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The concept of “white noise,” initially established in finite-dimensional spaces, is transferred to infinite-dimensional case.The goal
of this transition is to develop the theory of stochastic Sobolev type equations and to elaborate applications of practical interest. To
reach this goal the Nelson-Gliklikh derivative is introduced and the spaces of “noises” are developed. The Sobolev type equations
with relatively sectorial operators are considered in the spaces of differentiable “noises.” The existence and uniqueness of classical
solutions are proved. The stochastic Dzektser equation in a bounded domain with homogeneous boundary condition and the
weakened Showalter-Sidorov initial condition is considered as an application.

1. Introduction

Let 𝑈 and 𝐹 be Banach spaces, the operator 𝐿 ∈ L(𝑈; 𝐹)

(linear and continuous), and the operator 𝑀 ∈ cl(𝑈; 𝐹)
(linear, closed, and densely defined). Consider the equation

𝐿𝑢̇ = 𝑀𝑢, ker 𝐿 ̸= {0} . (1)

Equations of the form (1) were firstly studied in the
works of A. Poincare. Then they appeared in the works
of S. V. Oseen, J. V. Boussinesq, S. G. Rossby, and other
researchers that were dedicated to the investigation of some
hydrodynamics problems.Their systematical study started in
the middle of the XX century with the works of S. L. Sobolev.
The first monograph [1] devoted to the study of equations of
the form (1) appeared in 1999.Nowadays the number of works
devoted to such equations is increasing extensively [1–3].
Sometimes such equations are called “equations that are not
of Cauchy-Kovalevskaya type,” “pseudoparabolic equations,”
“degenerate equations,” or “equations unsolved with respect
to the higher derivative.” We call equations of the form (1)
the Sobolev type equations. This term was firstly proposed
in the works of Carroll and Showalter [4]. The Sobolev type
equations constitute the vast area in nonclassical equations

of mathematical physics [5]. The theory of degenerate semi-
groups of operators is a suitable mathematical tool for the
study of such problems [2].

The right part of (1) can be subjected to random pertur-
bations, such as white noise. Abstract stochastic equations
are of great interest nowadays due to the large amount of
applications. Linear stochastic differential equation in the
simplest case can be represented in the form

𝑑𝜂 = (𝑆𝜂 + 𝜓) 𝑑𝑡 + 𝐴𝑑𝑤, (2)

where 𝑆 and 𝐴 are some linear operators; 𝜓 = 𝜓(𝑡) is a
deterministic external influence and 𝑤 = 𝑤(𝑡) is a stochastic
external influence; 𝜂 = 𝜂(𝑡) is unknown random process.
Firstly 𝑑𝑤 was understood in the sense of differential of the
Wiener process 𝑤 = 𝑊(𝑡) and was traditionally treated as
white noise. K. Ito was the first to study ordinary differential
equations of the form (2); then R. L. Stratonovich and
A. V. Skorokhod developed research. The Ito-Stratonovich-
Skorokhod approach in the finite-dimensional case remains
popular to this day [6, 7]. Moreover, it was successfully
distributed to infinite-dimensional situation [8, 9], and even
it was applied to studies of the Sobolev type equations [10,
11]. Another approach was presented in [12], where (2) was
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considered in the Schwartz spaces and the distributional
derivative of the Wiener process makes sense.

A new approach to studying (2), where the noise is
defined by the Nelson-Gliklikh derivative of the Wiener
process, appeared recently and is actively developing [13,
14]. At first white noise was used in the theory of opti-
mal measurements [15], where a special noises space was
constructed [16]. In [17] the concept of white noise was
also extended to the infinite-dimensional space C

𝐾
L
2
of K-

random processes with a.s. continuous trajectories and the
space C𝑙

𝐾
L
2
of K-random processes, whose trajectories are

a.s. continuously differentiable in the Nelson-Gliklikh sense
up to order 𝑙 ∈ N. The solvability of Showalter-Sidorov
problem for linear stochastic Sobolev type equations with
relatively bounded operatorswas studied in [17].Our purpose
is to study the solvability of weakened (in sense of S. G. Krein)
Showalter-Sidorov problem for linear stochastic Sobolev type
equation with relatively sectorial operator. The purpose of
such extention is the development of the theory of stochastic
Sobolev type equations and application of this theory to
nonclassical models of mathematical physics of practical
value.

The paper is organized as follows. In the second section
we introduce the definition of a strongly relatively 𝑝-sectorial
operator and construct semigroups of the resolving operators.
In the third section the Nelson-Gliklikh derivative of K-
random process with values in real separable Hilbert spaces
is considered. In particular the K-Wiener process is studied.
Then the space of such processes, containing the K-Wiener
process and its Nelson-Gliklikh derivative (i.e., white noise),
is constructed. In the fourth section the theory of stochastic
Sobolev type equations with relatively𝑝-sectorial operators is
developed; namely, the stochastic Sobolev type equation

𝐿
∘

𝜂= 𝑀𝜂 + 𝑁𝑤 (3)

is considered. Here 𝜂 = 𝜂(𝑡) is the unknown random process,
∘

𝜂 is its Nelson-Gliklikh derivative, 𝑤 = 𝑤(𝑡) is a random
process, responsible for external influence; the operators
𝐿,𝑀,𝑁 ∈ L(𝑈; 𝐹); moreover the operator 𝑀 is (𝐿, 𝑝)-
sectorial, 𝑝 ∈ {0} ∪N. Add to (3) with a weakened Showalter-
Sidorov condition

lim
𝑡→0+

[𝑅
𝐿

𝛼
(𝑀)]

𝑝+1

(𝜂 (𝑡) − 𝜉
0
) = 0, (4)

where 𝑅𝐿
𝛼
(𝑀) = (𝛼𝐿 −𝑀)

−1
𝐿, 𝛼 ∈ 𝜌

𝐿
(𝑀). Condition (4) is a

natural generalization of condition

𝐿 (𝑢 (0) − 𝑢
0
) = 0 (5)

which is in its turn the generalization of the Cauchy condition

𝑢 (0) = 𝑢
0
. (6)

Note that condition (4) is more natural for the Leontieff
type system and for the Sobolev type equations [5] than
the traditional Cauchy condition (6). Problem (5) for the
deterministic Sobolev type equation was firstly studied in [1].
This investigation formed the basis of the study of problem

(5) for linear stochastic Sobolev type equation (3) [11]. The
existence and the uniqueness of classical solution for problem
(3), (4) are proved in the fourth section of our paper. In the
fifth section we apply the abstract scheme to the investigation
of the Dzektser model [18], describing free surface evolution
of filtered liquid.

2. Holomorphic Degenerate
Semigroups of Operators

Let 𝑈 and 𝐹 be Banach spaces, and let the operators 𝐿 ∈

L(𝑈; 𝐹), 𝑀 ∈ cl(𝑈; 𝐹). Consider the 𝐿-resolvent set of
𝑀, 𝜌𝐿(𝑀) = {𝜇 ∈ C : (𝜇𝐿−𝑀)

−1
∈ L(𝐹; 𝑈)}, theL-spectrum

𝜎
𝐿
(𝑀) = C \ 𝜌

𝐿
(𝑀) of the operator𝑀, and the right and the

left L-resolvents of the operator 𝑀, 𝑅𝐿
𝜇
(𝑀) = (𝜇𝐿 − 𝑀)

−1
𝐿,

𝐿
𝐿

𝜇
(𝑀) = 𝐿(𝜇𝐿 − 𝑀)

−1, respectively. Let 𝜇
𝑘
∈ 𝜌

𝐿
(𝑀), 𝑘 =

0, 1, . . . , 𝑝.The operator-functions

𝑅
𝐿

(𝜇,𝑝)
=

𝑝

∏

𝑘=0

𝑅
𝐿

𝜇𝑘
(𝑀) ,

𝐿
𝐿

(𝜇,𝑝)
(𝑀) =

𝑝

∏

𝑘=0

𝐿
𝐿

𝜇𝑘
(𝑀)

(7)

are called the right and the left (𝐿, 𝑝)-resolvents of the
operator𝑀.

Definition 1. Operator𝑀 is said to be p-sectorial, 𝑝 ∈ {0} ∪N
with respect to the operator 𝐿 (or shortly (𝐿, 𝑝)-sectorial), if

(i) ∃𝑎 ∈ R, 𝜃 ∈ (𝜋/2, 𝜋) such that the sector

𝑆
𝐿

𝑎,𝜃
= {𝜇 ∈ C :

󵄨󵄨󵄨󵄨arg (𝜇 − 𝑎)
󵄨󵄨󵄨󵄨 < 𝜃, 𝜇 ̸= 𝑎} ⊂ 𝜌

𝐿
(𝑀) ; (8)

(ii) ∃𝐾 > 0 such that

max {󵄩󵄩󵄩󵄩󵄩𝑅
𝐿

(𝜇,𝑝)
(𝑀)

󵄩󵄩󵄩󵄩󵄩L(𝑈)
,
󵄩󵄩󵄩󵄩󵄩
𝐿
𝐿

(𝜇,𝑝)
(𝑀)

󵄩󵄩󵄩󵄩󵄩L(𝐹)
}

≤
𝐾

∏
𝑝

𝑞=0

󵄨󵄨󵄨󵄨󵄨
𝜇
𝑞
− 𝑎

󵄨󵄨󵄨󵄨󵄨

,

(9)

for all 𝜇
𝑞
∈ 𝑆

𝐿

𝑎,𝜃
, 𝑞 = 0, 1, . . . , 𝑝.

Remark 2. Without loss of generality we can put 𝑎 = 0 in
Definition 1. Indeed, if we find a resolving semigroup of (1)
{V𝑡 | 𝑡 ∈ R

+
} for 𝑎 = 0, then the semigroup {𝑒

𝑎𝑡V𝑡 | 𝑡 ∈ R
+
}

will be resolving when 𝑎 ̸= 0.

Let 𝛼 ∈ 𝜌
𝐿
(𝑀). Consider two equivalent forms of the

linear homogeneous Sobolev type equation (1)

𝑅
𝐿

𝛼
(𝑀) 𝑢̇ = (𝛼𝐿 −𝑀)

−1
𝑀𝑢, (10)

𝐿
𝐿

𝛼
(𝑀) ̇𝑓 = 𝑀 (𝛼𝐿 −𝑀)

−1
𝑓 (11)

as concrete interpretations of the equation

𝐴V̇ = 𝐵V, (12)
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defined on a Banach space 𝑉, where the operators 𝐴, 𝐵 ∈

L(𝑉). Operator (𝛼𝐿−𝑀)
−1
𝑀 = −I+𝛼(𝛼𝐿−𝑀)

−1
𝐿 is linear

bounded on a dense set in𝑈 and it can be uniquely continued
to a bounded operator −I + 𝛼(𝛼𝐿 −𝑀)

−1
𝐿 defined on 𝑈. For

(10) the space 𝑉 = 𝑈 and for (11) 𝑉 = 𝐹.

Definition 3. The vector function V ∈ 𝐶
∞
(R
+
; 𝑉) satisfying

(12) on R
+
(≡ (0, +∞)) is called a solution of (12).

Definition 4. The mapping V∙
∈ 𝐶

∞
(R
+
;L(𝑉)) is called a

semigroup of the resolving operators (a resolving semigroup) of
(12), if

(i) V𝑠V𝑡V = V𝑠+𝑡V for all 𝑠, 𝑡 > 0 and any V ∈ 𝑉;
(ii) V(𝑡) = V𝑡V is a solution of (12) for any V from a dense

set in 𝑉.

The semigroup is called uniformly bounded, if

∃𝐶 > 0

󵄩󵄩󵄩󵄩󵄩
V
𝑡󵄩󵄩󵄩󵄩󵄩L(𝑉)

≤ 𝐶 ∀𝑡 ∈ R
+
.

(13)

The semigroup is called analytic, if it can be extended to some
sector containing the rayR

+
with fulfillment of properties (i),

(ii) in Definition 4.

Theorem 5 (see [2, p. 60]). Let the operator 𝑀 be (𝐿, 𝑝)-
sectorial, 𝑝 ∈ {0} ∪ N. Then there exists a uniformly bounded
and analytic resolving semigroup of (10) and (11) and it is
represented by

U
𝑡
=

1

2𝜋𝑖
∫
Γ

𝑅
𝐿

𝜇
(𝑀) 𝑒

𝜇𝑡
𝑑𝜇,

F
𝑡
=

1

2𝜋𝑖
∫
Γ

𝐿
𝐿

𝜇
(𝑀) 𝑒

𝜇𝑡
𝑑𝜇,

(14)

where 𝑡 ∈ R
+
and contour Γ ⊂ 𝜌

𝐿
(𝑀) is such that | arg 𝜇| → 𝜃

for 𝜇 → ∞, 𝜇 ∈ Γ.

For example, contour Γ = {𝜇 ∈ C : | arg𝜇| = 𝜃}, where
𝜃 ∈ (𝜋/2, 𝜋) is taken from Definition 1.

Let𝑈1 (𝐹1) be the closure of im𝑅
𝐿

(𝜇,𝑝)
(𝑀) (im 𝐿

𝐿

(𝜇,𝑝)
(𝑀))

in the norm of the space 𝑈 (𝐹). The set

kerV∙
= {V ∈ 𝑉 : V

tV = 0 ∃𝑡 ∈ R
+
} (15)

is called a kernel [2, p. 61] of the semigropV∙ and the set

imV
∙
= {V ∈ 𝑉 : lim

𝑡→0+

V
tV = V} (16)

is called an image [2, p. 61] of the semigropV∙.

Theorem 6 (see [2, p. 62]). Let the operator 𝑀 be (𝐿, 𝑝)-
sectorial. Then imU∙

= 𝑈
1, imF∙

= 𝐹
1
.

Further we assume that the operator𝑀 is (𝐿, 𝑝)-sectorial.
Set 𝑈0 = ker U∙, 𝐹0 = ker F∙. By 𝐿

0
(𝑀

0
) denote the

restriction of the operator 𝐿 (𝑀) on 𝑈
0
(𝑈
0
∩ dom𝑀).

Theorem 7 (see [2, pp. 63, 64]). Let the operator𝑀 be (𝐿, 𝑝)-
sectorial. Then

(i) the operator 𝐿
0
∈ L(𝑈

0
; 𝐹
0
), and the operator 𝑀

0
:

𝑈
0
∩ dom𝑀 → 𝐹

0;
(ii) there exists the operator𝑀−1

0
∈ L(𝐹

0
; 𝑈
0
);

(iii) the operator 𝐻 = 𝑀
−1

0
𝐿
0
∈ L(𝑈

0
) is nilpotent with

degree less or equal to 𝑝.

By 𝐿
1
(𝑀

1
) denote the restriction of the operator 𝐿 (𝑀)

on 𝑈
1
(𝑈
1
∩ dom𝑀).

Consider the following conditions:

𝑈
0
⊕ 𝑈

1
= 𝑈,

𝐹
0
⊕ 𝐹

1
= 𝐹,

(A1)

and there exists the operator

𝐿
−1

1
∈ L (𝐹

1
; 𝑈
1
) . (A2)

Remark 8. Condition (A1) holds, for example, in the case
where𝑀 is strongly (𝐿, 𝑝)-sectorial on the right (left) orwhen
the space𝑈 (𝐹) is reflexive [2, page 69]. Condition (A2) holds
in the case when the operator 𝑀 is strongly (𝐿, 𝑝)-sectorial
or when it is (𝐿, 𝑝)-sectorial, condition (A1) is fulfilled and
𝑈
1
= im 𝐿

1.

Condition (A1) is equivalent to the existence of the
projector 𝑃 (𝑄) along 𝑈0 (𝐹0) on 𝑈

1
(𝐹
1
).

Theorem 9 (see [2, pp. 69, 71, 73]). Let the operator 𝑀 be
(𝐿, 𝑝)-sectorial and let conditions (A1), (A2) be fulfilled. Then

(i) the projector 𝑃 (𝑄) can be represented as

𝑃 = U
0
= 𝑠 − lim

𝑡→0+

U
𝑡
,

𝑄 = F
0
= 𝑠 − lim

𝑡→0+

F
𝑡
;

(17)

(ii) the operator 𝑀
1
∈ cl(𝑈1; 𝐹1) and the operator 𝑀

0
∈

cl(𝑈0; 𝐹0);
(iii) the operator 𝑆 = 𝐿

−1

1
𝑀
1
∈ cl(𝑈1) is sectorial.

The solution to (12) is called a solution to a Cauchy
problem if it also satisfies the condition

lim
𝑡→0+

V (𝑡) = V
0
. (18)

Definition 10. The setP ⊂ 𝑈 is called a phase space of (12), if

(i) any solution V = V(𝑡) of (12) lies inP; that is, V(𝑡) ∈ P
for all 𝑡 ∈ R

+
;

(ii) for any V
0

∈ P there exists a unique solution of
problem (12), (18).

Theorem 11 (see [2, p. 67]). Let the operator 𝑀 be (𝐿, 𝑝)-
sectorial. Then phase space of (10) and (11) coincides with the
image of semigroup imU∙

(imF∙
).
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3. The Spaces of (Noises)

Let Ω ≡ (Ω,𝐴, 𝑃) be a complete probability space and
let R be the set of real numbers endowed with Boreal
𝜎-algebra. The measurable mapping 𝜉 : Ω → R is
called a random variable. The set of random variables with
zero mean and finite variances forms a Hilbert space with
the scalar product (𝜉

1
, 𝜉
2
) = E𝜉

1
𝜉
2
, where E denotes the

mathematical expectation.This Hilbert space will be denoted
by L

2
. The random variables 𝜉 ∈ L

2
, with normal (Gaussian)

distribution, will be very important later on; they are called
Gaussian random variables. Let 𝐴

0
be a 𝜎-subalgebra of

𝜎-algebra A. Construct the space L0
2
of random variables,

measurable with respect to𝐴
0
. Obviously, L0

2
is a subset of L

2
;

denote by Π : L
2
→ L0

2
the orthoprojector. Let 𝜉 ∈ L

2
, then

Π𝜉 is called conditional expectation of the random variable 𝜉
and is denoted by E(𝜉 | 𝐴

0
). It is easy to see that E(𝜉 | 𝐴

0
) =

E𝜉, if 𝐴
0
= {⌀,Ω}; and E(𝜉 | 𝐴

0
) = 𝜉, if 𝐴

0
= 𝐴. Finally,

the minimal 𝜎-subalgebra 𝐴
0
⊂ 𝐴, regarding which random

variable 𝜉 is measurable, is called the 𝜎-algebra generated by
𝜉.

Let 𝐼 ⊂ R be some interval. Consider two mappings: the
first one 𝑓 : 𝐼 → L

2
, which maps each 𝑡 ∈ 𝐼 to a random

variable 𝜉 ∈ L
2
, and the second one 𝑔 : L

2
× Ω → R,

which maps every pair (𝜉, 𝜔) to the point 𝜉(𝜔) ∈ R. The
composition 𝜂 : 𝐼 × Ω → R, 𝜂 = 𝜂(𝑡, 𝜔) = 𝑔(𝑓(𝑡), 𝜔),
is called a (one-dimensional) random process. Thus, for every
fixed 𝑡 ∈ 𝐼 the randomprocess 𝜂 = 𝜂(𝑡, ⋅) is a randomvariable;
that is, 𝜂(𝑡, ⋅) ∈ L

2
, and for every fixed 𝜔 ∈ Ω the random

process 𝜂 = 𝜂(⋅, 𝜔) is called the (sample) trajectory. The
random process 𝜂 is called continuous if almost surely (a.s.)
all its trajectories are continuous; that is, for almost every
(a.e.) 𝜔 ∈ Ω the trajectories 𝜂(⋅, 𝜔) are continuous. The set
of continuous random processes form a Banach space, which
will be denoted by CL

2
. The continuous random process,

whose random variables are Gaussian, is called Gaussian.
The (one-dimensional) Wiener process 𝛽 = 𝛽(𝑡), model-

ing Brownian motion on the line in Einstein-Smolukhovsky
theory, is one of the most important examples of the con-
tinuous Gaussian random processes. It has the following
properties:

(W1) a.s. 𝛽(0) = 0; a.s. all its trajectories 𝛽(𝑡) are contin-
uous, and for all 𝑡 ∈ R

+
(= {0} ∪ R

+
) the random

variable 𝛽(𝑡) is Gaussian;
(W2) the mathematical expectation E(𝛽(𝑡)) = 0 and

autocorrelation function E((𝛽(𝑡) − 𝛽(𝑠))
2
) = |𝑡 − 𝑠|

for all 𝑠, 𝑡 ∈ R
+
;

(W3) the trajectories 𝛽(𝑡) are nondifferentiable at any point
𝑡 ∈ R

+
and have unbounded variation on any small

interval.

Example 12. There exists a random process 𝛽, satisfying
properties (W1), (W2); moreover, it can be represented in the
form

𝛽 (𝑡) =

∞

∑

𝑘=0

𝜉
𝑘
sin 𝜋

2
(2𝑘 + 1) 𝑡, (19)

where 𝜉
𝑘
are independent Gaussian variables, E𝜉

𝑘
= 0, and

D𝜉
𝑘
= [(𝜋/2)(2𝑘 + 1)]

−2, whereD denotes the dispersion.

The random process 𝛽, satisfying properties (W1)-(W2),
will be called Brownian motion.

Now fix 𝜂 ∈ CL
2
and 𝑡 ∈ 𝐼 (= (𝜀, 𝜏) ⊂ R) and by 𝑁

𝜂

𝑡

denote the 𝜎-algebra, generated by the random variable 𝜂(𝑡).
For the sake of brevity, we introduce the notation E𝜂

𝑡
= E(⋅ |

𝑁
𝜂

𝑡
).

Definition 13. Let 𝜂 ∈ CL
2
, and the random variable

𝐷𝜂 (𝑡, ⋅) = lim
Δ𝑡→0+

E𝜂
𝑡
(
𝜂 (𝑡 + Δ𝑡, ⋅) − 𝜂 (𝑡, ⋅)

Δ𝑡
) ,

(𝐷
∗
𝜂 (𝑡, ⋅) = lim

Δ𝑡→0+

E𝜂
𝑡
(
𝜂 (𝑡, ⋅) − 𝜂 (𝑡 − Δ𝑡, ⋅)

Δ𝑡
))

(20)

is called a forward 𝐷𝜂(𝑡, ⋅) (a backward 𝐷
∗
𝜂(𝑡, ⋅)) mean

derivative of the random process 𝜂 at the point 𝑡 ∈ (𝜀, 𝜏) if the
limit exists in the sense of uniform metric on R. The random
process 𝜂 is called forward (backward) mean differentiable on
(𝜀, 𝜏), if for every point 𝑡 ∈ (𝜀, 𝜏) there exists the forward
(backward) mean derivative.

Now let the random process 𝜂 ∈ CL
2
be forward (back-

ward) mean differentiable on (𝜀, 𝜏). Its forward (backward)
mean derivative is also a random process; we denote it by
𝐷𝜂 (𝐷

∗
𝜂). If the random process 𝜂 ∈ CL

2
is forward

(backward) mean differentiable on (𝜀, 𝜏), then the symmetric
mean derivative

𝐷
𝑆
𝜂 =

1

2
(𝐷 + 𝐷

∗
) 𝜂 (21)

can be defined. Since the mean derivatives were introduced
by Nelson [19], and the theory of these derivatives was
developed by Gliklikh [7], the symmetric mean derivative
𝐷
𝑆
or the random process 𝜂 will henceforth be called the

Nelson-Gliklikh derivative for brevity and will be denoted

by
∘

𝜂; that is, 𝐷
𝑆
𝜂 ≡

∘

𝜂. By
∘

𝜂

(𝑙)

, 𝑙 ∈ N denote the 𝑙th
Nelson-Gliklikh derivative of the random process 𝜂. Note
that if the trajectories of the random process 𝜂 are a.s.
continuously differentiable in a “common sense” on (𝜀, 𝜏),
then the Nelson-Gliklikh derivative of 𝜂 coincides with the
“regular” derivative.

Theorem 14 (see [14]). Let
∘

𝛽

(𝑙)

(𝑡) = (−1)
𝑙+1

∏
𝑙−1

𝑖=1
(2𝑖 −

1)(2𝑡)
−𝑙
𝛽(𝑡) for all 𝑡 ∈ R

+
and 𝑙 ∈ N.

Now let 𝑉 ≡ (𝑉, ⟨⋅, ⋅⟩) be a real separable Hilbert
space; consider the operator 𝐾 ∈ L(𝑉) with spectrum
𝜎(𝐾) whose elements are nonnegative, discrete, with finite
multiplicity tending only to zero. By {𝜆

𝑗
} denote the sequence

of eigenvalues of operator 𝐾, numbered in decreasing order
according to their multiplicity. Note that the linear span of
related orthonormal eigenfunctions {𝜑

𝑗
} of operator 𝐾 is

dense in 𝑉. Suppose that the operator 𝐾 is nuclear (i.e., its
trace Tr𝐾 = ∑

∞

𝑗=1
𝜆
𝑗
< +∞).
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Take the sequence of independent random processes {𝜂
𝑗
}

and define the 𝐾-random process

Θ
𝐾 (𝑡) =

∞

∑

𝑗=1

√𝜆
𝑗
𝜂
𝑗 (𝑡) 𝜑𝑗 (22)

provided that the series (22) converges uniformly on any
compact subset of 𝐼. Note that if {𝜂

𝑗
} ⊂ CL

2
and the

𝐾-random process Θ
𝐾

exists, then a.s. its trajectories are
continuous. Denote the space of such processes by the symbol
C
𝐾

≡ C
𝐾
(𝐼 × Ω;𝑉). Consider in C

𝐾
the subspace C

𝐾
L
2

of random processes, whose random variables belong to
L
2
(Ω; 𝑉) = {𝜉 : ∫

Ω
‖𝜉(𝜔)‖

2
𝑑P(𝜔) < +∞}; that is, 𝜂 ∈ C

𝐾
L
2
,

if 𝜂(𝑡, ⋅) ∈ L
2
(Ω; 𝑉) for each 𝑡 ∈ 𝐼. Note that the space

C
𝐾
L
2
contains, in particular, those 𝐾-random processes for

which almost surely all trajectories are continuous, and all
(independent) random variables are Gaussian.

We now introduce theNelson-Gliklikh derivatives of a𝐾-
random process

∘

Θ

(𝑙)

𝐾
(𝑡) =

∞

∑

𝑗=1

√𝜆
𝑗

∘

𝜂

(𝑙)

𝑗
(𝑡) 𝜑𝑗 (23)

provided that the derivatives up to degree of 𝑙 in the right
hand side of (23) exist and the series uniformly converges on
any compact subset of 𝐼.

Similarly, introduce the space C𝑙
𝐾
L
2
of 𝐾-random pro-

cesses with a.s. continuous Nelson-Gliklikh derivatives up to
order 𝑙 ∈ N, whose random variables belong to L

2
(Ω; 𝑉).

As an example consider the𝐾-Wiener process

𝑊
𝐾 (𝑡) =

∞

∑

𝑗=1

√𝜆
𝑗
𝛽
𝑗 (𝑡) 𝜑𝑗, (24)

which is defined on R
+
.

Corollary 15. Let
∘

𝑊

(𝑙)

𝐾
(𝑡) = (−1)

𝑙+1
∏
𝑙−1

𝑖=1
(2𝑖 − 1)(2𝑡)

−𝑙
𝑊
𝐾
(𝑡)

for all 𝑡 ∈ R
+
, 𝑙 ∈ N, and nuclear operator 𝐾 ∈ L(𝑉).

Moreover, the 𝐾-Wiener process (24) satisfies conditions
(W1) a.s. 𝑊

𝐾
(0) = 0, a.s. all its trajectories 𝛽(𝑡) are

continuous, and for all 𝑡 ∈ R
+
the random variable𝑊

𝐾
(𝑡, ⋅) is

Gaussian; (W2) the mathematical expectation E(𝑊
𝐾
(𝑡)) = 0

and autocorrelation function

E ((𝛽 (𝑡) − 𝛽 (𝑠))
2
) = |𝑡 − 𝑠| 𝐾 ∀𝑠, 𝑡 ∈ R

+
. (25)

4. The Stochastic Sobolev Type Equation with
Relatively 𝑝-Sectorial Operator

Let 𝑈, 𝐹, 𝑉 be real separable Hilbert spaces. Let the operator
𝑀 be (𝐿, 𝑝)-sectorial, let 𝑝 ∈ {0} ∪ N and conditions (A1),
(A2) be fulfilled, and let the operator 𝑁 ∈ L(𝑉; 𝐹). Let
𝐼 = [0, 𝜏). Let the operator 𝐾 ∈ L(𝑉) be nuclear with
eigenvalues {𝜆

𝑗
} ⊂ R

+
. Consider the linear stochastic Sobolev

type equation (3) with condition (4).

Remark 16. Due to Theorem 6 condition (4) is equivalent to
the following condition:

lim
𝑡→0+

𝑃 (𝜂 (𝑡) − 𝜉
0
) = 0. (26)

Definition 17. The 𝐾-random process 𝜂 ∈ C1
𝐾
L
2
is called a

(classical) solution of (3), if a.s. all its trajectories satisfy (3)
with some 𝐾-random process 𝑤 ∈ C

𝐾
L
2
for all 𝑡 ∈ (0, 𝜏).

The solution of (3) is called a solution of weakened Showalter-
Sidorov problem (3), (4), if it also satisfies condition (4).

Suppose that the𝐾-random process 𝑤 = 𝑤(𝑡), 𝑡 ∈ [0, 𝜏),
satisfies condition

(𝐼 − 𝑄)𝑁𝑤 ∈ C𝑝+1
𝐾

L
2
,

𝑄𝑁𝑤 ∈ C
𝐾
L
2
.

(27)

Theorem 18. Let the operator 𝑀 be (𝐿, 𝑝)-sectorial, let 𝑝 ∈

{0} ∪N and conditions (A1), (A2) be fulfilled, and let operator
𝑁 ∈ L(𝑉; 𝐹). For any 𝐾-random process 𝑤 = 𝑤(𝑡)

satisfying (27) and for any 𝑈-valued random variable 𝜉
0
∈ L

2
,

independent of w, there exists a unique solution 𝜂 ∈ C1
𝐾
L
2
to

problem (3), (4), given by

𝜂 (𝑡) = U
𝑡
𝜉
0
+ ∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁𝑤 (𝑠) 𝑑𝑠

−

𝑝

∑

𝑞=0

𝐻
𝑞
𝑀
−1

0
(I − 𝑄)𝑁

∘

𝑤

(𝑞)

(𝑡) .

(28)

Proof. Proof of the theorem is analogous to the deterministic
case [2]. Acting on (3) and condition (4) by projectors𝑄 and
I−𝑄 and usingTheorems 7 and 9, reduce it to the equivalent
system of two independent problems

𝐻
∘

𝜂

0

= 𝜂
0
+𝑀

−1

0
(I − 𝑄)𝑁𝑤, (29)

∘

𝜂

1

= 𝑆𝜂
1
+ 𝐿

−1

1
𝑄𝑁𝑤,

lim
𝑡→0+

𝜂
1
(𝑡) = 𝜉

1

0
,

(30)

where 𝜂0 = (𝐼 −𝑃)𝜂, 𝜂1 = 𝑃𝜂, 𝜉1
0
= 𝑃𝜉

0
. Since the operator𝐻

is nilpotent, it follows from (29) that necessarily

𝜂
0
(𝑡) = −

𝑝

∑

𝑞=0

𝐻
𝑞
𝑀
−1

0
(I − 𝑄)𝑁

∘

𝑤

(𝑞)

(𝑡) . (31)

Since the operator 𝑆 ∈ cl(𝑈1) the solution of problem (30)
exists and can be represented in the form

𝜂
1
(𝑡) = U

𝑡
𝜉
1

0
+ ∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁𝑤 (𝑠) 𝑑𝑠. (32)

Consider theweakened Showalter-Sidorov problem (4) for
equation

𝐿
∘

𝜂= 𝑀𝜂 + 𝑁
∘

𝑊𝐾
, (33)
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here the right hand side includes the Nelson-Gliklikh deriva-
tive of the K-Wiener process 𝑊

𝐾
(𝑡). The white noise 𝑤(𝑡) =

(2𝑡)
−1
𝑊
𝐾
(𝑡) does not satisfy condition (27). One of feasible

approaches to overcome this difficulty was proposed in [10,
11]. The advantage of this approach comes from transforma-
tion of the second summand in the right hand side of (28) as
follows:

∫

𝑡

𝜀

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁

∘

𝑊𝐾 (𝑠) 𝑑𝑠

= 𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝑡) −U
𝑡−𝜀

𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝜀)

− 𝑆𝑃∫

𝑡

𝜀

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝑠) 𝑑𝑠.

(34)

By virtue of the definition ofNelson-Gliklikh derivative for all
𝜀 ∈ (0, 𝑡), 𝑡 ∈ R

+
, we can make integration by parts. Letting

𝜀 → 0 in (34) we get

∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁

∘

𝑊𝐾 (𝑠) 𝑑𝑠

= 𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝑡) − 𝑆𝑃∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝑠) 𝑑𝑠.

(35)

Theorem 19. Let the operator M be (𝐿, 𝑝)-sectorial and let
𝑝 ∈ {0} ∪ N and conditions (A1), (A2) be fulfilled. For any
𝑁 ∈ L(𝑉; 𝐹) and for any 𝑈-valued random variable 𝜉

0
∈ L

2
,

independent of 𝑊
𝐾
, there exists a unique solution 𝜂 = 𝜂(𝑡) of

problem (4), (33), given by

𝜂 (𝑡) = U
𝑡
𝜉
0

+ 𝐿
−1

1
[𝑄𝑁𝑊

𝐾 (𝑡) − 𝑀
1
∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑁𝑊

𝐾 (𝑠) 𝑑𝑠]

−

𝑝

∑

𝑞=0

𝐻
𝑞
𝑀
−1

0
(I − 𝑄)𝑁

∘

𝑊𝐾

(𝑞+1)

(𝑡) .

(36)

5. Dzektser Stochastic Model

Let 𝐷 ⊂ R𝑛 be a bounded domain with a boundary 𝜕𝐷 of
class 𝐶∞. Consider a boundary value

Δ𝜂 (𝑥, 𝑡) = 𝜂 (𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕𝐷 × [0, 𝑇] (37)

and initial value
lim
𝑡→0+

(𝜆 − Δ) (𝜂 (𝑡) − 𝜉
0
) = 0 (38)

problems for the stochastic equation

(𝜆 − Δ)
∘

𝜂= (𝛽Δ − 𝛼Δ
2
) 𝜂 + 𝑤. (39)

Here the parameters 𝜆, 𝛽 ∈ R, 𝛼 ∈ R
+
. This model describes

evolution of free surface of filtered liquid.

Define the space 𝑈 = 𝑊
2

2
(𝐷) ∩

∘

𝑊

1

2
(𝐷) and the space 𝐹 =

𝐿
2
(𝐷) with the scalar product

⟨𝑢, V⟩ = ∫
𝐷

𝑢V 𝑑𝑥. (40)

Denote by {𝜆
𝑗
} the sequence of eigenvalues of the homoge-

neous Direchlet problem for the operator Δ, numbered in
nonincreasing order with regard tomultiplicities and tending
to −∞. By {𝜑

𝑗
} denote the orthonormal (in the sense of

𝐿
2
(𝐷)) family of corresponding eigenfunctions 𝜑

𝑗
∈ 𝐶

∞
(𝐷),

𝑗 ∈ N. Introduce the F-valued𝐾-random process. Define the
operator Λ = (−1)

𝑚−1
Δ
𝑚 with the domain

domΛ = {𝑊
2𝑚

2
(𝐷) : Δ

𝑘
𝑢 (𝑥) = 0, 𝑥 ∈ 𝜕𝐷, 𝑘

∈ 0, 1, . . . , 𝑚 − 1} , 𝑚 ∈ N.
(41)

It is rather easy to find such a number 𝑚 according to fixed
number 𝑛 (which is the dimension of the domain 𝐷) that
the mentioned series converges. For example,𝑚 can be equal
to 𝑛. Note that the operator Λ has the same eigenfunctions
{𝜑
𝑗
}, as the Laplace operator, but its spectrum consists of

eigenvalues |𝜆
𝑗
|
𝑚. Since their asymptotic |𝜆

𝑗
|
𝑚

∼ 𝑗
2𝑚/𝑛

→

∞, 𝑗 → ∞, we take such number 𝑚 ∈ N that the series
∑
∞

𝑗=1
|𝜆
𝑗
|
−𝑚 converges. Then the operator Λ is continuously

invertable on domΛ, whereas the inverse operator (i.e., the
Green operator) has the spectrum consisting of eigenvalues
]
𝑗
= |𝜆

𝑗
|
−𝑚. We take this operator as the nuclear operator 𝐾

for F-valued𝐾-random process.
Fix 𝜆, 𝛽 ∈ R, 𝛼 ∈ R

+
, and define the operators 𝐿 = 𝜆𝐼 −

Δ,𝑀 = 𝛽Δ−𝛼Δ
2.The operator 𝐿 ∈ L(𝑈; 𝐹), and the operator

𝑀 ∈ cl(𝑈; 𝐹) with

dom𝑀

= {𝑢 ∈𝑊
4

2
(𝐷) : Δ𝑢 (𝑥) = 𝑢 (𝑥) = 0, 𝑥 ∈ 𝜕𝐷} .

(42)

Lemma 20 (see [2, p. 198]). For any 𝜆, 𝛽 ∈ R, 𝛼 ∈ R
+
the

operator𝑀 is (𝐿, 0)-sectorial.

The 𝐿-spectrum of the operator 𝑀 consists of all points
of the form

𝜇
𝑘
∈ C : 𝜇

𝑘
=
𝛽𝜆

𝑘
− 𝛼𝜆

2

𝑘

𝜆 − 𝜆
𝑘

, if 𝑘 : 𝜆
𝑘

̸= 𝜆. (43)

By Theorem 5 there exists a holomorphic resolving semi-
group for (39) in the form

U
𝑡
=

{{{{

{{{{

{

∞

∑

𝑘=1

𝑒
𝜇𝑘𝑡 ⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, if 𝜆

𝑘
̸= 𝜆 ∀𝑘 ∈ N;

∑

𝑘∈N:𝑘 ̸=𝑙
𝑒
𝜇𝑘𝑡 ⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, if ∃𝑙 ∈ N : 𝜆

𝑙
= 𝜆.

(44)

Lemma 21. For any 𝜆, 𝛽 ∈ R, 𝛼 ∈ R
+
conditions (A1), (A2)

are fulfilled.
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Construct subsets

𝑈
0
=
{

{

{

{0} , if 𝜆
𝑘

̸= 𝜆 ∀𝑘 ∈ N;

{𝑢 ∈ 𝑈 : ⟨𝑢, 𝜑
𝑘
⟩ = 0, 𝑘 ∈ N \ {𝑙 : 𝜆

𝑙
= 𝜆}} ;

𝑈
1
=
{

{

{

𝑈, if 𝜆
𝑘

̸= 𝜆 ∀𝑘 ∈ N;

{𝑢 ∈ 𝑈 : ⟨𝑢, 𝜑
𝑘
⟩ = 0, 𝜆

𝑘
= 𝜆} .

(45)

Obviously 𝑈0 ⊕ 𝑈
1
= 𝑈. Thus the projector 𝑃 has the form

𝑃 = 𝑠 − lim
𝑡→0+

U
𝑡

=

{{

{{

{

I, if 𝜆
𝑘

̸= 𝜆 ∀𝑘 ∈ N;

∑

𝑘∈N:𝑘 ̸=𝑙
⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, if ∃𝑙 ∈ N : 𝜆

𝑙
= 𝜆.

(46)

The projector 𝑄 is constructed analogously.
Moreover there exists the operator

𝐿
−1

1

=

{{{{

{{{{

{

∞

∑

𝑘=1

(𝜆 − 𝜆
𝑘
)
−1
⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, if 𝜆

𝑘
̸= 𝜆 ∀𝑘 ∈ N;

∑

𝑘∈N:𝑘 ̸=𝑙
(𝜆 − 𝜆

𝑘
)
−1
⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, if ∃𝑙 ∈ N : 𝜆

𝑙
= 𝜆.

(47)

Conditions (3) and (38) take the form

lim
𝑡→0+

(𝜂 (𝑡) − 𝜉
0
) = 0,

if 𝜆
𝑘

̸= 𝜆 ∀𝑘 ∈ N;

lim
𝑡→0+

∑

𝑘 ̸=𝑙

⟨(𝜂 (𝑡) − 𝜉
0
) , 𝜑

𝑘
⟩ 𝜑

𝑘
= 0,

if ∃𝑙 ∈ N : 𝜆
𝑙
= 𝜆.

(48)

Thus, we have reduced problem (37)–(39) to problem (3), (4).
FromTheorem 18 we have the following assertion.

Theorem 22. For any 𝜆, 𝛽 ∈ R, 𝜏, 𝛼 ∈ R
+
and for any 𝐾-

random process 𝑤 = 𝑤(𝑡) satisfying (27) and for any 𝑈-valued
random variable 𝜉

0
∈ L

2
, independent of 𝑤, there exists a

unique solution 𝜂 ∈ C1
𝐾
L
2
for problem (37)–(39), given by

𝜂 (𝑡) = −𝑀
−1

0
𝜉
0
(𝑡) +U

𝑡
𝜉
0
+ ∫

𝜏

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑤 (𝑠) 𝑑𝑠. (49)

Here

𝑀
−1

0

=

{{

{{

{

O, 𝑖𝑓 𝜆
𝑘

̸= 𝜆 ∀𝑘 ∈ N;

∑

𝑘∈N:𝜆𝑘=𝜆
(𝛽𝜆

𝑘
− 𝛼𝜆

2

𝑘
)
−1

⟨⋅, 𝜑
𝑘
⟩ 𝜑

𝑘
.

(50)

Consider the initial-boundary value problem (37), (38)
for equation

(𝜆 − Δ)
∘

𝜂= (𝛽Δ − 𝛼Δ
2
) 𝜂 +

∘

𝑊𝐾
, (51)

where the right part includes the Nelson-Gliklikh derivative
of theK-Wiener process𝑊

𝐾
(𝑡).FromTheorem 19we have the

following assertion.

Theorem 23. For any 𝜆, 𝛽 ∈ R, 𝜏, 𝛼 ∈ R
+
, and 𝑈-valued

random variable 𝜉
0
∈ L

2
, independent of 𝑊

𝐾
there exists a

unique solution 𝜂 = 𝜂(𝑡) of problem (37), (38), (51) given by

𝜂 (𝑡)

= U
𝑡
𝜉
0

+ 𝐿
−1

1
[𝑄𝑊

𝐾 (𝑡) − 𝑀
1
∫

𝑡

0

U
𝑡−𝑠
𝐿
−1

1
𝑄𝑊

𝐾 (𝑠) 𝑑𝑠]

−

𝑝

∑

𝑞=0

𝐻
𝑞
𝑀
−1

0
(I − 𝑄)

∘

𝑊𝐾

(𝑞+1)

(𝑡) .

(52)

Here

𝑀
1

=

{{{{

{{{{

{

∞

∑

𝑘=1

(𝛽𝜆
𝑘
− 𝛼𝜆

2

𝑘
) ⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, 𝑖𝑓 𝜆

𝑘
̸= 𝜆 ∀𝑘 ∈ N;

∑

𝑘∈N:𝑘 ̸=𝑙
(𝛽𝜆

𝑘
− 𝛼𝜆

2

𝑘
) ⟨⋅, 𝜑

𝑘
⟩ 𝜑

𝑘
, 𝑖𝑓 ∃𝑙 ∈ N : 𝜆

𝑙
= 𝜆.

(53)
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