = {J, : X2 > [0;00),
a€dtedxg andletv e {1,2}.

(a) Define on X the distance %’f, 99{ = {Bi‘x D G
[0; 00], « € </}, as follows:

Vaca Vsyex B{oc (x,9)
_ [max{l, (. p) . ()}, ifv=1,
I (%), if v=2.
(70)

(b) Let (X, T) be a single-valued dynamic system, T :
X — X.If (X,T) satisfies

vaeszfa)tae[o;l)vx,yeX {B{a (T (x) T (y)) S Aa]a (x’ y)} >
(71)

then we say that (X, T) is a (%’f, A)-contraction on X
for A ={A,, o € A}

Remark 30. Each (95”17 ,\)-contraction on X is (%’f ,N\)-
contraction on X but converse does not hold.

We use notations above and Theorem 21 in proving
the following new fixed point theorem for single-valued
contractions with respect to 7 € J ) (of Banach-type) in
uniform spaces (X, 9).

Theorem 31. Let (X, D) be a Hausdor(f sequentially complete
uniform space, let f ={J, : X2 5 [0;00), a € A} € Jxa)
and let v € {1, 2}. Suppose also the following.

(I) Z is admissible.

(II) (X, T) is a single-valued dynamic system, T : X — X.

(III) There exists a family A = {A, € [0;1), o € I} such
that (X, T) isa (%’f, A)-contraction on X for A.

(IV) T(X;) c Xg,.
The following hold.

(M1) T has a unique fixed point w in X; that is, T(w) = w
and Fix (T) = {w}.

(M2) Ve UJo(w,w) = 0}
(M3) For each w,, € X, the sequence (w,, = T"™ (w,) : m €
N) satisfies

Vo | Jim Jo (ww,) = lim J, (w,,w) =0}, (72)

Voe | Jim do (w,w,) =0} (73)
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Proofs of (M1) and (M2). By Remark 30, Definition 29, and
the assumptions (I)-(IV) of Theorem 31, we see that

Veexs Vocr  Ua (T @), T () <Ay (6. T (D)}
(74)
Vyexs {y=T ex%}.

Letnow A = {8, € (0;1), o € o/} satisfying V., {1, < 84}
be arbitrary and fixed. One then immediately finds that

Veexs Voo Ua (T, T () S Aoy (6T (x)) )
+(1=8,) Jo (. T (x))}
or, equivalently,
Viex)Vaea  1a (0T (3)) + (82 = Aa) Ju (%, ¥) -

< Jo (6T (x))},

where y = T(x) € X}. Consequently, for each x € X;, the
singleton set

Qranr®) ={y=Tx) eXx}:
Vaca Ja (5T (7))
+ (0 =Ae) Ja () (77)
<o (6T ()}
={T (x)}

is a nonempty closed subset in X.
From the above and Theorem 21 it follows that T has a
fixed point win X (i.e., w = T(w)) and Vo, {J,(w, w) = 0}).
It remains to verify that Fix(T) = {w}. Suppose that
{u,w} < Fix(T). By Definition 29 and assumptions of
Theorem 31, we obtain that, if v = 1, then

Vaea eon)
{Ua (4, w) < max {J, (u,w), J, (w,u)}
= max {J, (T (), T (w)),
Jo (T (W), T ()} < AoJ (1 w)] (78)
AJq (wyu) < max {J, (u,w), J, (w, u)}
= max {/, (T (), T (w)),
Jo (T W), T )} < AoJo (wo)]}
and, if v = 2, then
Vaeda)tae[o;l)
{Us Ww) = J, (T @), T (W) < AgJ, (u,w)]
Ay wyu) = J, (T (w), T (w))
<Aoo (wo )]}

(79)
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Hence V., {J,(t,w) = J (w,u) = 0}. From this informa-
tion, by Remark 3(b), we deduce that u = w.
Therefore, the assertions (M1) and (M2) hold.

Proof of (M3). Let now w,, € X be arbitrary and fixed and put
(w,, = T"™(w,) : m € N). By Definition 29, assumptions
of Theorem 31 and the fact that T (w) = w for m € N, we
obtain that, if v = 1, then

{Uoc (w’ wm+1)

S max {Ioc (wm+1’ w) ’]a (w> wm+1)}

voce.sziallae [O;I)VmEN

< AJ, (w,w,)]
N []zx (wm+l’ LU)
< max {J, (W1, W), I (W, w,,4,)}

< AdJo (W W)}
(80)

and, if v = 2, then
{Ua (w, wy,1)
< AoJo (wow,,)]

A [](x (wm+1’w) < A(x](x (wm’w)]} .
(81)

vaEQIElAaE[O;I)VmEN

Hence

{Uoc (w’ wm+1)

<A ()]

Voce.sziallae [O;I)VmGN

A Ua (wm+1’ w)
< Ao T (wo, w)]}

This gives the assertion (72), since, by Definition 1,

Vacar  {Uu (wrwp) < +00], [J, (wp, w) < +oo]}.  (83)

Finally, let w, € X be arbitrary and fixed and put (w,, =
T[m](wo) :meN), (x,, =w:meN),and (y,, = w,, : m €
N). Using assertion (M2), we then have

A {nlingosup Joo (X X,) = 0} , (84)
m>n
and, using assertion (72), we get
Voaea {mli_r,nooloc (xm’ ym) = 0} . (85)
Hence, using Definition 1 (_#2), we find

Vo |JiM d (0 7,) = lim d, (w,w,,) =0} (86)

Thus (73) holds. O

1

Remark 32. (a) Theorem 31 includes Theorem 11 [16] and the
result of [52]. Theorem 31 is different from Theorem 11 [16]
and the result of [52] even in metric spaces and in uniform
spaces, respectively (see Examples 4 and 7).

(b) Let v € {1,2}. Assumptions (III) and (IV) imply
that (Xf)j, T) is also a (%"f , \)-contraction on Xg,. However,
the dynamic systems (X, T') and (X?], T) are not necessarily
(B, A)-contractions on X or XS,, respectively (see Exam-
ples 4 and 7).

(c) Assumptions (II) and (IV) and assertions (M1) and
(M2) imply that w € Xg, is a unique fixed point of (X, T)
and (X%, T). Assertion (M3) implies, in particular, that, for
each starting point w, of the space X, the dynamic process of
the system (X, T') converges to w.

The above has interesting implications for metric spaces.

Definition 33. Let (X, D) be a complete metric space, assume
that 7 = {J : X* — [0;00)} € Jixq4) andlet v € {1,2}.

(a) Define on X the distance B{ D G

follows:

B (x, )

_[max{J (%, y),] (3, x)}, ifv=1,
T (xy), if v=2.

[0,00] as
v

x,y€X
(87)

(b) Let (X, T) be a single-valued dynamic system, T :
X — X.If (X, T) satisfies

Frerosn) Vayex {B{ (T),T(y) <M (x )’)} (88)

then we say that (X, T) is a (B{, A)-contraction on X
for A.

As a corollary from Theorem 31 and its proof we get the
following fixed point theorem for single-valued contractions
with respect to .7 € Jx 4 (of Banach-type) in metric spaces
(X, d).

Theorem 34. Let (X, d) be a complete metric space, F = {] :
X - [0;00)} € Jixay and v € {1,2}. Suppose also the
following.
() 7 is admissible.
(II) (X, T) is a single-valued dynamic system, T : X — X.
(III) There exists A € [0;1) such that (X,T) is a (B‘f,)t)—
contraction on X for A.
(IV) T(X%) < X5.
The following hold.
(S1) T has a unique fixed point w in X (i.e., T(w) = w and
Fix(T) = {w}).
(S2) J(w,w) = 0.

(S3) For each w, € X, the sequence (w,, = ™ (wy) :m €
N) satisfies lim,, _, ..J(w, w,,) = lim,, ,  J(w,,, w) =
0 and lim,,, _,  d(w,w,,) = 0.
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Remark 35. Theorem 34 generalizes Theorem 11 (see Exam-
ple 7).

4. Examples Illustrating the Results

The following example describes some #-family in metric
spaces.

Example 1. Let (X, d) be a metric space. Let the set E ¢ X,
containing at least two different points, be arbitrary and fixed
and let ¢ > 0 satisfy 6(E) < ¢ where §(E) = sup{d(x, y) :
x,y € E}. Let ] : X2 = [0;00) be defined by the formulae:

_|d(xy), HEn{xy}={xy},
J(xy) = {c, if En{x, y} # {x, y}, (89)

x,y € X. Then ¥ = {] : X2 > [0;00)} € Jixa (see [6,
Example 6.12]).

The following example illustrates the Theorem 26(K1) in
the case when . = {J : X*> — [0;00)} € Jixay T #4d.

Example 2. Let X = [0; 6] be a complete metric space with a
metricd : X> — [0;00), dlx,y) = |x—-yl,x,y € X. Let
T, : X — CI(X) be of the form:

_|[12], ifx € [056),
Ti(x) = 1[4;5], if x = 6. (50)
Let E = [0;3) U (3;6) and let J be of the form:
_[d(y) i En{x y}={x y}
](x’y)_{s ENx ) £y, O

Clearly, 7 € Jx 4 (Example 1).
We observe that X} =[0;3)U(3;6) + 0.

Let A = 3/4. We show that (X,T,) is a (HY,3/4)-
contraction on X. Indeed, let x, ¥ € X be arbitrary and fixed.
We consider three cases.

Case 1. If x, y € [0;6), then we have that T|(x) = T,(y) =
[1;2] and H (T (x), Ty () = 0 < (3/4)] (x, y) = A (x, ).
Case 2. If x € [0;6) and y = 6,then y ¢ E, J(x,y) = 8,

T,(x) = [1;2] and T;(y) = [4;5]. Hence, we calculate the
following.

(2.1) Foru € Ty (x), J(u, T,(y)) = d(u, [4;5]) = 4 — u and,
consequently, sup{J(u, T;(y)) : u € T} (x)} = 3.

(2.2) Forv € T\ (y), J(v, T\ (x)) = d(v,[1;2]) = v — 2 and,
consequently, sup{J(v, T;(x)) : v € T; ()} = 3.

(2.3) By (2.1) and (2.2), for x € [0;6) and y = 6,
HY (T, (), T, ()
= max {sup {J (u, T, () : u € T\ (x)},

sup {] (V,Tl (X)) S Tl (y)}}
=3<6=1-8=A(x,y).

(92)
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Case 3. If x = 6 and y € X \ {6}, then also (92) holds.
By Cases 1-3, (X, T}) isa (Hi’g, A)-contraction on X.
Now, let y° = 7/8. We prove that, for each x ¢ Xg,,
Qg 0-x1, (%) is a nonempty closed subset in X. Indeed, for

each x € Xg, = [0;3) U (3;6), we have T;(x) = [1;2] C Xg,,
Yyer,(x-n121 (3 T1(y)) = 0} and
Qj,yo—A;Tl (x)
~{rema 6. )+ (5)1 ) < T (T )]
- {y € [152] <%>d(x,y) <d(x, [1;2])}

- {y €[1;2]: <%>|y—x| sd(x,[l;zl)}-

(93)
This implies the following.
Case 1. If x € [0;1], then
Qpyp-ar, () = {y € [1,2] - y - x < 8d (x, [1;2])} 04

={ye[1;2]: y<8-7x}.

Case 2. If x € (1;2], then

Qryoar, (%) = {y €[1;2]: (%) ly — x| <d(x[1;2]) = 0}

= {x}.
(95)
Case 3. If x € (2;3) U (3;6), then
Qpoonr, (¥) = {y e [1;2] 1 x— y <8(x-2)}
(96)

={ye[1;2]: y>16-7x}.

Assumptions of Theorem 26(K1) hold for v = 1, Fix(T;) =
[1;2], and, for each w € Fix(T}), J(w,w) = 0.

The following example illustrates the Theorem 26(K2) in
the case when # = {J}, ] # d.

Example 3. Let X, E, 7, A = 3/4,and y° = 7/8 be such as in
Example 2 and let T, : X — CI(X) be of the form:

(1} for x € [0;2) U {3} U [5;6)

T, (x) = {2} for x € [2;3) U (3;5) (97)
[4;5] for x = 6.
Then X} = [0;3) U (3;6) # 0 and, by analogous

considerations as in Example 2, we obtain that (X, T,) is a
(Hi] ,3/4)-contraction on X.
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Next, let us observe that, for x € Xg,,

Qj,y“—/\;Tz (.X')
= {y €T, (x): ] (1T, (¥)) (98)

1
+(5) e <@}
Hence we have the following.

Case 1. If x € [0;2) U {3} U [5;6), then T,(x) = {1},
J(y, T,(y)) = J(1,1) = 0 for y € T,(x) and, consequently,

Qo @ = {ye 7D+ ()11 <7 1)

- {ye{l}:(é)lx—ll < |x—1|} ).
(99)

Case 2. If x € [2;3) U (3;5), then T, (x) = {2}, J(y, T,(»)) =
J(2,2) = 0 for y € T,(x) and, consequently,

Qo @ = {ye@:7@D+(3) 12 < T (w2

- {ye {2}:<%>|x—2| < |x—2|} -2}
(100)

Therefore, for each x € X;, each dynamic process (w,, : m €
{0} UN) starting at wy, = x and satisfying V,,.c;ojun (Wi €
T(w,,)} satisfies ¥, cioun {Wye1 € Qg po_rir(wy,)}

Assumptions of Theorem 26(K2) hold, End(T,) = {1,2}
and J(1,1) = J(2,2) = 0.

The following example illustrates the Theorem 34 in the
case when 7 = {J : X* — [0;00)} € Jixay I #4d.

Example 4. Let X = {1, 2,3, 4} U [5; 6] be a metric space with
ametricd : X2 — [0;00), d(x, y) =|x—yl,x,y € X. Let
E ={1,2,4,5} and let J be of the form:

I (s y)z{d(xw), fEN{eyb=toyh, o)

8, if En{x, y} # {x, y}.
Clearly, 7 =1{J : X2 = [0;00)}is a 7 -family on X (Example
1).
Let A =3/4andletT; : X — X be of the form:

2, for x €{1,2,3}uU (5;6],

102
1, for x € {4,5}. (102)

T; (x) ={

Then X} = {1,2,4,5} # 0and T; : Xf} — Xg,. Thus
assumption (IV) of Theorem 34 holds.
We see that

{max {J (T; (x), T5 (), ] (T5 (¥), T5 (%))}
=] (T3 (x),T;s ()’))
=d(T;(x),T5 () <M (x5 )}

Vx,yEX

(103)
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thatis, (X, T5) isa (B{ , A)-contraction on X. Indeed, we have
the following.

Case 1. If x € {1,2,3} U (5;6] and y € {4, 5}, then

1=d(2,1)=7](2,1) =] (T5(x),T5(y)),

'3/\:?1 forx=1,y=4 or x=2,y=5,
3
20=—- forx=2,y=4,
M(xy)=1 2
4r=3 forx=1,y=5,
(8A =6 for x € {3U(5;6],y € {4,5}.
(104)
Case 2. 1f x, y € {1,2,3} U (5; 6], then
0=d(2,2)=7(2,2)=](T5(x),T5(y)). (105)
Case 3.1f x, y € {4,5}, then
0=dL,1) =/ (L) =J(T;),T;(y).  (106)

Assumptions of Theorem 34 hold and the assertions (S1)-
(S3) are as follows. Fix(T5) = {2}, J(2,2) = 0 and, for each

w, € X, the sequence (w,, = T (w,) : m € N) satisfies

Vyex {Jim J(2,w,) = lim ] (w,,2)
(107)
= lim d(w,,2) = 0}.

5. Comparisons of Qur Results with
Nadler’s and Banach’s Results

It is worth noticing that our results in metric spaces include
Nadler’s and Banach’s results. Clearly, it is not otherwise.
More precisely we have the following.

(a) In Examples 5 and 6 below we show that, for each
A € [0;1), the set-valued dynamic systems (X, T}) and
(X, T,) defined in Examples 2 and 3, respectively, are
not (H?, 1)-contractions on X and thus we cannot use
Theorem 12.

(b) In Example 7 we show that, for each A € [0;1),
the single-valued dynamic system (X, T;) defined in
Example 4 is not (d, A)-contractions on X and thus
we cannot use Theorem 11.

Therefore, in our concepts of (%f , \)-contractive set-
valued dynamic systems and (%7, A)-contractive single-
valued dynamic systems, v € {1, 2}, the existence of 7-family
such that # # 9 is essential.

Example 5. Let (X, d) and T; be such as in Example 2 and let
F = {d}. We observe that Xy =X
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Next, we see that, for each A € [0;1), (X,T;) is not a
(H?, 1)-contraction on X. Indeed, suppose that

EI/\E[O;I)Vx,yGX {Hd (T1 (%), T, (J’)) < Ad (x,y)} .

Then, in particular, for x, = 3 € X and y, = 6 € X, we obtain
the following.

(1) Ty (xy) = [1;2] and T} (y,) = [4;5].

(2) Foru € Ty (xg) = [1;2], d(u, T (y,)) = d(u, [4;5]) =
4 — u and, consequently,

sup {d (u, Ty (yo)) s u € T (%)} = 3.

(3) For z € Ty (y,) = [4;5], d(z, T} (x,)) = d(z,[1;2]) =
z — 2 and, consequently,

sup{d (z,T; (x9)) : z € Ty (3)} = 3.
(4) By (2) and (3),

H (T} (%), Ty ()

(108)

(109)

(110)

= max { sup d (u, T, (yo)), sup d (z, T, (xo))} =3.
ueT) (xg) z€T, (o)

an)
Hence, we get
Y elosn) {3 =H* (Ty (x0), Ty (35)) < Ad (x5 o)

(112)
<d(x0,9,) =d (3,6) = 3},

which is absurd.

Example 6. Let (X,d) and T, be such as in Example 3 and
let 7 = {d}. By similar argumentation as in Example 5, we
observe that, for each A € [0;1), (X, T,) is not a (H% \)-
contraction on X.

Example 7. Let (X, d) and T; be such as in Example 4 and let
J =D = {d}. Clearly, X?@ =X.

We observe that, for each A € [0; 1), (X, T;)isnota (d, A)-
contraction on X. Otherwise, by Definition 29 for ¥ = {d} (or
by (9)), the following holds:

{d(T; (%), Ts () < Ad (x, y)} .

However, in particular, for x, = 3 € X and y, = 4 € X, we
get d(x,, ¥,) = 1 and then

{1=4d(21)=4d(T5(x),T; (»))
< Ad (x0,30) = A < 1},

EI/\E[O;I)Vx,yEX (113)

Ye(0:1)
(114)

which is absurd. This gives that the condition (113) does not
hold.
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