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Herpes simplex virus type 2 (HSV-2) is the most prevalent sexually transmitted disease worldwide, despite the availability of highly
effective antiviral treatments. In this paper, a basic mathematical model for the spread of HSV-2 incorporating all the relevant
biological details and poor treatment adherence is proposed and analysed. Equilibrium states of themodel are determined and their
stability has been investigated. The basic model is then extended to incorporate a time dependent intervention strategy. The aim of
the control is tied to reducing the rate at which HSV-2 patients in treatment quit therapy before completion. Practically, this control
can be implemented through monitoring and counselling all HSV-2 patients in treatment. The Pontryagin’s maximum principle is
used to characterize the optimal level of the control, and the resulting optimality system is solved numerically. Overall, the study
demonstrates that though time dependent control will be effective on controlling new HSV-2 cases it may not be sustainable for
certain time intervals.

1. Introduction

Sexually transmitted infections (STIs) are responsible for
an enormous burden of morbidity and mortality in many
developing countries because of their effects on reproductive
and child health and their role in facilitating the transmission
of HIV infection [1]. Some of the reasons why STIs incidence
and prevalence rates are generally high in developing nations
are inadequacies in health service provision and health care
seeking [2] and delayed and poor treatment adherence [3].
Adhering to a treatment schedule and successfully complet-
ing it are crucial to the control of any global disease [4].
Poor adherence to treatment can be influenced by a couple
of issues such as personal, psychosocial, economic, medical,
and health service factors [4]. Prior studies suggest that rates
of nonadherence to treatment generally range from 20 to
40% for acute illness regimen and 50 to 80% for preventive
regimens [5]. It is worth noting that poor treatment adher-
ence has serious adverse effects on the GDP (Gross Domestic
Product) of a nation; for instance, a study in United States of
America (USA) estimated the total costs associated with poor

treatment adherence to be in the range $100–$300 billion
each year, including both direct and indirect costs [6, 7].

Herpes simplex virus type 2 (HSV-2) is themost prevalent
sexually transmitted disease worldwide, with a prevalence
of up to 80% [8]. HSV-2 causes lifelong infection with
episodic reactivation.Mounting evidence indicates thatHSV-
2 infection increases susceptibility to human immunodefi-
ciency virus (HIV) infection [9]; thus a positive outcome on
controllingHSV-2will reduceHIV incidence and prevalence.
For decades, antiviral drugs such as valacyclovir have been
used to treat or prevent frequent and painful episodes [10].
There is no effective vaccine for HSV-2 yet, but the infected
people may rely on the suppressive antiviral treatment, and
for them to be effective and also to decrease HSV-2 shedding,
adherence would be an important behaviour to follow [8,
11]. Prior studies suggest that poor treatment adherence
is more common among patients taking medication with
a once-daily dosing schedule compared to three or more
frequent dosing, signifying that HSV-2 patients also who
need to take their medication twice or three times a day
are susceptible to nonadherence [12]. Plummer et al. [13]
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conducted a qualitative study onHSV-2 treatment adherence
in Tanzania and observed an 8% (7/86) adherence for
HSV-2 patients who were on acyclovir. Despite numerous
research efforts that have been devoted to the study of HSV-
2 [9, 14–18], the aspect of poor treatment adherence and its
impact on infection and spread of HSV-2 has not yet been
investigated. It is against this background that this study
finds its relevance. In this paper we propose a compartmental
model for the spread of HSV-2 incorporating all the essential
biological details. The model incorporates the aspect of poor
treatment adherence and allows optimal control methods to
be used. We conduct both epidemic and endemic analysis,
with a focus on the threshold dynamics characterized by the
basic reproduction numbers. In addition, we explored the
role of time dependent intervention strategy of controlling
HSV-2 incidence and prevalence.

The paper is structured as follows. Section 2 presents
the basic HSV-2 model framework. In Section 3 we conduct
qualitative and comprehensive analysis of the model. In
Section 4 we extend the basic model to incorporate optimal
control theory. A brief discussion section concludes the
paper.

2. Model Framework

Our objective is to formulate a deterministic model for
HSV-2 that includes relevant biological details, accounts for
HSV-2 treatment, and allows optimal control methods to be
used. To begin, we partition the sexual active population
into the following epidemiological classes or subgroups:
susceptibles (𝑆), individuals infected with acute HSV-2 and
also under antiviral treatment (𝐴

𝑎
), individuals infected with

acute HSV-2 and not under antiviral treatment after quitting
before completion (𝐴

𝑢
), individuals infectedwith latentHSV-

2 after undergoing successful antiviral treatment (𝐿
𝑎
), and

the individuals infected with latent HSV-2 after undergoing
natural healing (𝐿

𝑢
). Thus, the total population is given by

𝑁 = 𝑆 + 𝐴
𝑎
+ 𝐴
𝑢
+ 𝐿
𝑎
+ 𝐿
𝑢
. We assume a constant size pop-

ulation with a birth and non-disease related death rate given
by 𝜇. The recruitment of susceptibles is proportional to the
population and is given by 𝜇𝑁(𝑡). Assuming homogeneous
mixing of the population, the susceptible individuals acquire
acute HSV-2 infection at rate 𝜆, given by

𝜆 =
𝛽 (𝐴
𝑎
(1 − 𝜂) + 𝐴

𝑢
)

𝑁
, (1)

where 𝛽 = 𝜌𝑐 is the effective contact rate for HSV-2 infection
(contact sufficient to result in HSV-2 infection), 𝜌 is the
probability of being infected by a sexual partner and 𝑐 is the
rate at which an individual acquires sexual partners per unit
time, and 𝜂 ∈ (0, 1) is a modification factor accounting for
the assumed reduced likelihood for individuals in class 𝐴

𝑎
to

pass on the infection compared to individuals in class𝐴
𝑢
.This

is due to the fact that individuals in treatment have reduced
viral load compared to those who have failed to adhere
to antiviral treatment guidelines. Upon being infected with
acute HSV-2, the individuals become latent at constant rate 𝜅.

Following an appropriate stimulus in individuals with latent
HSV-2, reactivation may occur [14]. The antiviral treatment
rate for the individuals with acute HSV-2 is denoted by 𝜓.
Since the antiviral medication will also suppress reactivation
of latentHSV-2, we assume that the reactivation rate of people
with latent HSV-2 is at rate 𝛾(𝜓), where 𝛾(𝜓) is a decreasing
function of 𝜓 [9]. Thus,

𝛾 (𝜓) = 𝛾 (0)
𝛼

𝛼 + 𝜓
, (2)

in which the factor 𝛼/(𝛼+𝜓) represents reduced reactivation
to class 𝐴

𝑎
due to antiviral treatment. In the case where there

is no treatment we have that 𝜓 = 0; thus 𝛾(𝜓
0
) = 𝛾(0) = 𝛾

0
. A

proportion (1 − 𝜃) of individuals on treatment fail to adhere
to treatment at rate 𝛿, and they move to class 𝐴

𝑢
. Since HSV-

2 is not fatal, we assume that individuals in different human
subgroups suffer from natural death at a rate 𝜇.

HSV-2 dynamics in this study are governed by the
following system of nonlinear differential equations:

𝑆
󸀠

= 𝜇𝑁 − 𝜆𝑆 − 𝜇𝑆,

𝐴
󸀠

𝑎
= 𝜆𝑆 + 𝛾 (𝜓) 𝐿

𝑎
− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴

𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝜃)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢
.

(3)

It is helpful to rescale system (3) so that we have dimension-
less variables. We let

𝑆 =
𝑆

𝑁
,

𝐿
𝑎
=
𝐿
𝑎

𝑁
,

𝐿
𝑢
=
𝐿
𝑢

𝑁
,

𝐴
𝑎
=
𝐴
𝑎

𝑁
,

𝐴
𝑢
=
𝐴
𝑢

𝑁
.

(4)

We now denote the total population with𝑁 = 𝑆 + 𝐿
𝑎
+ 𝐿
𝑢
+

𝐴
𝑎
+ 𝐴
𝑢
, and our new model takes the form

𝑆
󸀠

= 𝜇 − 𝜆𝑆 − 𝜇𝑆,

𝐴
󸀠

𝑎
= 𝜆𝑆 + 𝛾 (𝜓) 𝐿

𝑎
− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴

𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝜃)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,
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Table 1: Model parameters and their baseline values. The time unit is in months.

Definition Symbol Baseline values Source
Reactivation rate with an effect of treatment 𝛾(𝜓) Varying [9]
Proportion of HSV-2 patients who successfully complete treatment 𝜃 0.7 (0-1) Estimate
Effective contact rate for HSV-2 infection 𝛽 0.2 [9, 18]
Baseline reactivation rate of latent HSV-2 𝛾

0
0.3875 (0.339–0.436) [19]

Rate of acute HSV-2 becoming latent 𝜅 2.3805 (2.083–2.678) [19]
Treatment rate of acute HSV-2 𝜓 Varied [9]
Average sexual lifespan 𝜇 0.0004 (0.003–0.005) [18, 19]
Modification parameter 𝜂 0.4 (0-1) Estimate
Treatment quitting rate 𝛿 0.3 [20, 21]

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢

(5)

with 𝜆 = 𝛽(𝐴
𝑎
(1 − 𝜂) +𝐴

𝑢
). The model parameters and their

baseline values are given in Table 1.

3. Model Analysis and Results

3.1. Positivity and Boundedness of Solutions. In this sectionwe
study the basic properties of the solutions of model system
(5), which are essential to the proofs of stability.

Theorem 1. The equations preserve positivity of solutions.

Proof. Let 𝑡
1
= sup{𝑡 > 0 : 𝑆 > 0, 𝐴

𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎
>

0, 𝐿
𝑢
> 0 ∈ [0, 𝑡]}. Thus, 𝑡

1
> 0. It follows from the first

equation of model system (5) that
̇𝑆 = 𝜇 − 𝜇𝑆 ≥ 𝜇 − 𝜆𝑆 − 𝜇𝑆, (6)

which can be rewritten as
𝑑

𝑑𝑡
(𝑆 (𝑡) exp{𝜇𝑡 + ∫

𝑡

0

𝜆 (𝜏) 𝑑𝜏})

≥ 𝜇 exp{𝜇𝑡 + ∫
𝑡

0

𝜆 (𝜏) 𝑑𝜏} .

(7)

Hence,

𝑆 (𝑡
1
) exp{𝜇𝑡

1
+ ∫
𝑡

0

𝜆 (𝜏) 𝑑𝜏} − 𝑆 (0)

≥ ∫
𝑡
1

0

𝜇 exp{𝜇𝑦 + ∫
𝑦

0

𝜆 (𝜏) 𝑑𝜏} 𝑑𝑦,

(8)

so that

𝑆 (𝑡
1
) ≥ 𝑆 (0) exp{−𝜇𝑡

1
− ∫
𝑡
1

0

𝜆 (𝜏) 𝑑𝜏}

⋅ (exp{−𝜇𝑡
1
− ∫
𝑡
1

0

𝜆 (𝜏) 𝑑𝜏})

⋅ (∫
𝑡
1

0

𝜇 exp{𝜇𝑦 + ∫
𝑦

0

𝜆 (𝜏)} 𝑑𝑦) > 0.

(9)

Similarly, it can be shown that 𝐴
𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎
> 0, and

𝐿
𝑢
> 0 for all time 𝑡 > 0.

Theorem 2. All solutions of model system (5) are bounded.

Proof. Using model system (5), we have

𝑁
󸀠

= 𝑆
󸀠

+ 𝐴
󸀠

𝑎
+ 𝐴
󸀠

𝑢
+ 𝐿
󸀠

𝑎
+ 𝐿
󸀠

𝑢
= 𝜇 − 𝜇𝑁. (10)

The initial value problemΘ󸀠 = 𝜇−𝜇Θ, withΘ(0) = 𝑁(0), has
the solutionΘ(𝑡) = 1−𝑐𝑒−𝜇𝑡 and lim

𝑡→∞
Θ(𝑡) = 1.Therefore,

𝑁(𝑡) ≤ Θ(𝑡), which implies that lim
𝑡→∞

sup𝑁(𝑡) ≤ 1.
Therefore all feasible solutions of system (5) enter the

region

Ω = {(𝑆, 𝐴
𝑎
, 𝐴
𝑢
, 𝐿
𝑎
, 𝐿
𝑢
) ∈R
5

+
: 𝑆 + 𝐴

𝑎
+ 𝐴
𝑢
+ 𝐿
𝑎

+ 𝐿
𝑢
≤ 1} .

(11)

Thus, Ω is positively invariant and it is sufficient to consider
solutions of model system (5) in Ω. Existence, uniqueness,
and continuation results for model system (5) starting in
Ω remain in Ω for all 𝑡 ≥ 0. All parameters and state
variables for model system (5) are assumed to be nonnegative
(for biological relevance) for all 𝑡 ≥ 0 since model system
monitors human population.

3.2. Equilibrium Points and Their Stability Analysis

3.2.1. Disease-Free Equilibrium. Model system (5) has an
evident disease-free equilibrium (DFE) given by

C
0

= (𝑆
0

, 𝐴
0

𝑎
, 𝐴
0

𝑢
, 𝐿
0

𝑎
, 𝐿
0

𝑢
) = (1, 0, 0, 0, 0) . (12)

The Jacobian matrix of model system (5) evaluated at the
disease-free equilibrium is given by Π:
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Π =

[
[
[
[
[
[
[
[
[
[

[

−𝜇 − (1 − 𝜂) 𝛽 −𝛽 0 0

0 (1 − 𝜂) 𝛽 − (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓) 𝛽 𝛾 (𝜓) 0

0 𝛿 (1 − 𝜃) − (𝜇 + 𝜅) 0 𝛾
0

0 𝜅 + 𝜓 0 − (𝜇 + 𝛾 (𝜓)) 0

0 0 𝜅 0 − (𝜇 + 𝛾
0
)

]
]
]
]
]
]
]
]
]
]

]

. (13)

It is clear from (13) that𝜆
1
= −𝜇 is an eigenvalue and the other

four eigenvalues are obtained from the matrix

Δ =

[
[
[
[
[
[
[

[

(1 − 𝜂) 𝛽 − (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓) 𝛽 𝛾 (𝜓) 0

𝛿 (1 − 𝜃) − (𝜇 + 𝜅) 0 𝛾
0

𝜅 + 𝜓 0 − (𝜇 + 𝛾 (𝜓)) 0

0 𝜅 0 − (𝜇 + 𝛾
0
)

]
]
]
]
]
]
]

]

. (14)

The trace and determinant of (14) are, respectively, given by

tr (Δ) = − (4𝜇 + 2𝜅 + 𝜓 + 𝛾 (𝜓) + 𝛾
0
+ 𝛿 (1 − 𝜃)) + (1 − 𝜂) 𝛽 < 0, for (1 − 𝜂) 𝛽 < (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓) ,

det (Δ) = 𝜛(1 −
𝛽 (𝜇 + 𝛾 (𝜓)) [𝛿 (1 − 𝜃) (𝜇 + 𝛾

0
) + 𝜇 (1 − 𝜂) (𝜇 + 𝜅 + 𝛾

0
)]

𝜇 (𝜇 + 𝜅 + 𝛾
0
) [𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)]

) > 0,

where, 𝜛 = 𝜇 (𝜇 + 𝜅 + 𝛾
0
) [𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)] .

(15)

Let the spectral radius of model system (5) be

𝑅
𝑎𝑐
=

𝛽 (𝜇 + 𝛾 (𝜓)) [𝛿 (1 − 𝜃) (𝜇 + 𝛾
0
) + 𝜇 (1 − 𝜂) (𝜇 + 𝜅 + 𝛾

0
)]

𝜇 (𝜇 + 𝜅 + 𝛾
0
) [𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)]

. (16)

Biologically, the reproductive number is defined as the
number of secondary cases generated by a primary case when
the virus is introduced in a population of wholly susceptible
individuals at a demographic steady state. Based on (15) we
haveTheorem 3.

Theorem3. If𝑅
𝑎𝑐
< 1, thenC0 is locally asymptotically stable.

We now investigate the global stability of the infection-
free equilibriumC0. We claim the following result.

Theorem 4. Whenever 𝑅
𝑎𝑐
< 1, it follows that the equilibrium

pointC0 of system (5) is globally asymptotically stable.

Proof. From the first equation of model system (5), we have
that

𝑆
󸀠

= 𝜇 − 𝛽 (𝐴
𝑎
(1 − 𝜂) + 𝐴

𝑢
) 𝑆 − 𝜇𝑆 ≤ 𝜇 − 𝜇𝑆. (17)

Choosing a small enough positive number 𝜐, there exists 𝑡
1
>

0 such that, for all 𝑡 > 𝑡
1
,

𝑆 ≤ 1 + 𝜐 = 𝑆
0

+ 𝜐. (18)
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Frommodel system (5) and the fact that 𝑆 ≤ 𝑆0 + 𝜐, 𝑡 > 𝑡
1
, we

also know that

𝐴
󸀠

𝑎
≤ 𝛽 (𝐴

𝑎
(1 − 𝜂) + 𝐴

𝑢
) (𝑆
0

+ 𝜐) + 𝛾 (𝜓) 𝐿
𝑎

− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝜃)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢

(19)

for all 𝑡 > 𝑡
1
. Consider the following auxiliary system:

𝐴
󸀠

𝑎
= 𝛽 (𝐴

∗∗

𝑎
(1 − 𝜂) + 𝐴

∗∗

𝑢
) (𝑆
0

+ 𝜐) + 𝛾 (𝜓) 𝐿
∗∗

𝑎

− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
∗∗

𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝜃)𝐴

∗∗

𝑎
+ 𝛾
0
𝐿
∗∗

𝑢
− (𝜇 + 𝜅)𝐴

∗∗

𝑢
,

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

∗∗

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

∗∗

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
∗∗

𝑢
− (𝜇 + 𝛾

0
) 𝐿
∗∗

𝑢
.

(20)

Let Δ
0
be the matrix defined as

Δ
0
=

[
[
[
[
[

[

(1 − 𝜂) 𝛽 𝛽 0 0

0 0 0 0

0 0 0 0

0 0 0 0

]
]
]
]
]

]

. (21)

Setting Δ
1
= Δ + 𝜐Δ

0
, it follows from Theorem 2 in van

den Driessche and Watmough [22] that 𝑅
𝑎𝑐

< 1 if and
only if 𝜌(Δ) < 0. Thus, there exists 𝜐 > 0 small enough
such that 𝜌(Δ

1
) < 0. By the Perron-Frobenius theorem

[23], all eigenvalues of the matrix Δ
1
have negative real

parts where 𝜌(Δ
1
) < 0. Therefore auxiliary system has

(𝐴󸀠
𝑎
(𝑡), 𝐴󸀠
𝑢
(𝑡), 𝐿󸀠
𝑎
(𝑡), 𝐿󸀠
𝑢
(𝑡)) → (0, 0, 0, 0), as 𝑡 → ∞, which

implies that the zero solution of model system (5) is globally
asymptotically stable.

By the comparison principle of Smith andWaltman [24],
we know that (𝐴

𝑎
(𝑡), 𝐴
𝑢
(𝑡), 𝐿
𝑎
(𝑡), 𝐿
𝑢
(𝑡)) → (0, 0, 0, 0), at

𝑡 → ∞. By the theory of asymptotic autonomous system
of Thieme [25], it is also known that 𝑆(𝑡) → 𝑆0, as 𝑡 → ∞.
So C0 is globally attractive when 𝑅

𝑎𝑐
< 1. It follows that the

disease-free equilibrium C0 of model system (5) is globally
asymptotically stable when 𝑅

𝑎𝑐
< 1.

3.2.2. Endemic Equilibrium. The endemic equilibrium of
model system (5) is given by

C
∗

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝑆 =
𝜇

𝜇 + 𝜆∗
,

𝐿
𝑎
=

𝜇 (𝜅 + 𝜓) 𝜆∗

(𝜇 + 𝜆∗) [𝛾 (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜅 + 𝜇 + 𝜓)]
,

𝐿
𝑢
=

𝜇𝜅𝛿 (1 − 𝜃) (𝜇 + 𝛾) 𝜆
∗

(𝜇 + 𝜆∗) (𝜅 + 𝜇 + 𝛾
0
) [𝛾 (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜅 + 𝜇 + 𝜓)]

,

𝐴
𝑎
=

𝜇 (𝜇 + 𝛾) 𝜆∗

(𝜇 + 𝜆∗) [𝛾 (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜅 + 𝜇 + 𝜓)]
,

𝐴
𝑢
=

𝜇𝛿 (1 − 𝜃) (𝜇 + 𝛾
0
) (𝜇 + 𝛾) 𝜆∗

(𝜇 + 𝜆∗) [𝛾 (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜅 + 𝜇 + 𝜓)]
.

(22)

In terms of the force of infection 𝜆∗. Substituting (22) into the
equation of the force of infection 𝜆∗ we have

𝜆
∗

ℎ (𝜆
∗

) = 𝜆
∗

(H
1
𝜆
∗

+H
2
) = 0, (23)

where 𝜆∗ = 0 corresponds to the disease-free equilibrium
and ℎ(𝜆∗) = 0 corresponds to the existence of the endemic
equilibrium point, where

H
1
=
1

𝜇
,

H
2
= 1 − 𝑅

𝑎𝑐
.

(24)

H
1
is always positive andH

2
is negative or positive depend-

ing on whether 𝑅
𝑎𝑐
is greater or less than unity.

Theorem 5. The endemic equilibrium C∗ exists whenever
𝑅
𝑎𝑐
> 1.

Proof. By looking at the linear equation of H
1
𝜆∗ +H

2
= 0

we have that

𝜆
∗

= −
H
2

H
1

=
𝑅
𝑎𝑐
− 1

H
1

. (25)

But the disease is endemic when the force of infection 𝜆∗ >
0 which implies that 𝑅

𝑎𝑐
> 1. Therefore the endemic

equilibriumC∗ exists whenever 𝑅
𝑎𝑐
> 1.

Since the disease-free equilibrium is globally asymptoti-
cally stable, it is evident that C∗ is unique, and it has been
shown that our endemic equilibrium exists for𝑅

𝑎𝑐
> 1.When

𝑅
𝑎𝑐
> 1, the disease-free equilibrium becomes unstable and it
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is natural to expect that the infectious populationswill remain
persistent in this case.

Theorem 6. If 𝑅
𝑎𝑐

> 1, system (5) is uniformly persistent;
namely, there exists a constant 𝜉 > 0 such that

lim inf
𝑡→∞

𝑆 (𝑡) > 𝜉,

lim inf
𝑡→∞

𝐴
𝑎
(𝑡) > 𝜉,

lim inf
𝑡→∞

𝐴
𝑢
(𝑡) > 𝜉,

lim inf
𝑡→∞

𝐿
𝑎
(𝑡) > 𝜉,

lim inf
𝑡→∞

𝐿
𝑢
(𝑡) > 𝜉.

(26)

Here, 𝜉 is independent of the initial data in Ω.

Proof. When 𝑡 → ∞, from system (5), we obtain the
following limiting system:

𝑆
󸀠

= 𝜇 − 𝛽𝑆 (𝐴
𝑎
(1 − 𝜂) + 𝐴

𝑢
) − 𝜇𝑆,

𝐴
󸀠

𝑎
= 𝛽𝑆 (𝐴

𝑎
(1 − 𝜂) + 𝐴

𝑢
) + 𝛾 (𝜓)

− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝜃)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢
.

(27)

We will also denote the disease-free equilibrium for model
system (27) asC0. We set

𝑋 = {(𝑆, 𝐴
𝑎
, 𝐴
𝑢
, 𝐿
𝑎
, 𝐿
𝑢
) ∈ 𝑆 ≥ 0, 𝐴

𝑎
≥ 0, 𝐴

𝑢
≥ 0, 𝐿

𝑎

≥ 0, 𝐿
𝑢
≥ 0} ,

𝑋
0
= {(𝑆, 𝐴

𝑎
, 𝐴
𝑢
, 𝐿
𝑎
, 𝐿
𝑢
) ∈ 𝑆 ≥ 0, 𝐴

𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎

> 0, 𝐿
𝑢
> 0} ,

𝑌 = 𝑋 \ 𝑋
0
.

(28)

Now, we have to show that model system (27) is uniformly
persistent with respect to (𝑋

0
, 𝑌).

Firstly, by the form of model system (27), it can be
easily shown that both 𝑋 and 𝑋

0
are positively invariant.

Clearly, 𝑌 is relatively closed in 𝑋 and model system (27) is
point dissipative. Consider the following set using solutions
(𝑆(𝑡), 𝐴

𝑎
(𝑡), 𝐴
𝑢
(𝑡), 𝐿
𝑎
(𝑡), 𝐿
𝑢
(𝑡)) of model system (27):

𝑀
𝑌
= {(𝑆 (0) , 𝐴

𝑎
(0) , 𝐴

𝑢
(0) , 𝐿

𝑎
(0) , 𝐿

𝑢
(0)) :

(𝑆 (𝑡) , 𝐴
𝑎
(𝑡) , 𝐴

𝑢
(𝑡) , 𝐿
𝑎
(𝑡) , 𝐿
𝑢
(𝑡)) ∈ 𝑌, ∀𝑡 ≥ 0} .

(29)

We now show that

𝑀
𝑌

= {(𝑆 (0) , 𝐴
𝑎
(0) , 𝐴

𝑢
(0) , 𝐿

𝑎
(0) , 𝐿

𝑢
(0)) : 𝑆 ≥ 0} .

(30)

Assume that (𝑆(0), 𝐴
𝑎
(0), 𝐴

𝑢
(0), 𝐿
𝑎
(0), 𝐿
𝑢
(0)) ∈ 𝑀

𝑌
. It

suffices to show that 𝐴
𝑎
(𝑡) = 𝐴

𝑢
(𝑡) = 𝐿

𝑎
(𝑡) = 𝐿

𝑢
(𝑡) = 0.

Suppose the assumption is not true; then there exists 𝑡
0
≥ 0

such that

(𝐴
𝑎
> 0, 𝐴

𝑢
= 0, 𝐿

𝑎
= 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎
= 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎
> 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
= 0, 𝐿

𝑎
> 0, 𝐿

𝑢
> 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
= 0, 𝐿

𝑎
= 0, 𝐿

𝑢
> 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
> 0, 𝐿

𝑎
= 0, 𝐿

𝑢
> 0)

or (𝐴
𝑎
> 0, 𝐴

𝑢
= 0, 𝐿

𝑎
> 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
> 0, 𝐿

𝑎
= 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
> 0, 𝐿

𝑎
> 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
> 0, 𝐿

𝑎
= 0, 𝐿

𝑢
> 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
> 0, 𝐿

𝑎
> 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
= 0, 𝐿

𝑎
> 0, 𝐿

𝑢
= 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
= 0, 𝐿

𝑎
> 0, 𝐿

𝑢
> 0)

or (𝐴
𝑎
= 0, 𝐴

𝑢
= 0, 𝐿

𝑎
= 0, 𝐿

𝑢
> 0) .

(31)

For (𝐴
𝑎
> 0, 𝐴

𝑢
= 0, 𝐿

𝑎
= 0, 𝐿

𝑢
= 0), we have

𝐴
󸀠

𝑢
(𝑡
0
) = 𝛿 (1 − 𝜃)𝐴

𝑎
,

𝐿
󸀠

𝑎
(𝑡
0
) = (𝜅 + 𝜓)𝐴

𝑎
.

(32)

It follows that there is 𝜖
0
> 0 such that 𝐴

𝑢
> 0 and

𝐿
𝑎
> 0 for 𝑡

0
< 𝑡 < 𝑡

0
+ 𝜖
0
. Clearly, we can restrict

𝜖
0
> 0 small enough such that 𝐴

𝑎
> 0 for 𝑡

0
< 𝑡 <

𝑡
0
+ 𝜖
0
. This means that (𝑆(𝑡), 𝐴

𝑎
(𝑡), 𝐴
𝑢
(𝑡), 𝐿
𝑎
(𝑡), 𝐿
𝑢
(𝑡)) ∉ 𝑌

for 𝑡
0
< 𝑡 < 𝑡

0
+ 𝜖
0
, which contradicts the assumption

that (𝑆(0), 𝐴
𝑎
(0), 𝐴

𝑢
(0), 𝐿
𝑎
(0), 𝐿
𝑢
(0)) ∈ 𝑀

𝑌
. For the other

cases, we can also show these contradict the assumption that
(𝑆(0), 𝐴

𝑎
(0), 𝐴

𝑢
(0), 𝐿
𝑎
(0), 𝐿
𝑢
(0)) ∈ 𝑀

𝑌
, respectively. Thus,

(27) holds.
It is worth noting thatC0 is globally asymptotically stable

in the interior of 𝑀
𝑌
. Moreover, C0 is an isolated invariant

set in𝑋, every orbit in𝑀
𝑌
converges toC0, andC0 is acyclic

in 𝑀
𝑌
. By Theorem 4.6 [25], we only need to show that

𝑊𝑆(C0) ∩ 𝑋
0
= 0 if 𝑅

𝑎𝑐
> 1.

In the following, we now prove that 𝑊𝑆(C0) ∩ 𝑋
0
= 0.

Assume that 𝑊𝑆(C0) ∩ 𝑋
0

̸= 0. Then there exists a
positive solution (𝑆⋆(𝑡), 𝐴⋆

𝑎
(𝑡), 𝐴⋆
𝑢
(𝑡), 𝐿⋆
𝑎
(𝑡), 𝐿⋆
𝑢
(𝑡)) with

(𝑆⋆(0), 𝐴⋆
𝑎
(0), 𝐴⋆

𝑢
(0), 𝐿⋆
𝑎
(0), 𝐿⋆
𝑢
(0)) ∈ 𝑋

0
, such that

(𝑆⋆(𝑡), 𝐴⋆
𝑎
(𝑡), 𝐴⋆
𝑢
(𝑡), 𝐿⋆
𝑎
(𝑡), 𝐿⋆
𝑢
(𝑡)) → C0 as 𝑡 → ∞.

Since 𝑅
𝑎𝑐
> 1, we can choose ] > 0 small enough such that

𝑅
𝑎𝑐
− ]𝑅
𝑎𝑐
> 1. (33)
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Thus, when 𝑡 is sufficiently large, we have

𝑆
0

− ] ≤ 𝑆⋆ (𝑡) ≤ 𝑆0 + ],

0 ⩽ 𝐴
⋆

𝑎
(𝑡) ⩽ ],

0 ⩽ 𝐴
⋆

𝑢
(𝑡) ⩽ ],

0 ⩽ 𝐿
⋆

𝑎
(𝑡) ⩽ ],

0 ⩽ 𝐿
⋆

𝑢
(𝑡) ⩽ ],

𝐴
󸀠

𝑎
⩾ 𝛽𝑆 (𝐴

𝑎
(1 − 𝜂) + 𝐴

𝑢
) + 𝛾 (𝜓)

− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
𝑎
,

𝐴
󸀠

𝑢
⩾ 𝛿 (1 − 𝜃)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,

𝐿
󸀠

𝑎
⩾ (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
⩾ 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢
.

(34)

By the comparison principle, it is easy to see that 𝐴⋆
𝑎
(𝑡) →

∞, 𝐴⋆
𝑢
(𝑡) → ∞, 𝐿⋆

𝑎
(𝑡) → ∞, and 𝐿⋆

𝑢
(𝑡) → ∞,

contradicting 𝐴⋆
𝑎
→ 0, 𝐴⋆

𝑢
→ 0, 𝐿⋆

𝑎
→ 0, and 𝐿⋆

𝑢
→ 0

as 𝑡 → ∞. This proves𝑊𝑆(C0) ∩ 𝑋
0
= 0.

Since 𝑊𝑆(C0) ∩ 𝑋
0
= 0, ⋃

𝑥∈𝑀
𝑌

𝜔(𝑥) = {C0}, C0

is isolated invariant set in 𝑋, and C0 is acyclic in 𝑀
𝑌
, by

Theorem 4.6 [25] we are able to conclude that model system
(27) is uniformly persistent with respect to (𝑋

0
, 𝑌). Then,

model system (5) is uniformly persistent.

Theorem 7. If 𝑅
𝑎𝑐

> 1, the endemic equilibrium point is
globally asymptotically stable.

Proof. To study the global asymptotic stability of the endemic
equilibrium, following [26, 27] we use a Lyapunov function𝑉
as follows:

𝑉 = (𝑆 − 𝑆
∗

− 𝑆
∗ ln 𝑆

𝑆∗
)

+ 𝑉
1
(𝐴
𝑎
− 𝐴
∗

𝑎
− 𝐴
∗

𝑎
ln
𝐴
𝑎

𝐴∗
𝑎

)

+ 𝑉
2
(𝐴
𝑢
− 𝐴
∗

𝑢
− 𝐴
∗

𝑢
ln
𝐴
𝑢

𝐴∗
𝑢

)

+ 𝑉
3
(𝐿
𝑎
− 𝐿
∗

𝑎
− 𝐿
∗

𝑎
ln
𝐿
𝑎

𝐿∗
𝑎

)

+ 𝑉
4
(𝐿
𝑢
− 𝐿
∗

𝑢
− 𝐿
∗

𝑢
ln
𝐿
𝑢

𝐿∗
𝑢

) ,

(35)

where 𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
> 0 are constants to be determined later.

Applying the replacements

𝑆

𝑆∗
= 𝑚,

𝐴
𝑎

𝐴∗
𝑎

= 𝑛,

𝐴
𝑢

𝐴∗
𝑢

= 𝑥,

𝐿
𝑎

𝐿∗
𝑎

= 𝑦,

𝐿
𝑢

𝐿∗
𝑢

= 𝑧,

(36)

the derivative of 𝑉 is given by

𝑉̇ = (1 −
𝑆∗

𝑆
)
𝑑𝑆

𝑑𝑡
+ 𝑉
1
(1 −

𝐴∗
𝑎

𝐴
𝑎

)
𝑑𝐴
𝑎

𝑑𝑡
+ 𝑉
2
(1

−
𝐴∗
𝑢

𝐴
𝑢

)
𝑑𝐴
𝑢

𝑑𝑡
+ 𝑉
3
(1 −

𝐿∗
𝑎

𝐿
𝑎

)
𝑑𝐿
𝑎

𝑑𝑡
+ 𝑉
4
(1

−
𝐿∗
𝑢

𝐿
𝑢

)
𝑑𝐿
𝑢

𝑑𝑡

= (1 −
1

𝑚
) [𝜇 − 𝛽𝐴

𝑎
(1 − 𝜂) 𝑆 − 𝛽𝐴

𝑢
𝑆 − 𝜇𝑆]

+ 𝑉
1
(1 −

1

𝑛
) [𝛽𝐴

𝑎
(1 − 𝜂) 𝑆 + 𝛽𝐴

𝑢
𝑆 + 𝛾 (𝜓) 𝐿

𝑎

− (𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
𝑎
] + 𝑉
2
(1 −

1

𝑥
)

⋅ [𝛿 (1 − 𝜃)𝐴
𝑎
+ 𝛾
0
𝐿
𝑢

− (𝜇 + 𝜅)𝐴
𝑢
] + 𝑉
3
(1 −

1

𝑦
) [(𝜅 + 𝜓)𝐴

𝑎

− (𝜇 + 𝛾 (𝜓)) 𝐿
𝑎
] + 𝑉
4
(1 −

1

𝑧
) [𝜅𝐴

𝑢

− (𝜇 + 𝛾
0
) 𝐿
𝑢
] .

(37)

At the endemic equilibrium point, model system (5) has the
following identities:

𝜇 = 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑢
𝑆
∗

+ 𝜇𝑆
∗

,

(𝜇 + 𝜅 + 𝜓 + 𝛿 (1 − 𝜃)) 𝐴
∗

𝑎

= 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑢
𝑆
∗

+ 𝛾𝐿
∗

𝑎
,

(𝜇 + 𝜅)𝐴
∗

𝑢
= 𝛿 (1 − 𝜃)𝐴

∗

𝑎
+ 𝛾
0
𝐿
∗

𝑢
,

(𝜇 + 𝛾 (𝜓)) 𝐿
∗

𝑎
= (𝜅 + 𝜓)𝐴

∗

𝑎
,

(𝜇 + 𝛾
0
) 𝐿
∗

𝑢
= 𝜅𝐴
∗

𝑢
.

(38)
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Thus,

𝑉̇ = (1 −
1

𝑚
) [𝛽𝐴

∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑢
𝑆
∗

+ 𝜇𝑆
∗

− 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑚𝑛 − 𝛽𝐴
∗

𝑢
𝑆
∗

𝑚𝑥 − 𝜇𝑆
∗

𝑚]

+ 𝑉
1
(1 −

1

𝑛
) [𝛽𝐴

∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑚𝑛 + 𝛽𝐴
∗

𝑢
𝑆
∗

𝑚𝑥

+ 𝛾𝐿
∗

𝑎
𝑦 − 𝛽𝐴

∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑛 − 𝛽𝐴
∗

𝑢
𝑆
∗

𝑛 − 𝛾𝐿
∗

𝑎
𝑛]

+ 𝑉
2
(1 −

1

𝑥
) [𝛿 (1 − 𝜃)𝐴

∗

𝑎
𝑛 + 𝛾
0
𝐿
∗

𝑢
𝑧

− 𝛿 (1 − 𝜃)𝐴
∗

𝑎
𝑥 − 𝛾
0
𝐿
∗

𝑢
𝑥] + 𝑉

3
(1 −

1

𝑦
)

⋅ [(𝜅 + 𝜓)𝐴
∗

𝑎
𝑛 − (𝜅 + 𝜓)𝐴

∗

𝑎
𝑦]

+ 𝑉
4
(1 −

1

𝑧
) [𝜅𝐴

∗

𝑢
𝑥 − 𝜅𝐴

∗

𝑢
𝑧]

= 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑢
𝑆
∗

+ 𝜇𝑆
∗

− 𝛽𝐴
∗

𝑎
(1 − 𝜂)

⋅ 𝑆
∗

𝑚𝑛 − 𝛽𝐴
∗

𝑢
𝑆
∗

𝑚𝑥 − 𝜇𝑆
∗

𝑚 − 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗
1

𝑚

− 𝛽𝐴
∗

𝑢
𝑆
∗
1

𝑚
− 𝜇𝑆
∗
1

𝑚
+ 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑛

+ 𝛽𝐴
∗

𝑢
𝑆
∗

𝑥 + 𝜇𝑆
∗

+ 𝑉
1
(𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑚𝑛

+ 𝛽𝐴
∗

𝑢
𝑆
∗

𝑚𝑥 + 𝛾𝐿
∗

𝑎
𝑦 − 𝛽𝐴

∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑛 − 𝛽𝐴
∗

𝑢
𝑆
∗

𝑛

− 𝛾𝐿
∗

𝑎
𝑛 − 𝛾𝐿

∗

𝑎

𝑦

𝑛
− 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑚 − 𝛽𝐴
∗

𝑎
𝑆
∗
𝑚𝑥

𝑛

+ 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑎
𝑆
∗

+ 𝛾𝐿
∗

𝑎
)

+ 𝑉
2
(𝛿 (1 − 𝜃)𝐴

∗

𝑎
𝑛 + 𝛾
0
𝐿
∗

𝑢
𝑧 − 𝛿 (1 − 𝜃)𝐴

∗

𝑎
𝑥

− 𝛾
0
𝐿
∗

𝑢
𝑥 − 𝛿 (1 − 𝜃)𝐴

∗

𝑎

𝑛

𝑥
− 𝛾
0
𝐿
∗

𝑢

𝑧

𝑥
+ 𝛿 (1 − 𝜃)𝐴

∗

𝑎

+ 𝛾
0
𝐿
∗

𝑢
) + 𝑉
3
((𝜅 + 𝜓)𝐴

∗

𝑎
𝑛 − (𝜅 + 𝜓)𝐴

∗

𝑎
𝑦

− (𝜅 + 𝜓)𝐴
∗

𝑎

𝑛

𝑦
+ (𝜅 + 𝜓)𝐴

∗

𝑎
) + 𝑉
4
(𝜅𝐴
∗

𝑢
𝑥

− 𝜅𝐴
∗

𝑢
𝑧 − 𝜅𝐴

∗

𝑢

𝑥

𝑧
+ 𝜅𝐴
∗

𝑢
) .

(39)

We define the setG of all the above terms as

G = {𝑚, 𝑛, 𝑥, 𝑦, 𝑧,
1

𝑚
,
𝑦

𝑛
,
𝑛

𝑦
,
𝑥

𝑧
,
𝑧

𝑥
,
𝑛

𝑥
,
𝑚𝑥

𝑛
} . (40)

Then we create some subsets ofG, where the product of each
set equals one (like (𝑦/𝑛)×(𝑛/𝑦) = 1). Consider the following:

{𝑚,
1

𝑚
} ,

{
𝑦

𝑛
,
𝑛

𝑦
} ,

{
𝑥

𝑧
,
𝑧

𝑥
} ,

{
1

𝑚
,
𝑛

𝑥
,
𝑚𝑥

𝑛
} .

(41)

Then, we let the coefficients of the terms that are notmembers
of our subsets in (41) for the function 𝑉̇ be zero, that is, the
coefficients of the terms 𝑛, 𝑥, 𝑦, 𝑧,𝑚𝑛,𝑚𝑥. Thus, we have

(𝑉
1
− 1) 𝛽𝐴

∗

𝑢
𝑆
∗

= 0,

(𝑉
1
− 1) 𝛽𝐴

∗

𝑎
(1 − 𝜂) 𝑆

∗

= 0,

𝛾𝐿
∗

𝑎
𝑉
1
− (𝜅 + 𝜓)𝐴

∗

𝑎
𝑉
3
= 0,

𝛾
0
𝐿
∗

𝑢
𝑉
2
− 𝜅𝐴
∗

𝑢
𝑉
4
= 0,

𝛽𝐴
∗

𝑢
𝑆
∗

− 𝛿 (1 − 𝜃)𝐴
∗

𝑎
𝑉
2
− 𝛾
0
𝐿
∗

𝑢
𝑉
2
+ 𝜅𝐴
∗

𝑢
𝑉
4
= 0,

𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

− 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

𝑉
1
− 𝛽𝐴
∗

𝑢
𝑆
∗

𝑉
1

− 𝛾𝐿
∗

𝑎
𝑉
1
+ 𝛿 (1 − 𝜃)𝐴

∗

𝑎
𝑉
2
+ (𝜅 + 𝜓)𝐴

∗

𝑎
𝑉
3
= 0.

(42)

From (42), it follows that

𝑉
1
= 1,

𝑉
2
=

𝛽𝐴∗
𝑢
𝑆∗

𝛿 (1 − 𝜃)𝐴∗
𝑎

,

𝑉
3
=

𝛾𝐿∗
𝑎

(𝜅 + 𝜓)𝐴∗
𝑎

,

𝑉
4
=

𝛾
0
𝐿∗
𝑢
𝛽𝐴∗
𝑢
𝑆∗

𝜅𝐴∗
𝑢
𝛿 (1 − 𝜃)𝐴∗

𝑎

.

(43)

From (43), the derivative of 𝑉 is given by

𝑉̇ = 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 2𝛽𝐴
∗

𝑢
𝑆
∗

+ 𝜇𝑆
∗

− 𝜇𝑆
∗

𝑚

− 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗
1

𝑚
− 𝛽𝐴
∗

𝑢
𝑆
∗
1

𝑚
− 𝜇𝑆
∗
1

𝑚
+ 𝜇𝑆
∗

+ 𝑉
1
(−𝛽𝐴

∗

𝑢
𝑆
∗
𝑚𝑥

𝑛
− 𝛾𝐿
∗

𝑎

𝑦

𝑛
+ 𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝛽𝐴
∗

𝑢
𝑆 + 𝛾𝐿

∗

𝑎
) + 𝑉
2
(𝛾
0
𝐿
∗

𝑢
+ 𝛿 (1 − 𝜃)𝐴

∗

𝑎

− 𝛾
0
𝐿
∗

𝑢

𝑧

𝑥
− 𝛿 (1 − 𝜃)𝐴

∗

𝑎

𝑛

𝑥
) + 𝑉
3
((𝜅 + 𝜓)𝐴

∗

𝑎

− (𝜅 + 𝜓)𝐴
∗

𝑎
) + 𝑉
4
(𝜅𝐴
∗

𝑢
− 𝜅𝐴
∗

𝑢

𝑥

𝑧
) .

(44)
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After some tedious algebraic manipulations, we have

𝑉̇ = (𝛽𝐴
∗

𝑎
(1 − 𝜂) 𝑆

∗

+ 𝜇𝑆
∗

) (2 − 𝑚 −
1

𝑚
)

+ 𝛾
0
𝐿
∗

𝑎
(2 −

𝑛

𝑦
−
𝑦

𝑛
)

+
𝛾
0
𝐿
𝑢
𝛽𝐴∗
𝑢
𝑆∗

𝛿 (1 − 𝜃)𝐴∗
𝑎

(2 −
𝑧

𝑥
−
𝑥

𝑧
)

+ 𝛽𝐴
∗

𝑢
𝑆
∗

(3 −
1

𝑚
−
𝑛

𝑥
−
𝑚𝑥

𝑛
) .

(45)

By the property that the arithmetic mean is greater than or
equal to the geometric mean, then 2−𝑚−1/𝑚 ≤ 0 for𝑚 > 0

and 2−𝑚−1/𝑚 = 0 if and only if𝑚 = 1; 3−1/𝑚−𝑛/𝑥−𝑚𝑥/𝑛 ≤
0 for𝑚 > 0, 𝑛 > 0, and 𝑥 > 0 and 3−1/𝑚−𝑛/𝑥−𝑚𝑥/𝑛 = 0 if
and only if𝑚 = 𝑛 = 𝑥 = 1; 2 − 𝑥/𝑧 − 𝑧/𝑥 ≤ 0 for 𝑥 > 0, 𝑧 > 0,
and 2−𝑥/𝑧−𝑧/𝑥 = 0 if and only if 𝑧 = 1 and 𝑥 = 1, and lastly
2 − 𝑦/𝑛 − 𝑛/𝑦 ≤ 0 for 𝑛 > 0, 𝑦 > 0, and 2 − 𝑦/𝑛 − 𝑛/𝑦 = 0 if
and only if 𝑛 = 1 and 𝑦 = 1.

In conclusion, the limit cycle 𝑉̇ = 0 if and only if
𝑚 = 𝑛 = 𝑥 = 𝑦 = 𝑧 = 1. The maximum invariant
set of system (5) on the set {(𝑚, 𝑛, 𝑥, 𝑦, 𝑧) : 𝑉̇ = 0} is
the singleton (1, 1, 1, 1, 1). Thus, for model system (5), the
endemic equilibrium is globally asymptotically stable if𝑅

𝑎𝑐
>

1 by La Salle invariance principle.

3.2.3. Analysis of the ReproductionNumber. In this sectionwe
theoretically assess the effects of adherence on curtailing the
spread ofHSV-2 and also consider some different possibilities
for our reproduction numbers.

Case 1 (there is no treatment in the community). We set 𝜓 =

𝜂 = 0 and 𝜃 = 1. Then the spectral radius is given by

𝑅
0
=

𝛽 (𝜇 + 𝛾
0
)

𝜇 (𝜇 + 𝜅 + 𝛾
0
)
. (46)

Biologically, 𝑅
0
represents the average number of secondary

HSV-2 cases produced by a single HSV-2 infected individual
during his/her infectious period in the absence of treatment
and any other HSV-2 intervention strategies.

Case 2 (everyone is adhering to theHSV-2 antiviral treatment
in the community). We set 𝜃 = 1. Then the spectral radius is
given by

𝑅
𝑎
=

𝛽 (𝜇 + 𝛾 (𝜓))

𝜇 (𝛾 (𝜓) + 𝜅 + 𝜓 + 𝜇)
. (47)

Biologically, 𝑅
𝑎
represents the average number of secondary

HSV-2 cases produced by a single HSV-2 infected individual
during his/her infectious period in the presence of HSV-2
treatment where everyone is adhering to the HSV-2 antiviral
treatment.

Case 3 (the general case). This is the general case which has
been defined in (16) above, which is given by

𝑅
𝑎𝑐
=

𝛽 (𝜇 + 𝛾 (𝜓)) [𝛿 (1 − 𝜃) (𝜇 + 𝛾
0
) + 𝜇 (1 − 𝜂) (𝜇 + 𝜅 + 𝛾

0
)]

𝜇 (𝜇 + 𝜅 + 𝛾
0
) [𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)]

= 𝑅
1

𝑎𝑐
+ 𝑅
2

𝑎𝑐

=
𝛽 (𝜇 + 𝛾 (𝜓)) (𝜇 + 𝛾

0
) 𝛿 (1 − 𝜃)

𝜇 (𝜇 + 𝜅 + 𝛾
0
) [𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)]

+
𝛽 (1 − 𝜂) (𝜇 + 𝛾 (𝜓))

[𝛾 (𝜓) (𝛿 (1 − 𝜃) + 𝜇) + 𝜇 (𝛿 (1 − 𝜃) + 𝜇 + 𝜅 + 𝜓)]
.

(48)

𝑅1
𝑎𝑐

is the reproduction number induced by the individuals
who do not fully adhere to HSV-2 antiviral treatment, like
those who quit treatment before completion, and 𝑅2

𝑎𝑐
is the

reproduction number induced by the individuals who fully
adhere to HSV-2 antiviral treatment.

Figure 1 shows that 𝑅
0

> 𝑅
𝑎𝑐

> 𝑅
𝑎
, indicating

that adherence has an effect on reducing the reproduction
number. Furthermore, since 𝑅

𝑎𝑐
represents 70% adherence

and 𝑅
𝑎
100% adherence, it means that an increase in the level

of adherence among individuals in a community has an effect
on reducing the prevalence of HSV-2. The fact that 𝑅

0
> 𝑅
𝑎

indicates that treatment also has an effect on reducing the
reproduction number.

3.2.4. Sensitivity Analysis. In this section we perform the
sensitivity analysis of the reproductive number. Sensitiv-
ity analysis tells us how important each parameter is to
disease transmission. Such information is crucial not only
for experimental design, but also to data assimilation and
reduction of complex nonlinear models [28]. Sensitivity
analysis is commonly used to determine the robustness of
model predictions to parameter values, since there are usually
errors in data collection and presumed parameter values. It
is used to discover parameters that have a high impact on
𝑅
𝑎𝑐

and should be targeted by intervention strategies. Fol-
lowing Arriola and Hyman [29], we present the normalized
forward sensitivity indices of 𝑅

𝑎𝑐
with respect to our model

parameters in Table 1. The detailed sensitivity indices of 𝑅
𝑎𝑐
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Table 2: Sensitivity indices of model parameters to 𝑅
𝑎𝑐
.

Symbol Definition Sensitivity index
1 𝛾(𝜓) Reactivation rate of latent HSV-2 with an effect of treatment 0.327651
2 𝛾

0
Baseline reactivation rate of latent HSV-2 0.691435

3 𝛽 Effective contact rate for HSV-2 infection 1
4 𝜅 Rate of acute HSV-2 becoming latent −0.976583
5 𝜓 Treatment rate of acute HSV-2 −0.0538677
6 𝜇 Average sexual lifespan −1.01589
7 𝜃 Proportion of adherence −0.51079
8 𝛿 Treatment quitting rate 0.170263
9 𝜂 Modification parameter −0.130296

0.2 0.4 0.6 0.8 1.0

10

20

30

R0

Ra

𝛽

R
a
c Rac

Figure 1: Effect of varying the effective contact rate 𝛽 on the
reproduction numbers.

resulting from the evaluation to other model parameters are
shown in Table 2.The parameters are arranged from themost
sensitive one to the least sensitive one. The sensitivity index
with respect to 𝜃, for example, is

Υ
𝑅
𝑎𝑐

𝜃
=
𝜕𝑅
𝑎𝑐

𝜕𝜃
×

𝜃

𝑅
𝑎𝑐

= −0.51079. (49)

Since Υ𝑅𝑎𝑐
𝜃

= −0.51079, increasing (or decreasing) the pro-
portion of individuals who are adhering to HSV-2 antiviral
treatment by 51% increased (or decreased) the reproduction
number (𝑅

𝑎𝑐
) by 51%. Thus, increasing the number of indi-

viduals adhering to HSV-2 antiviral treatment would be very
crucial in curtailing the spread of HSV-2.

Similarly, increasing (or decreasing) the treatment rate
of the acute HSV-2 infected individuals by 5% would also
trigger an increase (or decrease) in 𝑅

𝑎𝑐
by 5%. It is worth

noting that an increase in treatment rate of the acute HSV-
2 individuals automatically reduces the reactivation rate of
latent HSV-2 individuals who came into the latent class
through treatment. As illustrated in Table 2, reactivation rate
of the latent HSV-2 individuals who adhered to treatment
has an effect of reducing the reproduction number (𝑅

𝑎𝑐
) by

33% if it has been increased or decreased by 33%. Thus, it
would be very crucial to increase treatment rate of the acute
HSV-2 individuals. Methods such as the use of prepackaged
blister cards [30], the use of follow-up telephone calls [31], and
sharing of simple instructions about antimicrobial/antiviral

therapy which include information about adverse reactions
[32, 33] can be employed so as to improve and encourage
adherence within the community.

Figure 2(a) depicts the combined effect of the effective
contact rate 𝛽 and the proportion of individuals who are
adhering to the HSV-2 antiviral treatment 𝜃 on the reproduc-
tion number𝑅

𝑎𝑐
.These contour plots show amarked decrease

in 𝑅
𝑎𝑐

with increasing adherence and decreasing effective
contact rate. Significantly high adherence and low effective
contact rate are needed to reduce the prevalence of HSV-2
(achieving 𝑅

𝑎𝑐
< 1). Figure 2(b) depicts the combined effect

of proportion of individuals who are adhering to the HSV-2
antiviral treatment 𝜃 and the treatment rate of acute HSV-2
on the reproduction number 𝑅

𝑎𝑐
. Figure 2(b) shows that the

reproduction number can be significantly reduced for high
rates of adherence and high rates of treatment.

Figure 3 depicts that if more people are adhering to
HSV-2 antiviral treatment, then the disease can be curtailed.
Conversely, low value of people adhering to HSV-2 antiviral
treatment implies that HSV-2 will prevail.

4. Optimal Control Problem

We introduce into model system (5) a time dependent
control effort on counselling and monitoring (𝑢), as a control
to curtail the spread of HSV-2. HSV-2 model system (5)
becomes

𝑆
󸀠

= 𝜇 − 𝜆𝑆 − 𝜇𝑆,

𝐴
󸀠

𝑎
= 𝜆𝑆 + 𝛾 (𝜓) − (𝜇 + 𝜅 + 𝜓)𝐴

𝑎
− 𝛿 (1 − 𝑢)𝐴

𝑎
,

𝐴
󸀠

𝑢
= 𝛿 (1 − 𝑢)𝐴

𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
,

𝐿
󸀠

𝑎
= (𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
,

𝐿
󸀠

𝑢
= 𝜅𝐴
𝑢
− (𝜇 + 𝛾

0
) 𝐿
𝑢
.

(50)

For this, we consider the objective functional

𝐽 (𝑢) = min
𝑢

∫
𝑡
𝑓

0

(𝑧𝐴
𝑢
+ 𝜗𝑢
2

) 𝑑𝑡, (51)



Abstract and Applied Analysis 11

1

1

1
1

2

2

2

3

3
3

4

4
4

5

5

6

6

7

7
89
10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0
1
2
3
4
5
6
7
8
9
10

𝛽

𝜃

(a)

0.0

0.0

0.5

0.5

1.0

1.4

1.2

1.0

1.0

𝜓

𝜃

R
a
c

(b)

Figure 2: Simulations of model system (5) (a) showing the contour plots of 𝑅
𝑎𝑐
as a function of the effective contact rate for HSV-2 infection

(𝛽) and the proportion of individuals who are adhering to the HSV-2 antiviral treatment (𝜃); (b) showing the effects of varying the treatment
rate of acute HSV-2 and the proportion of individuals who are adhering to the HSV-2 antiviral treatment (𝜃).

where 𝑡
𝑓
is the final time and 𝑧 is a positive weight constant

to balance the factor. The term 𝜗𝑢2 is the cost of the control
effort on counselling and monitoring of HSV-2 individuals
under treatment. We choose a quadratic cost on the control;
this is similar to that in other literature on epidemic controls
[34, 35]. With the given objective function 𝐽(𝑢), our goal is
to minimize the number of HSV-2 individuals who would
have failed to adhere to HSV-2 antiviral treatment 𝐴

𝑢
, while

minimizing the cost of control 𝑢∗ such that

𝐽 (𝑢
∗

) = min {𝐽 (𝑢) | 𝑢 ∈U} , (52)

where U = {𝑢 is such that 𝑢 is measurable with 0 ≤ 𝑢 ≤

1 for 𝑡 ∈ [0, 𝑡
𝑓
]} is the control set. The necessary conditions

that an optimal control must satisfy come from Pontryagin’s
maximum principle [36]. This principle converts (50)-(51)
into a problem of minimizing pointwise a Hamiltonian 𝐻,
with respect to 𝑢:

𝐻 = 𝑧𝐴
𝑢
+ 𝜗𝑢
2

+ 𝜆
1
[𝜇 − 𝜆𝑆 − 𝜇𝑆] + 𝜆

2
[𝜆𝑆

+ 𝛾 (𝜓) 𝐿
𝑎
− (𝜇 + 𝜅 + 𝜓)𝐴

𝑎
− 𝛿 (1 − 𝑢)𝐴

𝑎
]

+ 𝜆
3
[𝛿 (1 − 𝑢

1
) 𝐴
𝑎
+ 𝛾
0
𝐿
𝑢
− (𝜇 + 𝜅)𝐴

𝑢
]

+ 𝜆
4
[(𝜅 + 𝜓)𝐴

𝑎
− (𝜇 + 𝛾 (𝜓)) 𝐿

𝑎
] + 𝜆
5
[𝜅𝐴
𝑢

− (𝜇 + 𝛾
0
)] ,

(53)

where the 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, and 𝜆

5
are the adjoint variables or

shadow price. By applying Pontryagin’s maximum principle
[36] and the existence result for the optimal control from [37]
we obtain the following.
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Figure 3: Simulations of model system (5) showing the contour
plots of 𝑅

𝑎𝑐
as a function of the modification parameter (𝜂) and the

proportion of individuals who are adhering to the HSV-2 antiviral
treatment (𝜃).

Theorem 8. For the optimal control 𝑢∗ that minimizes 𝐽(𝑢)
over U, there exist adjoint variables 𝜆

1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, and 𝜆

5

satisfying

𝜆
󸀠

1
(𝑡) = 𝛽 (𝐴

𝑎
(1 − 𝜂) + 𝐴

𝑢
) [𝜆
1
− 𝜆
2
] + 𝜇𝜆

1
,

𝜆
󸀠

2
(𝑡) = 𝛽 (1 − 𝜂) 𝑆 [𝜆

1
− 𝜆
2
] + (𝜅 + 𝜓) [𝜆

2
− 𝜆
4
]

+ 𝛿 (1 − 𝑢) [𝜆
2
− 𝜆
3
] + 𝜇𝜆

2
,

𝜆
󸀠

3
(𝑡) = −𝑧 + 𝛽𝑆 [𝜆

1
− 𝜆
2
] + 𝜅 [𝜆

3
− 𝜆
5
] + 𝜇𝜆

3
,

𝜆
󸀠

4
(𝑡) = 𝛾 (𝜓) [𝜆

4
− 𝜆
2
] + 𝜇𝜆

4
,

𝜆
󸀠

5
(𝑡) = 𝛾

0
[𝜆
5
− 𝜆
3
] + 𝜇𝜆

5
,

(54)

with transversality conditions

𝜆
1
(𝑡
𝑓
) = 𝜆
2
(𝑡
𝑓
) = 𝜆
3
(𝑡
𝑓
) = 𝜆
4
(𝑡
𝑓
) = 𝜆
5
(𝑡
𝑓
) = 0, (55)
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Figure 4: Graphs of the numerical solutions of the optimality system, showing propagation of (a) susceptibles 𝑆, (b) infected individuals with
acute HSV-2 and also under antiviral treatment𝐴

𝑎
, (c) infected individuals with latent HSV-2 after undergoing successful antiviral treatment

𝐿
𝑎
, (d) infected individuals with acute HSV-2 and not under antiviral treatment after quitting before completion 𝐴

𝑢
, and (e) the infected

individuals with latent HSV-2 after undergoing natural healing 𝐿
𝑢
, over a period of 50 months.

and additionally the optimal control 𝑢∗ that minimizes 𝐽(𝑢)
overU satisfies the optimality condition

𝑢
∗

= max{0,min(1,
(𝜆
3
− 𝜆
2
) 𝛿𝐴
𝑎

2𝜗
)} . (56)

Proof. Corollary 4.1 of [37] gives the existence of an optimal
control due to the convexity of the integrand of 𝐽with respect
to 𝑢, a priori boundedness of the state solutions, and the
𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧 property of the state systemwith respect to the state
variables. The differential equations governing the adjoint
variables are obtained by differential of the Hamiltonian
function, evaluated at the optimal control.

Due to the a priori boundedness of the state system,
adjoint system, and the resulting Lipschitz structure of the
ODEs, we obtain the uniqueness of the optimal control
for small 𝑡

𝑓
. The uniqueness of the optimal control fol-

lows from the uniqueness of the optimality system, which
consists of (54) and (55) with characterization (56). There
is a restriction on the length of time interval in order
to guarantee the uniqueness of the optimality system. The
smallness restriction of the length of time is due to the
opposite time orientations of (54) and (55), the state problem
has initial values, and the adjoint variable has final values.The
restriction is common in control problems [34, 35].
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4.1. Numerical Simulations. The optimality system is solved
using an iterative method with Runge-Kutta fourth-order
scheme. Starting with a guess for the adjoint variables, the
state equations are solved forward in time. Then these state
values are used to solve the adjoint equations backward
in time, and the iterations continue until convergence. The
simulation was carried out using parameter values in Table 1
and the following values 𝑧 = 0.95 and 𝜗 = 0.01. The assumed
initial conditions for the differential equations are 𝑆 = 0.95,
𝐴
𝑎
= 0.05, 𝐴

𝑢
= 0.0, 𝐿

𝑎
= 0.0, and 𝐿

𝑢
= 0.0.

In Figure 4(a) we note that for the whole interval under
study optimal counselling and monitoring leads to a very
small decrease of the susceptible population. In the absence
of the control, it is worth noting that the population of
the susceptible individuals drops drastically. Thus, optimal
counselling and monitoring has an effect on the susceptible
population.

Figure 4(b) illustrates the population of the individuals
with acute HSV-2 and also under antiviral treatment in the
presence and absence of the control over a period of 50
months. For both cases, in the presence and absence of the
control there is not much difference since both populations
have a sharp decrease for the period of 0–2.5 months. For
the period of 2.5–50 months, the population of the infected
individuals in the absence of a control increases gradually.
Further, we note that for the same period under review (2.5–
50 months), the population of the individuals in the presence
of the control reduces significantly signifying a positive effect
of the control.

Figure 4(c) shows the individuals infected with acute
HSV-2 and not under antiviral treatment after quitting before
completion, in the presence and absence of the control. In
the absence of the control, the individuals increase gradually
in the first month and then reduce again a little, for the
next two months before increasing rapidly for the remaining
period under review, that is, 3–50 months. In the presence of
the control, we note that for the whole period under review
the HSV-2 cases remain very very low, relatively low, and
relatively insignificant.

In Figure 4(d), the population of the infected individuals
with latent HSV-2 after undergoing successful antiviral treat-
ment in the presence and absence of the controls over a period
of 50 months is presented. The population of the infected
individuals with latent HSV-2 after undergoing successful
antiviral treatment has a sharp increase for the first month,
for both cases (with or without the control). In the presence
of the control, we then note that from 2–50 months the
population of the HSV-2 cases decreases gradually until it
almost reaches 0. In the absence of the control, the population
of the individuals drops slightly over the period of 2–9
months; further, it then increases rapidly in the interval of
10–50 months.

In Figure 4(e) the dynamics of the infected individuals
with latent HSV-2 after undergoing natural healing are
presented. In the absence of the control, the population of
the individuals increases rapidly for the whole period under
review. In the absence of the control, the population of the
infected individuals remains very very low for the whole
period under review, that is, 0–50 months.

Figure 5(a) represents the control 𝑢. The control is at the
upper bound 1 for approximately 37 months and has a sharp
drop until it reaches the lower bound 0.

Figure 5(b) shows the control 𝑢, being varied. It shows
that the weight constant has been varied (increased or
reduced about 𝑧 = 4). Increasing 𝑧 implies increasing the
minimization of 𝐴

𝑢
and 𝐴

𝑎
classes. Increasing the weight

constant 𝑧 implies the control efforts on counselling and
monitoring are implemented for a longer time. Further,
reducing 𝑧 implies a reduction in theminimization of𝐴

𝑢
and

𝐴
𝑢
classes. A reduction of the weight constant works against

the efforts on counselling and monitoring since control will
be implemented for a shorter period.

Figure 6 illustrates the range of values that can be taken
by 𝜗 (increasing or decreasing it around the value 0.01).
Increasing the weight and cost factor (𝜗) works against
the effort on counseling and monitoring since it will be
implemented for a shorter period. Reducing the weight and
cost factor (𝜗) works in favour of implementing the efforts
on counselling and monitoring since it will be implemented
for a longer period. It is worth noting that for our numerical
simulations we assumed 𝜗 = 0.01, since that was the feasible
optimum value which was applicable.

5. Discussion

HSV-2 is a significant factor for increased risk of acquisition
and transmission of HIV and also being the leading disease
in causing genital ulcers. In this study, a mathematical model
to assess the impact of nonadherence to HSV-2 antiviral
treatment is developed and analysed. Qualitative analysis of
the model has shown that the model has a globally asymp-
totically stable disease-free equilibrium whenever the repro-
duction number is less than unity. The Lyapunov function
approachwas used to prove the global stability of the endemic
equilibrium. Sensitivity analysis of the reproduction number
suggested that increasing the rate of adherence by 51% has
an effect of increasing the reproduction number by 51%.
Furthermore, analysis of the reproduction number through
the contour plots shows that the reproduction number can
be reduced to very low levels by increasing the adherence
rate and decreasing the effective contact rate. Our results
are in agreement with some earlier findings which managed
to suggest that adherence to HSV-2 antiviral treatment is
vital in the fight against HSV-2, although tailored adherence
strategies may be needed [38, 39]. Optimal control was then
applied with the objective of minimizing the number of
individuals quitting HSV-2 antiviral treatment.The technical
tool used to determine the optimal strategy is the Pontryagin
maximum principle. The control represents counselling and
treatment. According to our optimal control results, we saw
that a reduction of the weight constant works against the
efforts on counselling and monitoring since they will be
implemented for a shorter period.Our optimal control results
also suggest that to successfully control HSV-2 prevalence we
need to keep the cost of the control effort as low as possible.
Overall, the study finds that in a community where HSV-
2 is endemic the disease can be eliminated or controlled if
optimal intervention strategies are implemented.
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Figure 5: Graphs of the numerical solutions to the behaviour of the control constraint, (a) with the weight constant 𝑧 = 0.4 and (b) with the
weight constant 𝑧 being varied.
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Figure 6: Graph of the numerical solutions to the behaviour of the
control constraint, with the weight and cost factor 𝜗 being varied.

However just like any other model, we cannot say the
model is complete; it can be extended to include resource
limited or resource given communities.
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