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We present a deterministic model with isolation and lost to follow-up for the transmission dynamics of three strains of
Mycobacterium tuberculosis (TB), namely, the drug sensitive, multi-drug-resistant (MDR), and extensively-drug-resistant (XDR)
TB strains. The model is analyzed to gain insights into the qualitative features of its associated equilibria. Some of the theoretical
and epidemiological findings indicate that the model has locally asymptotically stable (LAS) disease-free equilibrium when the
associated reproduction number is less than unity. Furthermore, the model undergoes in the presence of disease reinfection the
phenomenon of backward bifurcation, where the stable disease-free equilibrium of the model coexists with a stable endemic
equilibrium when the associated reproduction number is less than unity. Further analysis of the model indicates that the disease-
free equilibrium is globally asymptotically stable (GAS) in the absence of disease reinfection. The result of the global sensitivity
analysis indicates that the dominant parameters are the disease progression rate, the recovery rate, the infectivity parameter, the
isolation rate, the rate of lost to follow-up, and fraction of fast progression rates. Our results also show that increase in isolation rate

leads to a decrease in the total number of individuals who are lost to follow-up.

1. Introduction

Mycobacterium tuberculosis (TB) is caused by bacteria that
are transmitted from person to person through the air by an
infected person’s coughing, sneezing, speaking, or singing [1].
TB usually affects the lungs, but it can also affect other parts of
the body, such as the brain, the kidneys, or the spine [1]. The
TB bacteria can stay in the air for several hours, depending on
the environment. In 2013, 9 million people were ill with TB,
and 1.5 million mortalities occurred from the disease [2]; over
95% of deaths occurred in low- and middle-income countries
[2]. About one-third of the world’s population has latent TB
[2]. TB is also among the top three causes of death in women
aged 15 to 44 [2]. Tuberculosis is second only to HIV/AIDS
as the greatest killer worldwide due to a single infectious
agent [2]. Those who have a compromised immune system,
like those who are living with HIV, malnutrition, or diabetes,
or people who use tobacco products, have a much higher
risk of falling ill. Individuals who develop TB are provided
with a six-month course of four antimicrobial drugs along
with supervision and support by a health worker. Improper

treatment compliance or use of poor quality medicines can
all lead to the development of drug-resistant tuberculosis [2].

Multi-drug-resistant (MDR) TB is a form of TB caused
by bacteria that do not respond to, at least, isoniazid and
rifampicin, which are the two most powerful, standard anti-
tuberculosis drugs. MDR-TB is treatable and curable by using
second-line drugs [3]. However, these treatment options are
limited and recommended medicines are not always available
[3]. In some cases, more severe drug resistance can develop.
Extensively-drug-resistant (XDR) TB is a form of multi-drug-
resistant TB that responds to even fewer available medicines,
including the second-line drugs [3]. In 2013, there were about
480,000 cases of MDR-TB present in the world [4]; it was
estimated that about 9%-10% of these cases were XDR-TB
[2, 4-6].

The increase in drug-resistant TB strains has called for an
increased urgency for isolating individuals infected with such
strains of TB [7]. High priority is being placed on identifying
and curing these individuals. With proper identification and
treatment, about 40% of XDR-TB cases could potentially be
cured [6, 8]. However, only 10% of MDR-TB cases are ever
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identified, leaving the potential development of XDR-TB to
become more prevalent worldwide [2]. The need for a mod-
ern and effective approach to curtail the rise of drug-resistant
TB strains is being sought after, one of which is constructed
isolation, whether it is an at-home isolation or isolation at
a medical facility [6]. An event that portrays the need for
carefully constructed isolation was the identification of an
individual infected with MDR-TB in Atlanta International
Airport in 2007 [9]. The individual had flown to Atlanta
after visiting Paris, Greece, Italy, Czech Republic, and Canada.
The individual unknowingly was infected with MDR-TB and,
after twelve days of travel, the individual was involuntarily
isolated by the CDC in Atlanta under the Public Health
Service Act [9]. The CDC held the individual in isolation
for one week and then moved him to a hospital in Denver,
Colorado [9]. In this case, there are no reported infections
resulting from the travel of the individual, perhaps due to
the slightly lower infection rate of MDR-TB as compared
to drug sensitive TB strains [9]. It should be noted here
that the isolation of this individual, albeit brief, potentially
helped prevent a rise in drug-resistant TB in the United
States, which is currently at admittedly low levels [10]. An
occurrence such as this one clearly demonstrates the need for
carefully executed isolation procedures for individuals with
drug-resistant TB strains.

Several reports have shown the effectiveness of isola-
tion in reducing the number of people with TB [6, 7, 26,
27]. Weis et al. [27] showed the effectiveness of isolation,
reporting lower occurrences of primary and acquired drug
resistance among individuals with TB. Historically, to treat
the infection, individuals were isolated in a sanatorium where
they would receive proper nutrition and a constant supply
of fresh air [28]. However, while this method is successful
in certain situations, this treatment methodology is difficult
to implement without proper infrastructure in place [29].
Locations without proper facilities such as South Africa have
poor treatment and success rates [29]; effective isolation is
essential in areas such as these which have high treatment
failure rates. Sutton et al. [26] studied three hospitals in
California; they found that implementing the CDC isolation
guidelines for hospitals was feasible; however, since not every
hospital could afford the necessary equipment, the isolation
was not the same for each hospital. Even though the results
varied, it is noticeably more efficient to isolate patients who
are infected with TB.

According to the National Committee of Fight against
Tuberculosis of Cameroon [30], about 10% of infectious indi-
viduals who start the recommended WHO DOTS treatment
therapy in the hospital do not return to the hospital for the
rest of sputum examinations and check-up and are thus lost to
follow-up. This can be attributed to the long duration of treat-
ment regimen, negligence, or lack of information about TB
[30], a brief relief from the long term treatment [22], poverty,
and so forth. As such, health-care personnel do not know
their epidemiological status, that is, if they died, recovered,
or are still infectious and this lack of epidemiological status of
these individuals can affect the spread of TB in a population
[30]. A number of mathematical models for tuberculosis
developed account for this population by the inclusion of
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either the lost sight class [23, 30-32] or lost to follow-up class
[22].

The aim of this study is to develop a new deterministic
transmission model for TB to gain qualitative insight into
the effects of isolation in the presence of individuals who are
lost to follow-up on TB transmission dynamics. A notable
feature of the model is the incorporation of isolated and lost to
follow-up classes for the three TB strains. The paper is orga-
nized as follows. The model formulation and analysis is given
in Section 2. Sensitivity analysis of the model is considered in
Section 3. Analysis of the reproduction number is carried out
in Section 4. The effect of isolation is numerically investigated
in Section 5. The key theoretical and epidemiological results
from this study are summarized in Section 6.

2. Model Formulation

The model is formulated as follows: the population is divided
into susceptible (S), latently infected (E;), symptomatically
infectious with drug sensitive strain (T'), MDR strain (M),
XDR strain (X), symptomatically infectious individuals who
are lost to follow-up (L;), isolated (), and recovered (R),
where i = T, M, X. Thus, the total population is N(t) =
S(t) + Ep(t) + T(t) + Ep (1) + M(t) + Ex(t) + X(t) +
Lp(t) + Ly (t) + Lx(t) + J(t) + R(2).

As the disease evolves individuals move from one class to
the other with respect to their disease status. The population
of susceptible (S) is generated by new recruits (either via birth
or immigration) who enter the population at a rate 7. The
parameter 7 denotes the recruitment rate. It is assumed that
there is no vertical transmission or immigration of infectious;
thus, these new inflow does not enter the infectious classes.
All individuals, whatever their status, are subject to natural
death, which occurs at a rate p. The susceptible population is
reduced by infection following effective contact with infected
individuals with drug sensitive, MDR-, and XDR-TB strains
at the rates A, A,,, and A, where

A = Br (T +nrLy)
T — >
N
AM= ﬁM(M-’-rIMLM)) (1)
N
Ao = Bx (X +nxLy)
X = - -
N

The parameters 3y, 5, and By are the effective transmission
probability per contact; we assume that Sy < By < PBr
[9] and the parameters ; > 1,1, > 1, and 5y > 1
are the modification parameter that indicates the increased
infectivity of individuals who are lost to follow-up.

A fraction I, of the newly infected individuals with drug
sensitive strain move into the latently infected class (E;), with
I, fraction moving into the symptomatic-infectious class (T')
and the other fraction [1 — (I;; + I;,)] moving into the lost
to follow-up class (Ly) with Iy + I, < 1. The latently
infected individuals become actively infectious as a result of
endogenous reactivation of the latent bacilli at the rate o7

Similarly a fraction I, of the newly infected individuals
with MDR stain move into the latently infected class with
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MDR (E,,), with [, fractions moving into the symptomat-
ically infectious class (M) and the other fraction [1 — (I, +
Iyr)] moving into the symptomatically infectious lost to
follow-up class (L ;) with I, + 15, < 1. The latently infected
individuals with MDR strain become actively infectious as a
result of endogenous reactivation of the latent bacilli at the
rate 0.

Lastly, a fraction [, of the newly infected individuals with
XDR stain moves into the latently infected class with XDR
(Ex), with Iy, fractions moving into the symptomatically
infectious class (X) and the other fraction [1 — (Ix; + Ix,)]
moving into the symptomatically infectious lost to follow-up
class (L y) with Iy, + Iy, < 1. The latently infected individuals
with XDR strain become actively infectious as a result of
endogenous reactivation at the rate oy.

Members of the symptomatically infectious class with
the drug sensitive strain (1) are lost to follow-up at the
rate ¢ and move to the class of lost to follow-up with
drug sensitive strain (L;). They are isolated into the isolated
class (J) at the rate a. They undergo the WHO recom-
mended DOTS treatment (Directly Observed Treatment,
Short Course (DOTS)); however due to treatment failure
(from treatment noncompliance) they move into the latently
infected class at the rate pp;yr or the latently infected class
with MDR at the rate pp,yr. The remaining fraction move
into the recovered class (R) following effective treatment at
the rate (1 — pry — pro)yr (Where ppy + pry < 1). Or they can
die from the infection at the rate &;.

Similarly members of the symptomatically infectious with
MDR strain (M) are lost to follow-up at the rate ¢,, and
move to the class of lost to follow-up with MDR strain (L ;).
They are isolated at the rate «,,. And a fraction of them
move into the population of the latently infected with XDR
strain as a result of treatment failure of the symptomatically
infectious individuals with MDR strain at the rate p; Y-
The remaining fraction move into the recovered class at the
rate (1 — pp)ym (Where pygy < 1). Or they can die from the
infection at the rate §,,.

Lastly, members of the symptomatically infectious with
XDR strain (X) are lost to follow-up at the rate ¢ and move
to the class of lost to follow-up with XDR strain (L ). Or they
move into recovered class at the rate yx. Or they can die from
the infection at the rate §. We assume that yy <y, < yr-

The individuals who are lost to follow-up (L) with drug
sensitive strain return at the rate y,- and move into the class of
individuals with drug sensitive strain. Or they die at the rate
Opr- Similarly, the individuals who are lost to follow-up (L »,)
with MDR strain return at the rate y,, and move into the class
of individuals with MDR strain. Or they die at the rate &} ,.
Lastly, the individuals who are lost to follow-up (L x) with
XDR strain return at the rate ¥y and move into the class of
individuals with XDR strain. Or they die at the rate §, x.

Recovered individuals (R) are reinfected with drug sen-
sitive strain at the rate eAp, with I;ed, fraction moving
into the latently infected class with drug sensitive strain,
lryeAq fraction moving into the symptomatically infectious
class with drug sensitive strain, and the other [1 — (I;; +
Iy)leAr moving into the symptomatically infectious lost
to follow-up class with drug sensitive strain. Also, these

individuals experience reinfection with MDR and XDR
strains and fractions of these move into the latently infected
and symptomatically infectious classes, respectively.

It follows, from the above descriptions and assump-
tions, that the model for the transmission dynamics of the
tuberculosis with isolation and lost to follow-up is given by
the following deterministic system of nonlinear differential
equations (the variables and parameters of the model are
described in Table 1; a schematic diagram of the model is
depicted in Figure 1):

@ S |:/3T(T+’7TLT) +/5M(M+’IMLM)

dt N N

N Bx (X +nxLy) ] S—us,
N

dE; Ly Br (T +5:Ly) (S +€R)

d_tT: fr IZT + pryyrT = (o
+u) Er,

dT  IpBr (T +npLy) (S+€R)

E: S ;,T +orEr+yrLlr
~(pr+ar+yr+u+dp)T,

dE Lo Bar (M + 13,L o) (S + €R)

d;vr = M Ii\l/l Y + proyrT = (ou
+#4) Enp

dM  LypPBa (M + 1Ly (S+ €R)

E: M2 M Ii]\/[ M +UMEM

WL — (ar + o+ yar +p+0p) M,
dEx _ IxiBx (X +1xLx) (S + eR)

+ PanYmuM — (0

dt N
+4) Ex,
dX LpPx (X +1xLy) (S+eR) 2)
ar - A X I}\(I 8 +oxEx+yxLx
—(px +ayx+yx +u+dx) X,
dLy _ (1= lpy = Ipp) Br (T + L) (S +€R) T
dt N
~(yr+u+0yr) Ly,
dLy _ (1= Ivy = lasz) Bt (M + 114 L) (S + €R)
dt N

+ oM = (Wpr + 4+ 0100) Lags
dlx _ (1 =1Ly —Ix,) Bx (X +11xLx) (S + €R) .

= X
dt N x
~(yx+p+8x) Ly,
dj
e orT + oM +ax X - (y,+pu+6;) ],
dR

i (1= pr1 = Pra) veT + (1= pany) yurM +yx X

[ﬁT (T +nrLy) N Bar (M +11p,Lyp)
N N

+y ] —uR-¢

N Bx (X +nxLy) ] R
N
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TABLE 1: Variables and parameters description of model (2).

Variable Description

S(t) Susceptible individuals

Ep(t), Epf(2), Ex ()
T(t), M(t), X(t)

Ly (), Lp(£), L ()
J(t)

Latently infected individuals with drug sensitive, MDR, and XDR strains

Symptomatically infectious individuals with drug sensitive, MDR, and XDR strains

Symptomatically infectious individuals who are lost to sight with drug sensitive, MDR, and XDR strains

Isolated individuals

R(t) Recovered individuals

Parameter Description

71 Recruitment rate

U Natural death rate

€ TB reinfection rate

Br> B Bx Transmission probability

N> Mo Nx Infectivity modification parameter

lTl’ lTZ’lMl’ lMZ’ le’lXZ

Fraction of fast disease progression

Pri> Pra> Pan Fraction that failed treatment
O Oz Ox Disease progression rate
Vs Vo Vo Vs Recovery rate
O, Oy gy Oy Isolation rate
Or> Ops 05 6 Disease-induced death rate
O G Pxc Lost to follow-up rate
Yo Wap Wx Return rate from lost to follow-up
SO Orx Disease-induced death rate in individuals who are lost to follow-up
I Ar J/ elp A Ippy el p A=l - {k'Z)ATJ/ e(1 = Iy = Ip)Ar
or S & SN
Er T . L
4 v MY Vro wu ¢ N opr
# T pPrivr # l J/ or (1= pr1 = pra)yr
Ar
Am
| IMIATl Pr2yT lef\Tl A=l - lM%EAT or 8
- L VAN RN 7
4 E M Y
— S M M ¢ Lyt T —]> R
v, 4 u¥ Ny, M uyv NS, Ny
hada ey e0 = |~ ) o] o
Ax
PMlyMJ/ (1= pm)yum
T e
ox %X A Orx
u Ex Vx Lx
%
w N v
bakx T lXZ)‘XT * A-Ix - lxz/)ﬁx g
el Ay (1 - Iy - Ixp)Ax
elxAx

FIGURE I: Systematic flow diagram of the tuberculosis model (2).

2.1. Basic Properties

2.1.1. Positivity and Boundedness of Solutions. For TB model
(2) to be epidemiologically meaningful, it can be shown
(using the method in Appendix A of [33]) that all its
state variables are nonnegative for all time. In other words,

solutions of the model system (2) with nonnegative initial
data will remain nonnegative for all time t > 0.

Lemma 1. Let the initial data S(0) > 0, E£(0) > 0, T(0)
0, Ey;(0) > 0, M(0) > 0, Ex(0) > 0, X(0) > 0, L(0)

>
>
0,Ly(0) = 0,Ly(0) = 0,J(0) = 0,R0) = 0.



Abstract and Applied Analysis

Then the solutions (S,Ep, T, Ey,, M,Ex, X, L, Ly, Ly, I, R)
of the tuberculosis model (2) are nonnegative for all t > 0.
Furthermore,

lim supN (¢) < E, (3)

t— 00

-

with

N=S+E+T+Ey,+M+Ex+X+Ly+Ly

(4)
+Ly+J+R

2.1.2. Invariant Regions. Since model (2) monitors human
populations, all variables and parameters of the model are
nonnegative. Model (2) will be analyzed in a biologically
feasible region as follows. Consider the feasible region

O c R (5)

with

= {(s, Ep T, Eyy M, Ex, X, Ls Ly Ly Jo R)

(6)
eR‘f:N(t)sf}.
u

The following steps are followed to establish the positive
invariance of @ (i.e., solutions in ® remain in ® for all ¢ > 0).
The rate of change of the population is obtained by adding the
equations of model (2) and this gives

AN _ N (6= 8,T (£) = 8y, M (£) — 8, X (¢)
dt @)

8Ly (8) =S Lag () = S8rxLx ().

And it follows that
dl;lt(t) <m-uN (). (8)

0 IriBr 0 0
0 IraPr 0 0
0 0 0 Invn B
0 0 0 L B
0 0 0 0

L I 0 0 0
0 (1=lpy —Ip)Br O 0
0 0 0 (1=l =) By
0 0 0 0
0 0 0 0

A standard comparison theorem [34] can then be used to
show that

N(t) < N(0)e ™+ % (1-e). 9)

In particular, N(t) < m/u, if N(0) < m/u. Thus, region ®
is positively invariant. Hence, it is sufficient to consider the
dynamics of the flow generated by (2) in ®. In this region,
the model can be considered as being epidemiologically
and mathematically well-posed [35]. Thus, every solution of
model (2) with initial conditions in ® remains in @ for all
t > 0. Therefore, the w-limit sets of system (2) are contained
in ®@. This result is summarized below.

Lemma 2. The region ® ¢ R'*x is positively invariant for
model (2) with nonnegative initial conditions in Riz.
2.2. Stability of the Disease-Free Equilibrium (DFE). Tubercu-

losis model (2) has a DFE, obtained by setting the right-hand
sides of the equations in the model to zero, given by

g0
=(SELT Eypy M"Ex, X", L}, L}, L, ], R") (10)

=<E,o,o,o,o,o,o,o,o,o,o,o).
p

The linear stability of &, can be established using the
next generation operator method on system (2). Using the
notations in [36], the matrices F and V, for the new infection
terms and the remaining transfer terms, are, respectively,
given by

F=[F | F], (1)

where

O O O O O o o o o o



6
0 Ly Brir
0 LraBriir
0 0
0 0
l 0
F, = x1Bx
L Bx 0
0 (1 =Ly = Lpy) Brir
0 0
(1L - 1) By 0
0 0
g9 —Pmyr O 0 0 0
-or 95 0 0 0 0
0 -pryr 93 0 0 0
0 0 -0 94 0 0
Vo 0 0 0 -pwiym 95 O
0 0 0 0 —0x Y
0 —¢ O 0 0 0
0 0 0 ¢y 0 0
0 0 0 0 0 —¢y
0 -0 0 —0p 0 -ayx

where g, = opti, g, = Prtyrroptorti, gy = oyt gy =
bt ymtaytoytigs = 0x @ g = dxt+yxt
ax+0x+ph gy =Yr+u+0im, gg = Vm+p+0 go =
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0 0 0
0 0 0
i Bt 0 0
I Buvtiv 0 0
0 L Bx"x 0
0 Ix2BxMx o |’
0 0 0
= = ) Bt 0 0
0 (1=1Ix = Ixs) Bxtix O
0 0 0
0 0 0 o0
-yr 0 0 o0
0 0 0 o0
0 -yy 0 0
0 0 0 0
0 0 -—yx 0 |
g, 0 0 0
0 gg 0 0
0 0 g5 O
0 0 0 g0

(12)

It follows that the basic reproduction number of tubercu-
losis model (2), denoted by &, is given by

Yx +u+0rx, gio =y + 1+ 0. R, =p(FV71)=max(g%T,9€M”%X), (13)
where
B = Brior (g7 + 1) by + (g7 + b)) gilra + [(gotir + wr) g1 = Hrorproyyr] (1= Lpy = Ipy)}
T — >
(9 (9,9, — brvr) — 11707 P Y]
B = Bat [0 (s + Sarting) Ian + (95 + 1ubar) Gslar + (Gating + ¥ar) 95 (1= Ty = Lara)] (14)
M 93 (9894 — dv¥ur)
B = Bx [0x (9o + Ox1x) Ly + (9o + 1xPx) gslxa + (g1x + ¥x) 95 (1 = Ly = Ixy)]
X = .

Quantity R, represents the reproduction number of TB
drug sensitive-only population. Similarly, quantity &, is
the reproduction number for MDR-only population and the
quantity & y represents the reproduction number for XDR-
only TB population.

Further, using Theorem 2 in [36], the following result is
established.

95 (9996 — Px¥x)

Lemma 3. The DFE of the tuberculosis model (2), given by &,
is locally asymptotically stable (LAS) if ®, < 1, and unstable if
Ry > L

The threshold quantity (&, i.e., the basic reproduction
number) measures the average number of new infections
generated by a single infected individual in a completely
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FIGURE 2: PRCC values for model (2), using as the response function (a) the basic reproduction number (%), (b) the basic reproduction
number (%£,,), and (c) the basic reproduction number (£ ). Parameter values (baseline) and ranges used are as given in Table 2.

susceptible population [35-38]. Thus, Lemma 3 implies that
tuberculosis can be eliminated from the population (when
R, < 1) if the initial sizes of the subpopulations of model
(2) are in the basin of attraction of the DFE, &,,.

3. Sensitivity Analysis

A global sensitivity analysis [39-42] is carried out, on the
parameters of model (2), to determine which of the param-
eters have the most significant impact on the outcome of
the numerical simulations of the model. Figure 2(a) depicts
the partial rank correlation coefficient (PRCC) values for
each parameter of the models, using the ranges and baseline
values tabulated in Table2 (with the basic reproduction
numbers, &, as the response function), from which it
follows that the parameters that have the most influence on
drug sensitive TB transmission dynamics are the fraction of
fast progression rate (I,) into the drug sensitive TB class,
the infectivity modification parameter (#), the recovery rate
(ypr) from drug sensitive TB, disease progression rate (o),
rate of lost to follow-up (¢;) of those with drug sensitive
TB, fraction of latently infected with drug sensitive TB that
failed treatment (pry), the fraction of fast progression rate
(I71) into the latently infected with drug sensitive TB class,
and the isolation rate (o) from drug sensitive TB class.

The identification of these key parameters is vital to the
formulation of effective control strategies for combating the
spread of the disease, as this study identifies the most impor-
tant parameters that drive the transmission mechanism of the
disease. In other words, the results of this sensitivity analysis
suggest that, to effectively control the spread of drug sensitive
TB in the community, the effective strategy will be to reduce
the disease progression rate (reduce o), increase the recovery
rate (increase p;) from drug sensitive TB, reduce the disease
modification parameter (reduce #r), increase the isolation
rate (increase o) from drug sensitive TB class, and reduce
the fraction of fast progression rates (reduce I, and I,) into
the drug sensitive TB class and lost to follow-up class and
reduce the rate of lost to follow-up (reduce ¢;) of those with
drug sensitive TB. The result of this analysis suggests that the
fraction of latently infected with drug sensitive TB that failed
treatment (py, ) be increased, since this has a negative impact
of the basic reproduction number, % . This of course is
counter intuitive; however increasing this rate lowers the rate
of development of drug-resistant TB due to treatment failure.

The sensitivity analysis was also carried out using model
(2) with the basic reproduction number, %#,,, for drug-
resistant TB, as the response function (see Figure 2(b)). The
dominant parameters in this case are &y, O M Yar Pas
Yoo s Ly and I, Similarly, when using as response func-
tion the basic reproduction number, Ry, for extended drug



resistance TB (see Figure 2(c)), the dominant parameters in
this case are ay, 0y, Hx> Vx> Ox> Vx> s x> and Iy,.

The results from these analyses using as response func-
tions the basic reproduction numbers, %, and Ry, suggest
that the natural death rate (u) be increased, since it has a
negative impact on the basic reproduction numbers, %, and
Rx. However increasing this rate is not epidemiologically
relevant, as it implies reducing the population size that
we wish to preserve by other means aside from death by
tuberculosis and should therefore be ignored in any control
measures.

Q%T(x

_ Br (9797 + 1rordr) bry + (Hrgibr + 9197) b + (Grvr + gy (br + yr + g+ 81) = p0r payr) (1= Lpy = Iy
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4. Analysis of the Reproduction Number

Following the result obtained in Section 3, we investigate in
this section whether or not treatment-only, isolation-only
of individuals with tuberculosis or a combination of both
can lead to tuberculosis elimination in the population. The
analysis will be carried out using the reproduction number
for drug sensitive TB (%) since &, is the maximum of the
reproduction number of drug sensitive TB (%), MDR-TB
(%), and XDR-TB (R ); similar result can be obtained for
the MDR- and XDR-TB.

In the absence of isolation (; = 0), the reproduction
number (%) reduces to

(15)

9, (br +yr + p +01) g7 — §Wrdr — OrPr1Yrgs

The reproduction number (%) can be written as

’%T = A“'%Taa (16)

A

o

where

(9197 (b7 + yr + 1+ 81) = giwrdr — arpriyvegy) [(0rg; + 1rordr) by + (rgibr + 9197) ba + (91¥r + 1109192 = 1rorprayr) (1 =Ly = 1) 17)

(919297 = 919101 = 00 P vrdy) lor (g7 + 1edr) by + (irbr + g7) Gilbra + (e (br + yr + 4+ 81) + GiWr — 100 pryyr) (1 =y = 1)1}

The difference between %1 and X, is in the isolation rate
(ag); as such the factor A, compares a population with
and without isolation; however, this is in the presence of
treatment and individuals who are lost to follow-up and
individuals returning from lost to follow-up. If % < 1,
then drug sensitive TB cannot develop into an epidemic
in the community. However, if #; > 1, it is imperative

A =

[Bra1 (g, + 1rdr) (br = g2 + yr + p+ 0r) (0rGolry + G1G7brs + g (1= Ipy = Ipy))]

to investigate the effect of isolation on the transmission of
drug sensitive TB among the populace and determine the
necessary condition for slowing down its development in the
community. Following [43] we have

Ay =Ry, ~Rp=(1-4,) R, (18)

where

o

To slow down the spread of drug sensitive tuberculosis in
the population via effective isolation, proper treatment, and
identification of individuals who return from lost to follow-
up and in the presence of individuals who are lost to follow-
up, we expect that A, > 0, and this is satisfied if A, < 1
in (18). Now, setting % = 1 and solving for A, gives the
threshold effectiveness of isolation and taking into account

(919297 — 911 — 00 Pr1Yrg7) (9197 (1 + yr + 1+ 87) — g\ Wrpr — orpriyrgs ]}

(19)

treatment and identification of individuals who return from
lost to follow-up and who are also lost to follow-up:

. 1
A

a= % (20)

Hence, drug sensitive tuberculosis can be eradicated in
the community in the presence of isolation taking into
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consideration proper treatment and identification of individ-
uals who return from lost to follow-up and are lost to follow-
up if A, < A} is attained. Note that A’ is a decreasing
functlon of Rr , “thus indicating that higher Values for A’ will
result in smaller values for %T ,adesired outcome. Buta large

value for . results in a small value for A7, an indication
that eradication may not be attainable.

The following limits of A, provide a further insight into
possible ways of reducing the burden of drug sensitive TB in
the community:

limAy, o
_ Ity [(¢r + 4+ 01 + yr) 9197 — Vrdbrgs — orPriyrds) @D
g7 or (g7 + 1ebr) Iy + (nebr + 97) Gils + [Wr gy +1p (b + yr + 4+ 81) g1 = rorpryyr] (1= Iy = Ipy)}
limAmpTHOO =1,
limA,, =1 (22)
limA,, =1

The limits in (21) will be less than unity. In practice, & — ©0
implies high rate of isolating individuals with drug sensitive
TB, ¢ — oo implies high rate of individuals who are lost
to follow-up, ¥ — oo implies a high rate of individuals
who return from lost to follow-up, and y;; — oo implies
high treatment rate. Ideally, the results obtained from these
limits can be pursued for the reduction of the burden of

drug sensitive TB in the community, provided of course that
it is feasible and practicable economically. Therefore, with a
look at factor A, one observes that an effective isolation will
lead to a reduction in the burden of drug sensitive TB in the
population.

Next, we consider the case when the treatment rate is set
to zero (yr = 0). The reproduction number is given as

B = Br [(org; + 1rordr) by + (Nrgibr + 9197) brs + [91¥rtr g1 (b1 + ag + p+ 1) (1 = Ipy = Ipy)] (23)
T, = .
v g1 (1 +ar +u +87) g; — g1vrdr
The reproduction number %, can be expressed as where
Ry = Ay‘%Ty> (24)
AY
_ {[(0rg; + nrordr) Iy + (rg1br + 9197) bra + (1¥r + 109192 = 1rorPrayr) (1= Iy = Ip)] gy [(br + ap + p + 81) g, — yrdrl} (25)

(91929, — 919191 — orPavrg,) (0197 + Hrordr) Iy

The difference between @Ty and % is in the treatment

rate (yr); thus A, compares a population with and without
treatment in the presence of isolation of infected individuals

+ (Mg br + 9197) bra +

(giyr + (¢ + ap +p+87) gine) (1= by = 1)1}

the community and no control strategy will be required for
its control. Take the difference between % and %Ty; that is,

with drug sensitive TB, individuals who are lost to follow- = Rp— Ry = (1 — Ay) Ry, (26)
up and who return from of lost to follow-up. If Ry < 1 ! !
then drug sensitive TB cannot develop into an epidemic in ~ where
_ Br (g7 + nrpr) [g1 (P + p+ 8 + op — g5) + yrprior] [9197ks + 00 gl + g1y (1= Lpy = 1) ]}
A (27)
y = .

{91 (glngh -

G Vrdr — orprivrds) (97 (r + ar + u +8r) — wrdr]}
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To slow down the spread of drug sensitive tuberculosis in
the population using proper treatment, effective isolation
and identification of individuals who return from lost to
follow-up and in the presence of those who are of lost to

lim A

Yyr — 00

Abstract and Applied Analysis

follow-up, we expect that A, > 0, and this is satisfied if
A, <lin (18).
Take the following limits of A,:

[(pr + ar + p+61) g7 — Wrdr] nrgy (1= by =)

- 97107 (g7 + 1) Iy + (rbr + g7) Gilrs + [wrgy + np (br + yr + p+ 01) g1 = o pryyr] (1 =1y - sz)}’

hmquﬁTHOO =1,

lim A =1,
Yyr — 00

limAymTHoo =1.

From the limit of A, one observes that an effective treatment
will lead to a reduction in the burden of drug sensitive TB in
the population.

(28)

Comparing the quantities A, and A, shows that A, <
Ay; that is, size

Ay = A, =~ {[(g; +1rdr) + (g7 +1rbr) o gy + (Wr g1 + 109192 = 1rorpryyr) (1 =1y = 12)] gy (ar = yr)

+orpriyr] (9, +1rdr) [orgsle + 91970 + g1vr (1= 1y

-1} (10919297 = 91¥1br — 01 P1Y197)

(29)

o7 (grmrdr) by + (97 + 1r9r) Gilrs + (Wrgy + 1rgy (b + o + p+ 67)) (1= Iy = Ipy)]

!

[or (g7 + nrbr) by + (97 + 1091) Gilrs + (Wrgy + 1rgy (b1 + yr + p+ 1) = nrorpryyr) (1= Lpy = Ip)]}) <0

This implies that A, will provide better results in slowing
down drug sensitive tuberculosis spread, using reduction in
the prevalence, than using A ,. On the otherhandif A, -A,, >
0, this means that A will give better outcome in slowing
down drug sensitive tuberculosis spread compared to using
A

! Thus, from the above discussions, to slow down the
spread of the disease and reduce the number of secondary
infections in the population, we require control strategies
with parameter values that would make A, < 1or A, <
1. Hence, the necessary condition for slowing down the
development of drug sensitive TB at the population level is
that A, > O or A, > 0. However, A, gives a better result
in terms of reduction in the prevalence of the disease over
A, provided A, > A,; otherwise if A, > A, then A,
gives a better result over A . Using parameters in Table 1, we
have that A, = 0.8524, A, = 0.8802 and A, = 0.1061,
Ay = 0.0833; thus A, - Ay = —0.02789. It follows that, the

isolation-only strategy provides more effective control mea-
sures in curtailing the disease transmission in the community.

Using the threshold quantity, %, we determine how
isolation and treatment rates could lead to tuberculosis
elimination in the population. Thus

_ Br (1 =l - sz)WT

i By o =y pr ey
(30)
lim % _ Br (1 =Ly = Lpy) 0.
b (wr +u+0r)

Thus a sufficient effective TB control program that isolates (or
treats) the identified cases at a high rate a — oo (or yp —
00) can lead to effective disease control if it results in making
the respective right-hand side of (30) less than unity.
Differentiating partially the reproduction number of 0%
with respect to the key parameters (o and yy), this gives

ORr _ ~Brg: (97 + 1rpr) (01 gy + brag1g7 + (1 = bpy = 1py) g1yr ] G31)
dorr (9197 (¢r + ar +yr + p+ 81) = gyrdr — UTPT1VT97]2
OR _ —Br (g1 — o0 p11) (g7 + 1r9r) [br0797 + 19197 + (1= by = Ipy) gywr] (32)

Oyr (9197 (1 + ar +yr + G191 + O1) = g1 Yrdr — 0TPT1VT97]2
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TABLE 2: Values of the parameters of the model (2).

Baseline

Parameter values Range Reference
i ux10° 105(,%.00144i Tos) (1

I 0.0159 (0.0143, 0.04) [12]

€ 0.06 (0.01, 0.5) [13]

Br 9.75 (4.5,15.0) (14]
Bum 15 (1.5, 3.5) (13, 15]
Bx 0.0000085 (0.01, 0.1) (13]
N> M Hx 0.5 0,1) Assumed
Lepsbrgs s s Ixis I 0014 (0.02,0.3) (12,16, 17]
P 0.3 (0.1,0.5) (14, 18]
P 0.03 (0.01, 0.05) (14, 18]
P 0.03 (0.01, 0.1) (14, 18]
O Opp O 0'056.8'1(;018’ (0.005,0.05)  [12,19, 20]
YoV 15 (1.5,2.5) (11,16, 21]
Yo Vx 0.75 (0.5,1.0) (13]
O Cpps Oy 0.6 (0.2,1.0) Assumed
br> Par> Px 0.2511 (0.0022, 0.5) [22]
Yo U ¥x 0.1 (0.5,1.0) [23]
81, 8, 0.365 (0.22,0.39)  [20, 24, 25]
0> Ox 0.028 (0.01, 0.03) [13]
O1rs Opap Orx 0.02 (0.01, 0.039) [22,23]
Thus, it follows from (31) that 0%, /da; < 0, hence

showing further the effectiveness of the control measures.
Thus, isolation («) of drug sensitive tuberculosis will have
a positive impact in reducing the drug sensitive TB burden
in the community, regardless of the values of the other
parameters. This result is stated in the following lemma.

Lemma 4. The use of isolation («r) will have a positive
impact on the reduction of the drug sensitive TB burden in a
community regardless of the values of other parameters in the
basic reproduction number under isolation.

Similarly, from (32), we have that 0%;/0oy; < 0.
Thus, effective treatment (y;) of drug sensitive tuberculosis
will have a positive impact in reducing the drug sensitive
tuberculosis burden in the community, irrespective of the
values of the other parameters. This result is summarized
below.

Lemma 5. The use of effective treatment (yp) will have a
positive impact on the reduction of the drug sensitive TB burden
in a community irrespective of the values of other parameters in
the basic reproduction number under treatment.

A contour plot of the reproduction number %, as a
function of the effective treatment rate (y;) and isolation

1

rate (), is depicted in Figure 3(a). As expected, the plot
shows a decrease in R values with increasing values of
the treatment and isolation rates. For instance, if the use
of effective treatment result in p = 0.8 and a; = 0.8,
drug sensitive TB burden will be reduced considerably in the
population. Similarly in Figure 3(b) the plot shows a decrease
in & values with decreasing values of the return rate from
lost to follow-up () and lost to follow-up rate (¢r).

A contour plot of the reproduction number %, as a
function of return rate from lost to follow-up (y) and the
effective treatment rate (y;), is depicted in Figure 4(a). The
plot shows a decrease in % values with increasing values of
the treatment rate. Similarly the plot in Figure 4(b) shows a
decrease in % values with increasing values of the isolation
rate (o).

4.1. Backward Bifurcation Analysis. Model (2) is now investi-
gated for the possibility of the existence of the phenomenon
of backward bifurcation (where a stable DFE coexists with a
stable endemic equilibrium when the reproduction number,
R, is less than unity) [44-53]. The epidemiological impli-
cation of backward bifurcation is that the elimination (or
effective control) of the TB (and various strains) in the system
is no longer guaranteed when the reproduction number is
less than unity but is dependent on the initial sizes of the
subpopulations. The possibility of backward bifurcation in
model (2) is explored using the centre manifold theory [47],
as described in [54] (Theorem 4.1).

Theorem 6. Model (2) undergoes a backward bifurcation at
R = 1 whenever inequality (A.9), given in Appendix A, holds.

The proof of Theorem 6 is given in Appendix A (the proof
can be similarly given for the case when %, = 1 or £y = 1).
The backward bifurcation property of model (2) is illustrated
by simulating the model using a set of parameter values given
in Table 2 (such that the bifurcation parameters, a and b,
given in Appendix A, take the values a = 558.61 > 0 and b =
1.59 > 0, resp.). The backward bifurcation phenomenon of
model (2) makes the effective control of the TB strains in the
population difficult, since, in this case, disease control when
R, < lisdependent on the initial sizes of the subpopulations
of model (2). This phenomenon is illustrated numerically in
Figures 5 and 6 for individuals with drug sensitive, MDR-,
and XDR-TB, as well as individuals who are lost to follow-up
with drug sensitive, MDR-, and XDR-TB, respectively.

It is worth mentioning that when the reinfection param-
eter of model (2), for the recovered individuals, is set to zero
(i.e., € = 0), the bifurcation parameter, a, becomes negative
(see Appendix A). This rules out backward bifurcation (in
line with Item (iv) of Theorem 4.1 of [54]) in this case. Thus,
this study shows that the reinfection of recovered individuals
causes backward bifurcation in the transmission dynamics
of TB in the system. To further confirm the absence of the
backward bifurcation phenomenon in model (2) for this
case, the global asymptotic stability of the DFE of the model
is established below for the case when no reinfection of
recovered individuals occurs.
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treatment rate (y;); (b) a function of return rate from lost to follow-up (y;) and treatment rate (ev;). Parameter values used are as given in

Table 2.

4.2. Global Stability of the DFE: Special Case. Consider the
special case of model (2) where the reinfection parameters
are set to zero (i.e, ¢ = 0). It is convenient to define the
reproduction threshold %, = #|.-

Theorem 7. The DFE of model (2), with ¢ = 0, is GAS in ©
whenever R, < 1.

The proof of Theorem 7 is given in Appendix B.

The epidemiological significance of Theorem 7 is that, for
the special case of model (2) with € = 0, TB will be eliminated

from the community if the reproduction number (3270) can be
brought to (and maintained at) a value less than unity.

5. The Effects of Isolation

Following the result obtained from the sensitivity analysis, we
investigate the impact of the isolation parameters oy, o, and

oy, which are one of the dominant parameters of model (2).
We start by individually varying these parameters for (say)
ar = 0.2,04,0.6,0.8,1.0, with the other parameters given
in Table 2 kept constant. We observed that (see Figure 7) as
the isolation rate, o, for drug sensitive TB increases, the
total number of individuals (with drug sensitive, MDR, and
XDR) isolated with each strain of TB increases, while the total
number of individuals who are lost to follow-up decreases.
We observed similar result for the isolation rate «,; (see
Figure 8). However, for isolation rate «y, negligible change
was observed and the plots are not shown.

6. Conclusion

In this paper, we have developed and analyzed a system of
ordinary differential equations for the transmission dynam-
ics of drug-resistant tuberculosis with isolation. From our
analysis, we have the following results which are summarized
below:
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FIGURE 5: Backward bifurcation plot of model (2) as a function of time. (a) Individuals with drug sensitive TB (T'). (b) Individuals with MDR
(M). (¢) Individuals with XDR (X). Parameter values used are as given in Table 2.

(i) The modelis locally asymptotically stable (LAS) &, <
1 and unstable when % > 1.

(ii) The model exhibits in the presence of disease reinfec-
tion the phenomenon of backward bifurcation, where
the stable disease-free coexists with a stable endemic
equilibrium, when the associated reproduction num-
ber is less than unity.

(iii) As the isolation rate for each strain of TB increases,
the total number of individuals infected with the
particular strain of TB decreases.

(iv) Model (2) in the absence of disease reinfection is
globally asymptotically stable (GAS) %, < 1.

(v) The sensitivity analysis of the model shows that the
dominant parameters for the drug sensitive TB are

the disease progression rate (o7), the recovery rate
(yr) from drug sensitive TB, the infectivity parameter
(n7), the isolation rate (o) from drug sensitive TB
class, fraction of fast progression rates and (I, and
I,) into the drug sensitive TB class and lost to follow-
up class, and the rate of lost to follow-up (¢y). Similar
parameters and return rates from lost to follow-up
(vp and wy) are dominant for MDR- and XDR-
TB. The natural death rate (u), although dominant
in MDR- and XDR-TB, is however epidemiologically
irrelevant.

(vi) Increase in isolation rate leads to increase in total
number of individuals isolated with each TB strain
resulting in decreases in the total number of individ-
uals who are lost to follow-up.



14

Appendices

A. Proof of Theorem 6

Proof. The proofis based on using the centre manifold theory
[47], as described in [54]. It is convenient to make the

following simplification and change of variables.

dx,
dt

dx
dt

dx;,
dt

dx,
dt

dx
dt

dx
dt

dx;
dt

dx
dt

dx
dt

dxy,
dt

dxy,
dt

dx,,
dt

The Jacobian of the transformed system (A.1), at the disease-

=m; =m—
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LetS = x|, Er = x5, T = %3, Epp = x4 M = x5, Ex =
Xep X = X5 Ly = Xg, Ly = Xo, Ly = x50, ] = x4
and R = xp,, sothat N = x; + x, + x5 + x4, + X5 +
X¢ + X7 + Xg + X9 + X9 + X;; + Xxp,. Using the vector
notation x = (xl,xz,x3,x4,x5,xé,x7,x8,x9,x10,xu,xlz)T,
model (2) can be written in the form dx/dt = m(x), where
m = (ml,mz,m3,m4,ms,mﬁ,m7,m8,m9,mw,mu,mu)T, as
follows:

[Br (23 + 117xg) + Bag (x5 + 1arxg) + By (x5 + 11xx10)] 2

(%) + X + X3 + X4 + X5 + Xg + Xy + Xg + Xg + X0 + Xpq + X15)

Uxy,

(1= Lpy = Lpy) Br (565 + 1) (%) + €315)

(%) + X3 + X3 + X4 + X5 + Xg + X5 + Xg + Xg + X1 + X1 + X5

) —91%2

Lry Br (33 + 11rxg) (X, + €x,5)

(%) + %3 + X3 + X4 + Xg + Xg + X7 + Xg + Xg + X1 + Xqq + X15)

T 07Xy + YrXg — g X3,

(1= Ian = lara) Br (365 + 1arXo) (X1 + €x15)

(%) + %3 + X3 + X4 + Xs + Xg + Xy + Xg + Xg + X1 + X1 + X5

) — 93Xy

Laii Br (x5 + 1apxo) (2, + £15)

ms =

(%) + %y + X3 + X4 + X5 + Xg + X7 + Xg + Xg + X1 + Xqq + X15)

T OuXy + PrXs + Y Xg — gyXs,

(1-Lyy = Ix,) Bxc (x5 + mxx10) (%) + €x15)

(%) + %5 + X3 + X4 + X5 + Xg + Xy + Xg + Xg + X0 + Xqq + X15)

L1 Bx (57 + 11xX10) (%) + £x5)

(%) + X, + X3 + X4 + Xg + Xg + Xy + Xg + Xg + X1 + Xyq + Xp5)

Lro Br (x5 + 1pxg) () + €x15)

(%) + Xy + X3 + X4 + Xg + Xg + Xy + Xg + Xg + X1 + Xqq + Xp5)

LB (x5 + 1agxe) () + €15)

(%) + % + X3 + X4 + Xg + Xg + X7 + Xg + Xg + X1 + Xqq + Xp5)

LyaBx (57 + 1rx10) (%) + €x15)

myy = opXs + QpXs + X X7 — g1oX11

=Myy = YPrXs + YuXs + YxX7 — gniXn ~

free equilibrium &, is given by

(%) + %3 + X3 + X4 + Xs + Xg + Xy + Xg + Xg + X1 + Xqq + X15)

~ Ys5Xe>
(A1)
+0xXg + PrmXs + YxX10 — G6X7
+¢rx; — grxgs
+Pp1X5 — ggXo»
+PxX7 = GoX10s
& [Br (55 + 1rxg) + Bag (X5 + Mpsxg) + By (X7 + 1xx10)] 15
(%) + Xy + X3 + X4 + X5 + Xg + X + Xg + Xg + Xp + Xy + X))
](%1) = (]1 | ]2)> (A.Z)
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where
- 0 —Br 0 ~Bu 0
0 -9 Ir\Br + privr 0 0 0
0 o7 IraBr = 9, 0 0 0
0 0 0 93 b B 0
0 0 Pra¥r oM 2Bt = 9a 0
], - 0 0 0 0 Pmi¥m ~9s ,
0 0 0 0 0 ox
0 0 (I-lpy—Ip)Pr+¢r 0 0 0
0 0 0 0 (I-Ly-lw)Bu+tém O
0 0 0 0 0 0
0 0 or 0 X 0
0 0 (-pn-pr)yr O (1= pant) Ym 0
A (A.3)
—Bx ~Briir ~Batin —Bxnx 0 0
0 Lry Broir 0 0 0 0
0 LraBrtir + Yr 0 0 0 0
0 0 L Bt 0 0 0
0 0 I Bating + ¥ 0 0 0
B Ix1Bx 0 0 L Bxnx 0 0
B lx2Bx = 9s 0 0 LxaBxnx + ¥x 0 0
0 (1 =Ipy =) Brttr = 97 0 0 0 0
0 0 (1= Ian = Ing) Bt — 9s 0 0 0
(1-Ix — L) Bx + bx 0 0 (1-Ly — 1) Bxtix = gs O 0
oy 0 0 0 -9 O
Yx 0 0 0 0 -gun
Consider the case when %, = 1. Suppose, further, that f;;  where
is chosen as a bifurcation parameter. Solving (2) for S, from 1
Ry = 1gives fr = fr. The transformed system (A.1) at w, = ‘; [Brws + Byws + Bxw; + Brirws

the DFE evaluated at 3 = f; has a simple zero eigenvalue
(and all other eigenvalues having negative real parts). Hence,
the centre manifold theory [47] can be used to analyze the
dynamics of (A.1) near 8, = fBr. In particular, the theorem
in [54] (see also [36, 47, 48]) is used (it is reproduced in
the Appendix for convenience). To apply the theorem, the
following computations are necessary (it should be noted that
we are using 3 instead of ¢ for the bifurcation parameter).

Eigenvectors of J(&,)| Br=pi- The Jacobian of (A.1) at 3 = f37,
denoted by J(&))|g,-4: has a right eigenvector (associated
with the zero eigenvalue) given by

w= (wl,wz,w3,w4,ws,wé,w7,w8,w9,w10,w“,
(A4)
T
wlz) >

+ ButlWs + BxxWio] »
1
w, = g_ {[pryyr + b Br] w + Ipy Brrwg}
1
ws; > 0,

ws > 0,

1
wy = — [ proyrws + Ly Barws + L Bartiws] »
3

1

Ws = — [ Pan YmWs + Iy Bxw; + Ly Bxrxwyg] s
5

w, > 0,

[(1 =Ly = bpy) Br + pr] ws
(9, = (1 =Ly = Ipy) Brir] )

s =
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FIGURE 6: Backward bifurcation plot of model (2) as a function of time. (a) Individuals who are lost to follow-up with drug sensitive TB (T).
(b) Individuals who are lost to follow-up with MDR (M). (¢) Individuals who are lost to follow-up with XDR (X). Parameter values used are

as given in Table 2.

(1= Iy = L) Bar + ar] ws Also, J(&,)|s _z has a left eigenvector v = (v;,v,, Vs,
1 ﬁT ﬁT g 1> V2> 73

Wy = >
o [9s — (1= Lyn = Iaiz) Baati] Vi, Vs, Vs Vs Vg, Vs Vig» V115 V12)  (associated with the zero
eigenvalue), where
- [(1 - Ixi = Lxo) Bx + x| wy o =0
10 = > =Y
(9 = (1 = Ix; = Ixz) Bx1x) '
_0rV3
 (oqws +ayw,) g
wll - g—)
10
1 ), = T
w, = — [(1= pry = pra) yrws + (1= part) Yurws 9
gu OxVy
Ve = —,
9s

+yxw,] .
(AS) V3 > 0,
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FIGURE 7: Simulation of model (2) as a function of time varying «; for (a) total number of isolated individuals and (b) total number of
individuals who are lost to follow-up. Parameter values used are as given in Table 2.
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FIGURE 8: Simulation of model (2) as a function of time varying «,, for (a) total number of isolated individuals and (b) total number of
individuals who are lost to follow-up. Parameter values used are as given in Table 2.
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1
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) (it Buitiaeva
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v =0,

[x1 Bxnxve

v, = 0.
(A.6)

Computations of Bifurcation Coefficients a and b. The appli-
cation of the theorem (given in the Appendix) entails the
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computation of two bifurcation coefficients a and b. It can be
shown, after some algebraic manipulations, that

a—vZwa

+V3Zw' Jaxax

ij=1
12 2
+v4ljzlw, ]a a -+ V5 Zwl ]aigi
12 12 2
o 3 vy i ds i, > uw, aig;j
2
= x_1 (~w, —w; — Wy — W5 — We — W, — Wg — Wy (A7)
— Wy — Wy ~ Wiy +wipe) {Br (w5 + wyny)
[l vy + g vy + (L= Iy = ) vg]
+ Bar (ws + wotpy)
(v +lavs + (1 =Ty = Lys) vol
+ Bx (w; + wyorx)
[lxave +Ixavs + (1 =Ly —Lxa) v10]} -
Furthermore,
- szw’a B, Zl 1a aﬁp
(A.8)

= (w3 + wgny) [y vy +Lpyvs + (1 =1y = 1) vg]

> 0.

Hence, it follows from Theorem 4.1 of [54] that the trans-
formed model (A.1) (or, equivalently, (2)) undergoes back-

ward bifurcation at %, = 1 whenever the following inequality
holds:

a>0. (A9)

O

It is worth noting that if ¢ = 0 (i.e, reinfection
of recovered individuals does not occur), the bifurcation
coefficient, a, given in (A.7), reduces to

2
a=-—(w,+w;+w, +ws+ws +w, +wg +wy
X1

+wyo +wyy) {Br (w; +wynr)

+ (1 =Ly = lpy) vg]

+ B (ws + wgrpy)

[l vy + vy

[ va + Iyvs + (1= Ly =) o)
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+ Bx (w; +wyotx)

[xavs + Ixovy + (1 =Ly = Lya) viol} -
(A.10)

It follows from (A.10) that the bifurcation coefficient a < 0
(ruling out backward bifurcation in this case, in line with
Theorem 4.1 in [54]). Thus, this study shows that the back-
ward bifurcation phenomenon of model (A.1) is caused by the
reinfection of the recovered individuals in the population.

B. Proof of Theorem 7

Proof. The proof is based on using a comparison theorem.
The equations for the infected components of model (2), with
€ = 0, can be rewritten as

dEr (t)
dt
dT (1)
a Er ()
dEy ()
dt T (1)
dM (t) Ey (®)
dt
dEx (t) M©
E
dt _(F-v) x (1)
dx (t) X (1)
dt
L
AL, (1 7 (t)
i Lo (®
dL (1) Ly (1)
dt ] ()
dLy (t) (B.1)
dt
dj (t)
dt
Er(t)
T ()
Ep (£)
M (t)
Ex (1)
-PQ ,
X (1)
L ()
Ly (t)
L ()
J(t)
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where P = 1 — S, the matrices F and V are as given in
Section 2.2, and Q is nonnegative matrices given, respectively,

by

Q = [Q1 | Qz] > (B.2)
0 lnfr O 0
0 IraPr 0 0
0 0 0 I Bum
0 0 0 2B
0 0 0 0
Q = 0 0 0 0
0 (1-lp ~Ipy) fr O 0
0 0 0 (1 ~ I = ) B
0 0 0
0 0 0 0
0 Ly Bror
0 Lra Bty
0 0
0 0
o ;Xlﬁx 0
x2Px 0
0 (1 =Ipy = Ipa) Briir
0 0
(1 -1y = Ixy) Bx
0

Thus, since S(t) < N(t) in @ for all ¢ > 0, it follows from
(B.1) that

dEr ()
dt
dT (t)
At ET (t)
dEy (1) T (t)
dt
dM (t) Ep (1)
dt M(t)
dt < (F-V) x (B.4)
ax () X (t)
dt
dLy (1 Lr®
dt LM (t)
dLy () L
—M (t)
dt *
dLy (t) J(t)
dt
dj (t)

dt
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where
0
0
0
0
0
S E
0
0
0
0
(B.3)

0 0 0

0 0 0

v Brtiv 0 0

W2 Brtim 0 0

0 L1 Bxnx 0

0 Lo Bxtix 0

0 0 0

(1= lan = Iaga) Butim 0 0

0 (1 -1 —Ix) Bxrix O

0 0 0

Using the fact that the eigenvalues of the matrix F — V all
have negative real parts (see the local stability result given
in Lemma 3, where p(FVﬁl) < 1if R, < 1, which is
equivalent to F — V having eigenvalues with negative real
parts when %, < 1 [36]), it follows that the linearized
differential inequality system (B.4) is stable whenever %, <
1. Consequently, by comparison of theorem [34] (Theorem
1.5.2,p. 31),

(Er(6),T (6), Ly (£), Epg (8), M (£), Ly (1), Ex (1),
X(#),Lx(t),] () — (0,0,0,0,0,0,0,0,0,0), (B.5)

as t — oo.

Substituting Ex =T =Ly =Eyy, =M =Ly, =Ex =X =
Ly =] = 0 into the equations of S and R in model (2), and
noting that ¢ = 0, gives S(t) — S*, R(t) — 0Oast — oo.
Thus, in summary,

(SA),Ep(t),T(t), Ly (t), Epp (8), M (£), Ly (2),
Ex®),.X(®),Lx®),](),R(®) — (5,0,0,0,0, (B.6)

0,0,0,0,0,0,0),
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ast — o00. Hence, the DFE (&) of model (2), with e = 0, is
GAS in @ if R, < 1. O
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