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We generalize A. Borbély’s condition for the conclusion of the Omori-Yau maximum principle for the Laplace operator on a
complete Riemannian manifold to a second-order linear semielliptic operator 𝐿 with bounded coefficients and no zeroth order
term. Also, we consider a new sufficient condition for the existence of a tamed exhaustion function. From these results, we may
remark that the existence of a tamed exhaustion function is more general than the hypotheses in the version of the Omori-Yau
maximum principle that was given by A. Ratto, M. Rigoli, and A. G. Setti.

1. Introduction

Let (𝑀, 𝑔) be a smooth complete Riemannian manifold of
dimension 𝑛. For a smooth real-valued function ℎ on 𝑀,
a second-order linear differential operator 𝐿 : 𝐶

∞

(𝑀) →

𝐶
∞

(𝑀) without zeroth-order term can be written as

𝐿ℎ = Tr (𝐴 ∘Hess
ℎ
) + 𝑔 (𝑉, ∇ℎ) , (1)

where 𝐴 ∈ Γ(End(TM)) is self-adjoint with respect to 𝑔,
Hess
ℎ
∈ Γ(End(TM)) is the Hessian of ℎ in the form defined

by Hess
ℎ
(𝑋) = ∇

𝑋
∇ℎ for𝑋 ∈ Γ(TM), and finally 𝑉 ∈ Γ(TM).

In this paper, we will deal with the semielliptic case, that is,𝐴
is positive semidefinite at each point, and we always assume
that

sup
𝑀

Tr (𝐴) + sup
𝑀

|𝑉| < ∞. (2)

Definition 1. A smooth complete Riemannian manifold 𝑀
is said to satisfy the Omori-Yau maximum principle for the
Laplace operator Δ (the above semielliptic operator 𝐿) if for
any 𝐶2 function ℎ : 𝑀 → R which is bounded from
above and for any 𝜖 > 0 there is a point 𝑥

𝜖
∈ 𝑀 such

that |ℎ(𝑥
𝜖
) − sup

𝑀
ℎ| < 𝜖, ‖∇ℎ(𝑥

𝜖
)‖ < 𝜖, and Δℎ(𝑥

𝜖
) < 𝜖

(𝐿ℎ(𝑥
𝜖
) < 𝜖).

The Omori-Yau maximum principle is a useful substitute
of the usual maximum principle in noncompact settings. For
the operator Δ, Definition 1 is the well-known Omori-Yau

maximum principle for the Laplacian, which was first proven
byOmori [1] andYau [2]when theRicci curvature is bounded
below. This was improved upon by Chen and Xin [3] and
Ratto et al. [4] when the Ricci curvature decays were slower
than a certain decreasing function tending to minus infinity.
For instance, we have the following.

Theorem 2 (Ratto-Rigoli-Setti’s condition [4, Theorem 2.3]).
Let 𝑜 ∈ 𝑀 be a fixed point and 𝑟(𝑥) be the distance function
from 𝑜. Let one assumes that away from the cut locus of 𝑜 one
has

𝑅𝑖𝑐𝑐 (∇𝑟, ∇𝑟) ≥ − (𝑛 − 1) 𝐵𝐺2
(𝑟) , (3)

where 𝐵 > 0 is some constant and 𝐺(𝑡) on [0,∞) satisfies

∫

∞

0

1
𝐺 (𝑡)

𝑑𝑡 = ∞, 𝐺 (0) = 1, 𝐺󸀠 ≥ 0,

√𝐺
(2𝑘+1)

(0) = 0, ∀𝑘 ≥ 0,

(4)

lim sup
𝑡→∞

𝑡√𝐺 (√𝑡)

√𝐺 (𝑡)

< ∞. (5)

Then 𝑀 satisfies the Omori-Yau maximum principle for the
Laplacian Δ.

Borbély [5, Theorem] has given an elegant proof of
the validity of the Omori-Yau maximum principle where
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the Ricci curvature condition (3) is replaced by the assump-
tion Δ𝑟(𝑥) ≤ 𝐺(𝑟(𝑥)) without (4) and (5). Also, Bessa et al.
[6, Theorem 5.6] proved Borbély’s theorem [5, Theorem] for
the 𝑓-Laplacian Δ

𝑓
for a selected smooth function on𝑀. In

this paper, we first show that Borbély’s theorem [5, Theorem]
is also true for our semielliptic operator 𝐿 by following his
method in [5] (see Theorem 5).

To state other results, we need the following definitions.

Definition 3. Let 𝑢 be a real-valued continuous function on
𝑀 and let a point 𝑝 ∈ 𝑀.

(i) A function 𝑢 is called proper, if the set {𝑝 : 𝑢(𝑝) ≤ 𝑟}
is compact for every real number 𝑟.

(ii) A function V defined on a neighborhood 𝑈
𝑝
of 𝑝 is

called an upper-supporting function for 𝑢 at 𝑝, if the
conditions V(𝑝) = 𝑢(𝑝) and V ≥ 𝑢 hold in 𝑈

𝑝
.

Definition 4. A proper continuous function 𝑢 : 𝑀 → R is
called aΔ-tamed exhaustion, if the following condition holds:

(1) 𝑢 ≥ 0.

(2) At all points 𝑝 ∈ 𝑀 it has a 𝐶2 smooth, upper-
supporting function V at 𝑝 defined on an open
neighborhood 𝑈

𝑝
such that ‖∇V|

𝑝
‖ ≤ 1 and ΔV|

𝑝
≤ 1.

Royden [7] showed that every complete Riemannian
manifold satisfyingOmori-Yau’s condition (i.e., the Ricci cur-
vature is bounded from below) admits a Δ-tamed exhaustion
function. Inspired by Royden’s article [7], Kim and Lee [8,
Theorem 2] proved the Omori-Yau maximum principle for
the LaplacianΔwhen there exists aΔ-tamed exhaustion func-
tion. Moreover, they proved that every complete Riemannian
manifold satisfying Ratto-Rigoli-Setti’s condition admits a Δ-
tamed exhaustion function [8]. Similar to Definition 4, we
define an 𝐿-tamed exhaustion function (i.e., we replace Δ
with 𝐿) [9, Definition 1.4]. Then, using the existence of an
𝐿-tamed exhaustion function, Hong and Sung [9, Theorem
2.1] generalized the Omori-Yau maximum principle for the
Laplacian Δ to the operator 𝐿. In this paper, we give a new
sufficient condition for the existence of an 𝐿-tamed exhaus-
tion function (seeTheorem 6). We prove this result using the
ideas adapted from [8]. Note that Theorem 6, together with
[9, Theorem 2.1], implies the maximum principle of Omori
and Yau for the operator 𝐿. As a corollary, we prove that the
existence of aΔ-tamed exhaustion ismore general thanRatto-
Rigoli-Setti’s condition. Unfortunately, for the operator 𝐿, the
relation betweenBorbély’s condition (or the existence of an𝐿-
tamed exhaustion) andRatto-Rigoli-Setti’s condition remains
for further study.

Now, we formulate our main results. From (1), 𝐴 is
diagonalizable at each point on an orthonormal basis, since
𝐴 is symmetric. Then one can take a normal coordinate
(𝑥1, . . . , 𝑥𝑛) around 𝑥𝜖 ∈ 𝑀 such that 𝐴 at 𝑥

𝜖
is represented

as a diagonal matrix. Thus, we have

𝐿ℎ|
𝑥
𝜖

= ∑

𝑙

𝑎
𝑙𝑙
(𝑥
𝜖
)
𝜕
2

𝜕𝑥
2
𝑙

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+∑

𝑙

𝑎
𝑙
(𝑥
𝜖
)
𝜕

𝜕𝑥
𝑙

ℎ

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

, (6)

for a real-valued function ℎ on 𝑀, where each 𝑎
𝑙𝑙
(𝑥
𝜖
) is

nonnegative; the entries 𝑎
𝑙𝑙
(𝑥
𝜖
) and |𝑎

𝑙
(𝑥
𝜖
)| are bounded

above as 𝑥
𝜖
varies by (2). We introduce a locally defined

differential operator for convenience as follows:

Δ̃
𝑥
𝜖

:= 𝑎11 (𝑥𝜖)
𝜕
2

𝜕𝑥
2
1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛𝑛
(𝑥
𝜖
)
𝜕
2

𝜕𝑥2
𝑛

,

∇̃
1
𝑥
𝜖

:= 𝑎1 (𝑥𝜖)
𝜕

𝜕𝑥1
+ ⋅ ⋅ ⋅ + 𝑎

𝑛
(𝑥
𝜖
)
𝜕

𝜕𝑥
𝑛

,

∇̃
𝑥
𝜖

:= (𝑎11 (𝑥𝜖)
𝜕

𝜕𝑥1
, . . . , 𝑎

𝑛𝑛
(𝑥
𝜖
)
𝜕

𝜕𝑥
𝑛

) .

(7)

Put 𝑑
𝑙
= 𝑎
𝑙𝑙
(𝑥
𝜖
) and 𝑒

𝑙
= |𝑎
𝑙
(𝑥
𝜖
)| for 1 ≤ 𝑙 ≤ 𝑛.Wemay assume

that 𝑑1 and 𝑒1 are the largest of {𝑑1, . . . , 𝑑𝑛} and {𝑒1, . . . , 𝑒𝑛},
respectively.

Then we have the following.

Theorem 5. Let 𝑜 ∈ 𝑀 be a fixed point and 𝑟(𝑥) be the
distance function from 𝑜. Assume that for all 𝑥 ∈ 𝑀

Δ̃
𝑥
𝑟 (𝑥) ≤ 𝐺 (𝑟 (𝑥)) , (8)

where 𝑟 is smooth, 𝑟(𝑥) > 1, and 𝐺(𝑡) on [0,∞) satisfies

∫

∞

0

𝑑𝑡

𝐺 (𝑡)
= ∞, 𝐺 ≥ 1, 𝐺󸀠 ≥ 0. (9)

Then 𝑀 satisfies the Omori-Yau maximum principle for the
operator 𝐿.

Theorem 6. Let 𝑜 ∈ 𝑀 be a fixed point and 𝑟(𝑥) be the
distance function from 𝑜. Assume that for all 𝑥 ∈ 𝑀

Δ̃
𝑥
𝑟 (𝑥) ≤ 𝐺 (𝑟 (𝑥)) , (10)

where 𝑟 is smooth, 𝑟(𝑥) > 1, and 𝐺(𝑡) on [0,∞) satisfies

∫

∞

0

𝑑𝑡

𝐺 (𝑡)
= ∞, 𝐺 ≥ 1, 𝐺󸀠 ≥ 0, (11)

lim sup
𝑡→+∞

𝑡√𝐺 (√𝑡)

√𝐺 (𝑡)

< +∞. (12)

Then𝑀 admits an 𝐿-tamed exhaustion function.

Remark 7. By [5, Corollary] and Theorem 6, Ratto-Rigoli-
Setti’s condition without √𝐺(2𝑘+1)(0) = 0 ∀𝑘 ≥ 0 implies the
existence of a Δ-tamed exhaustion function. Therefore, the
existence of a Δ-tamed exhaustion function for the conclu-
sion of the Omori-Yau maximum principle for the Laplacian
Δ is more general than the hypothesis in Theorem 2.

There are some other sufficient conditions under which
the Omori-Yau maximum principle for the Laplacian Δ

holds [10–12]. Also, [13] deals with the general setting of
semielliptic operators (trace type operators). Recently, Bessa
and Pessoa [14, Theorem 1] present a sufficient condition
for the conclusion of the Omori-Yau maximum principle
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for a second-order linear semielliptic operator with bounded
first-order coefficients and no zeroth-order term. However,
they will not consider the existence of a tamed exhaustion
function as sufficient conditions for the conclusion of the
Omori-Yau maximum principle.

2. Proof of Theorem 5

The proof is similar to the method in [5]. Let 𝑈 = sup ℎ.
We may assume that ℎ < 𝑈 at every point of𝑀; otherwise,
ℎ has its maximum at some point and that point directly
satisfies the Omori-Yaumaximum principle for a semielliptic
operator 𝐿.

Define the function 𝐹(𝑡) as

𝐹 (𝑡) = 𝑒
∫

𝑡

0 (1/𝐺(𝑠))𝑑𝑠. (13)

Then

𝐹
󸀠

=
𝐹

𝐺
. (14)

Since 𝐺 ≥ 1 on [0,∞), we have 𝐹 ≥ 1, and 𝐹󸀠 > 0. Hence the
function 𝐹 is strictly increasing, and lim

𝑡→∞
𝐹(𝑡) = ∞. Since

the set {𝑥 ∈ 𝑀 : 𝑟(𝑥) ≤ 1} is compact, we have

𝑈− sup {ℎ (𝑥) : 𝑟 (𝑥) ≤ 1} > 0. (15)

For any positive constant 𝜖 < min{1, 𝑈 − sup{ℎ(𝑥) : 𝑟(𝑥) ≤
1}}, we define the function ℎ

𝜆
: 𝑀 → R as

ℎ
𝜆
(𝑥) = 𝜆𝐹 (𝑟 (𝑥)) +𝑈− 𝜖. (16)

Then

ℎ
𝜆
(𝑥) > ℎ (𝑥) if 𝑟 (𝑥) ≤ 1, 𝜆 ≥ 0. (17)

Because, for all 𝑥 ∈ 𝑀, 𝐹(𝑟(𝑥)) ≥ 1 and 𝑈 > ℎ(𝑥). If 𝜆 > 𝜖,
then we have

ℎ
𝜆
(𝑥) > ℎ (𝑥) , ∀𝑥 ∈ 𝑀. (18)

Define 𝜆0 as

𝜆0 = inf {𝜆 : ℎ
𝜆
(𝑥) > ℎ (𝑥) , ∀𝑥 ∈𝑀} . (19)

Then, clearly, 𝜆0 > 0. Furthermore, we can obtain ℎ
𝜆0
(𝑥) ≥

ℎ(𝑥) for all 𝑥 ∈ 𝑀; that is, there is a point 𝑥
𝜖
∈ 𝑀 such that

ℎ
𝜆0
(𝑥
𝜖
) = ℎ(𝑥

𝜖
). Assume that to the contrary ℎ

𝜆0
(𝑥) > ℎ(𝑥)

for all 𝑥 ∈ 𝑀. Then we will show that there is a constant 𝜆󸀠
with 𝜆0 > 𝜆

󸀠 such that ℎ
𝜆
󸀠(𝑥) > ℎ(𝑥) for all 𝑥 ∈ 𝑀. This is a

contradiction to the definition of 𝜆0.
Let 𝜆0 > 𝜆1. Because lim

𝑟→∞
𝐹(𝑟) = ∞, there is a

sufficiently large positive number 𝑟0 such that ℎ
𝜆1
(𝑥) > 𝑈 >

ℎ(𝑥) for 𝑟(𝑥) > 𝑟0. Also, because the set {𝑥 ∈ 𝑀 : 𝑟(𝑥) ≤ 𝑟0}
is compact, the statement ℎ

𝜆0
(𝑥) > ℎ(𝑥) for all 𝑥 ∈ 𝑀

implies that there is a constant 𝜆2 with 𝜆0 > 𝜆2 such that
ℎ
𝜆2
(𝑥) > ℎ(𝑥) for 𝑟(𝑥) ≤ 𝑟0. Now, let 𝜆

󸀠

= max{𝜆1, 𝜆2}. Then,
for 𝜆0 > 𝜆

󸀠, we have ℎ
𝜆
󸀠(𝑥) > ℎ(𝑥) for all 𝑥 ∈ 𝑀. Moreover,

by (17) and 𝜆0 > 0, we have 𝑟(𝑥
𝜖
) > 1.

Next, we have to show that ℎ
𝜆0

is smooth at 𝑥
𝜖
. Since

ℎ
𝜆
(𝑥) = 𝜆𝐹(𝑟(𝑥)) + 𝑈 − 𝜖, it is enough to show that 𝑟 is

smooth at𝑥
𝜖
. To avoid confusion, the point 𝑜, in the statement

of Theorem 5, is switched to 𝑝. Note that 𝑟 is a Lipschitz
function and is smooth on 𝑀 \ {𝑝, 𝐶

𝑝
}, where 𝐶

𝑝
is the

cut locus of 𝑝. Suppose that 𝑥
𝜖
∈ 𝐶
𝑝
. Then we have two

possibilities (Petersen [15, Lemma 8.2]); either there are two
distinct minimizing geodesic segments 𝛾1, 𝛾2 : [0, 𝑡0] → 𝑀

joining𝑝 to𝑥
𝜖
, or there is a geodesic segment 𝛾 : [0, 𝑡0] → 𝑀

from 𝑝 to 𝑥
𝜖
along which 𝑥

𝜖
is conjugate to 𝑝. Notice that

𝑡0 = 𝑟 (𝛾𝑖 (𝑡0)) = 𝑟 (𝑥𝜖) for 𝑖 = 1 or 2. (20)

We consider the first case. Let𝑤 = 𝛾󸀠1(𝑡0) and V = 𝛾
󸀠

2(𝑡0). Since
𝛾1 and 𝛾2 are distinct segments, we have 𝑤 ̸= V. For 𝑖 = 1 or
2, the functions 𝑡 → 𝑟(𝛾

𝑖
(𝑡)) are differentiable on (0, 𝑡0) and

they have a left-derivative at 𝑡0. Note that ℎ is 𝐶
2 smooth on

𝑀. From the definition of 𝜆0, ℎ𝜆0 ≥ ℎ, and ℎ𝜆0(𝑥𝜖) = ℎ(𝑥𝜖)
we obtain

lim inf
𝑠→ 0+

ℎ
𝜆0
(𝛾2 (𝑡0 + 𝑠)) − ℎ𝜆0 (𝛾2 (𝑡0))

𝑠
≥ 𝐷Vℎ (𝑥𝜖) , (21)

where 𝐷Vℎ(𝑥𝜖) denotes the directional derivative of ℎ at the
point 𝑥

𝜖
in the direction of V. Furthermore, since ℎ

𝜆0
has a

directional derivative at 𝑥
𝜖
in the direction of −V, we have

−𝜆0𝐹
󸀠

(𝑡0) = − 𝜆0𝐹
󸀠

(𝑟 (𝑥
𝜖
)) = 𝐷

−Vℎ𝜆0 (𝑥𝜖)

≥ 𝐷
−Vℎ (𝑥𝜖) = −𝐷Vℎ (𝑥𝜖) .

(22)

This yields

𝐷Vℎ (𝑥𝜖) ≥ 𝜆0𝐹
󸀠

(𝑟 (𝑥
𝜖
)) . (23)

Hence, by (21) and (23), we get the following inequality:

lim inf
𝑠→ 0+

ℎ
𝜆0
(𝛾2 (𝑡0 + 𝑠)) − ℎ𝜆0 (𝛾2 (𝑡0))

𝑠

≥ 𝜆0𝐹
󸀠

(𝑟 (𝑥
𝜖
)) .

(24)

Note that (ℎ
𝜆0
(𝛾2))
󸀠

= 𝜆0𝐹
󸀠

(𝑟(𝛾2))𝑟
󸀠

(𝛾2) and 𝑟(𝛾2(𝑡0)) = 𝑟(𝑥𝜖).
Recall that 𝜆0 > 0. Then, from (24), we can get

lim inf
𝑠→ 0+

𝑟 (𝛾2 (𝑡0 + 𝑠)) − 𝑟 (𝛾2 (𝑡0))

𝑠
≥ 1. (25)

The inequality (25) will lead to a contradiction. Since 𝛾1 and
𝛾2 are different segments, by connecting from the point 𝛾1(𝑡0−
𝑠) to the point 𝛾2(𝑡0 + 𝑠) with a geodesic segment, there is a
constant 𝑐 with 0 < 𝑐 < 1 such that, for a sufficiently small
𝑠 > 0, the distance 𝑑(𝛾1(𝑡0 − 𝑠), 𝛾2(𝑡0 + 𝑠)) < 𝑐2𝑠. Thus there is
a constant 𝑐󸀠 with 0 < 𝑐󸀠 < 1 depending only on the angle of
V and 𝑤 such that

𝑟 (𝛾2 (𝑡0 + 𝑠)) < 𝑡0 + 𝑐
󸀠

𝑠, (26)

for a sufficiently small 𝑠 > 0. Note that 𝑟(𝛾2(𝑡0)) = 𝑡0. By
plugging (26) to (25), we have a contradiction.
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From now, let us consider the second case. Since 𝛾 is
distance minimizing between 𝑝 and 𝑥

𝜖
, 𝑟 is smooth at 𝛾(𝑡)

for 0 < 𝑡 < 𝑡0. Let𝑚(𝑡) = Δ𝑟(𝛾(𝑡)). Then𝑚(𝑡) is also smooth
for 0 < 𝑡 < 𝑡0. Because 𝛾(𝑡0) is conjugate to 𝑝 = 𝛾(0) along 𝛾,
by a simple calculation, we get

lim
𝑡→ 𝑡
−

0

𝑚(𝑡) = −∞. (27)

Because 𝜆0𝐹
󸀠

(𝑟(𝑥
𝜖
)) > 0, by (23), we get𝐷Vℎ(𝑥𝜖) > 0; that is,

∇ℎ(𝑥
𝜖
) ̸= 0. Hence the level surface 𝐻 = {𝑥 ∈ 𝑀 : ℎ(𝑥) =

ℎ(𝑥
𝜖
)} is a𝐶2 smooth hypersurface near 𝑥

𝜖
. Denote by𝐻

𝑠
the

surface parallel to𝐻 and passing through the point 𝛾(𝑡0 − 𝑠)
for some 𝑠 > 0. Since 𝐻 is 𝐶2 smooth near 𝑥

𝜖
, the surface

𝐻
𝑠
is also 𝐶2 smooth near 𝛾(𝑡0 − 𝑠) for a sufficiently small

𝑠 > 0. Therefore, by (27), for some sufficiently small 𝑠, the
trace of the second fundamental form of𝐻

𝑠
at 𝛾(𝑡0 − 𝑠) in the

direction of 𝛾󸀠(𝑡0−𝑠) is greater than𝑚(𝑡0−𝑠), where𝑚(𝑡0−𝑠)
is the trace of the second fundamental form of the geodesic
sphere𝐵(𝑝, 𝑡0−𝑠) at 𝛾(𝑡0−𝑠)with respect to the normal vector
𝛾
󸀠

(𝑡0 − 𝑠). This implies that there has to be a point 𝑞
𝑠
∈ 𝐻
𝑠

sufficiently close to 𝛾(𝑡0 − 𝑠), which lies inside 𝐵(𝑝, 𝑡0 − 𝑠);
that is,

𝑟 (𝑞
𝑠
) < 𝑡0 − 𝑠. (28)

Since𝐻
𝑠
is parallel to𝐻, we also have a point on 𝑞 ∈ 𝐻 such

that the distance 𝑑(𝑞
𝑠
, 𝑞) = 𝑠. By (28), we have

𝑟 (𝑞) < 𝑡0 = 𝑟 (𝑥𝜖) . (29)

Since 𝐹 is strictly increasing, we get

ℎ
𝜆0
(𝑞) = 𝜆0𝐹 (𝑟 (𝑞)) +𝑈− 𝜖 < 𝜆0𝐹 (𝑟 (𝑥𝜖)) +𝑈− 𝜖

= ℎ
𝜆0
(𝑥
𝜖
) = ℎ (𝑥

𝜖
) = ℎ (𝑞) .

(30)

This is a contradiction to the fact that ℎ
𝜆0
(𝑥) ≥ ℎ(𝑥) for all

𝑥 ∈ 𝑀. Therefore, the function 𝑟must be smooth at 𝑥
𝜖
.

By the definition of 𝐹, 𝐹 ≥ 1, 𝐺 ≥ 1, and 𝐺󸀠 ≥ 0, we have

0 < 𝐹󸀠 = 𝐹

𝐺
,

𝐹
󸀠󸀠

=
𝐹
󸀠

𝐺
−
𝐹𝐺
󸀠

𝐺2 =
𝐹

𝐺2 −
𝐹𝐺
󸀠

𝐺2 ≤
𝐹

𝐺2 .

(31)

Because 𝜆0 > 0, 𝐹 ≥ 1, and ℎ(𝑥
𝜖
) = 𝜆0𝐹(𝑟(𝑥𝜖)) + 𝑈 − 𝜖 < 𝑈,

we have

0 < −𝜆0𝐹 (𝑟 (𝑥𝜖)) + 𝜖 = 𝑈−ℎ (𝑥𝜖) < 𝜖. (32)

Hence

𝜆0 <
𝜖

𝐹 (𝑟 (𝑥
𝜖
))
≤ 𝜖. (33)

Recall notations (6) and (7). Since

ℎ
𝜆0
(𝑥) ≥ ℎ (𝑥) , ∀𝑥 ∈ 𝑀,

ℎ
𝜆0
(𝑥
𝜖
) = ℎ (𝑥

𝜖
) ,

(34)

we have

∇ℎ
𝜆0
(𝑥
𝜖
) = ∇ℎ (𝑥

𝜖
) ,

𝐿ℎ
𝜆0
(𝑥
𝜖
) ≥ 𝐿ℎ (𝑥

𝜖
) .

(35)

Note that ‖∇𝑟‖ = 1. By (31), (33), and 𝐺 ≥ 1, the first equality
of (35) yields

󵄩󵄩󵄩󵄩∇ℎ (𝑥𝜖)
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩
𝜆0𝐹
󸀠

(𝑟 (𝑥
𝜖
)) ∇𝑟 (𝑥

𝜖
)
󵄩󵄩󵄩󵄩󵄩

<
𝜖

𝐹 (𝑟 (𝑥
𝜖
))

𝐹 (𝑟 (𝑥
𝜖
))

𝐺 (𝑟 (𝑥
𝜖
))
≤ 𝜖.

(36)

Also, by (2), (31), (33), (36), 𝐺 ≥ 1, and Δ̃
𝑥
𝜖

𝑟 ≤ 𝐺, the second
inequality of (35) yields

𝐿ℎ (𝑥
𝜖
) ≤ 𝐿ℎ

𝜆0
(𝑥
𝜖
) = ∑

𝑙

𝑎
𝑙𝑙
(𝑥
𝜖
)
𝜕
2

𝜕𝑥
2
𝑙

ℎ
𝜆0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+∑

𝑙

𝑎
𝑙
(𝑥
𝜖
)
𝜕

𝜕𝑥
𝑙

ℎ
𝜆0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

≤ 𝜆0 (𝐹
󸀠

(𝑟 (𝑥
𝜖
)) Δ̃
𝑥
𝜖

𝑟 (𝑥
𝜖
)

+ 𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) ∇̃
𝑥
𝜖

𝑟 (𝑥
𝜖
) ⋅ ∇𝑟 (𝑥

𝜖
)) + 𝑒1𝜖

<
𝜖

𝐹 (𝑟 (𝑥
𝜖
))
(
𝐹 (𝑟 (𝑥

𝜖
))

𝐺 (𝑟 (𝑥
𝜖
))
𝐺 (𝑟 (𝑥

𝜖
))

+ 𝑑1
𝐹 (𝑟 (𝑥

𝜖
))

𝐺 (𝑟 (𝑥
𝜖
))

2)+ 𝑒1𝜖 ≤ 𝜖 (1+𝑑1 + 𝑒1) .

(37)

If we replace 𝜖 with 𝜖(1 + 𝑑1 + 𝑒1), then the above inequality,
(32), and (36) show that the point 𝑥

𝜖
satisfies the conditions

in Definition 1.

3. Proof of Theorem 6

The proof is similar to the method in [8]. Let 𝑜 ∈ 𝑀 be a
fixed point and 𝑟(𝑥) be the distance function from 𝑜. Define
a function 𝑢 : 𝑀 → R by

𝑢 (𝑥) = ∫

𝑟(𝑥)
2

0
𝐺 (𝑠)
−1
𝑑𝑠. (38)

Assume that a smooth complete Riemannian manifold satis-
fies assumption (10). Then we will prove that 𝑢 is an 𝐿-tamed
exhaustion function. We consider two cases.

First Case. Assume that 𝑜 has no cut points in𝑀.
By the definition, the function 𝑢 is an exhaustion function

for 𝑀. We have to show that, for certain positive constants
𝐶 and 𝐶1, ‖∇𝑢‖ < 𝐶 and 𝐿𝑢 < 𝐶1 outside a ball of a
certain radius with center 𝑥

𝜖
. Let 𝜙(𝑡) = exp{∫𝑡0 𝐺(𝑠)

−1
𝑑𝑠}

and 𝐵(𝑥
𝜖
, 𝑟) = {𝑥 ∈ 𝑀 | dist(𝑥, 𝑥

𝜖
) < 𝑟}. Then 𝑢(𝑥) =

log𝜙(𝑟(𝑥)2). By a direct calculation, one gets

∇𝑢 = ∇ log𝜙 (𝑟2) = 2𝑟∇𝑟
𝜙
󸀠

(𝑟
2
)

𝜙 (𝑟2)
= 2𝑟∇𝑟𝐺 (𝑟2)

−1
. (39)



Abstract and Applied Analysis 5

By (12), there is a positive constant 𝐶 such that

𝑟
2 𝐺 (𝑟)

𝐺 (𝑟2)
= 𝑟

2
𝐺 (𝑟) 𝐺 (𝑟

2
)
−1
<
𝐶

4
. (40)

Then, for 𝑟 > 1, we obtain

𝑟𝐺 (𝑟) 𝐺 (𝑟
2
)
−1
< 𝑟

2
𝐺 (𝑟) 𝐺 (𝑟

2
)
−1
<
𝐶

4
. (41)

Moreover, by (11), we have

sup
[0,∞)

𝐺 (𝑟)
−1
= ( inf
[0,∞)

𝐺 (𝑟))

−1
≤ 1. (42)

By plugging (41) to (39), we have

‖∇𝑢‖ <
1
2
‖∇𝑟‖𝐶𝐺 (𝑟)

−1
. (43)

Note that ‖∇𝑟‖ = 1. Applying (42) gives

‖∇𝑢‖ <
𝐶

2
. (44)

By (2) and (44), one gets

󵄩󵄩󵄩󵄩󵄩
∇̃
1
𝑥
𝜖

𝑢
󵄩󵄩󵄩󵄩󵄩
< 𝑒1

𝐶

2
. (45)

By assumption (11), we have

(

𝜙
󸀠

(𝑟
2
)

𝜙 (𝑟2)
)

󸀠

= (𝐺 (𝑟
2
)
−1
)

󸀠

= −𝐺 (𝑟
2
)
−2
𝐺
󸀠

(𝑟
2
) ≤ 0. (46)

Because of the above inequality, ‖∇̃
𝑥
𝜖

𝑟‖ ≤ 𝑑1, (41), and (42),
we have for 𝑟 > 1

Δ̃
𝑥
𝜖

𝑢 = Δ̃
𝑥
𝜖

log𝜙 (𝑟2)

= 4𝑟2(
𝜙
󸀠

(𝑟
2
)

𝜙 (𝑟2)
)

󸀠

󵄩󵄩󵄩󵄩󵄩
∇̃
𝑥
𝜖

𝑟
󵄩󵄩󵄩󵄩󵄩

2

+ 2𝐺(𝑟2)
−1
(
󵄩󵄩󵄩󵄩󵄩
∇̃
𝑥
𝜖

𝑟
󵄩󵄩󵄩󵄩󵄩

2
+ 𝑟Δ̃
𝑥
𝜖

𝑟)

≤ 2𝐺(𝑟2)
−1
(
󵄩󵄩󵄩󵄩󵄩
∇̃
𝑥
𝜖

𝑟
󵄩󵄩󵄩󵄩󵄩

2
+ 𝑟Δ̃
𝑥
𝜖

𝑟)

≤ 2𝑟𝐺 (𝑟2)
−1
(𝑑

2
1𝑟
−1
+ Δ̃
𝑥
𝜖

𝑟)

<
𝐶

2
𝐺 (𝑟)
−1
(𝑑

2
1𝑟
−1
+ Δ̃
𝑥
𝜖

𝑟)

<
𝐶

2
𝑑
2
1 +

𝐶

2
𝐺 (𝑟)
−1
Δ̃
𝑥
𝜖

𝑟.

(47)

By our assumption (10), there exits 𝑟0 > 1 such that

Δ̃
𝑥
𝜖

𝑢 <
𝐶

2
𝑑
2
1 +

𝐶

2
on 𝑀 \ 𝐵 (𝑥

𝜖
, 𝑟0) . (48)

Thus, by (45) and (48), we have

𝐿𝑢 = Δ̃
𝑥
𝜖

𝑢+ ∇̃
1
𝑥
𝜖

𝑢 <
𝐶

2
(𝑑

2
1 + 1+ 𝑒1)

on 𝑀 \ 𝐵 (𝑥
𝜖
, 𝑟0) .

(49)

If we replace (𝐶/2)(𝑑21 + 1 + 𝑒1) with 𝐶1, then 𝑢 satisfies the
additional conditions for an 𝐿-tamed exhaustion function.

Second Case. Assume that the cut locus of 𝑜 is nonempty.
Let 𝑥
𝜖
be a cut point of 𝑜 and let 𝐹(𝑡) = log𝜙(𝑡2) for

𝑡 > 0. We choose a point 𝑥
𝜖
outside of cut locus of 𝑜

such that dist(𝑥
𝜖
, 𝑥
𝜖
) < 1 and 𝑟(𝑥

𝜖
) > 𝑟(𝑥

𝜖
). Denote by

𝐵(𝑦, 𝑟) = {𝑥 ∈ 𝑀 | dist(𝑥, 𝑦) < 𝑟}. Take 𝜂, 𝛿 > 0 such that
𝐵(𝑥
𝜖
, 𝜂) ∩𝐵(𝑥

𝜖
, 𝛿) = 0 and 𝐵(𝑥

𝜖
, 𝛿) does not have cut point of

𝑜.
Now, we present several functions to find an upper-

supporting function for 𝑢.
For a neighborhood U ⊂ 𝐵(𝑥

𝜖
, 𝜂), we define a smooth

map𝑇 : U → 𝐵(𝑥
𝜖
, 𝛿)with𝑇

𝑥
𝜖

(𝑥
𝜖
) = 𝑥
𝜖
, and it is translation

sending 𝑥
𝜖
to 𝑥
𝜖
in a coordinate chart including both 𝐵(𝑥

𝜖
, 𝜂)

and 𝐵(𝑥
𝜖
, 𝛿) and satisfying 𝑟(𝑇(𝑥)) ≥ 𝑟(𝑥). Also, we define a

𝐶
2 function 𝜆 such that 𝜆(𝑥

𝜖
) = 1, ∇𝜆(𝑥

𝜖
) = 0, Δ𝜆(𝑥

𝜖
) = 0,

and

𝜆 (𝑥) 𝑟 (𝑇 (𝑥)) ≥ 𝑟 (𝑥) + 𝑟 (𝑥
𝜖
) − 𝑟 (𝑥

𝜖
) on U. (50)

Since 𝑟(𝑥
𝜖
) > 𝑟(𝑥

𝜖
) and 𝑟 ≥ 0, we get 𝜆(𝑥) > 0. Finally, for

𝑥 ∈ U, we define a function

𝐻(𝑥) =

{{{{{{{{{

{{{{{{{{{

{

𝑁(𝑥) + (
1
2
)𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) 𝜆 (𝑥) (𝑟 (𝑇 (𝑥)) − 𝑟 (𝑥

𝜖
))

2 when 𝐹󸀠󸀠 (𝑟 (𝑥
𝜖
)) > 0,

𝑁 (𝑥) − (
1
2
)𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) (𝑟 (𝑇 (𝑥)) − 𝑟 (𝑥

𝜖
))

2 when 𝐹󸀠󸀠 (𝑟 (𝑥
𝜖
)) < 0,

𝑁 (𝑥) + (
1
2
)𝑄 (𝑟 (𝑥

𝜖
)) (𝑟 (𝑇 (𝑥)) − 𝑟 (𝑥

𝜖
))

2 when 𝐹󸀠󸀠 (𝑟 (𝑥
𝜖
)) = 0,

(51)
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where 𝑁(𝑥) = −𝐹
󸀠

(𝑟(𝑥
𝜖
))(𝑟(𝑇(𝑥)) − 𝑟(𝑥

𝜖
)) +

𝐹
󸀠

(𝑟(𝑥
𝜖
))(𝜆(𝑥)𝑟(𝑇(𝑥)) − 𝑟(𝑥

𝜖
)) and𝑄(𝑟(𝑥

𝜖
)) = sup|𝐹󸀠󸀠(𝑡)| for

𝑡 ∈ (𝑟(𝑥
𝜖
) − 1, 𝑟(𝑥

𝜖
) + 1). Note that we choose 𝑥

𝜖
as close to

𝑥
𝜖
such that sign[𝐹󸀠󸀠(𝑟(𝑥

𝜖
))] = sign[𝐹󸀠󸀠(𝑟(𝑥

𝜖
))]. Therefore,

𝐻(𝑥) − 𝑁(𝑥) ≥ 0.
Let V(𝑥) = 𝐹(𝑟 ∘ 𝑇(𝑥)) + 𝐹(𝑟(𝑥

𝜖
)) − 𝐹(𝑟(𝑥

𝜖
)) + 𝐻(𝑥).

Then one gets V(𝑥
𝜖
) = 𝐹(𝑟(𝑥

𝜖
)) = 𝑢(𝑥

𝜖
). Because of the

fact 𝐹󸀠(𝑟(𝑥))∇𝑟(𝑥) = ∇𝑢(𝑥) = 𝐺(𝑟(𝑥)2)−12𝑟(𝑥)∇𝑟(𝑥) and the
inequality (41), we get

0 < 𝐹󸀠 (𝑟 (𝑥)) = 𝐺 (𝑟 (𝑥)2)
−1
2𝑟 (𝑥) < 𝐶

2
𝐺 (𝑟 (𝑥))

−1
. (52)

Moreover, we have two inequalities; that is, for 𝑥 ∈ U,

first order term of V (𝑥) − 𝑢 (𝑥) = 𝐹󸀠 (𝑟 (𝑥
𝜖
))

⋅ (𝜆 (𝑥) 𝑟 (𝑇 (𝑥)) − 𝑟 (𝑥
𝜖
) − (𝑟 (𝑥) − 𝑟 (𝑥

𝜖
))) ≥ 0,

second order term of V (𝑥) − 𝑢 (𝑥) = 𝐻 (𝑥) −𝑁 (𝑥)
≥ 0.

(53)

Hence V is an upper-supporting function for 𝑢 at the point 𝑥
𝜖
.

Since ∇𝐻|
𝑥
𝜖

= ∇𝑁|
𝑥
𝜖

, ‖∇𝜆|
𝑥
𝜖

‖ = 0, 𝜆(𝑥
𝜖
) = 1, and ‖∇(𝑟 ∘

𝑇)‖ = 1, we have
󵄩󵄩󵄩󵄩󵄩
∇V|
𝑥
𝜖

󵄩󵄩󵄩󵄩󵄩
≤
󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠

(𝑟 (𝑥
𝜖
))
󵄨󵄨󵄨󵄨󵄨

⋅ (
󵄩󵄩󵄩󵄩󵄩
∇𝜆|
𝑥
𝜖

󵄩󵄩󵄩󵄩󵄩
𝑟 (𝑥
𝜖
) +
󵄨󵄨󵄨󵄨𝜆 (𝑥𝜖)

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
∇ (𝑟 ∘ 𝑇)|

𝑥
𝜖

󵄩󵄩󵄩󵄩󵄩
)

=
󵄨󵄨󵄨󵄨󵄨
𝐹
󸀠

(𝑟 (𝑥
𝜖
))
󵄨󵄨󵄨󵄨󵄨
=
󵄩󵄩󵄩󵄩󵄩
∇𝑢|
𝑥
𝜖

󵄩󵄩󵄩󵄩󵄩
<
𝐶

2
.

(54)

By our assumption (2), the above inequality implies that

󵄩󵄩󵄩󵄩󵄩󵄩
∇̃
1
𝑥
𝜖

V
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

󵄩󵄩󵄩󵄩󵄩󵄩
< 𝑒1

𝐶

2
. (55)

Notice that

Δ̃
𝑥
𝜖

(𝑟 ∘ 𝑇 (𝑥))
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

= ‖𝐷𝑇‖
2
Δ̃
𝑥
𝜖

𝑟
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

= 𝑛Δ̃
𝑥
𝜖

𝑟
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

, (56)

where dim𝑀 = 𝑛. By a simple calculation, we have

𝐹
󸀠󸀠

(𝑟 (𝑥)) ∇𝑟 (𝑥)

= 2𝐺(𝑟 (𝑥)2)
−1
(−2𝑟 (𝑥)2 𝐺(𝑟 (𝑥)2)

−1
+ 1)∇𝑟 (𝑥)

(57)

and hence

𝐹
󸀠󸀠

(𝑟 (𝑥))

= 2𝐺(𝑟 (𝑥)2)
−1
(−2𝑟 (𝑥)2 𝐺(𝑟 (𝑥)2)

−1
+ 1)

< 2𝐺(𝑟 (𝑥)2)
−1
.

(58)

Using ‖∇(𝑟 ∘ 𝑇)‖ = 1, ‖∇̃
𝑥
𝜖

(𝑟 ∘ 𝑇)‖ ≤ 𝑑1, (52), (56), and (58),
we have

Δ̃
𝑥
𝜖

V
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

≤ 𝑑
2
1𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) + 𝐹

󸀠

(𝑟 (𝑥
𝜖
)) Δ̃
𝑥
𝜖

(𝑟 ∘ 𝑇)
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+ Δ̃
𝑥
𝜖

𝐻
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

≤

{{{{{{{

{{{{{{{

{

𝐹
󸀠

(𝑟 (𝑥
𝜖
)) Δ̃
𝑥
𝜖

(𝑟 ∘ 𝑇)
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+ 𝑑
2
1 (𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) + 𝐹

󸀠󸀠

(𝑟 (𝑥
𝜖
))) if 𝐹󸀠󸀠 (𝑟 (𝑥

𝜖
)) > 0,

𝐹
󸀠

(𝑟 (𝑥
𝜖
)) Δ̃
𝑥
𝜖

(𝑟 ∘ 𝑇)
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

if 𝐹󸀠󸀠 (𝑟 (𝑥
𝜖
)) < 0,

𝐹
󸀠

(𝑟 (𝑥
𝜖
)) Δ̃
𝑥
𝜖

(𝑟 ∘ 𝑇)
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+ 𝑑
2
1 (𝐹
󸀠󸀠

(𝑟 (𝑥
𝜖
)) + 𝑄 (𝑟 (𝑥

𝜖
))) if 𝐹󸀠󸀠 (𝑟 (𝑥

𝜖
)) = 0,

(59)

< (
1
2
)𝐶𝐺 (𝑟 (𝑥

𝜖
))
−1
𝑛Δ̃
𝑥
𝜖

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

+ 4𝑑21𝐺(𝑟 (𝑥𝜖)
2
)
−1
. (60)

Let 2𝑎 be the distance to a closest cut point of 𝑜. Because the
point 𝑥

𝜖
is a cut point of 𝑜, by (41) and (42), we get

2𝑎𝐺 (𝑟 (𝑥
𝜖
)
2
)
−1
≤ 𝑟 (𝑥

𝜖
) 𝐺 (𝑟 (𝑥

𝜖
)
2
)
−1

<
𝐶

4
𝐺 (𝑟 (𝑥

𝜖
))
−1
≤
𝐶

4
,

(61)

𝐺(𝑟 (𝑥
𝜖
)
2
)
−1
<
𝐶

8𝑎
. (62)

By plugging (62) to (60), our assumption (10) tells us that, for
𝑟 > 1,

Δ̃
𝑥
𝜖

V
󵄨󵄨󵄨󵄨󵄨𝑥
𝜖

<
𝐶

2
𝑛 +

𝐶

2𝑎
𝑑
2
1. (63)

Therefore, by (55) and (63), we obtain, for 𝑟 > 1,

𝐿V|
𝑥
𝜖

<
𝐶

2
(𝑛+

𝑑
2
1
𝑎
+ 𝑒1) . (64)

So 𝑢 satisfies the conditions for an 𝐿-tamed exhaustion
function.

Altogether, we can conclude that 𝑢 must be an 𝐿-tamed
exhaustion function for𝑀.
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Matemática Iberoamericana, vol. 29, no. 4, pp. 1437–1476, 2013.

[14] G. P. Bessa and L. F. Pessoa, “Maximum principle for semi-
elliptic trace operators and geometric applications,” Bulletin of

the Brazilian Mathematical Society, vol. 45, no. 2, pp. 243–265,
2014.

[15] P. Petersen, Riemannian Geometry, vol. 171 of Graduate Texts in
Mathematics, Springer, New York, NY, USA, 1998.


