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We generalize A. Borbély’s condition for the conclusion of the Omori-Yau maximum principle for the Laplace operator on a
complete Riemannian manifold to a second-order linear semielliptic operator L with bounded coeflicients and no zeroth order
term. Also, we consider a new sufficient condition for the existence of a tamed exhaustion function. From these results, we may
remark that the existence of a tamed exhaustion function is more general than the hypotheses in the version of the Omori-Yau
maximum principle that was given by A. Ratto, M. Rigoli, and A. G. Setti.

1. Introduction

Let (M, g) be a smooth complete Riemannian manifold of
dimension #. For a smooth real-valued function & on M,
a second-order linear differential operator L : C*°(M) —
C® (M) without zeroth-order term can be written as

Lh =Tr (AoHess,)+ g (V,Vh), 1)

where A ¢ T'(End(TM)) is self-adjoint with respect to g,
Hess;, € I'(End(TM)) is the Hessian of 4 in the form defined
by Hess; (X) = VxVh for X € I'(TM), and finally V' € I'(TM).
In this paper, we will deal with the semielliptic case, that is, A
is positive semidefinite at each point, and we always assume
that

sup Tr (A) +sup [V] < oo. )
M M

Definition 1. A smooth complete Riemannian manifold M
is said to satisfy the Omori-Yau maximum principle for the
Laplace operator A (the above semielliptic operator L) if for
any C* function h : M — R which is bounded from
above and for any € > 0 there is a point x, € M such
that |h(x,) — sup,hl < € [Vh(x)| < € and Ah(x,) < €
(Lh(x,) < €).

The Omori-Yau maximum principle is a useful substitute
of the usual maximum principle in noncompact settings. For
the operator A, Definition 1 is the well-known Omori-Yau

maximum principle for the Laplacian, which was first proven
by Omori [1] and Yau [2] when the Ricci curvature is bounded
below. This was improved upon by Chen and Xin [3] and
Ratto et al. [4] when the Ricci curvature decays were slower
than a certain decreasing function tending to minus infinity.
For instance, we have the following.

Theorem 2 (Ratto-Rigoli-Setti’s condition [4, Theorem 2.3]).
Let o € M be a fixed point and r(x) be the distance function
from o. Let one assumes that away from the cut locus of o one
has

Ricc (Vr,Vr) = — (n—1)BG*(r), (3)

where B > 0 is some constant and G(t) on [0, 00) satisfies
(o0 1 '
J ——dt=00, G0)=1, G >0,

0 G(t) (4)

k
V& ) =0, VK=o,

ne(vi) -
VG (@)

Then M satisfies the Omori-Yau maximum principle for the
Laplacian A.

lim sup

t— 00

Borbély [5, Theorem] has given an elegant proof of
the validity of the Omori-Yau maximum principle where
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the Ricci curvature condition (3) is replaced by the assump-
tion Ar(x) < G(r(x)) without (4) and (5). Also, Bessa et al.
[6, Theorem 5.6] proved Borbély’s theorem [5, Theorem] for
the f-Laplacian A ; for a selected smooth function on M. In
this paper, we first show that Borbély’s theorem [5, Theorem]
is also true for our semielliptic operator L by following his
method in [5] (see Theorem 5).
To state other results, we need the following definitions.

Definition 3. Let u be a real-valued continuous function on
M and let a point p € M.

(i) A function u is called proper, if the set {p : u(p) < r}
is compact for every real number r.

(ii) A function v defined on a neighborhood U, of p is
called an upper-supporting function for u at p, if the
conditions v(p) = u(p) and v > u hold in Up.

Definition 4. A proper continuous functionu : M — R is
called a A-tamed exhaustion, if the following condition holds:

M u=o0.

(2) At all points p € M it has a C* smooth, upper-
supporting function v at p defined on an open
neighborhood U, such that ||VV|P|| <land Avlp <1

Royden [7] showed that every complete Riemannian
manifold satisfying Omori-Yau’s condition (i.e., the Ricci cur-
vature is bounded from below) admits a A-tamed exhaustion
function. Inspired by Royden’s article [7], Kim and Lee [8,
Theorem 2] proved the Omori-Yau maximum principle for
the Laplacian A when there exists a A-tamed exhaustion func-
tion. Moreover, they proved that every complete Riemannian
manifold satisfying Ratto-Rigoli-Setti’s condition admits a A-
tamed exhaustion function [8]. Similar to Definition 4, we
define an L-tamed exhaustion function (i.e., we replace A
with L) [9, Definition 1.4]. Then, using the existence of an
L-tamed exhaustion function, Hong and Sung [9, Theorem
2.1] generalized the Omori-Yau maximum principle for the
Laplacian A to the operator L. In this paper, we give a new
sufficient condition for the existence of an L-tamed exhaus-
tion function (see Theorem 6). We prove this result using the
ideas adapted from [8]. Note that Theorem 6, together with
[9, Theorem 2.1], implies the maximum principle of Omori
and Yau for the operator L. As a corollary, we prove that the
existence of a A-tamed exhaustion is more general than Ratto-
Rigoli-Setti’s condition. Unfortunately, for the operator L, the
relation between Borbély’s condition (or the existence of an L-
tamed exhaustion) and Ratto-Rigoli-Setti’s condition remains
for further study.

Now, we formulate our main results. From (1), A is
diagonalizable at each point on an orthonormal basis, since
A is symmetric. Then one can take a normal coordinate
(x1,...,x,) around x, € M such that A at x, is represented
as a diagonal matrix. Thus, we have

(6)

o d
Lhl, =) ay(x.)==h| +) a(x)=—h
e zl: i 0x; . zl: ! 0x;

>
Xe
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for a real-valued function h on M, where each ag;(x,) is
nonnegative; the entries ay(x.) and |a;(x,)| are bounded
above as x, varies by (2). We introduce a locally defined
differential operator for convenience as follows:

= o o

A = —_ 4. —_—,
Xe an (xe) ax% + T (xs) axﬁ

- 0 0

vl o= 4. iy 7
Xe a4 (xe) axl + +a, ('xe) axn ( )

- 0 0
VxE = (all (xe) g""’ann (xe) ox >
1 n

Putd, = a;(x,) ande; = |a;(x,.)| for 1 <[ < n. We may assume
that d, and e, are the largest of {d,,...,d,} and {e,,...,e,},
respectively.

Then we have the following.

Theorem 5. Let o € M be a fixed point and r(x) be the
distance function from o. Assume that for all x € M

Ayr(x) <G(r(x), (8)

where r is smooth, r(x) > 1, and G(t) on [0, co) satisfies

Jwi—oo G>1,G 20 9)
o G() , S

Then M satisfies the Omori-Yau maximum principle for the
operator L.

Theorem 6. Let o € M be a fixed point and r(x) be the
distance function from o. Assume that for all x € M

A,r(x) <G (r(x), (10)

where r is smooth, r(x) > 1, and G(t) on [0, 00) satisfies

©dt !
—— =00, G2=21, G >0, 1
Jo G(t) )

t\/G (VE)

lim sup——— < +co. (12)

t—+00 /G (1)

Then M admits an L-tamed exhaustion function.

Remark 7. By [5, Corollary] and Theorem 6, Ratto-Rigoli-

Setti’s condition without \/G(Zkﬂ)(O) = 0 Yk > 0 implies the
existence of a A-tamed exhaustion function. Therefore, the
existence of a A-tamed exhaustion function for the conclu-
sion of the Omori-Yau maximum principle for the Laplacian
A is more general than the hypothesis in Theorem 2.

There are some other sufficient conditions under which
the Omori-Yau maximum principle for the Laplacian A
holds [10-12]. Also, [13] deals with the general setting of
semielliptic operators (trace type operators). Recently, Bessa
and Pessoa [14, Theorem 1] present a sufficient condition
for the conclusion of the Omori-Yau maximum principle
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for a second-order linear semielliptic operator with bounded
first-order coefficients and no zeroth-order term. However,
they will not consider the existence of a tamed exhaustion
function as sufficient conditions for the conclusion of the
Omori-Yau maximum principle.

2. Proof of Theorem 5

The proof is similar to the method in [5]. Let U = suph.
We may assume that & < U at every point of M; otherwise,
h has its maximum at some point and that point directly
satisfies the Omori-Yau maximum principle for a semielliptic
operator L.

Define the function F(t) as

F(t) = efot“/G(s))dS. (13)
Then
F' = g (14)

Since G > 1 on [0, 00), we have F > 1, and F' > 0. Hence the
function F is strictly increasing, and lim, _, . F(¢) = oo. Since
the set {x € M : r(x) < 1} is compact, we have

U-supf{h(x):r(x)<1}>0. (15)
For any positive constant € < min{l,U — sup{h(x) : r(x) <
1}}, we define the function hy : M — R as
hy (x) = AF (r (x))+U —e. (16)
Then
hy(x) >h(x) ifr(x)<1l, A>0. (17)

Because, for all x € M, F(r(x)) > 1and U > h(x).If A > ¢,
then we have

hy (x)>h(x), VxeM. (18)

Define A as
Ay =inf{A: by (x)>h(x), VxeM}. (19)

Then, clearly, A; > 0. Furthermore, we can obtain hAo (x) >
h(x) for all x € M; that is, there is a point x, € M such that
h,\o(xe) = h(x,.). Assume that to the contrary hAo(x) > h(x)
for all x € M. Then we will show that there is a constant A’
with A, > )’ such that hyi(x) > h(x) for all x € M. Thisisa
contradiction to the definition of A,.

Let A, > A,. Because lim, , (F(r) = oo, there is a
sufficiently large positive number r, such that by (x) > U >
h(x) for r(x) > r,. Also, because the set {x € M : r(x) < r,}
is compact, the statement h, (x) > h(x) for all x € M
implies that there is a constant A, with A, > A, such that
hy, (x) > h(x) for r(x) < r,. Now, let A = max{A,, A,}. Then,
for A, > A, we have hy:(x) > h(x) for all x € M. Moreover,
by (17) and A, > 0, we have r(x,) > 1.

Next, we have to show that h, is smooth at x,. Since
hy(x) = AF(r(x)) + U — ¢, it is enough to show that r is
smooth at x... To avoid confusion, the point o, in the statement
of Theorem 5, is switched to p. Note that r is a Lipschitz
function and is smooth on M \ {p,C } where C,, is the
cut locus of p. Suppose that x, € C Then we have two
possibilities (Petersen [15, Lemma 8.2]§ either there are two
distinct minimizing geodesic segments y;,y, : [0,f,] — M
joining pto x,, or thereisa geodesic segment y : [0,¢,] — M
from p to x, along which x, is conjugate to p. Notice that

tg =1 (3 (t)) = r ()

We consider the first case. Let w = y](t,) and v = y} (). Since
y, and v, are distinct segments, we have w # v. Fori = 1 or
2, the functions t — r(y,(t)) are differentiable on (0, ;) and
they have a left-derivative at ¢,. Note that / is C* smooth on
M. From the definition of Ay, h, > h, and hy (x.) = h(x,)
we obtain

fori=1 or 2. (20)

lim infh"" (12 (tg +5)) = hy, (12 (%))

s—0* N

>Dh(x.), (@)

where D, h(x,) denotes the directional derivative of / at the
point x, in the direction of v. Furthermore, since h)  has a
directional derivative at x, in the direction of —v, we have

_/\oF’ (to) = _)‘OFI (r(x.)) = D_Vh,\(] (xe)
(22)
> D_h(x,) =

-D,h(x,).
This yields

D,h(x.) = AF (r(x.)). (23)
Hence, by (21) and (23), we get the following inequality:

lim i hy, (v, (g +5) - hy, (12 (t5))
im inf
s—0* S (24)
> AF (r(x,)).

Note that (hAO(Yz)), = Ao F' (r(p))r (y,) and r(y, (t,)) = r(x,).
Recall that A, > 0. Then, from (24), we can get

lim infr (92 (tg +5)) -

s—0" S

r(YZ (to)) > 1. (25)

The inequality (25) will lead to a contradiction. Since y, and
y, are different segments, by connecting from the point y, (t,—
s) to the point y,(t, + s) with a geodesic segment, there is a
constant ¢ with 0 < ¢ < 1 such that, for a sufficiently small
s > 0, the distance d(y, (t, — s), y,(t; + 5)) < ¢2s. Thus there is
! . ! .

a constant ¢ with 0 < ¢’ < 1 depending only on the angle of
v and w such that

r(y, (tg+5)) <ty+c's, (26)

for a sufficiently small s > 0. Note that r(y,(t,))
plugging (26) to (25), we have a contradiction.

= t,. By



From now, let us consider the second case. Since y is
distance minimizing between p and x,, r is smooth at y(t)
for 0 < t < t,. Let m(t) = Ar(y(t)). Then m(t) is also smooth
for 0 < t < t,. Because y(t,) is conjugate to p = y(0) along v,
by a simple calculation, we get

limm (t) = — co. (27)

t—ty

Because A F'(r(x,)) > 0, by (23), we get D, h(x,) > 0; that is,
Vh(x,.) # 0. Hence the level surface H = {x € M : h(x) =
h(x,)} is a C* smooth hypersurface near x.. Denote by H, the
surface parallel to H and passing through the point y(t, — s)
for some s > 0. Since H is C* smooth near x,, the surface
H, is also C* smooth near y(t, — s) for a sufficiently small
s > 0. Therefore, by (27), for some sufficiently small s, the
trace of the second fundamental form of H, at y(t, —s) in the
direction of y' (t,—s) is greater than m(t, —s), where m(t, - s)
is the trace of the second fundamental form of the geodesic
sphere B(p, t,—s) at y(t,—s) with respect to the normal vector
y'(t, — s). This implies that there has to be a point g, € H,
sufficiently close to y(t, — s), which lies inside B(p,t, — s);
that is,

r(q,) <ty—s. (28)

Since H; is parallel to H, we also have a point on q € H such
that the distance d(g,, q) = s. By (28), we have

r(q) <ty=r(x.). (29)
Since F is strictly increasing, we get
hy, () = AoF (r(9)) +U—e < AoF (r(x.)) +U —e
=, (%) = h(x;) = h(q). Y

This is a contradiction to the fact that h,\o (x) = h(x) for all
x € M. Therefore, the function r must be smooth at x,.
By the definition of F, F > 1,G > 1, and G' > 0, we have

O<F'=£,
G
! 1 ! (31)
g P _FG_F_FG_F
G G G G TG

Because A; > 0, F > 1,and h(x,) = A(F(r(x.) +U -€e < U,
we have

0<—-AF(r(x.))+e=U-h(x,)<e. (32)

Hence

€
Ag < ————= <e€. (33)

F(r(x.))
Recall notations (6) and (7). Since

hlo (x) =2 h(x),

h)to (xe) =h (xe) >

Vx € M,
(34)
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we have

Vh)to (xe) =Vh (xe) >
(35)
Lhy (x.) = Lh(x,).

Note that |Vr|| = 1. By (31), (33), and G > 1, the first equality
of (35) yields

198 Gl = oF (- () 9 (x)
e Oy O
FrG))Glrx) =

Also, by (2), (31), (33), (36), G = 1, and err < G, the second
inequality of (35) yields

2

0
Lh(x) < Ly, (x;) = ) ay(x.) 32 e
1 1

€

< AO (F, (1’ (xe)) err (xe)

Xe

0
—h
+Zl: a (x.) %, Ao

+F” (r (xe)) vxer(xe)'vr (xe))+€1€ (37)

. <Fww>
FrG\ G ()

+d M>+elege(l+dl+el).

"G (r(x))

If we replace € with (1 + d; + e,), then the above inequality,
(32), and (36) show that the point x, satisfies the conditions
in Definition 1.

G (r(xe))

3. Proof of Theorem 6

The proof is similar to the method in [8]. Let 0 € M be a
fixed point and r(x) be the distance function from o. Define
afunctionu: M — Rby

r(x)*
u(x) = J G(s) ' ds. (38)
0
Assume that a smooth complete Riemannian manifold satis-
fies assumption (10). Then we will prove that u is an L-tamed
exhaustion function. We consider two cases.

First Case. Assume that o has no cut points in M.

By the definition, the function u is an exhaustion function
for M. We have to show that, for certain positive constants
Cand Cy, |[Vu| < Cand Lu < C, outside a ball of a

certain radius with center x,. Let ¢(t) = exp{_[ot G(s)"'ds}
and B(x,,r) = {x € M | dist(x,x.) < r}. Then u(x) =
log ¢(r(x)2). By a direct calculation, one gets
1(2 )
Vu = Vlog¢ (rz) = 2rVr% =2rVrG (rz) L(39)
r
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By (12), there is a positive constant C such that

2 G(r) _
G(r?)

G rG (rz)_l < % (40)

r

Then, for r > 1, we obtain

-1 -1 C
Gr)G(r’) <r*GrG(r*) <= 41
rGNG(r') <rGnG(r) < (41)
Moreover, by (11), we have
-1
squ(r)_1 = < inf G(r)> <l (42)
[0,00) [0,00)
By plugging (41) to (39), we have
1 _
IVull < S IVAICG (). (43)
Note that |Vr|| = 1. Applying (42) gives
C
[Vul < =. (44)
2
By (2) and (44), one gets
=1 C
"Vxeu" <e. (45)

By assumption (11), we have

<¢;((:22))> ) <G(r2)_l>l = -G (") "G () <0. (46)

Because of the above inequality, errll < d,, (41), and (42),
we have for r > 1

Exsu = er log ¢ (rz)

42 (pr(rz) e
(L) I

+2G (r2)71 ('err”z + r5x6r>

2

<2G (rz)_l ("@J“z +7A xer)

<2rG (rz)_1 (clfrf1 + Zxﬁr)

H) = NG - (3)F (@) (T ) - r (&)

(N (x) + (%) F" (r (x)) A () (r (T () - 7 (57))?

NG+ (5) Q0 () (T @) - (R))

5
C _ _ —~
< EG(r) ! (dfr ! +Ax€7’)
C C 1~
< Ed% + EG(V) ! Axsr.
(47)
By our assumption (10), there exits r, > 1 such that
~ C C
A u< Edf+5 on M\ B(x,,1,). (48)
Thus, by (45) and (48), we have
~ =1 C/n
Lu=A u+V, u< —(d1+1+el)
€ € 2 (49)

on M\ B(x,,1,).

If we replace (C/Z)(df + 1 + e;) with C;, then u satisfies the
additional conditions for an L-tamed exhaustion function.

Second Case. Assume that the cut locus of o is nonempty.

Let x, be a cut point of 0 and let F(t) = log¢(t*) for
t > 0. We choose a point X, outside of cut locus of o
such that dist(x,,x;) < 1 and r(x.) > r(x.). Denote by
B(y,r) = {x € M | dist(x, y) < r}. Take #,§ > 0 such that
B(x,,n)NB(x,,8) = 0 and B(x,, §) does not have cut point of
0.

Now, we present several functions to find an upper-
supporting function for u.

For a neighborhood % ¢ B(x,,#), we define a smooth
mapT: % — B(x,,8) with T, (x.) = X, and it is translation
sending x, to X, in a coordinate chart including both B(x,, )
and B(x,, ) and satisfying r(T'(x)) > r(x). Also, we define a
C? function A such that Alx,) = 1, VA(x,) = 0, AA(x,) = 0,
and

Ax)r(T(x)2r(x)+r(x)-r(x.) on%.  (50)

Since r(x;) > r(x.) and r > 0, we get A(x) > 0. Finally, for
x € %, we define a function

when F" (r (x.)) > 0,
when F" (r (x.)) <0, (51)

when F" (r(x.)) = 0,



where N(x) = ~-F'r&E))r(T(x)) - r(x) +
F' (r(x ) AOHT(0)) - (%)) and Q(r(x,)) = sup|F" (£)| for
t € (r(x.) — 1,r(x.) + 1). Note that we choose X_ as close to
x, such that sign[F"(r(er))] = sign[F"(r(xe))]. Therefore,
H(x) - N(x) = 0.

Let v(x) = F(r o T(x)) + F(r(x,)) — F(r(x;)) + H(x).
Then one gets v(x,) = F(r(x.)) = u(x.). Because of the
fact F'(r(x))Vr(x) = Vu(x) = G(r(x)*) ' 2r(x)Vr(x) and the
inequality (41), we get

0<F (r(x) =G(rx?) 2r(x < gG(r ). (52)

Moreover, we have two inequalities; that is, for x € %,

first order term of v (x) —u(x) = F (1’ (xe))
(A ) (T (%)) =1 (%) = (r (x) =7 (x.))) 2 0,

second order term of v(x) —u(x) = H (x) - N (x)

(53)

> 0.

Hence v is an upper-supporting function for u at the point x,.
Since VH|, = VNI, , ”VMxe | =0,A(x,) =1,and [|[V(r e
T)|| = 1, we have

|99 ] < |F' (r ()]
(|9 r ) + A |V oD,

' C
- ] = ] <&

) (s

xV

<A (r (X)) + F' (r (%)) A, (roT)| +A, H
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By our assumption (2), the above inequality implies that

P <ot (55)

Notice that

R, (reT(x)| = ||DT||ZZx€r|xAE = nﬁer?e, (56)

Xe

where dim M = n. By a simple calculation, we have

F' (r (x)) Vr (x)

. (57)

=26 (r (@) (-2r G (r(0)?) " +1) Vr ()
and hence

F' (r (x))

-1

=2G(r (x)?) (—2r @2G(rx?) " + 1) (58)
-1

<2G (r (x)z)

Using [V(r o T)ll = 1, IV, (r o )|l < d,, (52), (56), and (58),

we have

Xe

F'(r(x) By (re )| +di (F" (r(%)) + F" (r(x.)) if " (r(x.) >0,

(59)
<{F(r(x))A, (roT)'x if F" (r(x.)) <0,
F'(r(x)) By (roD)| +di (F" (r(®) +Q(r(x))) i F" (r(x)) =0,
1 1~ -1
< (E)CG(r (x.)) 1nAxAEr)?+4dfG(r (xe)z) . (60)
Let 2a be the distance to a closest cut point of 0. Because the A v < En + Ed{ (63)
point x, is a cut point of o, by (41) and (42), we get Yellxe 2 2a !
. . Therefore, by (55) and (63), we obtain, for r > 1,
2\~ 2\~
2aG (r (x¢) ) <r(x.)G (r (x.) )
< %G (r(x)) " < %, L, < 5 <n+ ;1 +el> . (64)
n-1 C
G (r (xe) ) < 8a (62) So u satisfies the conditions for an L-tamed exhaustion

By plugging (62) to (60), our assumption (10) tells us that, for
r>1,

function.
Altogether, we can conclude that # must be an L-tamed
exhaustion function for M.
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