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Let 𝑋 be a real locally uniformly convex reflexive separable Banach space with locally uniformly convex dual space 𝑋
∗. Let 𝑇 :

𝑋 ⊇ 𝐷(𝑇) → 2
𝑋
∗

be maximal monotone and 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋
∗ quasibounded generalized pseudomonotone such that

there exists a real reflexive separable Banach space 𝑊 ⊂ 𝐷(𝑆), dense and continuously embedded in 𝑋. Assume, further, that
there exists 𝑑 ≥ 0 such that ⟨V∗ + 𝑆𝑥, 𝑥⟩ ≥ −d‖𝑥‖

2 for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆) and V∗ ∈ 𝑇𝑥. New surjectivity results are given for
noncoercive, not everywhere defined, and possibly unbounded operators of the type 𝑇+𝑆. A partial positive answer for Nirenberg’s
problem on surjectivity of expansive mapping is provided. Leray-Schauder degree is applied employing the method of elliptic
superregularization. A new characterization of linear maximal monotone operator 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋

∗ is given as a result of
surjectivity of 𝐿 + 𝑆, where 𝑆 is of type (𝑀) with respect to 𝐿. These results improve the corresponding theory for noncoercive and
not everywhere defined operators of pseudomonotone type. In the last section, an example is provided addressing existence of weak
solution in 𝑋 = 𝐿

𝑝

(0, 𝑇; 𝑊
1,𝑝

0
(Ω)) of a nonlinear parabolic problem of the type 𝑢

𝑡
− ∑
𝑛

𝑖=1
(𝜕/𝜕𝑥

𝑖
)𝑎
𝑖
(𝑥, 𝑡, 𝑢, ∇𝑢) = 𝑓(𝑥, 𝑡), (𝑥, 𝑡) ∈ 𝑄;

𝑢(𝑥, 𝑡) = 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇); 𝑢(𝑥, 0) = 0, 𝑥 ∈ Ω, where 𝑝 > 1, Ω is a nonempty, bounded, and open subset of R𝑁, 𝑎
𝑖

:

Ω × (0, 𝑇) × R × R𝑁 → R (𝑖 = 1, 2, . . . , 𝑛) satisfies certain growth conditions, and 𝑓 ∈ 𝐿
𝑝
󸀠

(𝑄), 𝑄 = Ω × (0, 𝑇), and 𝑝
󸀠 is the

conjugate exponent of 𝑝.

1. Introduction—Preliminaries

In what follows, 𝑋 is a real reflexive separable locally uni-
formly convex Banach space with locally uniformly convex
dual space 𝑋

∗

. The norm of the space 𝑋, and any other
normed spaces herein, will be denoted by ‖ ⋅ ‖. For 𝑥 ∈ 𝑋

and 𝑥
∗

∈ 𝑋
∗, the pairing ⟨𝑥

∗

, 𝑥⟩ denotes the value 𝑥
∗

(𝑥). Let
𝑋 and 𝑌 be real Banach spaces. For a multivalued mapping
𝑇 : 𝑋 → 2

𝑌, we define the domain𝐷(𝑇) of𝑇 by𝐷(𝑇) = {𝑥 ∈

𝑋 : 𝑇𝑥 ̸= 0} and the range𝑅(𝑇) of𝑇 by𝑅(𝑇) = ∪
𝑥∈𝐷(𝑇)

𝑇𝑥.We
also denote the graph of 𝑇 by 𝐺(𝑇) = {(𝑥, 𝑇𝑥) : 𝑥 ∈ 𝐷(𝑇)}.

A mapping 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 𝑌 is “demicontinuous” if it
is continuous from the strong topology of 𝐷(𝑇) to the weak
topology of 𝑌. A multivalued mapping 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2

𝑌

is “bounded” if it maps bounded subsets of 𝐷(𝑇) to bounded
subsets of 𝑌. It is “compact” if it is strongly continuous and
maps bounded subsets of 𝐷(𝑇) to relatively compact subset
of 𝑌. It is “finitely continuous” if it is upper semicontinuous

from each finite dimensional subspace 𝐹 of 𝑋 to the weak
topology of 𝑌. It is “quasibounded” if for every 𝑀 > 0 there
exists 𝐾(𝑀) > 0 such that [𝑥, 𝑤

∗

] ∈ 𝐺(𝑇) with ‖𝑥‖ ≤ 𝑀

and ⟨𝑤
∗

, 𝑥⟩ ≤ 𝑀‖𝑥‖ imply ‖𝑤
∗

‖ ≤ 𝐾(𝑀). It is “strongly
quasibounded” if for every 𝑀 > 0 there exists 𝐾(𝑀) > 0

such that [𝑥, 𝑤
∗

] ∈ 𝐺(𝑇) with ‖𝑥‖ ≤ 𝑀 and ⟨𝑤
∗

, 𝑥⟩ ≤ 𝑀

imply ‖𝑤
∗

‖ ≤ 𝐾(𝑀). Inwhat follows, amappingwill be called
“continuous” if it is strongly continuous.

Let 𝜓 : [0, ∞) → [0, ∞) be continuous strictly
increasing function such that 𝜓(0) = 0 and 𝜓(𝑡) → ∞ as
𝑡 → ∞. The duality mapping corresponding to 𝜓 denoted
by 𝐽
𝜓

: 𝑋 → 2
𝑋
∗

is defined by

𝐽
𝜓

(𝑥)

= {𝑥
∗

∈ 𝑋
∗

: ⟨𝑥
∗

, 𝑥⟩ =
󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 ‖𝑥‖ ,

󵄩󵄩󵄩󵄩𝑥
∗󵄩󵄩󵄩󵄩 = 𝜓 (‖𝑥‖)} .

(1)

It is well-known that, for each 𝑥 ∈ 𝑋, the Hahn-Banach
Theorem implies 𝐽

𝜓
(𝑥) ̸= 0. Since 𝑋 and 𝑋

∗ are locally
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uniformly convex, 𝐽
𝜓
is single-valued, bounded monotone of

type (𝑆
+

) and bicontinuous. If 𝜓(𝑡) = 𝑡 for 𝑡 ≥ 0, then 𝐽
𝜓
is

denoted by 𝐽 and is called the normalized duality mapping.
An operator 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2

𝑋
∗

is said to be
“monotone” if, for every 𝑥 ∈ 𝐷(𝑇), 𝑦 ∈ 𝐷(𝑇), and every
𝑢
∗

∈ 𝑇𝑥, V∗ ∈ 𝑇𝑦, we have ⟨𝑢
∗

− V∗, 𝑥 − 𝑦⟩ ≥ 0. A
monotone mapping 𝑇 : 𝑋 ⊃ 𝐷(𝑇) → 2

𝑋
∗

is “maximal
monotone” if 𝑅(𝑇 + 𝜆𝐽) = 𝑋

∗ for every 𝜆 > 0; that is,
𝑇 is maximal monotone if and only if 𝑇 is monotone and
⟨𝑢
∗

− 𝑢
∗

0
, 𝑥 − 𝑥

0
⟩ ≥ 0 for every (𝑥, 𝑢

∗

) ∈ 𝐺(𝑇) implies
𝑥
0

∈ 𝐷(𝑇) and 𝑢
∗

0
∈ 𝑇𝑥
0
. If 𝑇 is maximal monotone, the

operator 𝑇
𝑡

: 𝑋 → 𝑋
∗, 𝑡 ∈ (0, ∞), defined by 𝑇

𝑡
𝑥 =

(𝑇
−1

+ 𝑡𝐽
−1

)
−1

𝑥, is bounded, continuous, maximal monotone
and such that 𝑇

𝑡
𝑥 ⇀ 𝑇

(0)

𝑥 as 𝑡 → 0
+, for every 𝑥 ∈ 𝐷(𝑇),

where ‖𝑇
(0)

𝑥‖ = inf{‖𝑦
∗

‖ : 𝑦
∗

∈ 𝑇𝑥}. The “resolvent”
𝐽
𝑡

: 𝑋 → 𝐷(𝑇), defined by 𝐽
𝑡
𝑥 = 𝑥 − 𝑡𝐽

−1

(𝑇
𝑡
𝑥), is continuous

and 𝑇
𝑡
𝑥 ∈ 𝑇(𝐽

𝑡
𝑥) for every 𝑥 ∈ 𝑋. Moreover, lim

𝑡→0
𝐽
𝑡
𝑥 = 𝑥

for all 𝑥 ∈ co𝐷(𝑇), where co𝐷(𝑇) is the convex hull of the
set 𝐷(𝑇). An operator 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 2

𝑋
∗

is called
“coercive” if either 𝐷(𝐴) is bounded or there exists a function
𝜓 : [0, ∞) → (−∞, ∞) such that 𝜓(𝑡) → ∞ as 𝑡 → ∞

and ⟨𝑦
∗

, 𝑥⟩ ≥ 𝜓(‖𝑥‖)‖𝑥‖ for all 𝑥 ∈ 𝐷(𝐴) and 𝑦
∗

∈ 𝐴𝑥. For
an operator 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 2

𝑋
∗

and 𝑥 ∈ 𝐷(𝐴), we denote
|𝐴𝑥| = inf{‖V∗‖ : V∗ ∈ 𝐴𝑥}. It is called weakly coercive if
either 𝐷(𝐴) is bounded or |𝐴𝑥| → ∞ as ‖𝑥‖ → ∞.

The following definitions are used throughout the paper.
In arbitrary Banach space 𝑋, Browder and Hess [1] intro-
duced the definitions of pseudomonotone and general-
ized pseudomonotone operators. The original definition for
single-valued pseudomonotone, generalized pseudomono-
tone, and operators of type (𝑀) with domain all of 𝑋, is due
to Brézis [2].

Definition 1. An operator 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋
∗ is called

(i) “generalized pseudomonotone” if, for each sequence
{𝑥
𝑛
} in 𝐷(𝑆) with 𝑥

𝑛
⇀ 𝑥
0
and 𝑆𝑥

𝑛
⇀ V∗
0
as 𝑛 → ∞

such that lim sup
𝑛→∞

⟨𝑆𝑥
𝑛
, 𝑥
𝑛

− 𝑥
0
⟩ ≤ 0, then 𝑥

0
∈

𝐷(𝑆), 𝑆𝑥
0

= V∗
0
, and ⟨𝑆𝑥

𝑛
, 𝑥
𝑛
⟩ → ⟨𝑆𝑥

0
, 𝑥
0
⟩ as 𝑛 →

∞.

(ii) “type (𝑀)” if, for each sequence {𝑥
𝑛
} in 𝐷(𝑆) with

𝑥
𝑛

⇀ 𝑥
0
in 𝑋 and 𝑆𝑥

𝑛
⇀ V∗
0
as 𝑛 → ∞ such that

lim sup
𝑛→∞

⟨𝑆𝑥
𝑛
, 𝑥
𝑛

− 𝑥
0
⟩ ≤ 0, then 𝑥

0
∈ 𝐷(𝑆) and

𝑆𝑥
0

= V∗
0

.

(iii) “𝛼-expansive” if there exists 𝛼 > 0 such that ‖V∗ −

𝑢
∗

‖ ≥ 𝛼‖𝑥 − 𝑦‖ for all 𝑥 ∈ 𝐷(𝑆), 𝑦 ∈ 𝐷(𝑆), V∗ ∈ 𝑆𝑥,
and 𝑢

∗

∈ 𝑆𝑦. It is called expansive if 𝛼 = 1.

We notice here that the definition of single-valued
expansive mapping is due to Nirenberg [3]. In order to
enlarge the class of single-valued operators, the multivalued
version is introduced in (iii) of Definition 1. It is not hard to
notice that every uniformly monotone operator is expansive.
Furthermore, in a Hilbert space 𝑋 = 𝐻, if 𝑇 : 𝐻 ⊇ 𝐷(𝑇) →

2
𝐻 is monotone, we see that, for each 𝜆 > 0, 𝑇 + 𝜆𝐼 is
multivalued expansive with domain 𝐷(𝑇).

The following definition gives a larger class of operators
of monotone type, which can be found in Kartsatos and
Skrypnik [4].

Definition 2. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2
𝑋
∗

be maximal
monotone and 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 𝑋

∗

. Let 𝐿 ⊆ 𝐷(𝑀) ∩ 𝐷(𝐴)

be a linear subspace of 𝑋. Then 𝐴 is said to be

(i) “quasibounded with respect to 𝑇” if, for each 𝑀 > 0,
there exists 𝐾(𝑀) > 0 such that

⟨𝐴𝑢 + 𝑢
∗

, 𝑢⟩ ≤ 𝑀,

‖𝑢‖ ≤ 𝑀,

(2)

where 𝑢 ∈ 𝐿 and 𝑢
∗

∈ 𝑇𝑢, then ‖𝐴𝑢‖ ≤ 𝐾(𝑀),
(ii) “generalized (𝑆

+
) with respect to 𝑇” if, for each {𝑢

𝑛
}

in 𝐿 with 𝑢
∗

𝑛
∈ 𝑇𝑢
𝑛
, 𝑢
𝑛

⇀ 𝑢
0
in 𝑋 and 𝐴𝑢

𝑛
⇀ ℎ
∗

0
in

𝑋
∗ as 𝑛 → ∞ such that

lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢
𝑛

− 𝑢
0
⟩ ≤ 0,

⟨𝑢
∗

𝑛
+ 𝐴𝑢
𝑛
, 𝑢
𝑛
⟩ ≤ 0

(3)

for all 𝑛, then 𝑢
𝑛

→ 𝑢
0

∈ 𝐷(𝐴) and 𝐴𝑢
0

= ℎ
∗

0
,

(iii) “generalized pseudomonotone with respect to 𝑇” if,
for each {𝑢

𝑛
} in 𝐿 with 𝑢

∗

𝑛
∈ 𝑇𝑢
𝑛
, 𝑢
𝑛

⇀ 𝑢
0
in 𝑋 and

𝐴𝑢
𝑛

⇀ ℎ
∗

0
in 𝑋
∗ as 𝑛 → ∞ such that

lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢
𝑛

− 𝑢
0
⟩ ≤ 0,

⟨𝑢
∗

𝑛
+ 𝐴𝑢
𝑛
, 𝑢
𝑛
⟩ ≤ 0

(4)

for all 𝑛, then 𝑢
0

∈ 𝐷(𝐴), 𝐴𝑢
0

= ℎ
∗

0
, and ⟨𝑆𝑢

𝑛
, 𝑢
𝑛
⟩ →

⟨𝑆𝑢
0
, 𝑢
0
⟩ as 𝑛 → ∞,

(iv) “of type (𝑀) with respect to 𝑇” if, for each {𝑢
𝑛
} in 𝐿

with 𝑢
∗

𝑛
∈ 𝑇𝑢
𝑛
, 𝑢
𝑛

⇀ 𝑢
0
in 𝑋 and 𝐴𝑢

𝑛
⇀ ℎ
∗

0
in 𝑋
∗ as

𝑛 → ∞ such that

lim sup
𝑛→∞

⟨𝐴𝑢
𝑛
, 𝑢
𝑛

− 𝑢
0
⟩ ≤ 0,

⟨𝑢
∗

𝑛
+ 𝐴𝑢
𝑛
, 𝑢
𝑛
⟩ ≤ 0

(5)

for all 𝑛, then 𝑢
0

∈ 𝐷(𝐴) and 𝐴𝑢
0

= ℎ
∗

0
.

By Definition 2, it is not difficult to see that 0 ∈ 𝐷(𝑇)

and 𝐴 is quasibounded implying that 𝐴 is quasibounded
with respect to 𝑇. Furthermore, it follows that the class of
generalized (𝑆

+
) operators with respect to𝑇 includes the class

of operators of type (𝑆
+

).
For basic definitions and further properties of mappings

ofmonotone type, the reader is referred to Barbu [5], Brèzis et
al. [6], Brèzis [2], Browder and Hess [1], Pascali and Sburlan
[7], Browder [8], and Zeidler [9]. For results concerning
perturbations of maximal monotone operators by bounded
and everywhere defined pseudomonotone type operators,
the reader is referred to Browder and Hess [1], Brèzis [2],
Browder [10], Brèzis and Nirenberg [11], Kenmochi [12–
14], Guan et al. [15], Le [16], Guan and Kartsatos [15, 17],
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and Kartsatos and Skrypnik [4] and the references therein.
For recent degree theory and applications for solvability
of operator inclusions involving bounded pseudomonotone
perturbations of maximal monotone operators under general
coercivity and Leray-Schauder type boundary conditions, we
cite the paper due to Asfaw and Kartsatos [18]. Existence
results concerning noncoercive operators of the type 𝑇 + 𝑆,
where 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2

𝑋
∗

is maximal monotone and
𝑆 : 𝑋 → 2

𝑋
∗

is bounded pseudomonotone, can be found in
the paper due to Asfaw [19]. For applications of the theory
of perturbed monotone type operators to variational and
hemivariational inequality problems, the reader is referred
to the papers due to Carl and Le [20], Carl et al. [21], Carl
[22], and Carl and Motreanu [23] and the references therein.
For a separable reflexive Banach space 𝑋 and a nonempty,
closed, and convex subset 𝐾 of 𝑋, Asfaw and Kartsatos [24]
gave existence results for locally defined operators of the type
𝑇 + 𝑆, where 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2

𝑋
∗

is maximal monotone
and 𝑆 : 𝐾 → 𝑋

∗ is demicontinuous and generalized
pseudomonotone under coercivity condition on 𝑆.

The main contribution of the paper is to obtain sur-
jectivity results for noncoercive and not everywhere defined
operators of the type

(i) 𝑇 + 𝑆, where 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋
∗ is quasibounded

demicontinuous generalized pseudomonotone such
that

(a) there exists a real reflexive separable Banach
space 𝑊 ⊆ 𝐷(𝑆), dense and continuously
embedded in 𝑋;

(b) there exists 𝑑 ≥ 0 such that ⟨V∗ + 𝑆𝑥, 𝑥⟩ ≥

−𝑑‖𝑥‖
2 for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆) and V∗ ∈ 𝑇𝑥;

(c) there exist 𝛼 > 𝑑 and 𝜇 ≥ 0 such that ‖V∗+𝑆𝑥‖ ≥

𝛼‖𝑥‖ − 𝜇 for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆) and V∗ ∈ 𝑇𝑥,

(ii) 𝐿 + 𝑆, where 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋
∗ is quasibounded

demicontinuous of type (𝑀) with 𝐷(𝐿) ⊆ 𝐷(𝑆) such
that (b) and (c) of (i) are satisfied.

In Section 2, we proved surjectivity results for 𝑇 + 𝑆

and 𝐿 + 𝑆 satisfying conditions (i) and (ii), respectively. In
Theorem 6, we provide a surjectivity result for operators of
the type 𝑇 + 𝑆, where 𝑇 and 𝑆 satisfy condition (i).Theorem 6
is new and improves the existing surjectivity results for
an operator 𝑆, which is single-valued, everywhere defined,
bounded, and coercive pseudomonotone. In particular, for
a single-valued pseudomonotone operator 𝑆, Theorem 6
improves the surjectivity results due to Browder and Hess
[1], Kenmochi [12–14], Le [16], Guan and Kartsatos [17],
Asfaw and Kartsatos [18], and Asfaw [19, 25] because the
results in these references require 𝑆 to be everywhere defined,
bounded, and coercive whileTheorem 6 used 𝑆 to be densely
defined, quasibounded, and noncoercive.Moreover, Browder
(cf. Zeidler [9,Theorem 32. A, pages 866–872]) gave themain
theorem for perturbations of maximal monotone operator
by a single-valued, bounded, demicontinuous, and coercive
operator 𝑆 with 𝐷(𝑆) = 𝐶, a nonempty, closed, and convex
subset of 𝑋. In view of this, Theorem 6 gives an analogous

result, where 𝐷(𝑆) is dense in 𝑋, possibly, neither closed
nor convex, and 𝑆 is weakly coercive. It is also known,
due to Browder and Hess [1], that every pseudomonotone
operator 𝑆 from 𝑋 into 𝑋

∗ with 𝐷(𝑆) = 𝑋 is generalized
pseudomonotone. It is also true that 𝑆 is demicontinuous
provided that it is bounded, single-valued, and everywhere
defined. Consequently, the arguments used in the proof of
Theorem 6 give analogous conclusion if 𝑆 : 𝑋 = 𝐷(𝑆) →

𝑋
∗ is bounded pseudomonotone and 𝑇 and 𝑆 satisfy the

given hypotheses. As a consequence of Corollary 7, a partial
positive answer for Nirenberg’s problem on surjectivity of
densely defined demicontinuous generalized pseudomono-
tone expansive mapping is provided. In addition, Theorem 8
provides surjectivity result for operators of the type 𝑇 + 𝑆,
where 𝑇 and 𝑆 satisfy condition (ii). As a result ofTheorem 8,
a new characterization of linear maximal monotone operator
is proved when the space 𝑋 is separable. It is well known due
to Brézis (cf. Zeidler [9,Theorem 32. L, pages 897–899]) that a
linearmonotone operator 𝐿 is maximalmonotone if and only
if 𝐿 is closed and densely defined and the adjoint operator
𝐿
∗ is monotone. An interesting result in the present paper is

that a linear monotone operator 𝐿 is maximal monotone if
and only if 𝐿 is closed and densely defined, provided that 𝑋

is separable. This result weakens the monotonicity condition
on 𝐿
∗ used by Brézis (cf. Zeidler [9, Theorem 32. L, pages

897–899]). To the best of the author’s knowledge, Theorem 8
is a new result and Corollary 9 improves the well-known
result of Brézis. In Section 3, we demonstrate the applicability
of the results by proving existence of weak solution in
𝐿
𝑝

(0, 𝑇; 𝑊
1,𝑝

0
(Ω)) of a nonlinear parabolic problem, where

𝑝 > 1 and Ω is a nonempty, bounded, and open subset of
R𝑁.

The following important lemma is due to Brèzis et al. [6].

Lemma 3. Let 𝐵 be a maximal monotone set in 𝑋 × 𝑋
∗. If

(𝑢
𝑛
, 𝑢
∗

𝑛
) ∈ 𝐵 such that 𝑢

𝑛
⇀ 𝑢, 𝑢

∗

𝑛
⇀ 𝑢
∗ as 𝑛 → ∞, and

either
lim sup
𝑛,𝑚→∞

⟨𝑢
∗

𝑛
− 𝑢
∗

𝑚
, 𝑢
𝑛

− 𝑢
𝑚

⟩ ≤ 0 (6)
or

lim sup
𝑛→∞

⟨𝑢
∗

𝑛
− 𝑢
∗

, 𝑢
𝑛

− 𝑢⟩ ≤ 0, (7)

then (𝑢, 𝑢
∗

) ∈ 𝐵 and ⟨𝑢
∗

𝑛
, 𝑢
𝑛
⟩ → ⟨𝑢

∗

, 𝑢⟩ as 𝑛 → ∞.

Browder and Ton [26] gave the following important
embedding result.

Lemma 4. Let 𝑋 be a separable reflexive Banach space. Then
there exists a real separable Hilbert space 𝐻 and a compact
injection 𝑄 : 𝐻 → 𝑋 such that 𝑄(𝐻) = 𝑋.

In this paper, we use the following fixed point result for
compact operators, originally due to Leray and Schauder,
whichmay be found in the book of Granas andDugundji [27,
Theorem 5.2, page 123].

Lemma 5. Let 𝐶 be a convex subset of a normed linear space
𝑋 and let 𝑈 be nonempty relatively open in 𝐶 with 0 ∈ 𝑈. Then
each compact map 𝐹 : 𝑈 → 𝐶 satisfies that either
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(i) 𝐹 has a fixed point in 𝑈

or

(ii) there exist 𝑥 ∈ 𝜕
𝐶

𝑈 and 𝜆 ∈ (0, 1) such that 𝑥 = 𝜆𝐹(𝑥),
where 𝜕

𝐶
𝑈 is the boundary of 𝑈 with respect to the

subspace topology on 𝐶.

2. Main Results

In this section, we prove the following new surjectivity result
for maximal monotone perturbation of densely defined non-
coercive generalized pseudomonotone operator in separable
reflexive Banach spaces.

Theorem 6. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2
𝑋
∗

be maximal
monotone with 0 ∈ 𝑇(0) and 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋

∗

quasibounded demicontinuous generalized pseudomonotone.
Suppose 𝑊 ⊆ 𝐷(𝑆) is a real reflexive separable Banach space
dense and continuously embedded in 𝑋. Assume, further, that
there exist 𝜇 ≥ 0, 𝑑 ≥ 0, and 𝛼 > 𝑑 satisfying

⟨𝑆𝑥, 𝑥⟩ ≥ −𝑑 ‖𝑥‖
2 (8)

for all 𝑥 ∈ 𝐷(𝑆) and either
(i)

󵄩󵄩󵄩󵄩V
∗

+ 𝑆𝑥
󵄩󵄩󵄩󵄩 ≥ 𝛼 ‖𝑥‖ − 𝜇 ∀𝑥 ∈ 𝐷 (𝑇) ∩ 𝐷 (𝑆) , V∗ ∈ 𝑇𝑥 (9)

or

(ii) there exists 𝜙 : [0, ∞) → (−∞, ∞) such that 𝜙(𝑡) →

∞ as 𝑡 → ∞ and
󵄩󵄩󵄩󵄩V
∗

+ 𝑆𝑥
󵄩󵄩󵄩󵄩 ≥ 𝜙 (‖𝑥‖) ‖𝑥‖

∀𝑥 ∈ 𝐷 (𝑇) ∩ 𝐷 (𝑆) , V∗ ∈ 𝑇𝑥.

(10)

Then 𝑇 + 𝑆 is surjective.

Proof. Let 𝜆 > 0 be fixed temporarily and 𝑇
𝜆
the Yosida

approximant of 𝑇. For each 𝜀 > 0, by using the inner product
condition on 𝑆 and monotonicity of 𝑇

𝜆
(𝑇
𝜆
(0) = 0 for all

𝜆 > 0), we see that

⟨𝑇
𝜆
𝑥 + 𝑆𝑥 + 𝛿 ‖𝑥‖ 𝐽𝑥 − 𝑓

∗

, 𝑥⟩

≥ 𝛿 ‖𝑥‖
3

− 𝑑 ‖𝑥‖
2

−
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩 ‖𝑥‖

= ‖𝑥‖
3

[𝛿 −
𝑑

‖𝑥‖
−

󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

‖𝑥‖
3

] > 0

(11)

for all 𝑥 ∈ 𝐷(𝑆) ∩ 𝜕𝐵
𝑅
𝛿

(0) for some 𝑅
𝛿

> 0. Let 𝐺
𝛿

= 𝐵
𝑅
𝛿

(0).

Let 𝐻 be a real separable Hilbert space and 𝑄 : 𝐻 → 𝑊 a
compact injection such that 𝑄(𝐻) is dense in 𝑊 guaranteed
by Lemma 4. Let 𝑗 : 𝑊 → 𝑋 be the natural injection and let
𝑄
∗

: 𝑊
∗

→ 𝐻
∗ and 𝑗

∗

: 𝑋
∗

→ 𝑊
∗ be adjoint of 𝑄 and 𝑗,

respectively. It follows that 𝜓 = 𝑗𝑄 : 𝐻 → 𝑋 is a compact
operator. Let 𝑈 = 𝑄

−1

(𝐺
𝛿

∩ 𝑊). First we show that 𝐺
𝛿

∩ 𝑊 is
open in 𝑊; that is, 𝑊 \ (𝐺

𝛿
∩ 𝑊) = 𝑊 ∩ (𝑋 \ 𝐺

𝛿
) is closed in

𝑊. To this end, let {𝑥
𝑛
} be a sequence in 𝑊 ∩ (𝑋 \ 𝐺

𝛿
) such

that 𝑥
𝑛

→ 𝑥
0
in 𝑊 as 𝑛 → ∞. Since 𝑊 is continuously

embedded in 𝑋, we get 𝑥
𝑛

→ 𝑥
0
in 𝑋 as 𝑛 → ∞. Since

𝑋 \ 𝐺
𝛿
is closed in 𝑋, it follows that 𝑥

0
∈ 𝑋 \ 𝐺

𝛿
; that is,

𝑥
0

∈ 𝑊 ∩ (𝑋 \ 𝐺
𝛿
). This shows that 𝑊 ∩ (𝑋 \ 𝐺

𝛿
) is closed in

𝑊; that is, 𝐺
𝛿

∩ 𝑊 is open in 𝑊. The continuity of 𝑄 implies
that 𝑈 is open in 𝐻. Since 𝑊 is continuously embedded in 𝑋,
it follows that

𝐺
𝛿

∩ 𝑊
𝑊

⊆ 𝐺
𝛿

∩ 𝑊
𝑋

⊆ 𝐺
𝛿
, (12)

where the closures are taken with respect to the spaces 𝑊 and
𝑋, respectively. Since 𝐺

𝛿
∩ 𝑊
𝑊

⊆ 𝑊, we obtain that

(𝐺
𝛿

∩ 𝑊) ∪ 𝜕
𝑊

(𝐺
𝛿

∩ 𝑊) = 𝐺
𝛿

∩ 𝑊
𝑊

⊆ 𝐺
𝛿

∩ 𝑊

= (𝐺
𝛿

∩ 𝑊) ∪ (𝜕𝐺
𝛿

∩ 𝑊) .

(13)

Since the sets𝐺
𝛿
∩𝑊 and 𝜕

𝑊
(𝐺
𝛿
∩𝑊) are disjoint, we conclude

that

𝜕
𝑊

(𝐺
𝛿

∩ 𝑊) ⊆ 𝜕𝐺
𝛿

∩ 𝑊. (14)

For each 𝜆 > 0, let 𝑇
𝜆
be the Yosida approximant of 𝑇. Let

𝐽
1
𝑥 = ‖𝑥‖𝐽𝑥, 𝑥 ∈ 𝑋. It is known that, for each 𝛿 > 0, 𝑇

𝜆
+ 𝛿𝐽
1

is bounded, continuous, monotone, and of type (𝑆
+

). Let 𝜓 =

𝑗𝑄 and 𝐶
𝜆,𝛿

𝜀
: 𝑈 → 𝐻 be given by

𝐶
𝜆,𝛿

𝜀
(V) = −𝜀

−1

(𝜓
∗

((𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝜓 (V) − 𝑓

∗

)) ,

V ∈ 𝑈.

(15)

Since 𝜓 is continuous, it follows that

𝑈 = 𝜓−1 (𝐺
𝛿

∩ 𝑊) ⊆ 𝜓
−1

(𝐺
𝛿

∩ 𝑊
𝑊

) ⊆ 𝐻 (16)

is closed subset of𝐻.We show that𝐶
𝜆,𝛿

𝜀
is a compact operator.

To this end, let 𝑥
𝑛

∈ 𝑈 such that 𝑥
𝑛

→ 𝑥
0
as 𝑛 → ∞. Since

𝑄 is continuous from 𝐻 into 𝑋, we have 𝑄𝑥
𝑛

→ 𝑄𝑥
0
as

𝑛 → ∞. Since 𝑥
𝑛

∈ 𝑈, the sequence {𝑄𝑥
𝑛
} lies in 𝑊. Since

𝑥
𝑛

∈ 𝐻 for all 𝑛 and 𝑥
0

∈ 𝑈, it follows that 𝑄𝑥
𝑛

∈ 𝑊 and
𝑄𝑥
0

∈ 𝑊 for all 𝑛. Since 𝑆 and 𝑇
𝜆
are demicontinuous, it

follows that (𝑇
𝜆

+ 𝑆)𝑄𝑥
𝑛

⇀ (𝑇
𝜆

+ 𝑆)𝑄𝑥
0
as 𝑛 → ∞. By the

density of𝑊 in𝑋, it is known that 𝑗
∗ is defined from 𝑊

∗ into
𝐻. As a result, for each 𝑤 ∈ 𝑊, we see that

⟨𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0
, 𝑤⟩

= ⟨(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
𝑛
, 𝑤⟩

− ⟨(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0
, 𝑤⟩

(17)

for all 𝑛. However, the right side expression goes to 0 as 𝑛 →

∞; that is, for each 𝑤 ∈ 𝑊, it follows that

⟨𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0
, 𝑤⟩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(18)
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On the other hand, by the density of 𝑊 in 𝑋, for each 𝑥 ∈ 𝑋,
we get

⟨𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑗
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0
, 𝑥⟩

󳨀→ 0 as 𝑛 󳨀→ ∞;

(19)

that is, 𝑗∗(𝑇
𝜆

+𝑆+𝛿𝐽
1
)𝑄𝑥
𝑛

⇀ 𝑗
∗

(𝑇
𝜆

+𝑆+𝛿𝐽
1
)𝑄𝑥
0
as 𝑛 → ∞.

Since 𝑄
∗ is compact linear, which is completely continuous

and (𝑗𝑄)
∗

= 𝑄
∗

𝑗
∗, we arrive at 𝜓

∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
)𝑄𝑥
𝑛

→

𝜓
∗

(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
)𝑄𝑥
0
as 𝑛 → ∞. This shows that the mapping

𝐶
𝛿,𝜆

𝜀
is continuous. Following similar argument as above, it is

not difficult to show that 𝐶
𝛿,𝜆

𝜀
maps any bounded subset of 𝑈

into relatively compact subset of 𝐻. As a result, we conclude
that 𝐶

𝛿,𝜆

𝜀
is a compact operator. Fix 𝜀 > 0. In order to use

Lemma 5, it is enough to show that (i) of Lemma 5 does not
hold; that is, for all 𝜇 ∈ (0, 1) and 𝑥 ∈ 𝜕

𝐻
𝑈, we have 𝑥 ̸=

𝜇𝐶
𝛿,𝜆

𝜀
(𝑥). Suppose this is false; that is, there exist 𝑥

0
∈ 𝜕
𝐻

𝑈

and 𝜇
0

∈ (0, 1) such that 𝑥
0

= 𝜇
0
𝐶
𝛿,𝜆

𝜀
(𝑥
0
). This yields

𝜀𝑥
0

+ 𝜇
0
𝜓
∗

((𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝜓𝑥
0

− 𝑓
∗

) = 0. (20)

We notice here that the continuity of 𝑄, property of 𝑄
−1, and

definition of boundary of an open set imply that

𝜕
𝐻

𝑈 = 𝜕
𝐻

𝑄
−1

(𝐺
𝛿

∩ 𝑊) ⊆ 𝑄
−1

(𝜕
𝑊

(𝐺
𝛿

∩ 𝑊))

⊆ 𝑄
−1

(𝜕𝐺
𝛿

∩ 𝑊)

(21)

holds. Since 𝑥
0

∈ 𝜕
𝐻

𝑈, it follows that 𝑄𝑥
0

∈ 𝜕𝐺 ∩ 𝑊. By (11)
and (20), we get

𝜀

𝜇
0

󵄩󵄩󵄩󵄩𝑥
0

󵄩󵄩󵄩󵄩

2

= − ⟨𝜓
∗

((𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0

− 𝑓
∗

) , 𝑥
0
⟩

= − ⟨(𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
0

− 𝑓
∗

, 𝑄𝑥
0
⟩ ≤ 0,

(22)

which implies 𝑥
0

= 0. But this is impossible because 0 ∈ 𝐺
𝛿

∩

𝑊. Therefore, by applying Lemma 5, for each 𝜀 > 0, 𝜆 > 0,
and 𝛿 > 0, we conclude that the compact operator 𝐶

𝛿,𝜆

𝜀
has a

fixed point 𝑥
𝜀

∈ 𝑈; that is,

𝜀𝑥
𝜀

+ 𝜓
∗

((𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝜓𝑥
𝜀

− 𝑓
∗

) = 0. (23)

Therefore, for each 𝜀
𝑛

↓ 0
+, there exists 𝑥

𝑛
∈ 𝑈 such that

𝜀
𝑛
𝑥
𝑛

+ 𝜓
∗

((𝑇
𝜆

+ 𝑆 + 𝛿𝐽
1
) 𝜓𝑥
𝑛

− 𝑓
∗

) = 0 (24)

for all 𝑛. Since𝐺
𝛿
is bounded, the sequence {𝜓𝑥

𝑛
} is bounded.

Since 𝑇
𝜆
and 𝐽

1
are bounded, it follows that the sequence

{(𝑇
𝜆

+ 𝛿𝐽
1
)𝜓𝑥
𝑛
} is bounded. Since 𝑊 = 𝑄(𝐻)

𝑊

and 𝑊 is
continuously embedded, we see that 𝑊 = 𝑄(𝐻)

𝑊

⊆ 𝑄(𝐻)
𝑋

,
where the closures are with respect to the norms in 𝑊 and
𝑋, respectively. As a result, the density of 𝑊 in 𝑋 implies that

𝑋 = 𝑄(𝐻)
𝑋

. By using (11), themonotonicity of 𝑇
𝜆
and 𝐽
1
, and

property of 𝜓
∗, we obtain that

⟨𝑆𝜓𝑥
𝑛
, 𝜓𝑥
𝑛
⟩

= −𝜀
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− ⟨𝑇
𝜆
𝜓𝑥
𝑛

+ 𝛿𝐽
1
𝜓𝑥
𝑛

− (𝑇
𝜆

(0) + 𝛿𝐽
1

(0)) , 𝜓𝑥
𝑛
⟩

+ ⟨𝑇
𝜆

(0) + 𝛿𝐽
1

(0) + 𝑓
∗

, 𝜓𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑇
𝜆

(0) + 𝛿𝐽
1

(0) + 𝑓
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝜓𝑥
𝑛

󵄩󵄩󵄩󵄩

≤ (|𝑇 (0)| +
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝜓𝑥
𝑛

󵄩󵄩󵄩󵄩

(25)

for all 𝑛. Since 𝑄𝑥
𝑛

∈ 𝑊, it follows that 𝜓𝑥
𝑛

= 𝑗𝑄𝑥
𝑛

= 𝑄𝑥
𝑛

for all 𝑛. Consequently, we obtain that

⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛
⟩ ≤ (|𝑇 (0)| +

󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝑄𝑥
𝑛

󵄩󵄩󵄩󵄩 (26)

for all 𝑛. Since {𝑄𝑥
𝑛
} is bounded and 𝑆 is quasibounded,

we conclude that {𝑆𝑄𝑥
𝑛
} is bounded. Consequently, by using

(24), it is not difficult to see that {𝜀
𝑛
‖𝑥
𝑛
‖
2

} is bounded. If the
sequence {𝑥

𝑛
} is bounded, then 𝜀

𝑛
𝑥
𝑛

→ 0 as 𝑛 → ∞.
Otherwise, by using the boundedness of {𝜀

𝑛
‖𝑥
𝑛
‖
2

}, we assume
without loss of generality that 𝜀

𝑛
𝑥
𝑛

→ 0 as 𝑛 → ∞,
𝑄𝑥
𝑛

⇀ 𝑥
0
, and 𝑆𝑄𝑥

𝑛
⇀ V∗
0
as 𝑛 → ∞. Since 𝑄(𝐻)

𝑋

= 𝑋,
by choosing a sequence {𝑧

𝑚
= 𝑄𝑦
𝑚

} such that 𝑧
𝑚

→ 𝑥
0
as

𝑚 → ∞ and using (24) together with the monotonicity of
𝑇
𝜆

+ 𝛿𝐽
1
, we get

⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛
⟩ = ⟨𝑆𝑄𝑥

𝑛
, 𝑄𝑦
𝑚

− 𝑄𝑦
𝑚

+ 𝑄𝑥
𝑛
⟩

= ⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑦
𝑚

⟩ + ⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩

= ⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑦
𝑚

⟩ + ⟨𝑓
∗

, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩

− ⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑥
𝑛

− (𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑦
𝑚

, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩

− ⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑦
𝑚

, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩

− 𝜀
𝑛

⟨𝑥
𝑛
, 𝑥
𝑛

− 𝑦
𝑚

⟩ ≤ ⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑦
𝑚

⟩

− ⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑦
𝑚

, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩ + 𝜀
𝑛

⟨𝑥
𝑛
, 𝑦
𝑚

⟩

+ ⟨𝑓
∗

, 𝑄𝑥
𝑛

− 𝑄𝑦
𝑚

⟩

(27)

for all 𝑛 and 𝑚. Fixing 𝑚 and letting 𝑛 → ∞ in (27), we
obtain that

lim sup
𝑛→∞

⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛
⟩

≤ ⟨V∗
0

, 𝑄𝑦
𝑚

⟩

− ⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑦
𝑚

− 𝑓
∗

, 𝑥
0

− 𝑄𝑦
𝑚

⟩ .

(28)

Since 𝑇
𝜆

+ 𝛿𝐽
1
is demicontinuous, letting 𝑚 → ∞, we arrive

at
lim sup
𝑛→∞

⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛
⟩ ≤ ⟨V∗

0
, 𝑥
0
⟩ ; (29)

that is,

lim sup
𝑛→∞

⟨𝑆𝑄𝑥
𝑛
, 𝑄𝑥
𝑛

− 𝑥
0
⟩ ≤ 0. (30)
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Since 𝑆 is generalized pseudomonotone, we conclude that
𝑥
0

∈ 𝐷(𝑆), 𝑆𝑥
0

= V∗
0
, and ⟨𝑆𝑄𝑥

𝑛
, 𝑄𝑥
𝑛
⟩ → ⟨V∗

0
, 𝑥
0
⟩ as

𝑛 → ∞. For any 𝑦 ∈ 𝑄(𝐻), applying the monotonicity of
𝑇
𝜆

+ 𝛿𝐽
1
, we arrive at

⟨𝑇
𝜆
𝑦 + 𝛿𝐽

1
𝑦 − 𝑓

∗

, 𝑦 − 𝑥
0
⟩ = lim
𝑛→∞

⟨𝑇
𝜆
𝑦 + 𝛿𝐽

1
𝑦

− 𝑓
∗

, 𝑦 − 𝑄𝑥
𝑛
⟩ ≥ lim inf
𝑛→∞

[⟨𝑇
𝜆
𝑦 + 𝛿𝐽

1
𝑦

− (𝑇
𝜆
𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛
) , 𝑦 − 𝑄𝑥

𝑛
⟩]

+ lim inf
𝑛→∞

[⟨𝑇
𝜆
𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛

− 𝑓
∗

, 𝑦 − 𝑄𝑥
𝑛
⟩]

≥ lim inf
𝑛→∞

⟨𝑇
𝜆
𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛

− 𝑓
∗

, 𝑦 − 𝑄𝑥
𝑛
⟩ .

(31)

Moreover, from (24), we obtain that

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑓
∗

, 𝑦 − 𝑄𝑥
𝑛
⟩

= −𝜀
𝑛

⟨𝑥
𝑛
, 𝑄
−1

𝑦 − 𝑥
𝑛
⟩ − ⟨𝑆𝑄𝑥

𝑛
, 𝑦 − 𝑄𝑥

𝑛
⟩

= 𝜀
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩

2

− 𝜀
𝑛

⟨𝑥
𝑛
, 𝑄
−1

𝑦⟩ − ⟨𝑆𝑄𝑥
𝑛
, 𝑦 − 𝑄𝑥

𝑛
⟩

≥ −𝜀
𝑛

⟨𝑥
𝑛
, 𝑄
−1

𝑦⟩ − ⟨𝑆𝑄𝑥
𝑛
, 𝑦 − 𝑄𝑥

𝑛
⟩

(32)

for all 𝑛. As a result, we arrive at

lim inf
𝑛→∞

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑓
∗

, 𝑦 − 𝑄𝑥
𝑛
⟩

≥ − ⟨𝑆𝑥
0
, 𝑦 − 𝑥

0
⟩ .

(33)

From (31) and (33), we obtain

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑦 + 𝑆𝑥

0
− 𝑓
∗

, 𝑦 − 𝑥
0
⟩ ≥ 0 (34)

for all 𝑦 ∈ 𝑄(𝐻). By the density of 𝑄(𝐻) in 𝑋 and the
continuity of 𝑇

𝜆
+ 𝛿𝐽
1
, we conclude that

⟨𝑇
𝜆
𝑦 + 𝛿𝐽

1
𝑦 + 𝑆𝑥

0
− 𝑓
∗

, 𝑦 − 𝑥
0
⟩ ≥ 0 (35)

for all 𝑦 ∈ 𝑋. Since, for any 𝑦 ∈ 𝑋, 𝑥
𝑡

= 𝑡𝑥
0

+ (1 − 𝑡)𝑦 ∈ 𝑋 for
all 𝑡 ∈ [0, 1), using 𝑥

𝑡
in place of 𝑦, we obtain that

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑥
𝑡

+ 𝑆𝑥
0

− 𝑓
∗

, (1 − 𝑡) (𝑦 − 𝑥
0
)⟩ ≥ 0 (36)

for all 𝑡 ∈ [0, 1); that is,

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑥
𝑡

+ 𝑆𝑥
0

− 𝑓
∗

, 𝑦 − 𝑥
0
⟩ ≥ 0 (37)

for all 𝑡 ∈ [0, 1). Since 𝑇
𝜆

+ 𝛿𝐽
1
is continuous and 𝑥

𝑡
→ 𝑥
0
as

𝑡 → 1
−, we have 𝑇

𝜆
𝑥
𝑡

+ 𝛿𝐽
1
𝑥
𝑡

→ 𝑇
𝜆
𝑥
0

+ 𝛿𝐽
1
𝑥
0
as 𝑡 → 1

−.
Letting 𝑡 → 1

−, we arrive at

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑥
0

+ 𝑆𝑥
0

− 𝑓
∗

, 𝑦 − 𝑥
0
⟩ ≥ 0 (38)

for all 𝑦 ∈ 𝑋. Since 𝑦 ∈ 𝑋 is arbitrary, setting 𝑦 + 𝑥
0
in place

of 𝑦 yields

⟨(𝑇
𝜆

+ 𝛿𝐽
1
) 𝑥
0

+ 𝑆𝑥
0

− 𝑓
∗

, 𝑦⟩ ≥ 0 (39)

for all 𝑦 ∈ 𝑋. Therefore, for each 𝜆 > 0 (by fixing 𝛿 > 0

temporarily), we see that there exists 𝑥
𝜆

∈ 𝐷(𝑆) ∩ 𝐺
𝛿
such

that 𝑇
𝜆
𝑥
𝜆

+ 𝛿𝐽
1
𝑥
𝜆

+ 𝑆𝑥
𝜆

= 𝑓
∗. Thus, for each 𝜆

𝑛
↓ 0
+, there

exists 𝑦
𝑛

∈ 𝐷(𝑆) ∩ 𝐺
𝛿
such that

𝑇
𝜆
𝑛

𝑦
𝑛

+ 𝛿𝐽
1
𝑦
𝑛

+ 𝑆𝑦
𝑛

− 𝑓
∗

= 0 (40)

for all 𝑛. Since 𝐺
𝛿
and 𝐽
1
are bounded, it follows that {𝑦

𝑛
} and

{𝐽
1
𝑦
𝑛
} are bounded. Since 𝑆 is quasibounded, it is not hard

to see that {𝑆𝑦
𝑛
} is bounded, which implies the boundedness

of {𝑇
𝜆
𝑛

𝑦
𝑛
}. Assume without loss of generality that 𝑦

𝑛
⇀ 𝑦
0
,

𝑆𝑦
𝑛

⇀ V∗
0
and 𝑇

𝜆
𝑛

𝑦
𝑛

⇀ 𝑢
∗

0
as 𝑛 → ∞. Since 𝑆 + 𝛿𝐽

1
is

generalized pseudomonotone with domain 𝐷(𝑆), it follows
that

lim inf
𝑛→∞

⟨𝑆𝑦
𝑛

+ 𝛿𝐽
1
𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩ ≥ 0. (41)

Consequently, from (40), we arrive at

lim sup
𝑛→∞

⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩ ≤ 0. (42)

Let 𝐽
𝜆
𝑛

be the Yosida resolvent of 𝑇. It is well known that
𝐽
𝜆
𝑛

𝑦
𝑛

∈ 𝐷(𝑇), 𝐽
𝜆
𝑛

𝑦
𝑛

= 𝑥
𝑛

− 𝜆
𝑛
𝐽
−1

(𝑇
𝜆
𝑛

𝑦
𝑛
), and 𝑇

𝜆
𝑛

𝑦
𝑛

∈

𝑇(𝐽
𝜆
𝑛

𝑦
𝑛
) for all 𝑛. Since 𝑦

𝑛
⇀ 𝑦
0
and {𝑇

𝜆
𝑛

𝑦
𝑛
} is bounded,

it follows that 𝐽
𝜆
𝑛

𝑦
𝑛

⇀ 𝑦
0
as 𝑛 → ∞. Thus, we have

⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝐽
𝜆
𝑛

𝑦
𝑛

− 𝑦
0
⟩ = ⟨𝑇

𝜆
𝑛

𝑦
𝑛
, 𝐽
𝜆
𝑛

𝑦
𝑛

− 𝑦
𝑛
⟩

+ ⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩

= − ⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝜆
𝑛
𝐽
−1

(𝑇
𝜆
𝑛

𝑦
𝑛
)⟩

+ ⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩

= −𝑡
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑇
𝜆
𝑛

𝑦
𝑛

󵄩󵄩󵄩󵄩󵄩

2

+ ⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩

≤ ⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩

(43)

for all 𝑛. Consequently, we have

lim
𝑛→∞

⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝐽
𝜆
𝑛

𝑦
𝑛

− 𝑦
0
⟩ ≤ lim
𝑛→∞

⟨𝑇
𝜆
𝑛

𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩

≤ 0.

(44)

By the maximality of 𝑇, applying Lemma 3, we obtain 𝑥
0

∈

𝐷(𝑇), V∗
0

∈ 𝑇𝑥
0
, and ⟨𝑇

𝜆
𝑛

𝑦
𝑛
, 𝐽
𝜆
𝑛

𝑦
𝑛
⟩ → ⟨V∗

0
, 𝑥
0
⟩ as 𝑛 → ∞,

which implies

lim sup
𝑛→∞

⟨𝑆𝑦
𝑛
, 𝑦
𝑛

− 𝑦
0
⟩ ≤ 0. (45)

The generalized pseudomonotonicity of 𝑆 implies 𝑦
0

∈ 𝐷(𝑆)

and 𝑆𝑦
0

= ℎ
∗

0
.As a result, letting 𝑛 → ∞ in (40), we conclude

that V∗
0

+ 𝑆𝑦
0

+ 𝛿𝐽
1
𝑦
0

= 𝑓
∗

. This implies that, for each 𝛿
𝑛

↓ 0
+,

there exist 𝑧
𝑛

∈ 𝐷(𝑇) ∩ 𝐷(𝑆) and V∗
𝑛

∈ 𝑇𝑧
𝑛
such that

V∗
𝑛

+ 𝑆𝑧
𝑛

+ 𝛿
𝑛
𝐽
1
𝑧
𝑛

= 𝑓
∗ (46)

for all 𝑛. Next we will show that {𝑧
𝑛
} is bounded. Assume

without loss of generality that ‖𝑧
𝑛
‖ → ∞ as 𝑛 → ∞. By
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the inner product condition on 𝑆 andmonotonicity of 𝑇 with
0 ∈ 𝑇(0), we get

𝛿
𝑛

󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩

3

≤ 𝑑
󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩
(47)

for all 𝑛; that is, dividing this inequality by ‖𝑧
𝑛
‖ for all large

𝑛, we get 𝛿
𝑛
‖𝑧
𝑛
‖
2

≤ 𝑑‖𝑧
𝑛
‖ + ‖𝑓

∗

‖ for all large 𝑛. By using
condition (𝑖) and (46), we get that

−𝜇 + 𝛼
󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩V
∗

𝑛
+ 𝑆𝑧
𝑛

󵄩󵄩󵄩󵄩 ≤ 𝛿
𝑛

󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

≤ 𝑑
󵄩󵄩󵄩󵄩𝑧
𝑛

󵄩󵄩󵄩󵄩 + 2
󵄩󵄩󵄩󵄩𝑓
∗󵄩󵄩󵄩󵄩

(48)

for all 𝑛. This gives (𝛼 − 𝑑)‖𝑧
𝑛
‖ ≤ 2‖𝑓

∗

‖ + 𝜇 for all 𝑛.
Consequently, the boundedness of {𝑧

𝑛
} follows. Since 𝑆 is

quasibounded and 0 ∈ 𝐷(𝑇), it is not hard to see that {𝑆𝑧
𝑛
}

is bounded. Consequently, the boundedness of {V∗
𝑛

} follows.
Assuming that 𝑧

∗

𝑛
⇀ 𝑧
∗

0
, V∗
𝑛

⇀ V∗
0
, and 𝑆𝑧

𝑛
⇀ ℎ
∗

0
as 𝑛 → ∞

and using the arguments used in the first half of the proof of
Theorem 6, we conclude that 𝑧

0
∈ 𝐷(𝑇) ∩ 𝐷(𝑆), V∗

0
∈ 𝑇𝑧
0
,

𝑆𝑧
0

= ℎ
∗

0
, and V∗

0
+ 𝑆𝑧
0

= 𝑓
∗; that is, for each 𝑓

∗

∈ 𝑋
∗,

the inclusion problem 𝑇𝑢 + 𝑆𝑢 ∋ 𝑓
∗ is solvable in 𝐷(𝑇) ∩

𝐷(𝑆). Since 𝑓
∗

∈ 𝑋
∗ is arbitrary, we obtain the surjectivity

of 𝑇 + 𝑆. The proof using condition (ii) can be completed
following similar arguments. The details are omitted here.
This completes the proof.

It is worth mentioning that Theorem 6 is a new result
because the perturbed operator 𝑇 + 𝑆 is noncoercive and
𝑆 is densely defined such that 𝐷(𝑆) contains a dense real
separable reflexive Banach space. Under the conditions on𝑇+

𝑆, the result was unknown earlier even for coercive operator
𝑇 + 𝑆. The analog of Theorem 6 for single multivalued,
finitely continuous, coercive, and quasibounded generalized
pseudomonotone operator 𝑆 such that 𝐷(𝑆) contains a dense
linear subspace is due to Browder and Hess [1]. If 𝑆 is
quasimonotone with weakly closed graph or graph of 𝑇 is
weakly closed and 𝑆 is monotone of type (𝑀), the arguments
used in the proof of Theorem 6 can be easily carried out to
conclude the surjectivity of 𝑇 + 𝑆. The reader is referred to
Gupta [28] for a result for𝑇+𝑆, where graph of𝑇 is assumed to
be weakly closed and 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 2

𝑋
∗

is quasibounded,
finitely continuous coercive operator of type (𝑀) such that
𝐷(𝑆) contains a dense linear subspace. Theorem 6 improves
and gives unifications of the existing surjectivity results due
to Le [16], Asfaw and Kartsatos [18, 24], Asfaw [19], and
Kenmochi [12–14] for maximal monotone perturbations of
coercive bounded pseudomonotone operators with domain,
all of 𝑋. In addition, it can be easily seen that the proof
of Theorem 6 can go through if the quasiboundedness of 𝑆

is omitted and 𝑇 is assumed to be strongly quasibounded
with 0 ∈ 𝑇(0). Another observation is that the condition
⟨V∗+𝑆𝑥, 𝑥⟩ ≥ −𝑑‖𝑥‖

2 for all 𝑥 ∈ 𝐷(𝑇)∩𝐷(𝑆) and V∗ ∈ 𝑇𝑥 can
be replaced by a stronger condition ⟨V∗ + 𝑆𝑥, 𝑥⟩ ≥ −𝑑‖𝑥‖ for
all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆) and V∗ ∈ 𝑇𝑥, and the weak coercivity
condition (i) can be relaxed to satisfy |𝑇𝑥 + 𝑆𝑥| → ∞

as ‖𝑥‖ → ∞. On the other hand, one can easily see that
weak coercivity condition on 𝑇 + 𝑆 is automatically satisfied
if 𝑇 + 𝑆 is 𝛼-expansive. Consequently, the following corollary
is immediate.

Corollary 7. Let 𝑇 : 𝑋 ⊇ 𝐷(𝑇) → 2
𝑋
∗

be strongly
quasibounded maximal monotone with 0 ∈ 𝑇(0) and let
𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋

∗ be demicontinuous generalized
pseudomonotone. Suppose 𝑊 ⊆ 𝐷(𝑆) is a real reflexive
separable Banach space dense and continuously embedded in
𝑋. Assume, further, that 𝑇 + 𝑆 is 𝛼-expansive mapping and
there exists 𝑑 ≥ 0 such that 𝛼 > 𝑑 and ⟨𝑆𝑥, 𝑥⟩ ≥ −𝑑‖𝑥‖

2

for all 𝑥 ∈ 𝐷(𝑆). Then 𝑇 + 𝑆 is surjective.

Proof. Since 0 ∈ 𝑇0 and𝑇 ismonotone, by the condition on 𝑆,
it follows that ⟨V∗ + 𝑆𝑥, 𝑥⟩ ≥ −𝑑‖𝑥‖

2 for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆).
Furthermore, by the expansiveness of 𝑇 + 𝑆, for some 𝑢

0
∈

𝐷(𝑇) ∩ 𝐷(𝑆) and V∗
0

∈ 𝑇𝑢
0
, we arrive at

󵄩󵄩󵄩󵄩V
∗

+ 𝑆𝑥
󵄩󵄩󵄩󵄩 ≥

󵄩󵄩󵄩󵄩V
∗

+ 𝑆𝑥 − (V∗
0

+ 𝑆𝑢
0
)
󵄩󵄩󵄩󵄩 −

󵄩󵄩󵄩󵄩V
∗

0
+ 𝑆𝑢
0

󵄩󵄩󵄩󵄩

≥ 𝛼
󵄩󵄩󵄩󵄩𝑥 − 𝑢

0

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩V
∗

0
+ 𝑆𝑢
0

󵄩󵄩󵄩󵄩

≥ 𝛼 ‖𝑥‖ − 𝛼
󵄩󵄩󵄩󵄩𝑢
0

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩V
∗

0
+ 𝑆𝑢
0

󵄩󵄩󵄩󵄩

= 𝛼 ‖𝑥‖ − 𝐴
0
,

(49)

where 𝐴
0

= 𝛼‖𝑢
0
‖ + ‖V∗

0
+ 𝑆𝑢
0
‖, for all 𝑥 ∈ 𝐷(𝑇) ∩ 𝐷(𝑆)

and V∗ ∈ 𝑇𝑥. This shows that 𝑇 + 𝑆 satisfies conditions
of Theorem 6. By applying similar arguments as in the
last part of the proof of Theorem 6 and using the strong
quasiboundedness of 𝑇 instead of quasiboundedness of 𝑆,
we conclude that 𝑇 + 𝑆 is surjective. The details are omitted
here.

It is worth noticing here that Corollary 7 gives a partial
positive answer for Nirenberg’s problem on the surjec-
tivity of expansive mapping in a real separable reflexive
Banach space.More precisely, Corollary 7 gives surjectivity of
densely defined demicontinuous generalized pseudomono-
tone expansive mapping. To the best of the authors knowl-
edge, this result was unknown. For related surjectivity results
for continuous expansive mappings in a real Hilbert space,
we cite the papers by Kartsatos [29] and Xiang [30]. For
range result for single continuous quasimonotone expansive
mapping defined from arbitrary reflexive Banach space into
its dual space 𝑋

∗, the reader is referred to the paper due to
Asfaw [25].

The content of the following theorem addresses the
solvability of operator equations involving operators of the
type 𝐿 + 𝑆, where 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋

∗ is linear, densely
defined, monotone, and closed, and 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋

∗

is quasibounded demicontinuous of type (𝑀) such that 𝐷(𝐿)

lies in 𝐷(𝑆).

Theorem 8. Let 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋
∗ be closed, densely

defined, and linear monotone, and let 𝑆 : 𝑋 ⊇ 𝐷(𝑆) → 𝑋
∗

be quasibounded demicontinuous of type (𝑀) with respect to
𝐿 such that 𝐷(𝐿) lies in 𝐷(𝑆). Assume, further, that there exist
𝜇 ≥ 0 and 𝛼 > 𝑑 ≥ 0 such that

⟨𝐿𝑥 + 𝑆𝑥, 𝑥⟩ ≥ −𝑑 ‖𝑥‖
2 (50)

for all 𝑥 ∈ 𝐷(𝐿) and either
(i)

‖𝐿𝑥 + 𝑆𝑥‖ ≥ 𝛼 ‖𝑥‖ − 𝜇 ∀𝑥 ∈ 𝐷 (𝐿) (51)
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or

(ii) there exists 𝜙 : [0, ∞) → (−∞, ∞) such that 𝜙(𝑡) →

∞ as 𝑡 → ∞ and

‖𝐿𝑥 + 𝑆𝑥‖ ≥ 𝜙 (‖𝑥‖) ‖𝑥‖ ∀𝑥 ∈ 𝐷 (𝐿) . (52)

Then 𝐿 + 𝑆 is surjective.

Proof. Fix 𝑓
∗

∈ 𝑋
∗. Let 𝑌 = 𝐷(𝐿) and let ‖ ⋅ ‖

𝑌
be the graph

norm on 𝑌 given by

‖𝑥‖
𝑌

= ‖𝑥‖
𝑋

+ ‖𝐿𝑥‖
𝑋
∗ , 𝑥 ∈ 𝑌. (53)

It is well-known that 𝑌 equipped with the graph norm
becomes a real reflexive separable Banach space. By
Lemma 4, let 𝐻 be a Hilbert space and let 𝑄 : 𝐻 → 𝑌

be a compact injection such that 𝑄(𝐻) is dense in 𝑌. Let
𝑗 : 𝑌 → 𝑋 be the natural embedding of 𝑌 into 𝑋 and let
𝑗
∗

: 𝑋
∗

→ 𝑌
∗ be its adjoint. It follows that 𝜓 = 𝑗𝑄 is a

compact injection from 𝐻 into 𝑋. By using the graph norm
on 𝑌, it follows that 𝑌 is dense and continuously embedded
in 𝑋. Moreover, by the inner product condition on 𝐿 + 𝑆, for
each 𝛿 > 0, there exists 𝑅

𝛿
> 0 such that

⟨𝐿𝑥 + 𝑆𝑥 + 𝛿𝐽
1
𝑥, 𝑥⟩ ≥ 𝛿 ‖𝑥‖

3

− 𝑑 ‖𝑥‖
2

= ‖𝑥‖
3

[𝛿 −
𝑑

‖𝑥‖
] > 0

(54)

for all 𝑥 ∈ 𝐷(𝐿) ∩ 𝐷(𝑆) ∩ 𝜕𝐵
𝑅
𝛿

(0). Let 𝐺
𝛿

= 𝐵
𝑅
𝛿

(0). By using
the arguments used in the first half of the proof ofTheorem 6,
we see that 𝐺

𝛿
∩ 𝑌 is open in 𝑌 and 𝜕

𝑌
(𝐺
𝛿

∩ 𝑌) ⊆ 𝜕𝐺
𝛿

∩ 𝑌.

Let 𝑈 = 𝜓
−1

(𝐺
𝛿

∩ 𝑌). Since 𝑗 : 𝑌 → 𝑋 and 𝑄 : 𝐻 → 𝑌 are
continuous, it follows that 𝑈 is open in 𝐻. Since the operator
𝑗
∗

𝐿𝑗 : 𝑌 → 𝑌
∗ is linear and monotone, it is continuous.

By the arguments used in the proof of Theorem 6, using 𝑌 in
place of𝑋 and the closed convex subset𝑈 of𝐻, it follows that
the mapping 𝐶

𝜀
: 𝑈 → 𝐻 defined by

𝐶
𝜀

(V) = −𝜀
−1

(𝜓
∗

(𝐿 + 𝑆 + 𝛿𝐽
1
) 𝐽V − 𝑓

∗

) , V ∈ 𝑈 (55)

is compact. In addition, we see that

𝜕
𝐻

𝑈 = 𝜕
𝐻

𝜓
−1

(𝐺
𝛿

∩ 𝑌) ⊆ 𝜓
−1

(𝜕
𝑌

(𝐺
𝛿

∩ 𝑌))

⊆ 𝜓
−1

(𝜕𝐺
𝛿

∩ 𝑌) .

(56)

Following the argument as in the proof ofTheorem 6, it is not
difficult to see that 𝑥 ̸= 𝜆𝐶

𝜀
(𝑥) for all 𝑥 ∈ 𝜕

𝐻
𝑈 and all 𝜆 ∈

(0, 1).Consequently, by Lemma 5, we obtain that, for each 𝜀 >

0, 𝐶
𝜀
has a fixed point in 𝑈. Therefore, for each 𝜀

𝑛
↓ 0
+, there

exists 𝑥
𝑛

∈ 𝑈 such that

𝜀
𝑛
𝑥
𝑛

+ 𝜓
∗

(𝐿 + 𝑆 + 𝛿𝐽
1
) 𝜓𝑥
𝑛

= 𝜓
∗

𝑓
∗ (57)

for all 𝑛; that is,

⟨𝜀
𝑛
𝑥
𝑛
, 𝑥⟩ + ⟨𝑄

∗

(𝑗
∗

(𝐿 + 𝑆 + 𝛿𝐽
1
) 𝑗𝑄𝑥

𝑛
) , 𝑥⟩

= ⟨𝑄
∗

𝑗
∗

(𝑓
∗

) , 𝑥⟩ ∀𝑥 ∈ 𝐻.

(58)

Since 𝑗 : 𝑌 → 𝑋 and 𝑄 : 𝐻 → 𝑌, by the definition of 𝑄
∗

and 𝑗
∗, we see that

⟨𝜀
𝑛
𝑥
𝑛
, 𝑥⟩ + ⟨(𝐿 + 𝑆 + 𝛿𝐽

1
) 𝑄𝑥
𝑛
, 𝑄𝑥⟩ = ⟨𝑓

∗

, 𝑄𝑥⟩

∀𝑥 ∈ 𝐻.

(59)

Since 𝜓𝑥
𝑛

∈ 𝐺
𝛿

∩ 𝑌 and 𝐺
𝛿
is bounded in 𝑋, it follows

that the sequence {𝑗𝑥
𝑛
} = {𝑄𝑥

𝑛
} is bounded in 𝑋. From (57),

using the monotonicity 𝐿 (𝐿(0) = 0), boundedness of {𝑄𝑥
𝑛
},

and quasiboundedness of 𝑆, we get the boundedness of the
sequence {𝑆𝑄𝑥

𝑛
}. This gives

𝜀
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩

2

= − ⟨𝑄
∗

(𝐿 + 𝑆 + 𝛿𝐽
1
) 𝑄𝑥
𝑛

− 𝑄
∗

𝑓
∗

, 𝑥
𝑛
⟩

≤ − ⟨𝑆𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛

− 𝑓
∗

, 𝑄𝑥
𝑛
⟩

≤
󵄩󵄩󵄩󵄩𝑆𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛

− 𝑓
∗󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑄𝑥
𝑛

󵄩󵄩󵄩󵄩 ∀𝑛.

(60)

As a result, we get the boundedness of {𝜀
𝑛
‖𝑥
𝑛
‖
2

}. If {𝑥
𝑛
} is

bounded, then 𝜀
𝑛
𝑥
𝑛

→ 0 as 𝑛 → ∞. If {𝑥
𝑛
} is unbounded,

by passing into a subsequence, we see that

𝜀
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩 =
𝜀
𝑛

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩𝑥
𝑛

󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞. (61)

In all cases, we assume without loss of generality that 𝜀
𝑛
𝑥
𝑛

→

0 as 𝑛 → ∞. As a result, we get

⟨𝐿𝑄𝑥
𝑛
, 𝑄𝑥⟩ = − ⟨𝜀

𝑛
𝑥
𝑛
, 𝑥⟩ − ⟨𝑆𝑄𝑥

𝑛
+ 𝛿𝐽
1
𝑄𝑥
𝑛
, 𝑄𝑥⟩

+ ⟨𝑓
∗

, 𝑄𝑥⟩

≤
󵄩󵄩󵄩󵄩𝜀
𝑛
𝑥
𝑛

+ 𝑆𝑄𝑥
𝑛

+ 𝛿𝐽
1
𝑄𝑥
𝑛

+ 𝑓
∗󵄩󵄩󵄩󵄩 ‖𝑄𝑥‖

≤ 𝜇 ‖𝑄𝑥‖ ,

(62)

where 𝜇 is an upper bound for the sequence {‖𝜀
𝑛
𝑥
𝑛

+ 𝑆𝑄𝑥
𝑛

+

𝛿𝐽
1
𝑄𝑥
𝑛

+𝑓
∗

‖}. Since𝑄(𝐻) is dense in𝑌, for each 𝑦 ∈ 𝑌, there
exists a sequence {𝑦

𝑚
} in 𝐻 such that 𝑄𝑦

𝑚
→ 𝑦 as 𝑛 → ∞.

This gives
󵄨󵄨󵄨󵄨⟨𝐿𝑄𝑥

𝑛
, 𝑦⟩

󵄨󵄨󵄨󵄨 = lim
𝑚→∞

󵄨󵄨󵄨󵄨⟨𝐿𝑄𝑥
𝑛
, 𝑄𝑦
𝑚

⟩
󵄨󵄨󵄨󵄨 ≤ lim
𝑚→∞

𝜇
󵄩󵄩󵄩󵄩𝑄𝑦
𝑚

󵄩󵄩󵄩󵄩

= 𝜇
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 .

(63)

By similar argument, the density of 𝑌 in 𝑋 implies that
󵄨󵄨󵄨󵄨⟨𝐿𝑄𝑥

𝑛
, 𝑥⟩

󵄨󵄨󵄨󵄨 ≤ 𝜇 ‖𝑥‖ ∀𝑥 ∈ 𝑋. (64)

By using the uniform boundedness principle, we conclude
that {𝐿𝑄𝑥

𝑛
} is bounded. Assume without loss of generality

that 𝑄𝑥
𝑛

⇀ 𝑥
0
in 𝑋, 𝑆𝑄𝑥

𝑛
⇀ V∗
0
, and 𝐿𝑄𝑥

𝑛
⇀ ℎ
∗ in 𝑋

∗ as
𝑛 → ∞. Since 𝐿 is closed linear, it follows that 𝑥

0
∈ 𝑌 and

ℎ
∗

= 𝐿𝑥
0
. By following the arguments used in the first half of

the proof of Theorem 6 along with (57), we get

lim sup
𝑛→∞

⟨𝑆𝑄𝑥
𝑛

− 𝑓
∗

, 𝑄𝑥
𝑛

− 𝑥
0
⟩ ≤ 0. (65)

On the other hand, from (58), by using 𝑥
𝑛

∈ 𝐻 in place of 𝑥,
we see that

⟨𝐿𝑄𝑥
𝑛

+ 𝑆𝑄𝑥
𝑛

− 𝑓
∗

, 𝑄𝑥
𝑛
⟩ ≤ 0 ∀𝑛. (66)
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Since 𝑆 is of type (𝑀) with respect to 𝐿, it follows that 𝑆 − 𝑓
∗

is also of type (𝑀) with respect to 𝐿, which yields 𝑥
0

∈ 𝐷(𝑆)

and V∗
0

= 𝑆𝑥
0
. Finally, letting 𝑛 → ∞ in (57), we get 𝜓

∗

(𝐿 +

𝑆 + 𝛿𝐽
1
)𝑥
0

= 𝜓
∗

𝑓
∗; that is, 𝑄

∗

𝑗
∗

(𝐿 + 𝑆 + 𝛿𝐽
1
)𝑥
0

= 𝑄
∗

𝑗
∗

𝑓
∗.

Since𝑄(𝐻) and𝑌 are dense in𝑌 and𝑋, respectively, it follows
that 𝑗

∗ and 𝑄
∗ are one to one. Therefore, we arrive at 𝐿𝑥

0
+

𝑆𝑥
0

+𝛿𝐽
1
𝑥
0

= 𝑓
∗

. Consequently, for each 𝛿
𝑛

↓ 0
+, there exists

𝑦
𝑛

∈ 𝐷(𝐿) such that

𝐿𝑦
𝑛

+ 𝑆𝑦
𝑛

+ 𝛿
𝑛
𝐽
1
𝑦
𝑛

= 𝑓
∗

∀𝑛. (67)

Since 𝐿 is closed and 𝑆 is of type (𝑀), by weak coercivity
condition on 𝐿 + 𝑆, the same arguments used in the second
half of the proof ofTheorem 6 can be carried over to conclude
the solvability of the equation 𝐿𝑥 + 𝑆𝑥 ∋ 𝑓

∗ in 𝐷(𝐿). Since
𝑓
∗

∈ 𝑋
∗ is arbitrary, we conclude that 𝐿 + 𝑆 is surjective. The

details are omitted here.

The following corollary gives a characterization of linear
maximal monotone operator in separable reflexive Banach
space.

Corollary 9. Let 𝑋 be a real separable reflexive Banach space
and let 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋

∗ be linear operator. Then the
following two statements are equivalent:

(i) 𝐿 is maximal monotone,

(ii) 𝐿 is monotone, densely defined, and closed.

Proof. The proof of (i) implies (ii) follows by the well-known
result due to Brézis (cf. Zeidler [9,Theorem 32. L, page 897]).
Next we prove (ii) implies (i). Let 𝜆 > 0. It is sufficient to show
that𝑅(𝐿+𝜆𝐽) = 𝑋

∗. To this end, we will useTheorem 8. Since
𝐿 is linear andmonotone, that is, ⟨𝐿𝑥, 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝐷(𝐿),
and 𝐽 is monotone, it follows that ⟨𝐿𝑥 + 𝜆𝐽𝑥, 𝑥⟩ ≥ 𝜆‖𝑥‖

2 for
all 𝑥 ∈ 𝐷(𝐿). Therefore, for each 𝜆 > 0, it follows that

‖𝐿𝑥 + 𝜆𝐽𝑥‖ ≥ 𝜆 ‖𝑥‖ ∀𝑥 ∈ 𝐷 (𝐿) . (68)

By using 𝐽 in place of 𝑆 inTheorem 8, we conclude that 𝑅(𝐿 +

𝜆𝐽) = 𝑋
∗ for any 𝜆 > 0. Thus, 𝐿 is maximal monotone.

It is worth noticing that Brézis proved (i) in arbitrary
reflexive Banach space provided that 𝐿

∗ is monotone and (ii)
holds. As a result, Corollary 9 is an improvement of the result
of Brézis when 𝑋 is separable. It is important to mention
that Gupta [28] gave surjectivity result for graph weakly
closed maximal monotone perturbations of quasibounded,
finitely continuous multivalued coercive operator 𝑆 of type
(𝑀) such that 𝐷(𝑆) contains a dense linear subspace of 𝑋.
However, the result inTheorem 8 is for noncoercive operator
𝑆 along with weak coercivity of 𝐿 + 𝑆. It is also important
to mention here that the results in Theorems 6 and 8 are
new even in the case where the operator 𝑆 is coercive but
not everywhere defined. In conclusion, Theorems 6 and 8
gave improvements over the existing theory for maximal
monotone perturbations of coercive and everywhere defined
operators of pseudomonotone type.

3. Example and Discussion

In this section, we demonstrate the existence of weak solution
in 𝑋 = 𝐿

𝑝

(0, 𝑇; 𝑊
1,𝑝

0
(Ω)) for the parabolic problem of the

type

𝜕𝑢

𝜕𝑡
−

𝑁

∑

𝑖=1

𝜕

𝜕𝑥
𝑖

𝑎
𝑖
(𝑥, 𝑡, 𝑢, ∇𝑢) = 𝑓 (𝑥, 𝑡) (𝑥, 𝑡) ∈ 𝑄

𝑢 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇)

𝑢 (𝑥, 0) = 0 𝑥 ∈ Ω,

(69)

where 𝑝 > 1, 𝑝
󸀠 is conjugate exponent of 𝑝, 𝑄 = Ω × (0, 𝑇),

Ω is a nonempty, bounded, and open subset of R𝑁, and 𝑓 ∈

𝐿
𝑝
󸀠

(𝑄) such that the following conditions are satisfied:

(𝐴
1
) 𝑎
𝑖
(𝑥, 𝑡, 𝑠, 𝜉) (𝑖 = 1, 2, . . . 𝑁) satisfies the Carathéodory

conditions; that is, for each (𝑠, 𝜉) ∈ R × R𝑁, the
function (𝑥, 𝑡) 󳨃→ 𝑎

𝑖
(𝑥, 𝑡, 𝑠, 𝜉) is measurable and, for

almost all (𝑥, 𝑡) ∈ Ω × (0, 𝑇), the function (𝑠, 𝜉) 󳨃→

𝑎
𝑖
(𝑥, 𝑡, 𝑠, 𝜉) is continuous.

(𝐴
2
) there exists positive constants 𝜇

1
and 𝜇

2
such that

𝑁

∑

𝑖=1

(𝑎
𝑖
(𝑥, 𝑡, 𝑠, 𝜉) − 𝑎

𝑖
(𝑥, 𝑡, 𝑠, 𝜂)) (𝜉

𝑖
− 𝜂
𝑖
)

≥ 𝜇
1

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑝

,

󵄨󵄨󵄨󵄨𝑎𝑖 (𝑥, 𝑡, 𝑠, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝜇
2

[|𝑠|
𝑝
0 +

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑝−1

] + 𝑔 (𝑥, 𝑡)

(70)

for all (𝑥, 𝑡, 𝑠, 𝜉) ∈ Ω × (0, 𝑇) × R × R𝑁, where 𝜉 =

(𝜉
𝑖
) ∈ R𝑁 and 𝜂 = (𝜂

𝑖
) ∈ R𝑁, 𝑔 ∈ 𝐿

𝑝
󸀠

(𝑄), 𝑝
0

<

𝑝 − 1 + 2(𝑝 − 1)/𝑁, and 1 < 𝑝 < 𝑁.

Let 𝑋 = 𝐿
𝑝

(0, 𝑇; 𝑉), 𝑉 = 𝑊
1,𝑝

0
(Ω), and 𝐿 : 𝑋 ⊇ 𝐷(𝐿) → 𝑋

∗

be defined by 𝐿𝑢 = 𝑢
󸀠, where 𝑢

󸀠 is understood in the sense of
distributions; that is,

∫

𝑇

0

𝑢
󸀠

(𝑡) 𝜓 (𝑡) 𝑑𝑡 = − ∫

𝑇

0

𝑢 (𝑡) 𝜓
󸀠

(𝑡) 𝑑𝑡,

𝜓 ∈ 𝐶
∞

0
(0, 𝑇) ,

(71)

where 𝐷(𝐿) = {𝑢 ∈ 𝑋 : 𝑢
󸀠

∈ 𝑋
∗, 𝑢(0) = 0}. We notice that

⟨𝐿𝑢, 𝜙⟩ = ∫

𝑇

0

⟨𝑢
󸀠

(𝑡) , 𝜙 (𝑡)⟩
𝑉

𝑑𝑡,

𝑢 ∈ 𝐷 (𝐿) , 𝜙 ∈ 𝑋.

(72)

Let 𝐴 : 𝑋 ⊇ 𝐷(𝐴) → 𝑋
∗ be defined by

⟨𝐴𝑢, 𝜙⟩ =

𝑛

∑

𝑖=1

∫
𝑄

𝑎
𝑖
(𝑥, 𝑡, 𝑢, ∇𝑢)

𝜕𝜙 (𝑥, 𝑡)

𝜕𝑥
𝑖

𝑑𝑥𝑑𝑡,

𝜙 ∈ 𝑋, 𝑢 ∈ 𝐷 (𝐴) ,

(73)

where

𝐷 (𝐴) = {𝑢 ∈ 𝑋 : 𝑢 ∈ 𝐿
𝑝

(𝑄)} , 𝑝 =
𝑝
0
𝑝

𝑝 − 1
. (74)
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It is known from Kartsatos and Skrypnik [4] that 𝐴 is
quasibounded demicontinuous generalized (𝑆

+
) with respect

to 𝐿 such that 𝐷(𝐴) contains 𝐷(𝐿). Moreover, it is well-
known that 𝐿 is linear, closed, and densely defined maximal
monotone. The operator 𝐴 is densely defined, that is, not
everywhere defined, and coercive. Since 𝑝

0
< 𝑝 − 1 in (𝐴

2
),

operator 𝐴 may be unbounded. Therefore, by Theorem 8
using 𝐴 in place of 𝑆, for each 𝑓 ∈ 𝐿

𝑝
󸀠

(𝑄), we conclude
that the equation 𝐴𝑢 + 𝐿𝑢 = 𝑓

∗ is solvable in 𝐷(𝐿), where
𝑓
∗

: 𝑋 → R is given by ⟨𝑓
∗

, 𝜙⟩ = ∫
𝑄

𝑓(𝑥, 𝑡)𝜙(𝑥, 𝑡)𝑑𝑥𝑑𝑡.
Therefore, the parabolic problem (69) admits at least one
weak solution in 𝐷(𝐿).

Since Ω is bounded and 𝑔 ∈ 𝐿
𝑝
󸀠

(𝑄), it is well known that
𝐴 is bounded, continuous, everywhere defined, and coercive
provided that 𝑝

0
= 𝑝 − 1 in (𝐴

2
). More precisely, these

conditions on 𝐴 are satisfied if condition (𝐴
2
) is replaced by

(𝐴
3
): there exists positive constants 𝜇

1
and 𝜇

2
such that

𝑁

∑

𝑖=1

(𝑎
𝑖
(𝑥, 𝑡, 𝑠, 𝜉) − 𝑎

𝑖
(𝑥, 𝑡, 𝑠, 𝜂)) (𝜉

𝑖
− 𝜂
𝑖
) ≥ 𝜇
1

󵄨󵄨󵄨󵄨𝜉 − 𝜂
󵄨󵄨󵄨󵄨

𝑝

,

󵄨󵄨󵄨󵄨𝑎𝑖 (𝑥, 𝑡, 𝑠, 𝜉)
󵄨󵄨󵄨󵄨 ≤ 𝜇
2

[|𝑠|
𝑝−1

+
󵄨󵄨󵄨󵄨𝜉

󵄨󵄨󵄨󵄨

𝑝−1

] + 𝑔 (𝑥, 𝑡)

(75)

for all (𝑥, 𝑡, 𝑠, 𝜉) ∈ Ω×(0, 𝑇)×R×R𝑁, where 𝜉 = (𝜉
𝑖
) ∈

R𝑁 and 𝜂 = (𝜂
𝑖
) ∈ R𝑁, 𝑔 ∈ 𝐿

𝑝
󸀠

(𝑄), and 1 < 𝑝 < 𝑁.

Abstract existence results concerning nonlinear parabolic
problems of the type in (69) under conditions (𝐴

1
) and (𝐴

3
)

have been intensively studied by many researchers. For some
of the basic and relevant references, the reader is referred to
the papers by Browder and Hess [1], Brézis [2], Le [16], Ken-
mochi [12–14], Guan and Kartsatos [17], Asfaw and Kartsatos
[18], Asfaw [19, 25], and the references therein. For further
examples and applications of perturbed everywhere defined
pseudomonotone type operators to inclusion, variational
inequality, and evolution problems, the reader is referred
to the papers of Landes and Mustonen [31], Kobayashi and
Ôtani [32], and Mustonen [33] and books of Kinderlehrer
and Stampacchia [34], Browder [8], and Naniewicz and
Panagiotopoulos [35] and the references therein.Themethod
of sub-supersolution is employed in the papers by Carl and Le
[20], Carl et al. [21], Carl [22], Carl and Motreanu [23], and
Le [36, 37] to study existence and properties of solution(s) for
evolution inclusion problems of the type

𝑢 ∈ 𝑋 : 𝑢
󸀠

+ 𝐴 (𝑢) ∋ 𝑓
∗ in 𝑋

∗

, 𝑢 (0) = 𝑢
0
, (76)

where 𝑋 = 𝐿
𝑝

(0, 𝑇; 𝑊
1,𝑝

0
(Ω)), 𝑝 > 1, Ω is a nonempty,

bounded, and open subset of R𝑁, and 𝐴 is noncoercive but
still everywhere defined operator of pseudomonotone type.
For further relevant information about sub-supersolution
arguments concerning evolution type problems, the reader
is referred to the recent book on nonsmooth analysis due
to Carl et al. [38] and the references therein. Finally, it is
important to indicate the readers that the results in this paper
can be conveniently applied to address nonlinear parabolic
problems of type (76) as well as elliptic problems of the type

𝑢 ∈ 𝑌 : −Δ
𝑝

𝑢 + 𝐵(𝑢) ∋ 𝑔
∗

, 𝑔
∗

∈ 𝑌
∗, where 𝑌 = 𝑊

1,𝑝

0
(Ω) and

𝐴 and 𝐵 are possibly noncoercive and densely defined and
satisfy conditions of either Theorem 6 orTheorem 8.
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