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We consider the derivations on noncommutative Banach algebras, and we will first study the conditions for a derivation on
noncommutative Banach algebra. Then, we examine the stability of functional inequalities with a derivation. Finally, we take the
derivations with the radical ranges on noncommutative Banach algebras.

1. Introduction and Preliminaries

Let A be an algebra over the real or complex field F . An
additive mapping 𝑓 : A → A is called a ring derivation if
the functional equation 𝑓(𝑥𝑦) = 𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦 is valid for
all 𝑥, 𝑦 ∈ A. In addition, if the identity 𝑓(𝜆𝑥) = 𝜆𝑓(𝑥) holds
for all 𝜆 ∈ F and all 𝑥 ∈ A, then 𝑓 is said to be a linear
derivation.

Singer and Wermer [1] obtained a fundamental result
which started investigation into the ranges of linear deriva-
tions on Banach algebras. The result states that every con-
tinuous linear derivation on a commutative Banach algebra
maps into the radical. They also made a very insightful
conjecture that the assumption of continuity is unnecessary.
This conjecture was proved by Thomas [2]. So, in this paper,
we will take into account the problems in [1, 2] for the
derivations on noncommutative Banach algebras.

On the other hand, the stability problem for ring deriva-
tions on Banach algebras was considered by Miura et al.
in [3]: under suitable conditions every approximate ring
derivation on Banach algebra is an exact ring derivation. Šemrl
[4] obtained the first stability result concerning derivations
between operator algebras. As just mentioned, the study of
stability problem has originally been formulated by Ulam
[5]: under what condition does there exist a homomorphism

near an approximate homomorphism?Hyers [6] had answered
affirmatively the question of Ulam under the assumption that
the groups are Banach spaces. A generalized version of the
theorem of Hyers for approximately additive mappings was
given by Aoki [7] and for approximately linear mappings
was presented by Rassias [8] by considering an unbounded
Cauchy difference. Since then, many interesting results of the
stability problems to a number of functional equations and
inequalities (or involving derivations) have been investigated
(see, e.g., [9–16]). The reader is referred to the book [17] for
more information on stability problem with a large variety of
applications.

In this paper, we will establish the stability of functional
inequalities with ring derivations and will deal with the prob-
lem for the radical range of these functional inequalities on
Banach algebra by considering the base of noncommutative
versions for the result of Singer and Wermer: Mathieu and
Murphy [18] verify that every continuous centralizing linear
derivation on a Banach algebra maps into the radical and
Brešar [19] proved that every centralizing linear derivation on
a semiprime Banach algebra maps into the intersection of the
center and the radical. Moreover, Chaudhry and Thaheem
[20] showed that two ring derivations on semiprime ring with
suitable property map into the center.
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2. Functional Inequalities for
a Derivation and Its Applications

Theorem1. LetA be a normed algebra. Assume thatmappings
Φ : A3 → [0,∞) and 𝜑 : A2 → [0,∞) satisfy the
assumptions

(1)Φ(𝑥/𝑠, 0, −𝑥/𝑢) = Φ(0, 𝑥/𝑡, −𝑥/𝑢) =
Φ(−𝑥/𝑠, 𝑥/𝑡, 0) = 0, (𝑥 ∈ A),

(2){{{{
{{{{
{

lim
𝑛→∞

(𝑢/𝑠)𝑛Φ((𝑠/𝑢)𝑛(𝑢𝑥/𝑠), (𝑠/𝑢)𝑛(𝑢𝑦/𝑡),

(𝑠/𝑢)𝑛(−𝑥 − 𝑦)) = 0,

lim
𝑛→∞

(𝑢/𝑠)2𝑛𝜑((𝑠/𝑢)𝑛𝑥, (𝑠/𝑢)𝑛𝑦) = 0,

(𝑥, 𝑦 ∈ A)

𝑜𝑟

{{{{
{{{{
{

lim
𝑛→∞

(𝑠/𝑢)𝑛Φ((𝑢/𝑠)𝑛+1𝑥, (𝑢/𝑠)𝑛(𝑢𝑦/𝑡),

(𝑢/𝑠)𝑛(−𝑥 − 𝑦)) = 0,

lim
𝑛→∞

(𝑠/𝑢)2𝑛𝜑((𝑢/𝑠)𝑛𝑥, (𝑢/𝑠)𝑛𝑦) = 0,

(𝑥, 𝑦 ∈ A),

where 𝑠, 𝑡, and 𝑢 are fixed positive real numbers with 𝑠 > 𝑢 and
𝑠 + 𝑡 + 𝑢 > 1. Suppose that 𝑓 : A → A is a mapping subjected
to the inequalities

󵄩󵄩󵄩󵄩𝑠𝑓 (𝑥) + 𝑡𝑓 (𝑦) + 𝑢𝑓 (𝑧)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓 (𝑠𝑥 + 𝑡𝑦 + 𝑢𝑧)

󵄩󵄩󵄩󵄩 + Φ (𝑥, 𝑦, 𝑧) ,
(1)

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑦) − 𝑥𝑓 (𝑦) − 𝑓 (𝑥) 𝑦
󵄩󵄩󵄩󵄩

≤ 𝜑 (𝑥, 𝑦)
(2)

for all 𝑥, 𝑦, 𝑧 ∈ A. Then 𝑓 is a ring derivation.

Proof. By letting 𝑥 = 𝑦 = 𝑧 = 0 in (1), we get 𝑓(0) = 0. And
by putting 𝑥 = 𝑥/𝑠, 𝑦 = 0, and 𝑧 = −𝑥/𝑢 in (1), we obtain

𝑠𝑓 (
𝑥

𝑠
) = −𝑢𝑓(

−𝑥

𝑢
) (3)

for all 𝑥 ∈ A. Also, by letting 𝑥 = 0, 𝑦 = 𝑥/𝑡, and 𝑧 = −𝑥/𝑢
in (1), it follows that

𝑡𝑓 (
𝑥

𝑡
) = −𝑢𝑓(

−𝑥

𝑢
) (4)

for all 𝑥 ∈ A. Replacing 𝑥 by −𝑥/𝑠 and setting 𝑦 = 𝑥/𝑡 and
𝑧 = 0 in (1), we have

𝑠𝑓 (
−𝑥

𝑠
) = −𝑡𝑓 (

𝑥

𝑡
) (5)

for all 𝑥 ∈ A. From (3), (4), and (5), we arrive at

𝑓 (−𝑥) = −𝑓 (𝑥) (6)

for all 𝑥 ∈ A. So the relations (3), (4), (5), and (6) give

𝑠𝑓 (
𝑥

𝑠
) = 𝑡𝑓 (

𝑥

𝑡
) = 𝑢𝑓(

𝑥

𝑢
) (7)

for all 𝑥 ∈ A. Replacing 𝑥 by 𝑥/𝑠 and letting 𝑦 = 𝑥/𝑡 and
𝑧 = 𝑧/𝑢 in (1), the following yields

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 (

𝑥

𝑠
) + 𝑡𝑓 (

𝑦

𝑡
) + 𝑢𝑓(

𝑧

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓 (𝑥 + 𝑦 + 𝑧)

󵄩󵄩󵄩󵄩 + Φ(
𝑥

𝑠
,
𝑦

𝑡
,
𝑧

𝑢
)

(8)

for all 𝑥, 𝑦, 𝑧 ∈ A. Due to (7) and (8), we conclude that

󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝑓 (𝑦) + 𝑓 (𝑧)
󵄩󵄩󵄩󵄩

≤
1

𝑢
[
󵄩󵄩󵄩󵄩𝑓 (𝑢 (𝑥 + 𝑦 + 𝑧))

󵄩󵄩󵄩󵄩 + Φ(
𝑢𝑥

𝑠
,
𝑢𝑦

𝑡
, 𝑧)]

(9)

for all 𝑥, 𝑦, 𝑧 ∈ A.
Next we are in the position to show that 𝑓 is a ring

derivation.Wewill consider two different cases for the second
assumption of Φ.

Case I. Assume that

lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

Φ((
𝑠

𝑢
)
𝑛 𝑢𝑥

𝑠
, (

𝑠

𝑢
)
𝑛 𝑢𝑦

𝑡
, (

𝑠

𝑢
)
𝑛

(−𝑥 − 𝑦))

= 0,

lim
𝑛→∞

(
𝑢

𝑠
)
2𝑛

𝜑((
𝑠

𝑢
)
𝑛

𝑥, (
𝑠

𝑢
)
𝑛

𝑦)

= 0

(10)

for all 𝑥, 𝑦 ∈ A. We get by (7)

𝑓 (𝑥) =
𝑢

𝑠
𝑓 (

𝑠

𝑢
𝑥) = (

𝑢

𝑠
)
2

𝑓((
𝑠

𝑢
)
2

𝑥) = ⋅ ⋅ ⋅

= (
𝑢

𝑠
)
𝑛

𝑓((
𝑠

𝑢
)
𝑛

𝑥)

(11)

for all positive integers 𝑛 and all 𝑥 ∈ A. Therefore, one can
obtain that

𝑓 (𝑥) := lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

𝑓((
𝑠

𝑢
)
𝑛

𝑥) (12)

for all 𝑥 ∈ A. Due to (6) and (9), we see that

󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝑓 (𝑦) − 𝑓 (𝑥 + 𝑦)
󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 ((

𝑠

𝑢
)
𝑛

𝑥) + 𝑓((
𝑠

𝑢
)
𝑛

𝑦)

+ 𝑓((
𝑠

𝑢
)
𝑛

(−𝑥 − 𝑦))
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

1

𝑢
(
𝑢

𝑠
)
𝑛

⋅ Φ ((
𝑠

𝑢
)
𝑛 𝑢𝑥

𝑠
, (

𝑠

𝑢
)
𝑛 𝑢𝑦

𝑡
, (

𝑠

𝑢
)
𝑛

(−𝑥 − 𝑦)) = 0

(13)

for all 𝑥, 𝑦 ∈ A. Thus 𝑓(𝑥 + 𝑦) = 𝑓(𝑥) + 𝑓(𝑦).
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By (2), we find that
󵄩󵄩󵄩󵄩𝑓 (𝑥𝑦) − 𝑥𝑓 (𝑦) − 𝑓 (𝑥) 𝑦

󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(
𝑢

𝑠
)
2𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑓((
𝑠

𝑢
)
2𝑛

𝑥𝑦)

− (
𝑠

𝑢
)
𝑛

𝑥𝑓((
𝑠

𝑢
)
𝑛

𝑦)

− (
𝑠

𝑢
)
𝑛

𝑓((
𝑠

𝑢
)
𝑛

𝑥)𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
2𝑛

𝜑((
𝑠

𝑢
)
𝑛

𝑥, (
𝑠

𝑢
)
𝑛

𝑦) = 0

(14)

for all 𝑥, 𝑦 ∈ A. Thus 𝑓(𝑥𝑦) = 𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦.

Case II. Assume that

lim
𝑛→∞

(
𝑠

𝑢
)
𝑛

Φ((
𝑢

𝑠
)
𝑛+1

𝑥, (
𝑢

𝑠
)
𝑛 𝑢𝑦

𝑡
, (

𝑢

𝑠
)
𝑛

(−𝑥 − 𝑦))

= 0,

lim
𝑛→∞

(
𝑠

𝑢
)
2𝑛

𝜑((
𝑢

𝑠
)
𝑛

𝑥, (
𝑢

𝑠
)
𝑛

𝑦) = 0

(15)

for all 𝑥, 𝑦 ∈ A. We get by (7)

𝑓 (𝑥) =
𝑠

𝑢
𝑓(

𝑢

𝑠
𝑥) = (

𝑠

𝑢
)
2

𝑓((
𝑢

𝑠
)
2

𝑥) = ⋅ ⋅ ⋅

= (
𝑠

𝑢
)
𝑛

𝑓((
𝑢

𝑠
)
𝑛

𝑥)

(16)

for all positive integers 𝑛 and all 𝑥 ∈ A. Therefore, one can
obtain that

𝑓 (𝑥) := lim
𝑛→∞

(
𝑠

𝑢
)
𝑛

𝑓((
𝑢

𝑠
)
𝑛

𝑥) (17)

for all 𝑥 ∈ A. The remainder of the proof is similar to the
proof of Case I.

Corollary 2. LetA be a Banach algebra and let 𝑠, 𝑡, and 𝑢 be
fixed positive real numbers with 𝑠 > 𝑢 and 𝑠+𝑡+𝑢 > 1. Suppose
that mapping Φ : A3 → [0,∞) satisfies the assumption
(1) and the first case of assumption (2) in Theorem 1. Assume
that 𝑓 : A → A is a continuous mapping subjected to the
inequality

󵄩󵄩󵄩󵄩𝛼𝑠𝑓 (𝑥) + 𝑡𝑓 (𝑦) + 𝑢𝑓 (𝛼𝑧)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓 (𝑠𝑥 + 𝑡𝑦 + 𝑢𝑧)

󵄩󵄩󵄩󵄩 + Φ (𝑥, 𝑦, 𝑧)
(18)

for all 𝑥, 𝑦, 𝑧 ∈ A and all 𝛼 = 1, 𝑖, where 𝑖 ∈ C. In addition, if
a mapping 𝑓 is fulfilled with the following inequalities:

󵄩󵄩󵄩󵄩𝑓 (𝑥𝑦) − 𝑥𝑓 (𝑦) − 𝑓 (𝑥) 𝑦
󵄩󵄩󵄩󵄩 ≤ 𝜀, (19)

󵄩󵄩󵄩󵄩[[𝑓 (𝑥) , 𝑥] , 𝑦]
󵄩󵄩󵄩󵄩 ≤ 𝛿 (20)

for some 𝜀 > 0 and 𝛿 > 0 and all 𝑥, 𝑦 ∈ A, where [𝑥, 𝑦] =
𝑥𝑦 − 𝑦𝑥, then 𝑓mapsA into its radical rad (A).

Proof. We first consider 𝛼 = 1 in (18) and 𝜀 := 𝜑(𝑥, 𝑦)
in (19). It follows from Theorem 1 that 𝑓 is a ring deriva-
tion. In this case, 𝑓 is a mapping defined by 𝑓(𝑥) :=
lim
𝑛→∞

(𝑢/𝑠)𝑛𝑓((𝑠/𝑢)𝑛𝑥) for all 𝑥 ∈ A and 𝑓 satisfies (7).
Since 𝑓 is continuous, 𝑓(𝑡𝑥) is continuous in 𝑡 ∈ R for each
fixed 𝑥 ∈ A. Thus 𝑓 is R-linear as in [8]. Replacing 𝑥 by 𝑥/𝑠
and putting 𝛼 = 𝑖, 𝑦 = 0, and 𝑧 = −𝑥/𝑢 in (18) with (7), we see
that𝑓(𝑖𝑥) = 𝑖𝑓(𝑥) and sowe see that𝑓(𝜇𝑥) = 𝑠𝑓(𝑥)+𝑖𝑡𝑓(𝑥) =
𝜇𝑓(𝑥) for all 𝑥 ∈ A and all 𝜇 = 𝑠+𝑖𝑡 ∈ C. Hence𝑓 isC-linear.

In view of (20), we have

lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[[𝑓((

𝑠

𝑢
)
𝑛

𝑥) , (
𝑠

𝑢
)
𝑛

𝑥] , 𝑦]
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

𝛿 = 0

(21)

for all 𝑥, 𝑦 ∈ A, which means that 𝑓 is a centralizing
mapping. With the help of Mathieu and Murphy’s result [18],
we arrive at the conclusion.

Corollary 3. Let A be a Banach algebra with identity and
let 𝑠, 𝑡, and 𝑢 be fixed positive real numbers with 𝑠 > 𝑢 and
𝑠 + 𝑡 + 𝑢 > 1. Suppose that mapping Φ : A3 → [0,∞)
satisfies the assumption (1) and the second case of assumption
(2) inTheorem 1 and suppose that 𝑓 : A → A is a continuous
centralizing mapping subjected to (18) and (19). Then 𝑓 maps
A into its radical rad (A).

Proof. We let 𝛼 = 1 in (18). In the proof ofTheorem 1, we find
that 𝑓 is an additive mapping. In this case, 𝑓 is a mapping
defined by 𝑓(𝑥) := lim

𝑛→∞
(𝑠/𝑢)𝑛𝑓((𝑢/𝑠)𝑛𝑥) for all 𝑥 ∈ A

and 𝑓 satisfies (7). As in the proof of the Corollary 2, the
mapping 𝑓 is linear. Since A contains the identity, Badora’s
result [10] implies that 𝑓(𝑥𝑦) = 𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦 for all 𝑥, 𝑦 ∈
A. So 𝑓 is a centralizing linear derivation. Based on the
result of Mathieu and Murphy [18], we conclude that 𝑓(A) ⊆
rad (A).

3. Approximate Derivations and
Their Applications

Theorem 4. Let A be a Banach algebra. Assume that map-
pings Φ : A3 → [0,∞) and 𝜑 : A2 → [0,∞) satisfy the
following assumptions:

(1) ∑
∞

𝑗=0
(𝑢/𝑠)𝑗[ (2/𝑠)Φ((𝑠/𝑢)𝑗𝑥, 0, −(𝑠/𝑢)𝑗+1𝑥)+(2/𝑠)Φ(0,

−(𝑠/𝑢)𝑗+1(𝑢𝑥/𝑡), (𝑠/𝑢)𝑗+1𝑥) + (1/𝑠)Φ((𝑠/𝑢)𝑗𝑥,
−(𝑠/𝑢)𝑗+1(𝑢𝑥/𝑡), 0)] < ∞, (𝑥 ∈ A),

(2) lim
𝑛→∞

(𝑢/𝑠)𝑛Φ((𝑠/𝑢)𝑛𝑥, (𝑠/𝑢)𝑛𝑦, (𝑠/𝑢)𝑛𝑧) = 0,
(𝑥, 𝑦, 𝑧 ∈ A), lim

𝑛→∞
(𝑢/𝑠)𝑛𝜑((𝑠/𝑢)𝑛𝑥, 𝑦) = 0, (𝑥, 𝑦 ∈

A),

where 𝑠, 𝑡, and 𝑢 are fixed positive real numbers with 𝑠 > 𝑢 and
𝑠 + 𝑡 + 𝑢 > 1. Suppose that 𝑓 : A → A is a mapping subjected
to the inequalities (1) and (2). Then, there exists a unique ring
derivationL : A → A such that the inequality

󵄩󵄩󵄩󵄩L (𝑥) − 𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜂 (𝑥) (22)
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for all 𝑥 ∈ A, where

𝜂 (𝑥) =
∞

∑
𝑗=0

(
𝑢

𝑠
)
𝑗

[
2

𝑠
Φ((

𝑠

𝑢
)
𝑗

𝑥, 0, − (
𝑠

𝑢
)
𝑗+1

𝑥)

+
2

𝑠
Φ(0, − (

𝑠

𝑢
)
𝑗+1 𝑢𝑥

𝑡
, (

𝑠

𝑢
)
𝑗+1

𝑥)

+
1

𝑠
Φ((

𝑠

𝑢
)
𝑗

𝑥, − (
𝑠

𝑢
)
𝑗+1 𝑢𝑥

𝑡
, 0)

+
𝑠 + 2𝑡 + 𝑢 + 3

𝑠 (𝑠 + 𝑡 + 𝑢 − 1)
Φ (0, 0, 0)] .

(23)

In addition, the equation
𝑥 {𝑓 (𝑦) −L (𝑦)} = 0 (24)

holds for all 𝑥 ∈ A.

Proof. By letting 𝑥 = 𝑦 = 𝑧 = 0 in (1), we get ‖𝑓(0)‖ ≤
(1/(𝑠 + 𝑡 + 𝑢 − 1))Φ(0, 0, 0). Replacing 𝑥 by 𝑥 = 𝑥/𝑠 and
letting 𝑦 = 0 and 𝑧 = −𝑥/𝑢 in (1), we also have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 (

𝑥

𝑠
) + 𝑢𝑓(

−𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ Φ(
𝑥

𝑠
, 0,

−𝑥

𝑢
) +

𝑡 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)

(25)

for all 𝑥 ∈ A, which implies that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) +

𝑢

𝑠
𝑓 (

−𝑠𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
1

𝑠
[Φ(𝑥, 0,

−𝑠𝑥

𝑢
) +

𝑡 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)] .

(26)

Next, by letting 𝑥 = 0, 𝑦 = 𝑥/𝑡, and 𝑧 = −𝑥/𝑢 in (1), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑡𝑓 (

𝑥

𝑡
) + 𝑢𝑓(

−𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ Φ(0,
𝑥

𝑡
,
−𝑥

𝑢
) +

𝑠 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)

(27)

for all 𝑥 ∈ A. Again, replacing 𝑥 by −𝑥/𝑠 and setting 𝑦 = 𝑥/𝑡
and 𝑧 = 0 in (1), we find that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 (

−𝑥

𝑠
) + 𝑡𝑓 (

𝑥

𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ Φ(
−𝑥

𝑠
,
𝑥

𝑡
, 0) +

𝑢 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)

(28)

for all 𝑥 ∈ A. It follows from (25), (27), and (28) that
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑢𝑓(

𝑥

𝑢
) + 𝑢𝑓(

−𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 (

𝑥

𝑠
) + 𝑢𝑓(

−𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑢𝑓(

𝑥

𝑢
) + 𝑡𝑓 (

−𝑥

𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 (

𝑥

𝑠
) + 𝑡𝑓 (

−𝑥

𝑡
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ Φ(
𝑥

𝑠
, 0,

−𝑥

𝑢
) + Φ(0,

−𝑥

𝑡
,
𝑥

𝑢
) + Φ(

𝑥

𝑠
,
−𝑥

𝑡
, 0)

+
𝑠 + 𝑡 + 𝑢 + 3

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)

(29)

for all 𝑥 ∈ A. So the relation (29) can be rewritten as

󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝑓 (−𝑥)
󵄩󵄩󵄩󵄩

≤
1

𝑢
[Φ(

𝑢𝑥

𝑠
, 0, −𝑥) + Φ(0,

−𝑢𝑥

𝑡
, 𝑥)

+ Φ(
𝑢𝑥

𝑠
,
−𝑢𝑥

𝑡
, 0) +

𝑠 + 𝑡 + 𝑢 + 3

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)]

(30)

for all 𝑥 ∈ A. Therefore, by (26) and (30), we see that

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
𝑢

𝑠
)
𝑙

𝑓((
𝑠

𝑢
)
𝑙

𝑥) − (
𝑢

𝑠
)
𝑚

𝑓((
𝑠

𝑢
)
𝑚

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑗=𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(
𝑢

𝑠
)
𝑗

𝑓((
𝑠

𝑢
)
𝑗

𝑥) − (
𝑢

𝑠
)
𝑗+1

𝑓((
𝑠

𝑢
)
𝑗+1

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
𝑚−1

∑
𝑗=𝑙

(
𝑢

𝑠
)
𝑗

[
2

𝑠
Φ((

𝑠

𝑢
)
𝑗

𝑥, 0, − (
𝑠

𝑢
)
𝑗+1

𝑥)

+
2

𝑠
Φ(0, − (

𝑠

𝑢
)
𝑗+1 𝑢𝑥

𝑡
, (

𝑠

𝑢
)
𝑗+1

𝑥)

+
1

𝑠
Φ((

𝑠

𝑢
)
𝑗

𝑥, − (
𝑠

𝑢
)
𝑗+1 𝑢𝑥

𝑡
, 0)

+
𝑠 + 2𝑡 + 𝑢 + 3

𝑠 (𝑠 + 𝑡 + 𝑢 − 1)
Φ (0, 0, 0)]

(31)

for all nonnegative integers 𝑚, 𝑙 with 𝑚 > 𝑙 and all 𝑥 ∈ A.
This means that {(𝑢/𝑠)𝑛𝑓((𝑠/𝑢)𝑛𝑥)} is a Cauchy sequence.
Hence the sequence {(𝑢/𝑠)𝑛𝑓((𝑠/𝑢)𝑛𝑥)} converges. So one can
define a mapping L : A → A by L(𝑥) :=
lim
𝑛→∞

(𝑢/𝑠)𝑛𝑓((𝑠/𝑢)𝑛𝑥) for all 𝑥 ∈ A. Letting 𝑙 = 0 and
taking the limit𝑚 → ∞, we arrive at (22).

Now we claim that the mapping L is additive. By (30),
one notes

‖L (𝑥) +L (−𝑥)‖

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 ((

𝑠

𝑢
)
𝑛

𝑥) + 𝑓(−(
𝑠

𝑢
)
𝑛

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

1

𝑢
(
𝑢

𝑠
)
𝑛

⋅ [Φ((
𝑠

𝑢
)
𝑛 𝑢𝑥

𝑠
, 0, − (

𝑠

𝑢
)
𝑛

𝑥)

+ Φ(0, − (
𝑠

𝑢
)
𝑛 𝑢𝑥

𝑡
, (

𝑠

𝑢
)
𝑛

𝑥)

+ Φ((
𝑠

𝑢
)
𝑛 𝑢𝑥

𝑠
, − (

𝑠

𝑢
)
𝑛 𝑢𝑥

𝑡
, 0)

+
𝑠 + 𝑡 + 𝑢 + 3

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)]

(32)
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for all 𝑥 ∈ A. So we haveL(−𝑥) = −L(𝑥). By virtue of (25),
we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠L(

𝑥

𝑠
) + 𝑢L(

−𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 ((

𝑠

𝑢
)
𝑛 𝑥

𝑠
) + 𝑢𝑓(−(

𝑠

𝑢
)
𝑛 𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

[Φ((
𝑠

𝑢
)
𝑛 𝑥

𝑠
, 0, − (

𝑠

𝑢
)
𝑛 𝑥

𝑢
)

+
𝑡 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)] = 0

(33)

for all 𝑥 ∈ A, which means that 𝑠L(𝑥/𝑠) = 𝑢L(𝑥/𝑢). Using
the similar way with (27), we feel that 𝑡L(𝑥/𝑡) = 𝑢L(𝑥/𝑢).
Therefore, we see that

𝑠L(
𝑥

𝑠
) = 𝑡L(

𝑥

𝑡
) = 𝑢L(

𝑥

𝑢
) , (34)

which yields that

L (𝑥) =
𝑢

𝑠
L(

𝑠

𝑢
𝑥) = (

𝑢

𝑠
)
2

L((
𝑠

𝑢
)
2

𝑥) = ⋅ ⋅ ⋅

= (
𝑢

𝑠
)
𝑛

L((
𝑠

𝑢
)
𝑛

𝑥)

(35)

for all 𝑥 ∈ A. By (1), we obtain
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠L(

𝑥

𝑠
) + 𝑡L(

𝑦

𝑡
) − 𝑢L(

𝑥 + 𝑦

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑠𝑓 ((

𝑠

𝑢
)
𝑛 𝑥

𝑠
) + 𝑡𝑓 ((

𝑠

𝑢
)
𝑛 𝑦

𝑡
) + 𝑢𝑓(−(

𝑠

𝑢
)
𝑛 𝑥 + 𝑦

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

⋅ [Φ ((
𝑠

𝑢
)
𝑛 𝑥

𝑠
, (

𝑠

𝑢
)
𝑛 𝑦

𝑠
, − (

𝑠

𝑢
)
𝑛 𝑥 + 𝑦

𝑢
)

+
1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)] = 0

(36)

for all 𝑥, 𝑦 ∈ A. So we know that

𝑢L(
𝑥 + 𝑦

𝑢
) = 𝑠L(

𝑥

𝑠
) + 𝑡L(

𝑦

𝑡
) . (37)

Due to (34) and (37), we conclude that L(𝑥 + 𝑦) = L(𝑥) +
L(𝑦).

In particular, by (2), we note that
󵄩󵄩󵄩󵄩L (𝑥𝑦) − 𝑥𝑓 (𝑦) −L (𝑥) 𝑦

󵄩󵄩󵄩󵄩

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

⋅
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 ((

𝑠

𝑢
)
𝑛

𝑥𝑦) − (
𝑠

𝑢
)
𝑛

𝑥𝑓 (𝑦) − 𝑓((
𝑠

𝑢
)
𝑛

𝑥)𝑦
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

𝜑((
𝑠

𝑢
)
𝑛

𝑥, 𝑦) = 0

(38)

for all 𝑥, 𝑦 ∈ A. Thus we get
L (𝑥𝑦) = 𝑥𝑓 (𝑦) +L (𝑥) 𝑦. (39)

The conditions (35) and (39) guarantee that

(
𝑠

𝑢
)
𝑛

𝑥𝑓 (𝑦) + (
𝑠

𝑢
)
𝑛

L (𝑥) 𝑦

= L((
𝑠

𝑢
)
𝑛

𝑥 ⋅ 𝑦) = L(𝑥 ⋅ (
𝑠

𝑢
)
𝑛

𝑦)

= 𝑥𝑓((
𝑠

𝑢
)
𝑛

𝑦) + (
𝑠

𝑢
)
𝑛

L (𝑥) 𝑦,

(40)

which implies that

𝑥𝑓 (𝑦) = lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

𝑥𝑓((
𝑠

𝑢
)
𝑛

𝑦) = 𝑥L (𝑦) . (41)

Therefore, we obtain (24) andL(𝑥𝑦) = 𝑥L(𝑦) +L(𝑥)𝑦.
Now, to showuniqueness of themappingL, let us assume

that 𝑇 : A → A is another ring derivation satisfying (22).
Then, we have by (22) and (35)

‖L (𝑥) − 𝑇 (𝑥)‖

= lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
L((

𝑠

𝑢
)
𝑛

𝑥) − 𝑇((
𝑠

𝑢
)
𝑛

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

⋅ [
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
L((

𝑠

𝑢
)
𝑛

𝑥) − 𝑓((
𝑠

𝑢
)
𝑛

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 ((

𝑠

𝑢
)
𝑛

𝑥) −L((
𝑠

𝑢
)
𝑛

𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
]

≤ lim
𝑛→∞

2 (
𝑢

𝑠
)
𝑛

𝜂 ((
𝑠

𝑢
)
𝑛

𝑥) = 0

(42)

for all 𝑥 ∈ A, which means thatL = 𝑇.

From now on, we suppose that U := {𝑧 ∈ C : |𝑧| = 1}.

Corollary 5. Let A be a semiprime Banach algebra. Assume
that the mappings Φ : A3 → [0,∞) and 𝜑 : A2 → [0,∞)
satisfy the assumptions of Theorem 4. Suppose that 𝑓 : A →
A is a mapping such that the inequality (18) holds for all
𝑥, 𝑦, 𝑧 ∈ A and all 𝛼 ∈ U. Moreover, if a mapping 𝑓 satisfies
the conditions (2) and (20), then𝑓mapsA into the intersection
of its center 𝑍(A) and its radical rad (A).

Proof. Now we take 𝛼 = 1 in (18). Replacing (𝑓(𝑦) −L(𝑦))𝑥
instead of 𝑥 in (24), we see that (𝑓(𝑦) − L(𝑦))𝑥(𝑓(𝑦) −
L(𝑦)) = 0 for all 𝑥, 𝑦 ∈ A. Since A is semiprime, we
conclude that 𝑓 = L. So Theorem 4 provides that 𝑓 is a
ring derivation and one can obtain that 𝑓(𝑥) := lim

𝑛→∞

(𝑢/𝑠)𝑛𝑓((𝑠/𝑢)𝑛𝑥) for all 𝑥 ∈ A. Moreover, 𝑠𝑓(𝑥/𝑠) = 𝑢𝑓(𝑥/𝑢).
Replacing 𝑥 by 𝑥/𝑠 and setting 𝑦 = 0 and 𝑧 = −𝑥/𝑢 in (18),
then we get

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝛼𝑠𝑓 (

𝑥

𝑠
) + 𝑢𝑓(

−𝛼𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ Φ(
𝑥

𝑠
, 0,

−𝑥

𝑢
) +

𝑡 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0) .

(43)
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This implies that

lim
𝑛→∞

(
𝑢

𝑠
)
𝑛 󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝛼𝑠𝑓 ((

𝑠

𝑢
)
𝑛 𝑥

𝑠
) + 𝑢𝑓(𝛼(

𝑠

𝑢
)
𝑛 −𝑥

𝑢
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤ lim
𝑛→∞

(
𝑢

𝑠
)
𝑛

[Φ((
𝑠

𝑢
)
𝑛 𝑥

𝑠
, 0, (

𝑠

𝑢
)
𝑛 −𝑥

𝑢
)

+
𝑡 + 1

𝑠 + 𝑡 + 𝑢 − 1
Φ (0, 0, 0)] = 0.

(44)

Thus 𝑓(𝛼𝑥) = 𝛼𝑓(𝑥) for all 𝑥 ∈ A and all 𝛼 ∈ U. Clearly,
𝑓(0𝑥) = 0𝑓(𝑥). In addition, we prove that 𝑓(𝜆𝑥) = 𝜆𝑓(𝑥)
holds for all𝑥 ∈ A and all𝜆 ∈ C (see [21]). So𝑓 is linear. As in
the proof of Corollary 2, we find that𝑓 is a centralizing linear
derivation.Therefore Brešar’s result [19] yields our claim.

Theorem 6. Let A be a Banach algebra. Assume that map-
pings Φ : A3 → [0,∞) and 𝜑 : A2 → [0,∞) satisfy the
assumptions

(1) 𝜌(𝑥) = ∑
∞

𝑗=0
(1/𝑢)(𝑠/𝑢)𝑗[Φ(−(𝑢/𝑠)𝑗+1𝑥, 0, (𝑢/𝑠)𝑗𝑥)

+ (𝑠/𝑢)(Φ((𝑢/𝑠)𝑗+2𝑥, 0, −(𝑢/𝑠)𝑗+1𝑥) + Φ(0,
−(𝑢/𝑠)𝑗+1(𝑢𝑥/𝑡), (𝑢/𝑠)𝑗+1𝑥) + Φ((𝑢/𝑠)𝑗+2𝑥,
−(𝑢/𝑠)𝑗+1(𝑢𝑥/𝑡), 0))] < ∞, (𝑥 ∈ A),

(2) lim
𝑛→∞

(𝑠/𝑢)𝑛Φ((𝑢/𝑠)𝑛(𝑥), (𝑢/𝑠)𝑛𝑦, (𝑢/𝑠)𝑛𝑧) = 0,
(𝑥, 𝑦 ∈ A), lim

𝑛→∞
(𝑠/𝑢)2𝑛𝜑((𝑢/𝑠)𝑛𝑥, 𝑦) =

0, (𝑥, 𝑦 ∈ A),
where 𝑠, 𝑡, and 𝑢 are fixed positive real numbers with 𝑠 > 𝑢
and 𝑠 + 𝑡 + 𝑢 > 1. Suppose that 𝑓 : A → A is a mapping
subjected to inequalities (1) and (2). Then there exists a unique
ring derivationL : A → A such that the inequality

󵄩󵄩󵄩󵄩L (𝑥) − 𝑓 (𝑥)
󵄩󵄩󵄩󵄩 ≤ 𝜌 (𝑥) (45)

for all 𝑥 ∈ A. Moreover, (24) holds.

Proof. Letting 𝑥 = 𝑦 = 𝑧 = 0 in (1), we get ‖𝑓(0)‖ ≤
(1/(𝑠 + 𝑡 + 𝑢 − 1))Φ(0, 0, 0). By assumption of Φ, we should
have Φ(0, 0, 0) = 0. Thus 𝑓(0) = 0. Replacing 𝑥 by −𝑢𝑥 in
(25) and then dividing 𝑢 in the resulting inequality,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 (𝑥) +

𝑠

𝑢
𝑓(

−𝑢𝑥

𝑠
)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤

1

𝑢
Φ(

−𝑢𝑥

𝑠
, 0, 𝑥) (46)

for all 𝑥 ∈ A. Starting from (25) and employing the same
argument in the proof of the previous theorem, we obtain
󵄩󵄩󵄩󵄩𝑓 (𝑥) + 𝑓 (−𝑥)

󵄩󵄩󵄩󵄩

≤
1

𝑢
[Φ(

𝑢𝑥

𝑠
, 0, −𝑥) + Φ(0,

−𝑢𝑥

𝑡
, 𝑥) + Φ(

𝑢𝑥

𝑠
,
−𝑢𝑥

𝑡
, 0)]

(47)

for all 𝑥 ∈ A. The rest of proof can be carried out similarly as
the corresponding part of Theorem 4.

Corollary 7. Let A be a semiprime Banach algebra. Assume
that a mapping Φ : A3 → [0,∞) satisfies the assumptions
of Theorem 6 and that 𝑓 : A → A is a centralizing mapping
such that the inequality (18) holds for all 𝑥, 𝑦, 𝑧 ∈ A and all
𝛼 ∈ U. Suppose that amapping𝑓 is fulfilled with the inequality
(19).Then𝑓mapsA into the intersection of its center𝑍(A) and
its radical rad (A).

Proof. Employing the same method in the proof of
Corollary 5, we find that 𝑓 is linear derivation. According to
Brešar’s result [19], we get the result.

Corollary 8. Let A be a semiprime Banach algebra with
identity. Suppose that mappings Φ : A2 → [0,∞) and 𝜑 :

A2 → [0,∞) fulfilled the assumptions of Theorem 4 (resp.,
Theorem 6). Assume that 𝑓

1
: A → A and 𝑓

2
: A → A are

mappings such that, for each 𝑘 = 0, 1,
󵄩󵄩󵄩󵄩𝛼𝑠𝑓𝑘 (𝑥) + 𝑡𝑓

𝑘
(𝑦) + 𝑢𝑓

𝑘
(𝛼𝑧)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓𝑘 (𝑠𝑥 + 𝑡𝑦 + 𝑢𝑧)

󵄩󵄩󵄩󵄩 + Φ (𝑥, 𝑦, 𝑧) ,

󵄩󵄩󵄩󵄩𝑓𝑘 (𝑥𝑦) − 𝑥𝑓
𝑘
(𝑦) − 𝑓

𝑘
(𝑥) 𝑦

󵄩󵄩󵄩󵄩

≤ 𝜑 (𝑥, 𝑦)

(48)

for all 𝑥, 𝑦, 𝑧 ∈ A and all 𝛼 ∈ U. If 𝑓
1
(𝑥)𝑥 + 𝑥𝑓

2
(𝑥) ∈ 𝑍(A)

for all 𝑥 ∈ A, then 𝑓
1
and 𝑓
2
mapA into the intersection of its

center 𝑍(A) and its radical rad (A).

Proof. Employing the same argument in the proof of the pre-
vious corollaries, we see that 𝑓

1
and 𝑓
2
are linear derivations.

Chaudhry andThaheem’s result [20] guarantees that𝑓
1
(A) ⊆

𝑍(A) and 𝑓
2
(A) ⊆ 𝑍(A). This implies that 𝑓

1
and 𝑓

2
are

centralizing mappings. Hence, by Brešar’s result [19], we see
that 𝑓

1
and 𝑓

2
mapA into 𝑍(A) ∩ rad(A).
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