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A class of impulsive Cohen-Grossberg neural networks with time delay in the leakage term is investigated. By using the method of
M-matrix and the technique of delay differential inequality, the attracting and invariant sets of the networks are obtained.The results
in this paper extend and improve the earlier publications. An example is presented to illustrate the effectiveness of our conclusion.

1. Introduction

Cohen-Crossberg neural network model, which is initially
proposed byCohen andGrossberg [1] in 1983, has been found
successful applications in many fields such as pattern recog-
nition, parallel computing, associative memory, signal and
image processing, and combinatorial optimization. Hence,
there has been increasing interest in studying the stability and
asymptotic behavior of this model with delays, impulses, and
unique equilibrium, and many significant results have been
obtained (see, e.g., [2–6]). However, the equilibrium point
sometimes does not exist in many real physical systems, so it
is an interesting subject to discuss the attracting and invariant
sets of the neural networks [7, 8].

On the other hand, a leakage delay, which is the time delay
in the leakage term and a factor affecting the stability of the
system, has attracted considerable attentions (see, e.g., [9–
13]). However, to the best of our knowledge, so far there are
few results on the attracting and invariant sets of the Cohen-
Grossberg neural networks with leakage delay. Motivated
by the above discussion, in this paper, we investigate the
attracting and quasi-invariant sets of a class of impulsive
Cohen-Grossberg neural networks with leakage delay. By
using the method of M-matrix and the technique of delay
differential inequality, the attracting and invariant sets of the

addressed networks are obtained. The results in this paper
extend and improve the earlier publications. An example is
presented to illustrate the effectiveness of our conclusion.

2. Model Description and Preliminaries

Let 𝑅𝑛 be the space of 𝑛-dimensional real column vectors,
N ≜ {1, 2, . . . , 𝑛}, 𝑅

+
≜ [0, +∞), 𝑁 ≜ {1, 2, . . .}, and 𝑅

𝑚×𝑛

denotes the set of 𝑚 × 𝑛 real matrices. Usually, 𝐸 denotes an
𝑛 × 𝑛 unit matrix. For 𝐴, 𝐵 ∈ 𝑅

𝑚×𝑛 or 𝐴, 𝐵 ∈ 𝑅
𝑛, the notation

𝐴 ≥ 𝐵 (𝐴 ≤ 𝐵, 𝐴 > 𝐵, 𝐴 < 𝐵) means that each pair of
corresponding elements of 𝐴 and 𝐵 satisfies the inequality
“≥ (≤, >, <)”. Particularly, 𝐴 is called a nonnegative matrix
if 𝐴 ≥ 0, and 𝑧 ∈ 𝑅

𝑛 is called a positive vector if 𝑧 ≥ 0.
Let 𝜏 > 0; for 𝑥(𝑡) = (𝑥

1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇

: 𝑅 → 𝑅
𝑛,

we define

[𝑥(𝑡)]
+

= (
󵄨󵄨󵄨󵄨𝑥1 (𝑡)

󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2 (𝑡)

󵄨󵄨󵄨󵄨 , . . . ,
󵄨󵄨󵄨󵄨𝑥𝑛 (𝑡)

󵄨󵄨󵄨󵄨)
𝑇

,

[𝑥
𝑖
(𝑡)]

𝜏
= sup

−𝜏≤𝑠≤0

{𝑥
𝑖
(𝑡 + 𝑠)} ,

[𝑥(𝑡)]
𝜏
= ([𝑥

1
(𝑡)]

𝜏
, [𝑥

2
(𝑡)]

𝜏
, . . . , [𝑥

𝑛
(𝑡)]

𝜏
)
𝑇

,

[𝑥(𝑡)]
+

𝜏
= [[𝑥 (𝑡)]

+

]
𝜏
.

(1)
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2 Abstract and Applied Analysis

𝐶[𝑋, 𝑌] denotes the space of continuous mappings from
the topological space 𝑋 to the topological space 𝑌. Particu-
larly, let 𝐶 ≜ 𝐶[[−𝜏, 0], 𝑅

𝑛

].
𝑃𝐶

1

≜ {𝜙 : [−𝜏, 0] → 𝑅
𝑛 is continuous and with

continuous derivative everywhere except at finite number of
point 𝑡 atwhich𝜙(𝑡+),𝜙(𝑡−), ̇𝜙(𝑡

+

), and ̇𝜙(𝑡
−

) exist and𝜙(𝑡+) =
𝜙(𝑡), ̇𝜙(𝑡

+

) = ̇𝜙(𝑡), where ̇𝜙 denotes the derivative of 𝜙}. 𝑃𝐶1

is a space of piecewise right-hand continuous functions with
the norm ‖𝜙‖ = sup

−𝜏≤𝑠≤0
|𝜙(𝑠)|, 𝜙 ∈ 𝑃𝐶

1, where | ⋅ | is a norm
in 𝑅

𝑛.
𝑃𝐶[[𝑡

0
,∞), 𝑅

𝑚×𝑛

] ≜ {𝜓 : [𝑡
0
,∞) → 𝑅

𝑚×𝑛

| 𝜓(𝑡) is
continuous at 𝑡 ̸= 𝑡

𝑘
, 𝜓(𝑡+

𝑘
) and 𝜓(𝑡

−

𝑘
) exist, 𝜓(𝑡

𝑘
) = 𝜓(𝑡

+

𝑘
),

for 𝑘 ∈ 𝑁}.
In this paper, we consider the followingCohen-Grossberg

neural networks with impulses and time delays:

𝑥̇
𝑖
(𝑡) = −𝛼

𝑖
(𝑡, 𝑥 (𝑡))(𝛽

𝑖
(𝑥

𝑖
(𝑡 − 𝜎)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) + 𝐼

𝑖
) ,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖𝑘
= 𝑥

𝑖
(𝑡
+

𝑘
) − 𝑥

𝑖
(𝑡
−

𝑘
)

= ℎ
𝑖𝑘
(𝑥

1
(𝑡
−

𝑘
) , 𝑥

2
(𝑡
−

𝑘
) , . . . , 𝑥

𝑛
(𝑡
−

𝑘
)) , 𝑘 ∈ 𝑁,

𝑥
𝑖
(𝑡
0
+ 𝑠) = 𝜙

𝑖
(𝑠) , −𝜏 < 𝑠 ≤ 0, 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑛 corresponds to the number of units in a neural
network; 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th unit at time

𝑡; 𝑓
𝑗
and 𝑔

𝑗
are the activation functions of the 𝑗th unit; 𝜏

𝑖𝑗
(𝑡)

denotes the transmission delay and satisfies 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤

𝑟 (𝑟 is a constant); 𝜎 > 0 is the leakage delay. Consider
𝜏 = max{𝜎, 𝑟}; 𝛼

𝑖
(𝑡, 𝑥(𝑡)) > 0 represents the amplification

function of the 𝑖th neuron;𝛽
𝑖
(𝑥

𝑖
(𝑡)) is the behaved function at

time 𝑡. Consider (𝑠) = (𝜙
1
(𝑠), . . . , 𝜙

𝑛
(𝑠))

𝑇

∈ 𝑃𝐶
1

[[−𝜏, 0], 𝑅
𝑛

].
The fixed impulsive moments 𝑡

𝑘
(𝑘 ∈ 𝑁) satisfy 𝜏 < 𝑡

1
< 𝑡

2
<

⋅ ⋅ ⋅ and lim
𝑘→∞

𝑡
𝑘
= ∞.

Definition 1 (see [14]). A function 𝑥(𝑡) : [𝑡
0
− 𝜏,∞) →

𝑅
𝑛 is said to be a solution of (2) through (𝑡

0
, 𝜙), if 𝑥(𝑡) ∈

𝑃𝐶[[𝑡
0
,∞), 𝑅

𝑛

] as 𝑡 ≥ 𝑡
0
, and satisfies (2) with the initial

condition

𝑥 (𝑡
0
+ 𝑠) = 𝜙 (𝑠) , 𝑠 ∈ [−𝜏, 0] , 𝜙 ∈ 𝑃𝐶

1

. (3)

Throughout the paper, we always assume that, for any
𝜙 ∈ 𝑃𝐶

1, system (2) has at least one solution through (𝑡
0
, 𝜙),

denoted by 𝑥(𝑡, 𝑡
0
, 𝜙) or 𝑥

𝑡
(𝑡
0
, 𝜙) (simply 𝑥(𝑡) and 𝑥

𝑡
if no

confusion should occur), where 𝑥
𝑡
(𝑡
0
, 𝜙) = 𝑥(𝑡 + 𝑠, 𝑡

0
, 𝜙) ∈

𝑃𝐶, 𝑠 ∈ [−𝜏, 0].

Definition 2 (see [7]). The set 𝑆 ⊂ 𝑃𝐶
1 is called a positive

invariant set of (2), if for any initial value 𝜙 ∈ 𝑆 we have the
solution 𝑥

𝑡
(𝑡
0
, 𝜙) ∈ 𝑆 for 𝑡 ≥ 𝑡

0
.

Definition 3 (see [7]). The set 𝑆 ⊂ 𝑃𝐶
1 is called a quasi-

invariant set of (2), if there exist a matrix𝑊 ≥ 0 and a vector
𝑏 ≥ 0 such that, for any 𝜙 ∈ 𝑆, there exists a vector 𝑧 such that
the solution 𝑥(𝑡) = 𝑥

𝑡
(𝑡
0
, 𝜙) of (2) satisfies [𝑥(𝑡)]+

𝜏
≤ 𝑊𝑧 + 𝑏,

𝑡 ≥ 𝑡
0
, as [𝜙]+

𝜏
≤ 𝑧. Obviously, the set 𝑆 is an invariant set of

(2) if𝑊 = 𝐸 and 𝑏 = 0.

Definition 4 (see [7]). The set 𝑆 ⊂ 𝑃𝐶
1 is called a global

attracting set of (2), if for any initial value 𝜙 ∈ 𝑃𝐶
1 the

solution 𝑥
𝑡
(𝑡
0
, 𝜙) converges to 𝑆 as 𝑡 → +∞. That is,

dist (𝑥
𝑡
, 𝑆) 󳨀→ 0, 𝑡 󳨀→ +∞, (4)

where dist(𝜑, 𝑆) = inf
𝜓∈𝑆

dist(𝜑, 𝜓), dist(𝜑, 𝜓) =

sup
𝑠∈[−𝜏,0]

|𝜑(𝑠) − 𝜓(𝑠)| for 𝜑 ∈ 𝑃𝐶
1.

Definition 5 (see [8]). The zero solution of (2) is said to
be globally exponentially stable if for any solution 𝑥(𝑡, 𝑡

0
, 𝜙)

there exist constants 𝜆 > 0 and 𝜅 ≥ 1 such that |𝑥(𝑡, 𝑡
0
, 𝜙)| ≤

𝜅‖𝜙‖𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
.

Definition 6 (see [15]). Let the matrix 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

have
nonpositive off-diagonal elements (i.e., 𝑑

𝑖𝑗
≤ 0, 𝑖 ̸= 𝑗); then

each of the following conditions is equivalent to the statement
that𝐷 is a nonsingularM-matrix.

(i) All the leading principle minors of𝐷 are positive.
(ii) 𝐷 = 𝐶 − 𝐺 and 𝜌(𝐶

−1

𝐺) < 1, where 𝐺 ≥ 0 and 𝐶 =

diag{𝑐
1
, . . . , 𝑐

𝑛
}.

(iii) The diagonal elements of 𝐷 are all positive and there
exists a positive vector𝑑 such that𝐷𝑑 > 0 or𝐷𝑇

𝑑 > 0.

For a nonsingular matrix 𝐷 ∈ 𝑅
𝑛×𝑛, we denote Ω

𝑀
(𝐷) ≜

{𝑧 ∈ 𝑅
𝑛

, 𝑧 > 0 | 𝐷𝑧 > 0}.

Lemma 7 (see [14]). For a nonsingularM-matrix 𝐷, Ω
𝑀
(𝐷)

is nonempty, and for any 𝑧
1
, 𝑧

2
∈ Ω

𝑀
(𝐷) we have

𝑘
1
𝑧
1
+ 𝑘

2
𝑧
2
∈ Ω

𝑀
(𝐷) ∀𝑘

1
, 𝑘

2
> 0. (5)

SoΩ
𝑀
(𝐷) is a cone without conical surface in 𝑅𝑛. We call it an

“M-cone.”

Lemma 8 (see [16]). Let 𝑡
0
≤ 𝑏 ≤ +∞ and 𝑢(𝑡) ∈ [[𝑡

0
, 𝑏), 𝑅

𝑛

]

satisfy

𝐷
+

[𝑢(𝑡)]
+

≤ 𝑅 (𝑡, 𝑢 (𝑡)) {𝑃 [𝑢(𝑡)]
+

+ 𝑄 [𝑢(𝑡)]
+

𝜏
+ 𝐼} , 𝑡 ∈ [𝑡

0
, 𝑏) ,

𝑢 (𝑡
0
+ 𝑠) ∈ 𝑃𝐶, 𝑠 ∈ [−𝜏, 0] ,

(6)

where 𝑃 = (𝑝
𝑖𝑗
)
𝑛×𝑛

, 𝑝
𝑖𝑗
≥ 0, (𝑖 ̸= 𝑗), 𝑄 = (𝑞

𝑖𝑗
)
𝑛×𝑛

≥ 0, 𝐼 =

(𝐼
1
, . . . , 𝐼

𝑛
)
𝑇

≥ 0, 𝑅(𝑡, 𝑢) = diag(𝑅
1
(𝑡, 𝑢), . . . , 𝑅

𝑛
(𝑡, 𝑢)), and

𝑅
𝑖
(𝑡, 𝑢) ∈ 𝐶[[𝑡

0
, 𝑏) × 𝑅

𝑛
, 𝑅

+
], 𝑖 ∈ N. Suppose that −(𝑃 + 𝑄) is

a nonsingularM-matrix.
(1) If the initial condition satisfies

[𝑢(𝑡)]
+

≤ 𝑥
∗

, 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
, (7)
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where 𝑥
∗

= (𝑥
∗

1
, . . . , 𝑥

∗

𝑛
)
𝑇

= −𝑑(𝑃 + 𝑄)
−1

𝐼, 𝑑 ≥ 1, then
[𝑢(𝑡)]

+

≤ 𝑥
∗, for 𝑡 ≥ 𝑡

0
.

(2) Suppose that there exist a scalar 𝜆 > 0 and a vector
𝑧 = (𝑧

1
, . . . , 𝑧

𝑛
)
𝑇

> 0 such that

(𝜆𝐸 + 𝑃 + 𝑄𝑒
𝜆𝐻𝜏

) 𝑧 ≤ 0, (8)

where

𝐻 = sup
𝑡≥𝑡0

max
(𝑠,[𝑢]
+
)∈[𝑡−𝜏,𝑡]×(0,𝑥

∗
]

𝑅̂ (𝑠, 𝑢 (𝑠)) < ∞,

0 ≤ 𝑅̂ (𝑡, 𝑢 (𝑡)) ≤ min
1≤𝑖≤𝑛

{𝑅
𝑖
(𝑡, 𝑢 (𝑡))} .

(9)

If the initial condition satisfies

[𝑢(𝑡)]
+

≤ 𝑧𝑒
−𝜆∫

𝑡

𝑡0

𝑅̂(𝑠,𝑢(𝑠))𝑑𝑠

− (𝑃 + 𝑄)
−1

𝐼, 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
,

(10)

then

[𝑢(𝑡)]
+

≤ 𝑧𝑒
−𝜆∫

𝑡

𝑡0

𝑅̂(𝑠,𝑢(𝑠))𝑑𝑠

− (𝑃 + 𝑄)
−1

𝐼, 𝑡 ≥ 𝑡
0
. (11)

3. Main Results

In this paper, we always suppose the following.

(A1) 𝛼
𝑖
(𝑡, 𝑥(𝑡)) ∈ 𝐶[[𝑡

0
,∞) × 𝑅

𝑛

, [0, 𝛼
𝑖
]], where 𝛼

𝑖
> 0 is a

constant, 𝑖 ∈ N.
(A2) 𝛽

𝑖
(⋅) is differentiable, and there exist constants𝛽󸀠

𝑖
, 𝛽

𝑖
>

0 such that 0 < 𝛽
󸀠

𝑖
< ̇𝛽

𝑖
(𝑡) < 𝛽

𝑖
, 𝑖 ∈ N, for any 𝑡 ∈

[𝑡
0
, +∞).

(A3) 𝑓
𝑖
(⋅) and 𝑔

𝑖
(⋅) are Lipschitz continuous; that is, there

exist constants 𝑘
𝑖
and 𝑙

𝑖
such that, for any 𝑥

1
, 𝑥

2
∈ 𝑅,

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑥1) − 𝑓
𝑖
(𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝑘

𝑖

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑥1) − 𝑔
𝑖
(𝑥

2
)
󵄨󵄨󵄨󵄨 ≤ 𝑙

𝑖

󵄨󵄨󵄨󵄨𝑥1 − 𝑥
2

󵄨󵄨󵄨󵄨 .

(12)

(A4) −(𝑃̂ + 𝑄) is a nonsingularM-matrix, where

𝑃̂ = (𝑝
𝑖𝑗
)
𝑛×𝑛

, 𝑄 = (𝑞
𝑖𝑗
)
𝑛×𝑛

,

𝑝
𝑖𝑖
= −𝛽

󸀠

𝑖
+
󵄨󵄨󵄨󵄨𝑎𝑖𝑖

󵄨󵄨󵄨󵄨 𝑘𝑖, 𝑝
𝑖𝑗
=
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑗
(𝑖 ̸= 𝑗) ,

𝑞
𝑖𝑖
= 𝜎𝛼

𝑖
𝛽
2

𝑖
+ (1 + 𝜎𝛼

𝑖
𝛽
𝑖
)
󵄨󵄨󵄨󵄨𝑏𝑖𝑖

󵄨󵄨󵄨󵄨 𝑙𝑖 + 𝜎𝛼
𝑖
𝛽
𝑖

󵄨󵄨󵄨󵄨𝑎𝑖𝑖
󵄨󵄨󵄨󵄨 𝑘𝑖,

𝑞
𝑖𝑗
= (1 + 𝜎𝛼

𝑖
𝛽
𝑖
)
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗
+ 𝜎𝛼

𝑖
𝛽
𝑖

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑗
.

(13)

(A5) [𝑥 + 𝐻
𝑘
(𝑥)]

+

≤ Γ
𝑘
[𝑥]

+, 𝑘 ∈ 𝑁, for any 𝑥 ∈ 𝑅
𝑛, where

𝐻
𝑘
(⋅) = (ℎ

1𝑘
(⋅), . . . , ℎ

𝑛𝑘
(⋅))

𝑇, Γ
𝑘
= (𝛾

(𝑘)

𝑖𝑗
)
𝑛×𝑛

≥ 0.

(A6) For 𝑧 ∈ Ω
𝑀
(−𝑃̂ − 𝑄),

Γ
𝑘
𝑧 ≤ 𝜇

𝑘
𝑧,

Γ
𝑘
(−𝑃̂ − 𝑄)

−1

𝐼
∗

≤ V
𝑘
(−𝑃̂ − 𝑄)

−1

𝐼
∗

,

(14)

where 𝐼
∗

= (𝐼
∗

1
, 𝐼

∗

1
, . . . , 𝐼

∗

𝑛
)
𝑇, 𝐼∗

𝑖
= (1 + 𝜎𝛼

𝑖
𝛽
𝑖
)(|𝛽

𝑖
(0)| +

∑
𝑛

𝑗=1
(|𝑎

𝑖𝑗
||𝑓

𝑗
(0)| + |𝑏

𝑖𝑗
||𝑔

𝑗
(0)|) + |𝐼

𝑖
|) + 𝜎𝑚

𝑖
𝛽
𝑖
, and 𝜇

𝑘
, V

𝑘
≥ 1

satisfy

ln 𝜇
𝑘
≤ 𝜆∫

𝑡𝑘

𝑡𝑘−1

𝛼̂ (𝑠, 𝑥 (𝑠)) 𝑑𝑠, V =
𝑛

∑

𝑘=1

ln V
𝑘
< ∞, 𝑘 ∈ 𝑁,

(15)

where 𝛼̂(𝑠, 𝑥(𝑠)) ≜ min
1≤𝑖≤𝑛

{𝛼
𝑖
(𝑠, 𝑥(𝑠))}.

Theorem9. Assume that (A1)–(A6) hold.Then, for any 𝑑 ≥ 1,
the set 𝑆 ̂

𝑑
= {𝜙 ∈ 𝑃𝐶

1

| [𝜙]
+

𝜏
≤ 𝑑(−𝑃̂ − 𝑄)

−1

𝐼
∗

} is a quasi-
invariant set of (2).

Proof. Combining with the middle value theorem, from (2)
we can get

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝛼

𝑖
(𝑡, 𝑥 (𝑡))(𝛽

𝑖
(𝑥

𝑖
(𝑡 − 𝜎)) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) + 𝐼

𝑖
)

= 𝛼
𝑖
(𝑡, 𝑥 (𝑡))(−𝛽

𝑖
(𝑥

𝑖
(𝑡 − 𝜎)) + 𝛽

𝑖
(𝑥

𝑖
(𝑡))

− 𝛽
𝑖
(𝑥

𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) − 𝐼

𝑖
)

= 𝛼
𝑖
(𝑡, 𝑥 (𝑡))(𝜎 ̇𝛽

𝑖
(𝑥

𝑖
(𝑡 − (1 − 𝜃) 𝜎))

× 𝑥̇
𝑖
(𝑡 − (1 − 𝜃) 𝜎)

− 𝛽
𝑖
(𝑥

𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑖
(𝑥

𝑖
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) − 𝐼

𝑖
) ,

(16)

where 0 < 𝜃 < 1.

Case 1. Let us first consider 𝑡
0
≤ 𝑡 ≤ 𝑡

0
+ (1 − 𝜃)𝜎. In this case

𝑥̇
𝑖
(𝑡 − (1 − 𝜃)𝜎) = ̇𝜙

𝑖
(𝑡 − (1 − 𝜃)𝜎) = ̇𝜙

𝑖
(𝑠), 𝑠 ∈ [−𝜏, 0]. Notice

that 𝜙 ∈ 𝑃𝐶
1; there exist 𝑚

𝑖
> 0 such that [ ̇𝜙

𝑖
(𝑠)]

𝜏
≤ 𝑚

𝑖
, for

all 𝑖 ∈ N.
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From (A1)–(A4) and (16), we have

𝐷
+ 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)

󵄨󵄨󵄨󵄨 = sgn (𝑥
𝑖
(𝑡))

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

≤ 𝛼
𝑖
(𝑡, 𝑥 (𝑡)) [

[

−𝛽
󸀠

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 +

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏

+ (
󵄨󵄨󵄨󵄨𝛽𝑖 (0)

󵄨󵄨󵄨󵄨 +

𝑛

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨
)

+
󵄨󵄨󵄨󵄨𝐼𝑖
󵄨󵄨󵄨󵄨 + 𝜎𝛽𝑚

𝑖𝑖

]

]

≤ 𝛼
𝑖
(𝑡, 𝑥 (𝑡))(

𝑛

∑

𝑗=1

𝑝
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

𝑞
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎
+ 𝐼

∗

𝑖
) .

(17)

Hence,

𝐷
+

[𝑥 (𝑡)]
+

≤ 𝛼 (𝑡, 𝑥 (𝑡)) (𝑃̂ [𝑥(𝑡)]
+

+ 𝑄 [𝑥(𝑡)]
+

𝜏+(1−𝜃)𝜎
+ 𝐼

∗

) ,

𝑡
0
≤ 𝑡 ≤ 𝑡

0
+ (1 − 𝜃) 𝜎.

(18)

Case 2. Let us consider 𝑡 ≥ 𝑡
0
+ (1 − 𝜃)𝜎. From (16), we get

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡
= −𝛼

𝑖
(𝑡, 𝑥 (𝑡))

×
{

{

{

𝜎 ̇𝛽
𝑖
( 𝑥

𝑖
(𝑡 − (1 − 𝜃) 𝜎)

× [

[

−𝛼
𝑖
(𝑥

𝑖
(𝑡 − (1 − 𝜃) 𝜎))

× (𝛽
𝑖
(𝑥

𝑖
(𝑡 − (2 − 𝜃) 𝜎)))

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡 − (1 − 𝜃) 𝜎))

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − (1 − 𝜃) 𝜎))

−𝜏
𝑖𝑗
(𝑡 − (1 − 𝜃) 𝜎) ) + 𝐼

𝑖
)]

]

− 𝛽
𝑖
(𝑥

𝑖
(𝑡)) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥

𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥

𝑗
(𝑡 − 𝜏

𝑖𝑗
(𝑡))) − 𝐼

𝑖

}

}

}

.

(19)

Then from (A1)–(A4), we have

𝐷
+ 󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)

󵄨󵄨󵄨󵄨 = sgn (𝑥
𝑖
(𝑡))

𝑑𝑥
𝑖
(𝑡)

𝑑𝑡

≤ 𝛼
𝑖
(𝑡, 𝑥 (𝑡))

×
{

{

{

𝜎𝛽
𝑖

[

[

𝛼
𝑖
(𝛽

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎

+
󵄨󵄨󵄨󵄨𝛽𝑖 (0)

󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
(𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨
)

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
(𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨
)

+
󵄨󵄨󵄨󵄨𝐼𝑖
󵄨󵄨󵄨󵄨 )

]

]

− 𝛽
󸀠

𝑖

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝛽𝑖 (0)
󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑎
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
(𝑘

𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨
)

+

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
(𝑥

𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎

+
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(0)

󵄨󵄨󵄨󵄨󵄨
) +

󵄨󵄨󵄨󵄨𝐼
∗

𝑖

󵄨󵄨󵄨󵄨

}

}

}

= 𝛼
𝑖
(𝑡, 𝑥 (𝑡))(

𝑛

∑

𝑗=1

𝑝
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨

+

𝑛

∑

𝑗=1

𝑞
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
𝑥
𝑗
(𝑡)

󵄨󵄨󵄨󵄨󵄨𝜏+(1−𝜃)𝜎
+ 𝐼

∗

𝑖
) .

(20)
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From (17) and (20), we get

𝐷
+

[𝑥 (𝑡)]
+

≤ 𝛼 (𝑡, 𝑥 (𝑡)) (𝑃̂ [𝑥(𝑡)]
+

+ 𝑄 [𝑥(𝑡)]
+

𝜏+(1−𝜃)𝜎
+ 𝐼

∗

) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 ∈ 𝑁.

(21)

For the initial conditions 𝑥(𝑡
0
+ 𝑠) = 𝜙(𝑠), 𝑠 ∈ [−𝜏, 0],

where 𝜙(𝑠) ∈ 𝑆 ̂
𝑑
, we have

[𝑥 (𝑡)]
+

≤ −𝑑 (𝑃̂ + 𝑄)
−1

𝐼
∗

, 𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
. (22)

By (21) and Lemma 8, we have

[𝑥 (𝑡)]
+

≤ −𝑑 (𝑃̂ + 𝑄)
−1

𝐼
∗

, 𝑡
0
≤ 𝑡 ≤ 𝑡

1
. (23)

Suppose that for all𝑚 = 1, 2, . . . , 𝑘 the inequalities

[𝑥 (𝑡)]
+

≤ −V
0
. . . V

𝑚−1
𝑑 (𝑃̂ + 𝑄)

−1

𝐼
∗

, 𝑡
𝑚−1

≤ 𝑡 < 𝑡
𝑚
,

(24)

hold, where V
0
= 1. Then, from (A5) and (A6),

[𝑥 (𝑡
𝑘
)]
+

= [𝑥(𝑡
−

𝑘
) + 𝐻

𝑘
(𝑥(𝑡

−

𝑘
))]

+

≤ Γ
𝑘
[𝑥(𝑡

−

𝑘
)]
+

≤ Γ
𝑘
(V

0
⋅ ⋅ ⋅ V

𝑘−1
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗

)

≤ V
0
⋅ ⋅ ⋅ V

𝑘
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗

.

(25)

This, together with V
𝑘
≥ 1, leads to

[𝑥(𝑡)]
+

≤ V
0
⋅ ⋅ ⋅ V

𝑘
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗

, for 𝑡 ∈ [𝑡
𝑘
− 𝜏, 𝑡

𝑘
] .

(26)

On the other hand,

𝐷
+

[𝑥 (𝑡)]
+

≤ 𝛼 (𝑡, 𝑥 (𝑡)) (𝑃̂ [𝑥 (𝑡)]
+

+ 𝑄 [𝑥 (𝑡)]
+

𝜏+(1−𝜃)𝜎

+ V
0
⋅ ⋅ ⋅ V

𝑘
𝐼
∗

) , 𝑡 ̸= 𝑡
𝑘
.

(27)

It follows from (A4), (26), (27), and Lemma 8 that

[𝑥(𝑡)]
+

≤ V
0
⋅ ⋅ ⋅ V

𝑘
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗ for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1

) . (28)

By the induction, we can conclude that

[𝑥(𝑡)]
+

≤ V
0
⋅ ⋅ ⋅ V

𝑘
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗

, 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 ∈ 𝑁.

(29)

From (A6),

V
0
⋅ ⋅ ⋅ V

𝑘
≤ 𝑒

V
, (30)

and we have

[𝑥(𝑡)]
+

≤ 𝑒
V
𝑑 (−𝑃̂ − 𝑄)

−1

𝐼
∗

, 𝑡 ∈ [𝑡
0
, 𝑡
𝑘
) , 𝑘 ∈ 𝑁. (31)

This implies that the conclusion holds and the proof is
complete.

Theorem 10. Assume that (A1)–(A6) hold. Then the set 𝑆 =

{𝜙 ∈ 𝑃𝐶
1

| [𝜙]
+

𝜏
≤ 𝑒

V
(−𝑃̂ − 𝑄)

−1

𝐼
∗

} is a global attracting set
of (2).

Proof. By a similar proof of Theorem 9, we can get (21) and
(31).

By continuity, we can find 𝜆 > 0 and an enough small
𝜀 > 0 such that

((𝜆 + 𝜀) 𝐸 + 𝑃̂ + 𝑄𝑒
𝜆𝐻(𝜏+𝜎)

) 𝑧 < 0, (32)

where

𝐻 ≜ sup
𝑡≥𝑡0

max
𝑠∈[𝑡−𝜏,𝑡],𝑥∈[0,𝑥

∗
]

𝛼̂ (𝑠, 𝑥 (𝑠)) < ∞,

𝛼̂ (𝑠, 𝑥 (𝑠)) ≜ min
1≤𝑖≤𝑛

{𝛼
𝑖
(𝑠, 𝑥 (𝑠))} ,

𝑥
∗

= −𝑒
2V
(−𝑃̂ − 𝑄)

−1

𝐼
∗

.

(33)

For the initial conditions 𝑥(𝑡
0
+ 𝑠) = 𝜙(𝑠), 𝑠 ∈ [−𝜏, 0],

where 𝜙(𝑠) ∈ 𝑃𝐶
1, we have

[𝑥(𝑡)]
+

≤ 𝜅
0
𝑧, 𝜅

0
=

󵄩󵄩󵄩󵄩𝜙
󵄩󵄩󵄩󵄩

min
1≤𝑖≤𝑛

{𝑧
𝑖
}
, 𝑡

0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
, (34)

and so

[𝑥(𝑡)]
+

≤ 𝜅
0
𝑧𝑒

−(𝜆+𝜀) ∫

𝑡

𝑡0

𝛼̂(𝑠,𝑥(𝑠))𝑑𝑠

− (𝑃̂ + 𝑄)
−1

𝐼
∗

,

𝑡
0
− 𝜏 ≤ 𝑡 ≤ 𝑡

0
.

(35)

By the induction and Lemma 8, we can conclude that

[𝑥(𝑡)]
+

≤ 𝜇
0
⋅ ⋅ ⋅ 𝜇

𝑘
𝜅
0
𝑧𝑒

−(𝜆+𝜀) ∫

𝑡

𝑡0

𝛼̂(𝑠,𝑥(𝑠))𝑑𝑠

+ V
0
⋅ ⋅ ⋅ V

𝑘
(−𝑃̂ − 𝑄)

−1

𝐼
∗

, 𝑡 ∈ [𝑡
𝑘−1

, 𝑡
𝑘
) , 𝑘 ∈ 𝑁.

(36)

From (A6), we conclude that

[𝑥(𝑡)]
+

≤ 𝑒
𝜆(𝑡1−𝑡0) ⋅ ⋅ ⋅ 𝑒

𝜆(𝑡𝑘−1−𝑡𝑘−2)𝜅
0
𝑧𝑒

−(𝜆+𝜀) ∫

𝑡

𝑡0

𝛼̂(𝑠,𝑥(𝑠))𝑑𝑠

+ V
0
⋅ ⋅ ⋅ V

𝑘
(−𝑃̂ − 𝑄)

−1

𝐼
∗

≤ 𝜅
0
𝑧𝑒

−𝜀 ∫

𝑡

𝑡0

𝛼̂(𝑠,𝑥(𝑠))𝑑𝑠

+ 𝑒
V
(−𝑃̂ − 𝑄)

−1

𝐼
∗

, 𝑡 ∈ [𝑡
0
, 𝑡
𝑘
) , 𝑘 ∈ 𝑁.

(37)

This implies that the conclusion holds and the proof is
complete.

Theorem 11. Assume that (A1)–(A5) with Γ
𝑘
= 𝐸 hold. Then

𝑆 = {𝜙 ∈ 𝑃𝐶
1

| [𝜙]
+

𝜏
≤ (−𝑃̂ − 𝑄)

−1

𝐼
∗

} is a positive invariant
set and also a global attracting set of (2).

Proof (straightforward). Obviously, if 𝛼(0) = 0, then 𝑥(𝑡) = 0

is a solution of (2).
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Corollary 12. Assume that (A1)–(A5) with 𝛼
𝑖
(𝑡, 𝑥(𝑡)) ≥ 𝛿 >

0, 𝐼∗ = 0 hold. If

ln 𝜇
𝑘
≤ 𝜆 (𝑡

𝑘
− 𝑡

𝑘−1
) , (38)

where 𝜇
𝑘
≥ 1 satisfy Γ

𝑘
𝑧 ≤ 𝜇

𝑘
𝑧, 𝑘 ∈ 𝑁, then the zero solution

of (2) is globally exponentially stable.

Remark 13. If 𝜎 = 0, and 𝐻
𝑘
(⋅) ≡ 0, then from Theorems 9

and 10 we can get Theorem 5.1 and Corollary 5.1 in [16].

Remark 14. If 𝜎 = 0, and 𝐻
𝑘
(⋅) ≡ 0, then from Corollary 12

we can get Corollary 3.1 in [5].

4. Illustrative Example

Consider the Cohen-Grossberg neural networks (2) with
the following parameters, activation functions, amplification
functions, behaved functions, and delay functions (𝑛 =

2, 𝑖, 𝑗 = 1, 2):

𝑎
11

= 0.2, 𝑎
12

= 0.1, 𝑎
21

= 0.2, 𝑎
22

= 0.3,

𝑏
11

= 0.2, 𝑏
12

= 0.3, 𝑏
21

= 0.2, 𝑏
22

= 0.5,

𝐽
1
=
1

2
= 𝐽

2
, 𝜎 = 0.2,

𝛼
1
(𝑡, 𝑥 (𝑡)) = max {1

2
,
󵄨󵄨󵄨󵄨sin (𝑥1 (𝑡))

󵄨󵄨󵄨󵄨} ,

𝛼
2
(𝑡, 𝑥 (𝑡)) = max {1

2
,
󵄨󵄨󵄨󵄨sin (2𝑥2 (𝑡))

󵄨󵄨󵄨󵄨}

𝛽
1
(𝑥

1
(𝑡)) = 3𝑥

1
(𝑡) , 𝛽

2
(𝑥

2
(𝑡)) = 2𝑥

2
(𝑡) ,

𝑓
1
(𝑥

1
) = 𝑔

1
(𝑥

1
) =

1

2
(
󵄨󵄨󵄨󵄨𝑥1 + 1

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑥1 − 1

󵄨󵄨󵄨󵄨)

𝑓
2
(𝑥

2
) = 𝑔

2
(𝑥

2
) = 𝑥

2
, 𝜏
𝑖𝑗
(𝑡) =

󵄨󵄨󵄨󵄨sin (𝑗𝑡)
󵄨󵄨󵄨󵄨 ,

Γ
𝑘
= 𝑒

1/2
𝑘

𝐸.

(39)

Obviously, 𝑘 = 𝑙 = 1, 𝐻 = 1/2, 𝜇
𝑘
= V

𝑘
= 𝑒

1/2
𝑘

, and
V = 1. The parameters of condition (A4) are as follows:

𝑃̂ = (
−2.8 0.1

0.2 −1.7
) , 𝑄 = (

2.04 0.24

0.16 1.12
) ,

− (𝑃̂ + 𝑄) = (
0.76 −0.34

−0.36 0.58
) .

(40)

We can easily observe that −(𝑃̂ + 𝑄) is a nonsingularM-
matrix and

Ω
𝑀
(−𝑃̂ − 𝑄) = {(𝑧

1
, 𝑧

2
)
𝑇

> 0 |
18

29
𝑧
1
< 𝑧

2
<
38

17
𝑧
1
} . (41)

Let 𝑧 = (1, 1)
𝑇

∈ Ω
𝑀
(−𝑃̂ − 𝑄) and 𝜆 = 0.082 which

satisfies the inequality

(𝜆𝐸 + 𝑃̂ + 𝑄𝑒
𝜆𝐻(𝜏+𝜎)

) 𝑧 = (−0.223, −1.123)
𝑇

< 0. (42)

Clearly, all conditions of Theorems 9 and 10 are satisfied.
So 𝑆 = {𝜙 ∈ 𝑃𝐶

1

| [𝜙]
+

𝜏
≤ (−𝑃̂ − 𝑄)

−1

𝐼
∗

} = (31.89, 32.92)
𝑇 is

a quasi-invariant set and also a global attracting set of (2).
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