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The problem of positive solutions for nonlinear 𝑞-fractional difference eigenvalue problem with nonlocal boundary conditions is
investigated. Based on the fixed point index theory in cones, sufficient existence of positive solutions conditions is derived for the
problem.

1. Introduction

The fractional 𝑞-calculus is the 𝑞-extension of ordinary
fractional calculus. It has been used by many researchers to
adequately describe the evolution of a variety of engineering,
economical, physical, and biological processes.

We consider a nonlinear 𝑞-fractional difference eigen-
value problem with nonlocal boundary conditions given by
𝐶
𝐷
𝛼

𝑞
𝑢 (𝑡) + 𝜆𝑔 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0,

0 ≤ 𝑡 ≤ 1, 0 < 𝑞 < 1,

(1)

𝐷
𝑘

𝑞
𝑢 (0) = 0,

𝑢 (0) = 0, 2 ≤ 𝑘 ≤ 𝑛 − 1,

𝐷
𝑞
𝑢 (1) = 𝜃 [𝑢] ,

(2)

where 𝐶𝐷𝛼
𝑞
denote the fractional 𝑞-derivative of the Caputo

type, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 > 2, 𝜆 > 0 is a parameter, and 𝜃[𝑢] is
given by a Riemann-Stieltjes integral 𝜃[𝑢] = ∫1

0
𝑢(𝑡)𝑑
𝑞
𝐴(𝑡).

This type of BC includes, as particular cases, multipoint
problems when 𝜃[𝑢] = ∑𝑚−2

𝑖=1
𝛼𝑖𝑢(𝜁𝑖), (see [1]) and a contin-

uously distributed case when 𝜃[𝑢] = ∫1
0
𝛼(𝑠)𝑢(𝑠)𝑑

𝑞
𝑠 (see [2–

4]).
More recently, many people pay attention to BVPs involv-

ing nonlinear 𝑞-difference equations [5–12].

In [13], Yuan and Yang dealt with some existence and
uniqueness results for nonlinear boundary value problems
for delayed 𝑞-fractional difference systems based on a con-
traction mapping principle and Krasnoselskii’s fixed-point
theorem.

In [14], Yang investigated the sufficient conditions for
the existence and nonexistence positive solutions for BVP
involving nonlinear 𝑞-fractional difference equations.

Ferreira [4] studied the existence of positive solutions to
the nonlinear 𝑞-fractional BVPs by means of Krasnoselskii’s
fixed point theorem in cones.

In this paper, we obtain the results on the existence of
one and two positive solutions by utilizing the results of
Webb and Lan [15] involving comparison with the principle
characteristic value of a related linear problem to the 𝑞-
fractional case. We then use the theory worked out by Webb
and Infante in [16–19] to study the general nonlocal BCs.

2. Preliminaries

In this section, we will present some definitions and lemmas
that will be used in the proof of our main results.

Let 𝑞 ∈ (0, 1) defined by [20]

[𝑎]𝑞 =
𝑞
𝑎
− 1

𝑞 − 1
= 𝑞
𝑎−1
+ ⋅ ⋅ ⋅ + 1, 𝑎 ∈ R. (3)
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The 𝑞-analogue of the power function (𝑎 − 𝑏)𝑛 with 𝑛 ∈ N is

(𝑎 − 𝑏)
0
= 1,

(𝑎 − 𝑏)
(𝑛)
=

𝑛−1

∏

𝑘=0

(𝑎 − 𝑏𝑞
𝑘
) , 𝑎, 𝑏 ∈ R, 𝑛 ∈ N.

(4)

More generally, if 𝛼 ∈ R, then

(𝑎 − 𝑏)
(𝛼)
= 𝑎
𝛼

∞

∏

𝑖=0

(𝑎 − 𝑏𝑞
𝑖
)

(𝑎 − 𝑏𝑞𝛼+𝑖)
. (5)

Note that if 𝑏 = 0 then 𝑎(𝛼) = 𝑎𝛼.The 𝑞-gamma function is
defined by

Γ
𝑞 (𝑥) =

(1 − 𝑞)
(𝑥−1)

(1 − 𝑞)
𝑥−1
,

𝑥 ∈ R \ {0, −1, −2, . . .} , 0 < 𝑞 < 1,

(6)

and satisfies Γ
𝑞
(𝑥 + 1) = [𝑥]

𝑞
Γ
𝑞
(𝑥).

The 𝑞-derivative of a function 𝑓(𝑥) is here defined by

𝐷
𝑞
𝑓 (𝑥) =

𝑑
𝑞
𝑓 (𝑥)

𝑑𝑞𝑥
=
𝑓 (𝑞𝑥) − 𝑓 (𝑥)

(𝑞 − 1) 𝑥
, (7)

and 𝑞-derivatives of higher order are defined by

𝐷
𝑛

𝑞
𝑓 (𝑥) =

{

{

{

𝑓 (𝑥) , if 𝑛 = 0,

𝐷
𝑞
𝐷
𝑛−1

𝑞
𝑓 (𝑥) if 𝑛 ∈ N.

(8)

The 𝑞-integral of a function 𝑓 defined in the interval [0, 𝑏] is
given by

∫

𝑥

0

𝑓 (𝑡) 𝑑𝑞𝑡 = 𝑥 (1 − 𝑞)

∞

∑

𝑛=0

𝑓 (𝑥𝑞
𝑛
) 𝑞
𝑛
,

0 ≤
𝑞
 < 1, 𝑥 ∈ [0, 𝑏] .

(9)

If 𝑎 ∈ [0, 𝑏] and 𝑓 is defined in the interval [0, 𝑏], its integral
from 𝑎 to 𝑏 is defined by

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑞𝑡 = ∫

𝑏

0

𝑓 (𝑡) 𝑑𝑞𝑡 − ∫

𝑎

0

𝑓 (𝑡) 𝑑𝑞𝑡. (10)

Similarly as done for derivatives, it can be defined an operator
𝐼
𝑛

𝑞
; namely,

(𝐼
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐼
𝑛

𝑞
𝑓) (𝑥) = 𝐼𝑞 (𝐼

𝑛−1

𝑞
𝑓) (𝑥) , 𝑛 ∈ N.

(11)

The fundamental theorem of calculus applies to these opera-
tors 𝐼
𝑞
and𝐷

𝑞
; that is,

(𝐷𝑞𝐼𝑞𝑓) (𝑥) = 𝑓 (𝑥) , (12)

and if 𝑓 is continuous at 𝑥 = 0, then

(𝐼𝑞𝐷𝑞𝑓) (𝑥) = 𝑓 (𝑥) − 𝑓 (0) . (13)

Basic properties of the two operators can be found in the book
[20]. We now point out four formulas that will be used later:

[𝑎 (𝑡 − 𝑠)]
(𝛼)
= 𝑎
𝛼
(𝑡 − 𝑠)

(𝛼)
,

𝑡
𝐷𝑞 (𝑡 − 𝑠)

(𝛼)
= [𝛼]𝑞 (𝑡 − 𝑠)

(𝛼−1)
,

𝑠
𝐷
𝑞 (𝑡 − 𝑠)

(𝛼)
= − [𝛼]𝑞 (𝑡 − 𝑞𝑠)

(𝛼−1)
,

(
𝑥
𝐷𝑞 ∫

𝑥

0

𝑓 (𝑥, 𝑡) 𝑑𝑞𝑡) (𝑥)

= ∫

𝑥

0
𝑥
𝐷𝑞 𝑓 (𝑥, 𝑡) 𝑑𝑞𝑡 + 𝑓 (𝑞𝑥, 𝑥) ,

(14)

where
𝑖
𝐷
𝑞
denotes the 𝑞-derivative with respect to variable 𝑖

[21].

Remark 1 (see [21]). We note that if 𝛼 > 0 and 𝑎 ≤ 𝑏 ≤ 𝑡, then
(𝑡 − 𝑎)

(𝛼)
≥ (𝑡 − 𝑏)

(𝛼).

Definition 2 (see [22]). Let 𝛼 ≥ 0 and let 𝑓 be a function
defined on [0, 1].The fractional 𝑞-integral of the Riemann-
Liouville type is (

RL
𝐼
0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and

(
RL
𝐼
𝛼

𝑞
𝑓) (𝑥) =

1

Γ
𝑞 (𝛼)

∫

𝑥

0

(𝑥 − 𝑞𝑡)
(𝛼−1)

𝑓 (𝑡) 𝑑𝑞𝑡,

𝛼 ∈ R
+
, 𝑥 ∈ [0, 1] .

(15)

Definition 3 (see [22]). The fractional 𝑞-derivative of the
Riemann-Liouville type of order 𝛼 ≥ 0 is defined by
(
RL
𝐷
0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and

(
RL
𝐷
𝛼

𝑞
𝑓) (𝑥) = (𝐷

[𝛼]

𝑞
𝐼
[𝛼]−𝛼

𝑞
𝑓) (𝑥) , 𝛼 > 0, (16)

where [𝛼] is the smallest integer greater than or equal to 𝛼.

Definition 4 (see [22]). The fractional 𝑞-derivative of the
Caputo type of order 𝛼 ≥ 0 is defined by

(
𝐶
𝐷
𝛼

𝑞
𝑓) (𝑥) = (𝐼

[𝛼]−𝛼

𝑞
𝐷
[𝛼]

𝑞
𝑓) (𝑥) , 𝛼 > 0. (17)

Lemma 5 (see [22]). Let 𝛼, 𝛽 ≥ 0 and let 𝑓 be a function
defined on [0, 1].Then, the next formulas hold:

(1) (𝐼𝛽
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = (𝐼

𝛼+𝛽

𝑞
𝑓)(𝑥),

(2) (
𝐶
𝐷
𝛼

𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = 𝑓(𝑥).
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Lemma 6 (see [22]). Let 𝛼 ∈ R+ \ N, 𝜆 ∈ (−1,∞). Then, the
next formulas hold:

(1) 𝐼
𝛼

𝑞
𝑥
𝜆
=

Γ
𝑞 (𝜆 + 1)

Γ
𝑞 (𝜆 + 1 + 𝛼)

𝑥
𝜆+𝛼
,

(2)
𝑅𝐿
𝐷
𝛼

𝑞
𝑥
𝜆
=

Γ
𝑞 (𝜆 + 1)

Γ𝑞 (𝜆 + 𝛼 + 1)
𝑥
𝜆−𝛼
,

(3)
𝐶
𝐷
𝛼

𝑞
𝑥
𝜆
=
{

{

{

0 𝑖𝑓 𝜆 ∈ N
0
; 𝛼 > 𝜆,

𝑅𝐿
𝐷
𝛼

𝑞
𝑥
𝜆
𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(18)

Theorem 7 (see [23]). Let 𝑥 > 0 and 𝛼 ∈ R+ \ N.Then, the
following equality holds:

(𝐼
𝛼

𝑞 𝐶
𝐷
𝛼

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) −

[𝛼]−1

∑

𝑘=0

𝑥
𝑘

Γ
𝑞 (𝑘 + 1)

(𝐷
𝑘

𝑞
𝑓) (0) . (19)

Lemma 8 (see [24]). Suppose 𝑇 : 𝐾 → 𝐾 is a completely
continuous operator and has no fixed points on 𝜕𝐾

𝜌
∩𝐾. Then

the following are true:
(i) If ‖𝑇𝑢‖ ≤ ‖𝑢‖ for all 𝑢 ∈ 𝜕𝐾

𝜌
∩ 𝐾, then 𝑖(𝑇, 𝐾

𝜌
∩

𝐾,𝐾) = 1, where 𝑖 is the fixed point index on 𝐾.
(ii) If ‖𝑇𝑢‖ ≥ ‖𝑢‖ for all 𝑢 ∈ 𝜕𝐾

𝜌
∩ 𝐾, then 𝑖(𝑇, 𝐾

𝜌
∩

𝐾,𝐾) = 0.

Lemma 9 (see [24]). Let 𝐾 be a cone in Banach space 𝐸.
Suppose that𝑇 : 𝐾

𝜌
→ 𝐾 is a completely continuous operator.

There exists 𝑢
0
∈ 𝐾\{0} such that 𝑢−𝑇𝑢 ̸= 𝜇𝑢

0
for any 𝑢 ∈ 𝜕𝐾

𝑟

and 𝜇 ≥ 0, 𝑖(𝑇, 𝐾
𝜌
, 𝐾) = 0.

Lemma 10 (see [24]). Let 𝐾 be a cone in Banach space 𝐸.
Suppose that𝑇 : 𝐾

𝜌
→ 𝐾 is a completely continuous operator.

If 𝑇𝑢 ̸= 𝜇𝑢 for any 𝑢 ∈ 𝜕𝐾
𝑟
and 𝜇 ≥ 1, then 𝑖(𝑇, 𝐾

𝜌
, 𝐾) = 1.

Lemma 11. Let 𝑦 ∈ 𝐶[0, 1] be a given function and 𝑛 − 1 <
𝛼 ≤ 𝑛, then 𝑢 is a solution of BVP (1)-(2) if and only if 𝑢 is a
solution of the integral equation

𝑢 (𝑡) = 𝛾 (𝑡) 𝜃 [𝑢] + ∫

1

0

𝐺
0 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑𝑞𝑠, (20)

where
𝛾 (𝑡) = 𝑡,

𝐺
0
(𝑡, 𝑞𝑠)

=

{{{{{

{{{{{

{

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞 (𝛼)

, 0 ≤ 𝑞𝑠 ≤ 𝑡 ≤ 1,

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

Γ𝑞 (𝛼)
, 0 ≤ 𝑡 ≤ 𝑞𝑠 ≤ 1.

(21)

Proof. Assume that 𝑢 is a solution of BVP (1)-(2).
Applying Theorem 7, (1) can be reduced to an equivalent

integral equation:

𝑢 (𝑡) = −
1

Γ
𝑞 (𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑𝑞𝑠 + 𝑐0 + 𝑐1𝑡

+ 𝑐
2
𝑡
2
+ ⋅ ⋅ ⋅ + 𝑐

𝑛−1
𝑡
𝑛−1
.

(22)

By (2), we obtain

𝑐
0
= 0,

𝑐2 = ⋅ ⋅ ⋅ = 𝑐𝑛−1 = 0,

𝑐
1
= 𝜃 [𝑢] +

[𝛼 − 1]𝑞

Γ
𝑞 (𝛼)

∫

1

0

(1 − 𝑞𝑠)
(𝛼−2)

𝑦 (𝑠) 𝑑𝑞𝑠.

(23)

Therefore, we obtain

𝑢 (𝑡) = 𝛾 (𝑡) 𝜃 [𝑢] +
𝑡 [𝛼 − 1]𝑞

Γ
𝑞 (𝛼)

∫

1

0

(1 − 𝑞𝑠)
(𝛼−2)

⋅ 𝑦 (𝑠) 𝑑𝑞𝑠 −
1

Γ
𝑞 (𝛼)

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑𝑞𝑠

= 𝛾 (𝑡) 𝜃 [𝑢]

+ ∫

𝑡

0

[

[

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞 (𝛼)

]

]

⋅ 𝑦 (𝑠) 𝑑𝑞𝑠 + ∫

1

𝑡

[

[

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

Γ𝑞 (𝛼)

]

]

⋅ 𝑦 (𝑠) 𝑑𝑞𝑠 = 𝛾 (𝑡) 𝜃 [𝑢] + ∫

1

0

𝐺0 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑𝑞𝑠.

(24)

Conversely, if 𝑢 is a solution of the integral equation (20),
using Lemmas 5 and 6, we have

𝐶
𝐷
𝛼

𝑞
𝑢 (𝑡)

=
𝐶
𝐷
𝛼

𝑞
𝑡𝜃 [𝑢]

+
𝐶
𝐷
𝛼

𝑞
𝑡(∫

1

0

[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

Γ
𝑞 (𝛼)

𝑦 (𝑠) 𝑑𝑞𝑠)

−
𝐶
𝐷
𝛼

𝑞
(∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞 (𝛼)

𝑦 (𝑠) 𝑑𝑞𝑠)

= −
𝐶
𝐷
𝛼

𝑞
𝐼
𝛼

𝑞
𝑦 (𝑡) = −𝑦 (𝑡) .

(25)

A simple computation shows 𝑢(0) = 0,𝐷𝑘
𝑞
𝑢(0) = 0, 2 ≤ 𝑘 ≤

𝑛 − 1,𝐷
𝑞
𝑢(1) = 𝜃[𝑢].

Remark 12. 𝐺
0
(𝑡, 𝑞𝑠) is Green’s function for the local BVP

𝐶
𝐷
𝛼

𝑞
𝑢 (𝑡) + 𝜆𝑔 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0,

𝑡 ∈ [0, 1] , 𝑛 − 1 < 𝛼 ≤ 𝑛, 0 < 𝑞 < 1,

𝐷
𝑘

𝑞
𝑢 (0) = 0,

𝑢 (0) = 0, 2 ≤ 𝑘 ≤ 𝑛 − 1,

𝐷
𝑞
𝑢 (1) = 0.

(26)
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Lemma 13. Function 𝐺
0
(𝑡, 𝑞𝑠) defined in (20) satisfies the

following conditions:

(H1) 𝐺
0
(𝑡, 𝑞𝑠) ≥ 0 is continuous and 𝐺

0
(𝑡, 𝑠) ≤ Φ

0
(𝑞𝑠) for

all 0 ≤ 𝑡, 𝑠 ≤ 1;
(H2) 𝐺

0
(𝑡, 𝑞𝑠) ≥ 𝑐

0
(𝑡)Φ
0
(𝑞𝑠) for all 0 ≤ 𝑡, 𝑠 ≤ 1, where

Φ
0
(𝑞𝑠) = 𝐺

0
(1, 𝑞𝑠)

=
[𝛼 − 1]𝑞 (1 − 𝑞𝑠)

(𝛼−2)
− (1 − 𝑞𝑠)

(𝛼−1)

Γ
𝑞 (𝛼)

,

𝑐
0 (𝑡) = 𝑡

𝛼−1
.

(27)

Proof. It is obvious that𝐺
0
(𝑡, 𝑞𝑠) is nonnegative and continu-

ous.
(H1) For 0 ≤ 𝑞𝑠 ≤ 𝑡 ≤ 1,

𝐺
0
(𝑡, 𝑞𝑠) =

1

Γ𝑞 (𝛼)
[[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)

(𝛼−2)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

] =
1

Γ
𝑞 (𝛼)

[[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

− 𝑡
𝛼−1
(1 − 𝑞

𝑠

𝑡
)

(𝛼−1)

]

≥
1

Γ𝑞 (𝛼)
[[𝛼 − 1]𝑞 𝑡

𝛼−1
(1 − 𝑞𝑠)

(𝛼−2)

− 𝑡
𝛼−1
(1 − 𝑞𝑠)

(𝛼−1)
]

=
𝑡
𝛼−1

Γ
𝑞 (𝛼)

[[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

− (1 − 𝑞𝑠)
(𝛼−1)

]

≥ 0,

(28)

and for 0 ≤ 𝑡 ≤ 𝑞𝑠 ≤ 1,

𝐺
0 (𝑡, 𝑞𝑠) =

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

Γ
𝑞 (𝛼)

, (29)

and it is clear that 𝐺
0
(𝑡, 𝑞𝑠) ≥ 0 and 𝐺

0
(0, 𝑞𝑠) = 0.Therefore

𝐺
0
(𝑡, 𝑞𝑠) ≥ 0.

For fixed 𝑠 ∈ [0, 1] and 𝑡 ≥ 𝑞𝑠 we have

𝑡
𝐷𝑞 𝐺0 (𝑡, 𝑞𝑠)

=
[𝛼 − 1]𝑞 (1 − 𝑞𝑠)

(𝛼−2)
− [𝛼 − 1]𝑞 (𝑡 − 𝑞𝑠)

(𝛼−2)

Γ
𝑞 (𝛼)

=
(1 − 𝑞𝑠)

(𝛼−2)
− (𝑡 − 𝑞𝑠)

(𝛼−2)

Γ
𝑞 (𝛼 − 1)

≥ 0;

(30)

that is, 𝐺
0
(𝑡, 𝑞𝑠) is an increasing function of 𝑡. Obviously,

𝐺
0
(𝑡, 𝑞𝑠), 𝑡 ≤ 𝑞𝑠, is increasing in 𝑡; therefore 𝐺

0
(𝑡, 𝑞𝑠) is an

increasing function of 𝑡 for fixed 𝑠 ∈ [0, 1].
Thus, (H1) holds.

(H2) Suppose now that 𝑡 ≥ 𝑞𝑠:

𝐺
0
(𝑡, 𝑞𝑠)

Φ0 (𝑞𝑠)
=
[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)

(𝛼−2)
− (𝑡 − 𝑞𝑠)

(𝛼−1)

[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

− (1 − 𝑞𝑠)
(𝛼−1)

≥

𝑡
𝛼−1
[[𝛼 − 1]𝑞 (1 − 𝑞𝑠)

(𝛼−2)
− (1 − 𝑞𝑠)

(𝛼−1)
]

[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

− (1 − 𝑞𝑠)
(𝛼−1)

= 𝑡
𝛼−1
.

(31)

On the other hand, if 𝑡 ≤ 𝑞𝑠, then we have

𝐺
0
(𝑡, 𝑞𝑠)

Φ
0
(𝑞𝑠)

=
[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)

(𝛼−2)

[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

− (1 − 𝑞𝑠)
(𝛼−1)

≥
[𝛼 − 1]𝑞 𝑡

𝛼−1
(1 − 𝑞𝑠)

(𝛼−2)
− 𝑡
𝛼−1
(1 − 𝑞𝑠)

(𝛼−1)

[𝛼 − 1]𝑞 (1 − 𝑞𝑠)
(𝛼−2)

− (1 − 𝑞𝑠)
(𝛼−1)

= 𝑡
𝛼−1
,

(32)

and this finished the proof of (H2).

Defining G
𝐴
(𝑞𝑠) = ∫

1

0
𝐺
0
(𝑡, 𝑞𝑠)𝑑

𝑞
𝐴(𝑡), Green’s function

for nonlocal BVP (1)-(2) is given by

𝐺 (𝑡, 𝑞𝑠) =
𝛾 (𝑡)

[1 − 𝜃 [𝛾]]
G
𝐴
(𝑞𝑠) + 𝐺

0
(𝑡, 𝑞𝑠) . (33)

Throughout the paper we assume the following:
(H3) A is a function of bounded variation, andG𝐴(𝑞𝑠) =

∫
1

0
𝐺
0
(𝑡, 𝑞𝑠)𝑑

𝑞
𝐴(𝑡) satisfies G

𝐴
(𝑞𝑠) ≥ 0 for almost every 𝑠 ∈

[0, 1]. Note thatG
𝐴
(𝑞𝑠) exists for almost every 𝑠 by (H1).

(H4)The functions 𝑔,Φ satisfy 𝑔 ≥ 0 almost everywhere,
𝑔Φ ∈ 𝐿

1
[0, 1], and

∫

𝑏

𝑎

Φ(𝑞𝑠) 𝑔 (𝑠) 𝑑𝑞𝑠 > 0. (34)

(H5) 𝑓 : [0, 1] × [0,∞) → [0,∞) satisfies Caratheodory
conditions; that is, 𝑓(⋅, 𝑢) is measurable for each fixed 𝑢 ∈
[0,∞) and 𝑓(𝑡, ⋅) is continuous for almost every 𝑡 ∈ [0, 1],
and for each 𝑟 > 0, there exists 𝜙

𝑟
∈ 𝐿
∞
[0, 1] such that 0 ≤

𝑓(𝑡, 𝑢) ≤ 𝜙
𝑟
for all 𝑢 ∈ [0, 𝑟] and almost all 𝑡 ∈ [0, 1].

(H6) One has the following: 𝛾 ∈ 𝐶[0, 1], 𝛾(𝑡) ≥ 0, 0 ≤
𝜃[𝛾] < 1.

Lemma 14. If 𝐺
0
satisfies (H1), (H2), then 𝐺 satisfies (H1),

(H2) for a function Φ, the same interval [𝑎, 𝑏], and the same
constant 𝑐, where Φ satisfies (H4) and 𝑐 = min{𝑐0(𝑡) : 𝑡 ∈
[𝑎, 𝑏]}.

Proof. We have

𝐺 (𝑡, 𝑞𝑠) =
𝛾 (𝑡)

[1 − 𝜃 [𝛾]]
G
𝐴
(𝑞𝑠) + 𝐺

0
(𝑡, 𝑞𝑠)

≤

𝛾


[1 − 𝜃 [𝛾]]
G
𝐴
(𝑞𝑠) + Φ

0
(𝑞𝑠) =: Φ (𝑞𝑠) ,

(35)
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and for 𝑡 ∈ [𝑎, 𝑏]

𝐺 (𝑡, 𝑞𝑠) ≥
𝑐
𝛾


[1 − 𝜃 [𝛾]]
G𝐴 (𝑞𝑠) + 𝑐Φ0 (𝑞𝑠) = 𝑐Φ (𝑞𝑠) . (36)

Note that 𝑔Φ ∈ 𝐿
∞ because 𝐴 has finite variation and

G𝐴(𝑞𝑠) ≤ Φ(𝑞𝑠) var(𝐴).
Thus, Green’s function 𝐺(𝑡, 𝑞𝑠) satisfies (H1), (H2) for a

functionΦ and the constant 𝑐.

3. Main Result

Set 𝐸 = 𝐶[0, 1] as a Banach space with the norm ‖𝑢‖ =

sup
𝑡∈[0,1]

|𝑢(𝑡)|. Let 𝑃 = {𝑢 ∈ 𝐸 : 𝑢 ≥ 0} denote the standard
cone of nonnegative functions. Define

𝐾 = {𝑢 ∈ 𝑃, min
𝑎≤𝑡≤𝑏

𝑢 (𝑡) ≥ 𝑐 ‖𝑢‖} , (37)

where [𝑎, 𝑏] is some subset of [0, 1].
Note that 𝛾 ∈ 𝐾 so 𝐾 ̸= {0}. For any 0 < 𝑟 < 𝑅 < +∞,

let 𝐾
𝑟
= {𝑢 ∈ 𝐾 : ‖𝑢‖ < 𝑟}, 𝜕𝐾

𝑟
= {𝑢 ∈ 𝐾 : ‖𝑢‖ = 𝑟},

𝐾𝑟 = {𝑢 ∈ 𝐾 : ‖𝑢‖ ≤ 𝑟}, 𝐾𝑅 \ 𝐾𝑟 = {𝑢 ∈ 𝐾 : 𝑟 ≤ ‖𝑢‖ ≤ 𝑅},
and 𝑉𝑟 = {𝑢 ∈ 𝐾 : min𝑡∈[𝑎,𝑏]𝑢(𝑡) < 𝑟} and 𝑉𝑟 is bounded.

Define a nonlinear operator 𝑇 : 𝑃 → 𝐾 and a linear
operator 𝐿 : 𝑃 → 𝐾 by

𝑇𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠, (38)

𝐿𝑢 (𝑡) fl ∫
1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠. (39)

Lemma 15 (see [18]). Under hypotheses (H1)–(H6) the maps
𝑇 : 𝑃 → 𝐸 defined in (38) are compact.

Theorem 16. Under hypotheses (H1)–(H6) the maps are 𝑇 :
𝑃 → 𝐾.

Proof. For 𝑢 ∈ 𝑃 and 𝑡 ∈ [0, 1] we have

𝑇𝑢 (𝑡) ≤ 𝜆∫

1

0

Φ(𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠. (40)

Hence,

‖𝑇𝑢‖ ≤ 𝜆∫

1

0

Φ(𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠. (41)

Also, for 𝑡 ∈ [𝑎, 𝑏], we have

𝑇𝑢 (𝑡) ≥ 𝑐𝜆∫

1

0

Φ(𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠 ≥ 𝑐 ‖𝑇𝑢‖ . (42)

Similar to the proofs of Lemma 15 and Theorem 16, 𝐿𝑢(𝑡) is
compact and maps 𝑃 into𝐾.

We will use the Krein-Rutman theorem. We recall that 𝜆
is an eigenvalue of 𝐿 with corresponding eigenfunction 𝜙 if
𝜙 ̸= 0 and 𝜆𝜙 = 𝐿𝜙. The reciprocals of eigenvalues are called
characteristic values of 𝐿. The radius of the spectrum of 𝐿,
denoted by 𝑟(𝐿), is given by the well-known spectral radius
formula 𝑟(𝐿) = lim

𝑛→∞
‖𝐿
𝑛
‖
1/𝑛.

Theorem 17 (see [15]). Let 𝐾 be a total cone in a real Banach
space 𝐸 and let �̂� : 𝐸 → 𝐸 be a compact linear operator with
�̂�(𝐾) ⊆ 𝐾. If 𝑟(�̂�) > 0 then there is 𝜙

1
∈ 𝐾 \ {0} such that

�̂�𝜙
1
= 𝑟(�̂�)𝜙

1
.

Thus 𝜆1 fl 𝑟(�̂�) is an eigenvalue of �̂�, the largest possible
real eigenvalue, and 𝜇1 = 1/𝜆

1
is the smallest positive

characteristic value.

Lemma 18 (see [15]). Assume that (H1)–(H3) hold and let 𝐿
be as defined in (39). Then 𝑟(𝐿) > 0.

Theorem 19 (see [15]). When (H1)–(H3) hold, 𝑟(𝐿) is an
eigenvalue of 𝐿 with eigenfunction 𝜙

1
in 𝐾.

Theorem 20 (see [15]). Let 𝜇
1
= 1/𝑟(𝐿) and 𝜙

1
(𝑡) be a

corresponding eigenfunction in𝑃 of norm 1.Then𝑚 ≤ 𝜇
1
≤ 𝑀,

where

𝑚 = ( sup
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑑𝑞𝑠)

−1

,

𝑀 = ( inf
𝑡∈[𝑎,𝑏]

∫

𝑏

𝑎

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑑𝑞𝑠)

−1

.

(43)

If 𝑔(𝑡) > 0 for 𝑡 ∈ [0, 1] and 𝐺(𝑡, 𝑞𝑠) > 0 for 𝑡, 𝑠 ∈ [0, 1], the
first inequality is strict unless 𝜙1(𝑡) is constant for 𝑡 ∈ [0, 1]. If
𝑔(𝑡)𝜙(𝑡) > 0 for 𝑡 ∈ [𝑎, 𝑏], the second inequality is strict unless
𝜙1(𝑡) is constant for 𝑡 ∈ [𝑎, 𝑏].

Proof (for the local BVP (1)-(2) if 𝑔(𝑡) ≡ 1). We now compute
the constant 𝑚 and the optimal value of𝑀(𝑎, 𝑏); that is, we
determine 𝑎, 𝑏 so that𝑀(𝑎, 𝑏) is minimal.

For 𝑞𝑠 ≤ 𝑡, we have by direct integration

∫

𝑡

0

𝐺
0 (𝑡, 𝑞𝑠) 𝑑𝑞𝑠

= ∫

𝑡

0

[

[

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

− (𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞 (𝛼)

]

]

𝑑
𝑞𝑠

=
𝑡 − 𝑡 (1 − 𝑡)

(𝛼−1)

Γ
𝑞 (𝛼)

−
𝑡
𝛼

[𝛼]𝑞 Γ𝑞 (𝛼)
.

(44)

For 𝑞𝑠 ≥ 𝑡,

∫

1

𝑡

𝐺
0
(𝑡, 𝑞𝑠) 𝑑

𝑞
𝑠 = ∫

1

𝑡

[𝛼 − 1]𝑞 𝑡 (1 − 𝑞𝑠)
(𝛼−2)

Γ𝑞 (𝛼)
𝑑
𝑞
𝑠

=
𝑡 (1 − 𝑡)

(𝛼−1)

Γ
𝑞 (𝛼)

.

(45)

Then we have

∫

1

0

𝐺0 (𝑡, 𝑞𝑠) 𝑑𝑞𝑠 =
𝑡

Γ
𝑞 (𝛼)

−
𝑡
𝛼

[𝛼]𝑞 Γ𝑞 (𝛼)
. (46)
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And the maximum of this expression occurs when 𝑡 = 1;
hence

sup
𝑡∈[0,1]

∫

1

0

𝐺0 (𝑡, 𝑞𝑠) 𝑑𝑞𝑠 =
1

Γ
𝑞 (𝛼)

−
1

[𝛼]𝑞 Γ𝑞 (𝛼)

=
[𝛼]𝑞 − 1

[𝛼]𝑞 Γ𝑞 (𝛼)
.

(47)

Then𝑚 = [𝛼]
𝑞
Γ
𝑞
(𝛼)/([𝛼]

𝑞
− 1).

For 𝑎 < 𝑏, we have by direct integration

∫

𝑡

𝑎

𝐺
0
(𝑡, 𝑞𝑠) 𝑑

𝑞
𝑠 = −

𝑡 (1 − 𝑡)
(𝛼−1)

Γ
𝑞 (𝛼)

+
𝑡 (1 − 𝑎)

(𝛼−1)

Γ
𝑞 (𝛼)

−
(𝑡 − 𝑎)

(𝛼)

[𝛼]𝑞 Γ𝑞 (𝛼)
,

∫

𝑏

𝑡

𝐺
0 (𝑡, 𝑠) 𝑑𝑠 = −

𝑡 (1 − 𝑏)
(𝛼−1)

Γ𝑞 (𝛼)
+
𝑡 (1 − 𝑡)

(𝛼−1)

Γ𝑞 (𝛼)
.

(48)

Then

∫

𝑏

𝑎

𝐺
0
(𝑡, 𝑞𝑠) 𝑑

𝑞
𝑠 =
𝑡 (1 − 𝑎)

(𝛼−1)

Γ𝑞 (𝛼)
−
(𝑡 − 𝑎)

(𝛼)

[𝛼]𝑞 Γ𝑞 (𝛼)

−
𝑡 (1 − 𝑏)

(𝛼−1)

Γ𝑞 (𝛼)

=
𝑡 [(1 − 𝑎)

(𝛼−1)
− (1 − 𝑏)

(𝛼−1)
]

Γ
𝑞 (𝛼)

−
(𝑡 − 𝑎)

(𝛼)

[𝛼]𝑞 Γ𝑞 (𝛼)
= 𝑅 (𝑡, 𝑎, 𝑏) ,

𝑡
𝐷
𝑞
𝑅 (𝑡, 𝑎, 𝑏) =

[(1 − 𝑎)
(𝛼−1)

− (1 − 𝑏)
(𝛼−1)

]

Γ𝑞 (𝛼)

−
(𝑡 − 𝑎)

(𝛼−1)

Γ
𝑞 (𝛼)

.

(49)

The sign of derivative
𝑡𝐷𝑞𝑅 shows that this is an increasing

function of 𝑡 so the minimum occurs at 𝑡 = 𝑎. Let

𝑅 (𝑎, 𝑏) =
𝑎

Γ
𝑞 (𝛼)

[(1 − 𝑎)
(𝛼−1)

− (1 − 𝑏)
(𝛼−1)

] . (50)

The minimal value of 𝑀(𝑎, 𝑏) corresponds to the maximal
value of 𝑅(𝑎, 𝑏). Consider

𝑏
𝐷
𝑞
𝑅 (𝑎, 𝑏) =

𝑎 [𝛼 − 1]𝑞 (1 − 𝑞𝑏)
(𝛼−2)

Γ𝑞 (𝛼)
> 0. (51)

The quantity 𝑅(𝑎, 𝑏) is an increasing function of 𝑏 so its
maximum occurs when 𝑏 = 1. Let

𝑅 (𝑎) =
𝑎 (1 − 𝑎)

(𝛼−1)

Γ
𝑞 (𝛼)

. (52)

Then the maximum of 𝑅(𝑎) occurs when 𝑎 = 1/(1+ [𝛼−1]
𝑞
).

Consider

min
𝑡∈[𝑎,𝑏]

∫

𝑏

𝑎

𝐺
0
(𝑡, 𝑞𝑠) 𝑑

𝑞
𝑠 = 𝑅(

1

1 + [𝛼 − 1]𝑞

, 1) . (53)

Hence the minimal value of𝑀(𝑎, 𝑏) is

𝑀(
1

1 + [𝛼 − 1]𝑞

, 1) = (𝑅(
1

1 + [𝛼 − 1]𝑞

, 1))

−1

. (54)

4. The Existence of at Least One
Positive Solution

For convenience, we introduce the following notations:

𝑓 (𝑢) fl sup
𝑡∈[0,1]

𝑓 (𝑡, 𝑢) ,

𝑓 (𝑢) fl inf
𝑡∈[0,1]

𝑓 (𝑡, 𝑢) ;

𝑓
0 fl lim sup
𝑢→0

+

𝑓 (𝑢)

𝑢
,

𝑓
0
fl lim inf
𝑢→0

+

𝑓 (𝑢)

𝑢
;

𝑓
∞ fl lim sup

𝑢→∞

𝑓 (𝑢)

𝑢
,

𝑓
∞

fl lim inf
𝑢→∞

𝑓 (𝑢)

𝑢
,

𝑓
0,𝑟 fl sup
{0≤𝑡≤1, 0≤𝑢≤𝑟}

𝑓 (𝑡, 𝑢)

𝑟
,

𝑓
𝑟,𝑟/𝑐

fl inf
{𝑎≤𝑡≤𝑏, 𝑟≤𝑢≤𝑟/𝑐}

𝑓 (𝑡, 𝑢)

𝑟
.

(55)

Under hypotheses (H1)–(H4) let �̃� be defined by

�̃�𝑢 (𝑡) = ∫

𝑏

𝑎

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠. (56)

Then �̃� is a compact linear operator and �̃�(𝑃) ⊆ 𝐾.
Hence 𝑟(�̃�) is an eigenvalue of �̃�with an eigenfunction 𝜙

1

in𝐾. Let 𝜇
1
fl 1/𝑟(�̃�).Note that 𝜇

1
≥ 𝜇
1
; hence the condition

in the following theorem ismore stringent comparedwith the
case if 𝑟(𝐿) could be used.

Theorem 21. Assume that

(A1) 0 ≤ 𝜆𝑓0 < 𝜇1,
(A2) 𝜇

1
< 𝜆𝑓
∞
≤ ∞.

Then (1)-(2) had at least one positive solution.
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Proof. Let 𝜀 > 0 be such that 𝑓0 ≤ (1/𝜆)(𝜇
1
− 𝜀).Then there

exists 𝜌
0
> 0 such that

𝑓 (𝑡, 𝑢) ≤
1

𝜆
(𝜇1 − 𝜀) 𝑢,

∀𝑢 ∈ [0, 𝜌
0
] and almost all 𝑡 ∈ [0, 1] .

(57)

Let 𝜌 ∈ (0, 𝜌0].We prove that

𝑇𝑢 ̸= 𝛽𝑢 for 𝑢 ∈ 𝜕𝐾
𝜌
, 𝛽 ≥ 1, (58)

which implies the result. In fact, if (58) does not hold, then
there exist 𝑢 ∈ 𝜕𝐾

𝜌
and 𝛽 ≥ 1 such that 𝑇𝑢 = 𝛽𝑢.

This implies

𝛽𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠

≤ (𝜇
1
− 𝜀) ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠

= (𝜇
1
− 𝜀) 𝐿𝑢 (𝑡) .

(59)

Thus, we have shown 𝑢(𝑡) ≤ (𝜇
1 − 𝜀)𝐿𝑢(𝑡).This gives

𝑢 (𝑡) ≤ (𝜇1 − 𝜀) 𝐿 [(𝜇1 − 𝜀) 𝐿𝑢 (𝑡)]

= (𝜇
1
− 𝜀)
2
𝐿
2
𝑢 (𝑡) .

(60)

And by iterating

𝑢 (𝑡) ≤ (𝜇1 − 𝜀)
𝑛
𝐿
𝑛
𝑢 (𝑡) for 𝑛 ∈ 𝑁. (61)

Therefore

‖𝑢‖ ≤ (𝜇1 − 𝜀)
𝑛 𝐿
𝑛 ‖𝑢‖ ,

1 ≤ (𝜇
1 − 𝜀)
𝑛 𝐿
𝑛 ,

(62)

and we have

1 ≤ (𝜇
1 − 𝜀) lim

𝑛→+∞

𝐿
𝑛
1/𝑛
= (𝜇1 − 𝜀)

1

𝜇
1

< 1, (63)

a contradiction. It follows that

𝑖
𝑘 (𝑇,𝐾𝜌) = 1, for each 𝜌 ∈ (0, 𝜌0] . (64)

Let 𝜌
1
> 0, 𝜌

1
> 𝜌 be chosen so that 𝑓(𝑡, 𝑢) > (𝜇

1
/𝜆)𝑢 for all

𝑢 ≥ 𝑐𝜌
1
, 𝑐 as in (H2), and almost all 𝑡 ∈ [0, 1].

We claim that 𝑢 ̸= 𝑇𝑢 + 𝛽𝜙
1 for all 𝛽 > 0 and 𝑢 ∈ 𝜕𝐾𝜌∗

when 𝜌∗ > 𝜌
1
. Note that 𝑢 ∈ 𝐾 with ‖𝑢‖ = 𝜌∗ ≥ 𝜌

1
.

We have 𝑢(𝑡) ≥ 𝑐𝜌
1
for all 𝑡 ∈ [𝑎, 𝑏].

Now, if our claim is false, then we have

𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠 + 𝛽𝜙1 (𝑡) . (65)

Therefore,

𝑢 (𝑡) ≥ 𝜇1 ∫

𝑏

𝑎

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠 + 𝛽𝜙1 (𝑡)

= 𝜇
1
�̃�𝑢 (𝑡) + 𝛽𝜙1 (𝑡) .

(66)

From (66) we firstly deduce that 𝑢(𝑡) ≥ 𝛽𝜙
1
(𝑡) on [0, 1].

Then we have

𝜇1�̃�𝑢 (𝑡) ≥ 𝜇1�̃� (𝛽𝜙1 (𝑡)) = 𝛽𝜙1 (𝑡) . (67)

Inserting this into (66) we obtain 𝑢(𝑡) ≥ 2𝛽𝜙
1
(𝑡) for 𝑡 ∈ [0, 1].

Repeating this process gives

𝑢 (𝑡) ≥ 𝑛𝛽𝜙1 (𝑡) for 𝑡 ∈ [0, 1] , 𝑛 ∈ 𝑁. (68)

Since 𝜙
1
(𝑡) is strictly positive on [0, 1] this is a contradiction;

then

𝑖
𝐾
(𝑇,𝐾
𝜌
∗) = 0, for 𝑢 ∈ 𝜕𝐾

𝜌
∗ . (69)

By (64) and (69), one has

𝑖
𝐾
(𝑇,𝐾
𝜌
∗ \ 𝐾
𝜌
) = 𝑖
𝐾
(𝑇,𝐾
𝜌
∗) − 𝑖
𝐾
(𝑇,𝐾
𝜌
) = −1. (70)

Therefore, 𝑇 has at least one fixed point 𝑢
0
∈ 𝐾
𝜌
∗ \ 𝐾
𝜌
, and

𝑢
0
is a positive solution of BVP (1)-(2).

Theorem 22. Assume that

(A3) 𝜇1 < 𝜆𝑓0 ≤ ∞,
(A4) 0 ≤ 𝜆𝑓∞ < 𝜇1.

Then (1)-(2) had at least one positive solution.

Proof. Let 𝜀 > 0 satisfy 𝑓
0
> (1/𝜆)(𝜇

1
+ 𝜀).Then there exists

𝑅1 > 0 such that

𝑓 (𝑡, 𝑢) ≥
1

𝜆
(𝜇
1
+ 𝜀) 𝑢, ∀𝑡 ∈ [0, 1] , 𝑢 ∈ [0, 𝑅1] . (71)

For any 𝑢 ∈ 𝜕𝐾
𝑅
1

we have by (71) that

𝑇𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠

≥ (𝜇1 + 𝜀) ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠

≥ 𝜇
1
𝐿𝑢 (𝑡) , ∀𝑡 ∈ [0, 1] .

(72)

Let �̃�
1 be the positive eigenfunction of 𝐿 corresponding to 𝜇1;

that is, �̃�1 = 𝜇1𝐿�̃�1. Wemay suppose that𝑇 has no fixed point
on 𝜕𝐾𝑅

1

; otherwise, the proof is finished. In the following we
will show that

𝑢 − 𝑇𝑢 ̸= 𝛽�̃�1, ∀𝑢 ∈ 𝜕𝐾𝑅
1

, 𝛽 ≥ 0. (73)

If (73) is not true, then there is �̃�
0
∈ 𝜕𝐾
𝑅
1

and 𝛽
0
≥ 0 such that

�̃�
0
−𝑇�̃�
0
= 𝛽
0
�̃�
1
. It is clear that 𝛽

0
> 0 and �̃�

0
= 𝑇�̃�
0
+𝛽
0
�̃�
1
≥

𝛽
0
�̃�
1
.
Set

𝛽
∗
= sup {𝛽 : �̃�0 ≥ 𝛽�̃�1} . (74)

Obviously, 𝛽∗ ≥ 𝛽
0
> 0. It follows from 𝐿(𝑃) ⊂ 𝑃 that

𝜇
1
𝐿�̃�
0
≥ 𝜇
1
𝐿𝛽
∗
�̃�
1
= 𝛽
∗
𝜇
1
𝐿�̃�
1
= 𝛽
∗
�̃�
1
, (75)
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and using this and (72), we have

�̃�0 = 𝑇�̃�0 + 𝛽0�̃�1 ≥ 𝜇1𝐿�̃�0 + 𝛽0�̃�1 ≥ 𝛽
∗
�̃�1 + 𝛽0�̃�1, (76)

which contradicts (74). Thus, (73) holds.
By Lemma 9, we have

𝑖
𝐾
(𝑇,𝐾
𝑅
1

) = 0. (77)

On the other hand, let 𝜀 > 0 satisfy 𝑓∞ < (1/𝜆)(𝜇
1
− 𝜀). Then

there exists 𝑅
2
> 𝑅
1
such that

𝑓 (𝑡, 𝑢) ≤
1

𝜆
(𝜇1 − 𝜀) 𝑢, ∀𝑡 ∈ [0, 1] , 𝑢 ≥ 𝑅2. (78)

By (H5) there exists an 𝐿∞ function 𝜑
1
such that

𝑓 (𝑡, 𝑢) ≤
1

𝜆
𝜑
1 (𝑡) , ∀𝑢 ∈ [0, 𝑅2] , 𝑡 ∈ [0, 1] . (79)

Hence, we have

𝑓 (𝑡, 𝑢) ≤
1

𝜆
[(𝜇1 − 𝜀) 𝑢 + 𝜑1 (𝑡)] ,

∀𝑢 ∈ 𝑅
+
, 𝑡 ∈ [0, 1] .

(80)

Since 1/𝜇
1
is the radius of the spectrum of 𝐿, (𝐼/(𝜇

1
−𝜀)−𝐿)

−1

exists.
Let

𝐶 = ∫

1

0

𝜑
1 (𝑠) Φ (𝑠) 𝑔 (𝑠) 𝑑𝑞𝑠,

𝑅
0
= (

𝐼

(𝜇
1
− 𝜀)

− 𝐿)

−1

(
𝑐

(𝜇
1
− 𝜀)

) .

(81)

We prove that, for each 𝑅 > 𝑅0,

𝑇𝑢 ̸= 𝛽𝑢, ∀𝑢 ∈ 𝜕𝐾
𝑅
, 𝛽 ≥ 1. (82)

In fact, if not, there exist 𝑢 ∈ 𝜕𝐾
𝑅
and 𝛽 ≥ 1 such that 𝑇𝑢 =

𝛽𝑢.
This together with (80) implies

𝑢 (𝑡) ≤ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) ((𝜇1 − 𝜀) 𝑢 (𝑠) + 𝜑1 (𝑠)) 𝑑𝑞𝑠

= (𝜇
1
− 𝜀) ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑢 (𝑠) 𝑑𝑞𝑠

+ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝜑1 (𝑠) 𝑑𝑞𝑠

≤ (𝜇1 − 𝜀) 𝐿𝑢 (𝑡) + 𝐶.

(83)

This implies

(
𝐼

𝜇
1
− 𝜀
− 𝐿)𝑢 (𝑡) ≤

𝐶

𝜇
1
− 𝜀
,

𝑢 (𝑡) ≤ (
𝐼

𝜇
1
− 𝜀
− 𝐿)

−1

(
𝐶

𝜇
1
− 𝜀
)

= 𝑅
0
.

(84)

Therefore, we have ‖𝑢‖ ≤ 𝑅
0
< 𝑅, a contradiction. Taking

𝑅 > 𝑅
2
, it follows from (74) and properties of index that

𝑖
𝐾
(𝑇,𝐾
𝑅
) = 1, ∀𝑅 > 𝑅

0
. (85)

Now (77) and (85) combined imply

𝑖
𝐾
(𝑇,𝐾
𝑅
\ 𝐾
𝑅
1

) = 𝑖
𝐾
(𝑇,𝐾
𝑅
) − 𝑖
𝐾
(𝑇,𝐾
𝑅
1

) = 1. (86)

Therefore, 𝑇 has at least one fixed point 𝑢
0
∈ 𝐾
𝑅
/𝐾
𝑅
1

, and 𝑢
0

is a positive solution of BVP (1)-(2).

5. The Existence of Two Positive Solutions

Theorem 23. Suppose (A2), (A3), and

(A5) 𝜆𝑓0,𝜌


≤ 𝑚 for some 𝜌 > 0.

Then (1)-(2) had at least two positive solutions.

Proof. By (A5), we have

𝑇𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝜌

𝑚𝑑𝑞𝑠,

(87)

so that ‖𝑇𝑢‖ ≤ 𝜌 = ‖𝑢‖, for all 𝑢 ∈ 𝜕𝑉
𝜌
 . Now Lemma 8 yields

𝑖
𝑘
(𝑇, 𝑉
𝜌
) = 1. (88)

On the other hand, in view of (A2), we may take 𝜌∗ > 𝜌
so that (69) holds (see the proof of Theorem 21). From (A3),
we may take 𝑅

1
∈ (0, 𝜌


) so that (77) holds (see the proof of

Theorem 22).
Combining (88), (69), and (77), we arrive at

𝑖𝑘 (𝑇,𝐾𝜌∗ \ 𝑉𝜌) = 0 − 1 = −1,

𝑖
𝑘
(𝑇, 𝑉
𝜌
 \ 𝐾
𝑅
1

) = 1 − 0 = 1.

(89)

Consequently, 𝑇 has at least two fixed points, with one on
𝐾
𝜌
∗ \ 𝑉
𝜌
 and the other on𝑉

𝜌
 \𝐾
𝑅
1

.Therefore, (1)-(2) had at
least two positive solutions.

Theorem 24. Suppose (A1), (A4), and

(A6) 𝜆𝑓
𝜌

,𝜌

/𝑐 ≥ 𝑀 for some 𝜌 > 0.

Then (1)-(2) had at least two positive solutions.

Proof. By (A6), we have

𝑇𝑢 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠

≥ 𝜆∫

𝑏

𝑎

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑞𝑠

≥ ∫

𝑏

𝑎

𝐺 (𝑡, 𝑞𝑠) 𝑔 (𝑠)𝑀𝜌

𝑑𝑞𝑠,

(90)
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so that ‖𝑇𝑢‖ ≥ 𝜌 = ‖𝑢‖, for all 𝑢 ∈ 𝜕𝑉
𝜌
 , and by Lemma 8

this yields

𝑖𝑘 (𝑇, 𝑉𝜌) = 0. (91)

On the other hand, in view of (A1), we may take 𝜌 ∈ (0, 𝜌)
so that (64) holds (see the proof of Theorem 21). In addition,
from (A4), we may take 𝑅 > 𝜌 so that (85) holds (see the
proof of Theorem 22).

Combining (91), (64), and (85), we arrive at

𝑖
𝑘
(𝑇,𝐾
𝑅
\ 𝑉
𝜌
) = 1 − 0 = 1,

𝑖
𝑘
(𝑇, 𝑉
𝜌
 \ 𝐾
𝜌
) = 0 − 1 = −1.

(92)

Hence, 𝑇 has at least two fixed points, with one on 𝑉
𝜌
 \ 𝐾
𝜌

and the other on 𝐾
𝑅
\ 𝑉
𝜌
 .Therefore, (1)-(2) had at least two

positive solutions.

We illustrate the applicability of these results with some
examples.

Example 25. Consider the problem

𝐷0.5
(2.5)
𝑢 (𝑡) + 𝜆 (5𝑡 + 3) (

7𝑢
2
+ 𝑢

𝑢 + 1
) (2 + cos 𝑢) = 0,

𝑡 ∈ (0, 1) ,

𝐷
2

0.5
𝑢 (0) = 0,

𝑢 (0) = 0,

𝐷
0.5
𝑢 (1) = 0.

(93)

Herewe have𝑔(𝑡) = 5𝑡+3,𝑓(𝑢) = (2+cos 𝑢)((7𝑢2+𝑢)/(𝑢+1)),
and 2 < 𝛼 ≤ 3.

It is readily shown that 𝑓0 = 𝑓
0
= 3, 𝑓∞ = 21, 𝑓

∞
= 7.

Also, 3𝑢 ≤ 𝑓(𝑢) ≤ 21𝑢 for 𝑢 ≥ 0. By calculation, we
find𝑚 = 0.19722, and the smallest𝑀 calculated is𝑀(𝑎, 𝑏) ≈
𝑀(0.484405, 1) ≈ 0.74665. We find 𝜇

1
≈ 0.30366. Hence,

by Theorem 21, there is at least one positive solution if 3𝜆 <
𝜇
1
and 7𝜆 > 𝜇

1
; that is, there is a positive solution if 𝜆 ∈

(0.47047, 1.09773).

ByTheorem 22, there does not exist a positive solution if
either 3𝜆 > 𝜇

1
or 21𝜆 < 𝜇

1
; that is, if 𝜆 < 1.09773 or 𝜆 >

0.15682 no positive solution exists.
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