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We formulate a susceptible-vaccinated-infected-recovered (SVIR) model by incorporating the vaccination of newborns, vaccine-
age, and mortality induced by the disease into the SIR epidemic model. It is assumed that the period of immunity induced by
vaccines varies depending on the vaccine-age. Using the direct Lyapunov method with Volterra-type Lyapunov function, we show
the global asymptotic stability of the infection-free and endemic steady states.

1. Introduction

The persistence of protection induced by vaccines plays a
central role in the implementation of human vaccination
policies. Two types of evidence document the duration of
protection induced by a vaccine: on the one hand, immuno-
logical parameters such as antibody kinetics over time and
on the other hand the disease incidence for which the
vaccine was implemented [1]. In this context, measuring the
persistence of circulating antibodies is widely used in human
vaccines. The specific antibodies induced by the vaccine are
the main parameters used for monitoring the duration of
the vaccine-induced immune response. This monitor uses
population-based studies that compare antibody levels in a
protected group with those of a susceptible group, leading to
an estimation of disease risk as a function of postvaccination
antibody titers. For several vaccines, data resulting from long-
term follow-up vaccine studies have been used to create
mathematical models to predict the kinetics of antibody
persistence over longer periods of time [2]. An example of
suchmodeling results is the recent publication of the duration
of protection induced by a human papillomavirus vaccine,
while the trials provided data over a 6.4 year follow-up
period, the models predicted a long protection [2]. Further,

the waning of protection can also be demonstrated by an
increased of disease incidence among subjects previously
vaccinated. For example, the implementation of a universal
varicella vaccination program in the USA in 1995 has resulted
in a substantial reduction in morbidity. However, despite
this reduction, new cases of varicella continue to occur,
mostly in highly vaccinated school communities. Several
studies of these cases have suggested that the time since
vaccination may be associated with the risk of varicella.
Waning of immunity after varicella vaccination in terms of
measurable antibodies has been demonstrated to occur in
children previously vaccinated. In this regard, the time since
vaccination and the age at vaccination were identified as
predictors of this loss of immunity [3–5]. The number of
vaccine-preventable diseases targeted by routine vaccination
schemes is growing, at time, at least 17 vaccine-preventable
diseases were targeted by routine vaccination schemes in
USA, but potentially all diseases of infectious etiology can
be controlled by vaccination schemes and the evaluation of
the persistence of vaccine-induced protection with human
vaccines is essential for the susceptible population to deter-
mine cases of loss protection. The prevention of infection
correlates with the induction of specific antibodies. Although
loss of antibody after vaccination may render vaccines again
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susceptible to some infections. The time of vaccine-induced
immunity may vary according to individual characteristics
and the vaccine-age [6]. The vaccination of newborns could
have a central role in the evolution of vaccine-induced
immunity [7].

In most infectious disease models, it has been assumed
that all vaccinated individuals have equal immunity provided
by the vaccine during their vaccination period. However,
the duration of protection provided by vaccination varies
and is influenced by many factors, particularly the individual
characteristics and the vaccine-age [6, 7].Therefore, there are
enough reasons to study the possible effects of loss of vaccine-
induced immunity on the dynamics of infectious diseases.
Recently, the vaccine-age-dependent epidemic models have
been considered [8–10], more precisely, the vaccine-age is
used to track the vaccine-protection period and the vaccine
wane rate.

Iannelli et al. in [9] developed an SIS epidemic model
with super-infection, perfect vaccination and vaccine-age
and discussed the asymptotical behavior of the equilibria.
Li et al. in [10] modeled an SIS disease with vaccine-age
and treatment rates and exhibited backward bifurcations
under some conditions. Duan et al. in [8] formulated an SIR
epidemicmodelwith age of vaccination andproved the global
stability of the equilibria. In these models the susceptible
population is subjected to a vaccination scheme. Here, we
will consider that a proportion of individuals get vaccinated
immediately after birth or in newborn.

In this paper, by incorporating the vaccination of new-
borns in vaccine-age and disease related death rate into the
SIR model, we formulate a SVIR epidemiological model with
a waning rate of vaccine-induced immunity that depends on
the vaccine-age. Here, we will analyze the global stability of
the steady states in our age-structured model by means of
suitable Volterra-type Lyapunov functions of the form:

𝐺 (𝑋) = 𝑋 − 1 − ln𝑋. (1)

Recently, McCluskey and coauthors in [11, 12] proved the
global stability of the endemic steady state of SIR models
with infection-age-dependent bymeans of Volterra-type Lya-
punov functions.Melnik and Korobeinikov [13] used them to
establish global stability for infectious diseases models with
age-dependent susceptibility.The global-stability problem for
basic age-structured models for the transmission of a vector-
borne infectious disease is solved using the Volterra-type
functions by Vargas-De-León and colleagues [14].

The remainder of this paper is organized as follows.
Section 2 is devoted to the model derivation. In Section 3 the
existence of steady states is proved and an explicit formula
for the reproductive number is derived. In Section 4, we
will give a very simple and elegant proof of the global
stability of steady states. Section 5 contains the discussion and
concluding remarks.

2. SIR Model with Vaccination of Newborns

In this section, we introduce an SIR epidemic model and
its reformulations. We can assign each vaccinated individual

its class age, called vaccine-age and denote it by 𝜃, which is
the amount of time that has passed since the moment that
initiates the vaccination.

Themodel divides the total population into the following
subgroups that are unvaccinated susceptible individuals 𝑆(𝑡),
infectious individuals 𝐼(𝑡), recovered individuals 𝑅(𝑡), and
vaccinated individuals 𝑉(𝑡). We stratify the vaccinated part
of the population 𝑉(𝑡) according to vaccine-age

𝑉 (𝑡) = ∫

+∞

0

V (𝜃, 𝑡) 𝑑𝜃, (2)

where V(𝜃, 𝑡) denotes the distribution of the vaccinated indi-
viduals at time 𝑡. In this context, then, ∫𝜃2

𝜃
1

V(𝜃, 𝑡)𝑑𝜃 is simply
the number of vaccinated individuals between vaccine-ages
𝜃
1
and 𝜃
2
at time 𝑡.

We assume a simple demographic process in which newly
recruited individuals (corresponding to births) enter the
population at a rateΛ and exit (due to natural death) at a rate
𝜇. A proportion 0 < 𝑝 < 1 of the newly born individuals
are vaccinated at birth and appear in the vaccinated class
with class age 0, giving rise to a boundary condition V(0, 𝑡) =
𝑝Λ. The parameter 𝛽 is the successful contact rate between
infected and noninfected individuals, 𝛾 is the recovery rate
and 𝜂 is the disease related death rate. The function 0 <

𝜎(𝜃) ≤ 1 denotes the vaccine efficacy, which we assume is
a decreasing function of vaccine-age, 𝜃. The function 𝛼(𝜃)

denotes the rate at which the vaccine wanes that depends on
the vaccine-age (and such vaccinated individuals move to the
unvaccinated susceptible class). We assume that 𝛼(𝜃) and is
nonnegative and bounded integrable function.

Combining the above formulations and assumptions, it
follows that the model for the transmission dynamics of the
disease in the presence of loss of vaccine-induced immunity is
given by the following system of nonlinear partial differential
equations:

𝑑𝑆 (𝑡)

𝑑𝑡
= (1 − 𝑝)Λ − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡)

+ ∫

+∞

0

𝛼 (𝜃) V (𝜃, 𝑡) 𝑑𝜃,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡)

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) 𝛽V (𝜃, 𝑡) 𝐼 (𝑡) 𝑑𝜃

− (𝜇 + 𝛾 + 𝜂) 𝐼 (𝑡) ,

𝜕V (𝜃, 𝑡)
𝜕𝑡

+
𝜕V (𝜃, 𝑡)
𝜕𝜃

= − (𝜇 + 𝛼 (𝜃)) V (𝜃, 𝑡) − (1 − 𝜎 (𝜃)) 𝛽V (𝜃, 𝑡) 𝐼 (𝑡) ,
(3)

with the following boundary condition V(0, 𝑡) = 𝑝Λ and
initial conditions 𝑆(0) = 𝑆

0
> 0, 𝐼(0) = 𝐼

0
> 0,

and V(𝜃, 0) = V
0
(𝜃) > 0, where 𝑆

0
and 𝐼

0
are initial

populations of the susceptible individuals and infectious
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individuals, respectively, and an initial distribution of the
vaccinated individuals with respect to their vaccine-age V

0
(𝜃)

is a Lebesgue integrable function. The equation for 𝑅(𝑡) is
omitted here.

In the following section, we will discuss existence of
steady states, namely, infection-free steady state and endemic
steady state. Also, we will derive an explicit formula for the
reproductive number.

3. Steady States and Effective
Reproductive Number

The epidemic systems can have one or two nonnegative
steady states. Specifically, the epidemic system always has an
infection-free steady state; in this steady state the component
of infectious individuals is zero. Also can have an endemic
steady state with all components positive.

The system (3) has an infection-free steady state 𝐸
0
=

(𝑆
0
, 𝐼
0
, V0(𝜃)), where

𝑆
0

=
Λ

𝜇
(1 − 𝑝 + 𝑝∫

+∞

0

𝛼 (𝜃)𝐾
0
(𝜃) 𝑑𝜃) ,

𝐼
0

= 0, V0 (𝜃) = 𝑝Λ𝐾
0
(𝜃) ,

(4)

with

𝐾
0
(𝜃) := exp(−∫

𝜃

0

(𝜇 + 𝛼 (𝜏)) 𝑑𝜏) . (5)

𝐾
0
(𝜃) is the survival rate at duration 𝜃 in the vaccinated class.
A possible formula for the reproductive number can be

derived by determination of the condition for the instability
of infection-free steady state 𝐸

0
. Here, we will derive the

reproductive number by means of linearization around 𝐸
0
,

and its condition of instability.
Then we perturb the infection-free steady state by letting

𝑥 (𝑡) = 𝑆 (𝑡) − 𝑆
0

, 𝑦 (𝑡) = 𝐼 (𝑡) ,

𝑧 (𝜃, 𝑡) = V (𝜃, 𝑡) − V0 (𝜃) .
(6)

Substituting the variables above in (3) and neglecting
terms of order bigger than two, we obtain the following linear
system for 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝜃, 𝑡):

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝛽𝑆

0

𝑦 (𝑡) − 𝜇𝑥 (𝑡) + ∫

+∞

0

𝛼 (𝜃) 𝑧 (𝜃, 𝑡) 𝑑𝜃,

𝑑𝑦 (𝑡)

𝑑𝑡
= 𝛽𝑆
0

𝑦 (𝑡) + 𝛽𝑦 (𝑡)

⋅ ∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃 − (𝜇 + 𝛾 + 𝜂) 𝑦 (𝑡) ,

𝜕𝑧 (𝜃, 𝑡)

𝜕𝑡
+
𝜕𝑧 (𝜃, 𝑡)

𝜕𝜃

= − (𝜇 + 𝛼 (𝜃)) 𝑧 (𝜃, 𝑡) − (1 − 𝜎 (𝜃)) 𝛽V0 (𝜃) 𝑦 (𝑡) .
(7)

We consider exponential solutions of the form:

𝑥 (𝑡) = 𝑥 exp (𝜆𝑡) , 𝑦 (𝑡) = 𝑦 exp (𝜆𝑡) ,

𝑧 (𝜃, 𝑡) = 𝑧 (𝜃) exp (𝜆𝑡) ,
(8)

where 𝑥 and 𝑦 are arbitrary constants, 𝑧(𝜃) is a function of
𝜃, and 𝜆 is a real or a complex number. Substituting them in
system (7), we obtain

𝜆𝑥 = −𝛽𝑆
0

𝑦 − 𝜇𝑥 + ∫

+∞

0

𝛼 (𝜃) 𝑧 (𝜃) 𝑑𝜃,

𝜆𝑦 = 𝛽𝑆
0

𝑦 + 𝛽𝑦∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃 − (𝜇 + 𝛾 + 𝜂) 𝑦,

𝜆𝑧 (𝜃) +
𝜕𝑧 (𝜃)

𝜕𝜃
= − (𝜇 + 𝛼 (𝜃)) 𝑧 (𝜃) − (1 − 𝜎 (𝜃)) 𝛽V0 (𝜃) 𝑦,

𝑧 (𝑡, 0) = 0.

(9)

If the system (9) has at least one positive eigenvalue then the
infection-free steady state𝐸

0
is unstable. So one eigenvalue of

(9) is

𝜆
1
= 𝛽𝑆
0

+ 𝛽∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃 − (𝜇 + 𝛾 + 𝜂) ,

= (𝜇 + 𝛾 + 𝜂)

⋅ [
𝛽

𝜇 + 𝛾 + 𝜂
(𝑆
0

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃) − 1] .

(10)

Due to space constraints, we omit the proof that the other two
eigenvalues (𝜆

2
and𝜆

3
) of system (9) are negative (or negative

real part). Consider

If
𝛽

𝜇 + 𝛾 + 𝜂
(𝑆
0

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃) > 1,

then the eigenvalue 𝜆
1
is positive.

(11)

Setting

𝑅V :=
𝛽𝑆
0

𝜇 + 𝛾 + 𝜂
+

𝛽

𝜇 + 𝛾 + 𝜂
∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) 𝑑𝜃 (12)

yields the expression for the effective reproductive number
of the disease. In interpreting this expression, note that
1/(𝜇 + 𝛾 + 𝜂) is the average residence time in the infectious
class. The first term 𝛽𝑆

0
/(𝜇 + 𝛾 + 𝜂) is the average number

of secondary infections produced by a single infectious
individual during its infectious period among susceptible
population. The second term 𝛽∫

+∞

0
(1 − 𝜎(𝜃))V0(𝜃)𝑑𝜃/(𝜇 +

𝛾+𝜂) is the average number of secondary infections produced
by a single infectious individual during its infectious period
among vaccinated population. Hence the total expression in
(12) represents the average number of secondary infections
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caused by a single infectious individual introduced in an
entirely susceptible and vaccinated population, over its entire
infectious period, 1/(𝜇 + 𝛾 + 𝜂).

We will now turn to study the conditions of existence of
the endemic steady state. System (3) has an endemic steady
state 𝐸∗ = (𝑆

∗
, 𝐼
∗
, V∗(𝜃)), where 𝑆∗, 𝐼∗, and V∗(𝜃) satisfy the

equalities

0 = (1 − 𝑝)Λ − 𝛽𝑆
∗

𝐼
∗

− 𝜇𝑆
∗

+ ∫

+∞

0

𝛼 (𝜃) V∗ (𝜃) 𝑑𝜃, (13)

0 = 𝛽𝑆
∗

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) 𝛽V∗ (𝜃) 𝑑𝜃 − (𝜇 + 𝛾 + 𝜂) , (14)

𝑑V∗ (𝜃)
𝑑𝜃

= − (𝜇 + 𝛼 (𝜃)) V∗ (𝜃) − (1 − 𝜎 (𝜃)) 𝛽V∗ (𝜃) 𝐼∗, (15)

V∗ (0) = 𝑝Λ. (16)

From (13), it follows that

𝑆
∗

=
1

𝜇 + 𝛽𝐼∗
((1 − 𝑝)Λ + ∫

+∞

0

𝛼 (𝜃) V∗ (𝜃) 𝑑𝜃)

=
1

𝜇 + 𝛽𝐼∗

⋅ ((1 − 𝑝)Λ

+∫

+∞

0

𝛼 (𝜃) V0 (𝜃) exp(−∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝛽𝐼
∗

𝑑𝜏)𝑑𝜃) .

(17)

Equations (15) and (16) give

V∗ (𝜃) = 𝑝Λ exp(−∫
𝜃

0

(𝜇 + 𝛼 (𝜏) + (1 − 𝜎 (𝜃)) 𝛽𝐼
∗

) 𝑑𝜏)

= V0 (𝜃) exp(−∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝛽𝐼
∗

𝑑𝜏) .

(18)

Combining this with (14), (17), and (18), we obtain the
equality

𝛽

𝜇 + 𝛾 + 𝜂
(𝑆
∗

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) V∗ (𝜃) 𝑑𝜃)

=
𝛽

(𝜇 + 𝛾 + 𝜂) (𝜇 + 𝛽𝐼∗)

⋅ ((1 − 𝑝)Λ

+∫

+∞

0

𝛼 (𝜃) V0 (𝜃) exp(−∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝛽𝐼
∗

𝑑𝜏)𝑑𝜃)

+
𝛽

𝜇 + 𝛾 + 𝜂

⋅ ∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃) exp(−∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝛽𝐼
∗

𝑑𝜏)𝑑𝜃

= 1.

(19)

It is easy to see that function

𝐻(𝐼
∗

)

=
𝛽

𝜇 + 𝛾 + 𝜂

⋅ (
1

𝜇 + 𝛽𝐼∗

⋅ ((1 − 𝑝)Λ

+ ∫

+∞

0

𝛼 (𝜃) V0 (𝜃)

⋅ exp(−𝛽𝐼∗ ∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝑑𝜏)𝑑𝜃)

+ ∫

+∞

0

(1 − 𝜎 (𝜃)) V0 (𝜃)

⋅ exp(−𝛽𝐼∗ ∫
𝜃

0

(1 − 𝜎 (𝜃)) 𝑑𝜏)𝑑𝜃)

(20)

is continuous and monotonically decreases with the growth
of 𝐼∗ and that equalities

𝐻(0) = 𝑅V, lim
𝐼
∗
→+∞

𝐻(𝐼
∗

) = 0 hold. (21)

Hence, for all 𝑅V > 1 there exists 𝐼∗ ∈ (0,∞) such that
equality 𝐻(𝐼

∗
) = 1 holds. Corresponding 𝑆∗ and V∗(𝜃) are

defined by (17) and (18), respectively.
Thus, we just proved the followingTheorem.

Theorem 1. System (3) always has the infection-free steady
state 𝐸

0
= (𝑆
0
, 𝐼
0
, V0(𝜃)). If 𝑅V > 1, then system also has a

unique endemic steady state 𝐸∗ = (𝑆
∗
, 𝐼
∗
, V∗(𝜃)).

4. Global Stability of the Steady States

In this section, our goal is to obtain the global stability results
of system (3). We address global asymptotic stability of sys-
tem (3) by constructing appropriate Volterra-type Lyapunov
functions (1). We have the following result.

Theorem 2. (i) When 𝑅V ≤ 1, then the infection-free steady
state 𝐸

0
is globally asymptotically stable and is the only steady

state. (ii) When 𝑅V > 1, then the endemic steady state 𝐸∗ is
globally asymptotically stable.
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Proof. (i) To prove the global asymptotic stability of the
infection-free steady state, we consider the following Lya-
punov function 𝐿(𝑡) = 𝐿

1
(𝑡) + 𝑊(𝑡), where

𝐿
1
(𝑡) = 𝑆

0

𝐺(
𝑆 (𝑡)

𝑆0
) + 𝐼 (𝑡) ,

𝑊 (𝑡) = ∫

+∞

0

[V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

)] 𝑑𝜃.

(22)

Using 𝜇𝑆0 = (1 − 𝑝)Λ + ∫
+∞

0
𝛼(𝜃)V0(𝜃)𝑑𝜃, we have

𝑑𝐿
1

𝑑𝑡

= (1 − 𝑝)Λ(2 −
𝑆 (𝑡)

𝑆0
−

𝑆
0

𝑆 (𝑡)
)

+ ∫

+∞

0

𝛼 (𝜃) V0 (𝜃) (−
𝑆 (𝑡)

𝑆0
+ 1 + ln 𝑆 (𝑡)

𝑆0
)𝑑𝜃

+ ∫

+∞

0

𝛼 (𝜃) V0 (𝜃) (
V (𝜃, 𝑡)
V0 (𝜃)

− ln 𝑆 (𝑡)

𝑆0
−

𝑆
0V (𝜃, 𝑡)

𝑆 (𝑡) V0 (𝜃)
) 𝑑𝜃

+ 𝛽𝐼 (𝑡) ∫

+∞

0

V0 (𝜃) (1 − 𝜎 (𝜃)) (
V (𝜃, 𝑡)
V0 (𝜃)

− 1) 𝑑𝜃

− (𝜇 + 𝛾 + 𝜂) (1 − 𝑅V) 𝐼 (𝑡) .

(23)

We have
𝑑𝑊

𝑑𝑡
= ∫

+∞

0

(1 −
V0 (𝜃)
V (𝜃, 𝑡)

)
𝜕V (𝜃, 𝑡)
𝜕𝑡

𝑑𝜃

= − ∫

+∞

0

(1 −
V0 (𝜃)
V (𝜃, 𝑡)

)

⋅ (
𝜕V (𝜃, 𝑡)
𝜕𝜃

+ (𝜇 + 𝛼 (𝜃)) V (𝜃, 𝑡)

+ 𝛽 (1 − 𝜎 (𝜃)) V (𝜃, 𝑡) 𝐼 (𝑡)) 𝑑𝜃.

(24)

Note that
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

)

= (1 −
V0 (𝜃)
V (𝜃, 𝑡)

)(
𝜕
𝜃
V (𝜃, 𝑡)
V0 (𝜃)

−

V (𝜃, 𝑡) ⋅ 𝐷
𝜃
[V0 (𝜃)]

V0 (𝜃) V0 (𝜃)
) ,

(25)

where 𝜕
𝜃
V(𝜃, 𝑡) denotes 𝜕V(𝜃, 𝑡)/𝜕𝜃, and 𝐷

𝜃
[V0(𝜃)] denotes

𝑑V0(𝜃)/𝑑𝜃.
We know𝐷

𝜃
[V0(𝜃)] = −(𝜇 + 𝛼(𝜃))V0(𝜃).

Hence,

V0 (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

)

= (1 −
V0 (𝜃)
V (𝜃, 𝑡)

) (𝜕
𝜃
V (𝜃, 𝑡) + (𝜇 + 𝛼 (𝜃)) V (𝜃, 𝑡)) .

(26)

We have

𝑑𝑊

𝑑𝑡
= −∫

+∞

0

V0 (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

− 𝛽𝐼 (𝑡) ∫

+∞

0

V0 (𝜃) (1 − 𝜎 (𝜃)) (
V (𝜃, 𝑡)
V0 (𝜃)

− 1) 𝑑𝜃.

(27)

Hence, using integration by parts,

∫

+∞

0

V0 (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

= [V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

)]

𝜃=+∞

𝜃=0

− ∫

+∞

0

𝐷
𝜃
[V0 (𝜃)] 𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

= [V0(𝜃)𝐺(
V(𝜃, 𝑡)
V0(𝜃)

)]

𝜃=+∞

− V0 (0) 𝐺(
V (0, 𝑡)
V0 (0)

) − ∫

+∞

0

𝐷
𝜃
[V0 (𝜃)] 𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

(28)

and using the following equalities V0(0) = 𝑝Λ, V(0, 𝑡) = 𝑝Λ,
and𝐷

𝜃
[V0(𝜃)] = −(𝜇 + 𝛼(𝜃))V0(𝜃), we have

∫

+∞

0

V0 (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

= [V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

)]

𝜃=+∞

+ ∫

+∞

0

(𝜇 + 𝛼 (𝜃)) V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃.

(29)

Substituting the expression (29) in (27)

𝑑𝑊

𝑑𝑡
= − [V0(𝜃)𝐺(

V(𝜃, 𝑡)
V0(𝜃)

)]

𝜃=+∞

− ∫

+∞

0

𝜇V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

− ∫

+∞

0

𝛼 (𝜃) V0 (𝜃) [
V (𝜃, 𝑡)
V0 (𝜃)

− 1 − ln V (𝜃, 𝑡)
V0 (𝜃)

] 𝑑𝜃

− 𝛽𝐼 (𝑡) ∫

+∞

0

V0 (𝜃) (1 − 𝜎 (𝜃)) (
V (𝜃, 𝑡)
V0 (𝜃)

− 1) 𝑑𝜃

= − [V0(𝜃)𝐺(
V(𝜃, 𝑡)
V0(𝜃)

)]

𝜃=+∞

− ∫

+∞

0

𝜇V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

− 𝛽𝐼 (𝑡) ∫

+∞

0

V0 (𝜃) (1 − 𝜎 (𝜃)) (
V (𝜃, 𝑡)
V0 (𝜃)

− 1) 𝑑𝜃
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+ ∫

+∞

0

𝛼 (𝜃) V0 (𝜃)

⋅ [−
V (𝜃, 𝑡)
V0 (𝜃)

+ 1 + ln 𝑆
0V (𝜃, 𝑡)

𝑆 (𝑡) V0 (𝜃)
+ ln 𝑆 (𝑡)

𝑆0
]𝑑𝜃,

(30)

and combining (23) and (30), we have

𝑑𝐿

𝑑𝑡
=
𝑑𝐿
1

𝑑𝑡
+
𝑑𝑊

𝑑𝑡

= (1 − 𝑝)Λ(2 −
𝑆 (𝑡)

𝑆0
−

𝑆
0

𝑆 (𝑡)
)

− [V0(𝜃)𝐺(
V(𝜃, 𝑡)
V0(𝜃)

)]

𝜃=+∞

− ∫

+∞

0

𝜇V0 (𝜃) 𝐺(
V (𝜃, 𝑡)
V0 (𝜃)

) 𝑑𝜃

− ∫

+∞

0

𝛼 (𝜃) V0 (𝜃) [𝐺(
𝑆 (𝑡)

𝑆0
) + 𝐺(

𝑆
0V (𝜃, 𝑡)

𝑆 (𝑡) V0 (𝜃)
)] 𝑑𝜃

− (𝜇 + 𝛾 + 𝜂) (1 − 𝑅V) 𝐼 (𝑡) .

(31)

Therefore, 𝑅V ≤ 1 ensures that 𝑑𝐿/𝑑𝑡 ≤ 0 holds in the non-
negative region of the phase space. The strict equality holds
only if 𝑆(𝑡) = 𝑆

0 and V(𝜃, 𝑡) = V0(𝜃) holds simultaneously with
either 𝑅V = 1 or 𝐼(𝑡) = 0. It is easy to verify that infection-free
steady state 𝐸

0
is the only invariant set of the system in this

set, and hence by LaSalle’s invariance principle for semiflows
(Corollary 2.3 in [15]), 𝑅V ≤ 1 is sufficient to ensure that this
steady state is globally asymptotically stable.

(ii) To prove the global asymptotic stability of the endemic
steady state, we consider the following Volterra-type Lya-
punov function 𝑈(𝑡) = 𝑈

1
(𝑡) + 𝐽(𝑡), where

𝑈
1
(𝑡) = 𝑆

∗

𝐺(
𝑆 (𝑡)

𝑆∗
) + 𝐼
∗

𝐺(
𝐼 (𝑡)

𝐼∗
) ,

𝐽 (𝑡) = ∫

+∞

0

[V∗ (𝜃) 𝐺(
V (𝜃, 𝑡)
V∗ (𝜃)

)] 𝑑𝜃.

(32)

Using 𝛽𝑆∗ +𝛽∫+∞
0

(1 − 𝜎(𝜃))V∗(𝜃)𝑑𝜃 = (𝜇 + 𝛾 + 𝜂) and 𝜇𝑆∗ =
(1 − 𝑝)Λ − 𝛽𝑆

∗
𝐼
∗
+ ∫
+∞

0
𝛼(𝜃)V∗(𝜃)𝑑𝜃, we have

𝑑𝑈
1

𝑑𝑡
= (1 − 𝑝)Λ(2 −

𝑆 (𝑡)

𝑆∗
−

𝑆
∗

𝑆 (𝑡)
)

+ ∫

+∞

0

𝛼 (𝜃) V∗ (𝜃) (−
𝑆 (𝑡)

𝑆∗
+ 1 + ln 𝑆 (𝑡)

𝑆∗
)𝑑𝜃

+ ∫

+∞

0

𝛼 (𝜃) V∗ (𝜃)

⋅ (
V (𝜃, 𝑡)
V∗ (𝜃)

− ln 𝑆 (𝑡)

𝑆∗
−

𝑆
∗V (𝜃, 𝑡)

𝑆 (𝑡) V∗ (𝜃)
) 𝑑𝜃

+ 𝛽𝐼
∗

∫

+∞

0

V∗ (𝜃) (1 − 𝜎 (𝜃))

⋅ (
V (𝜃, 𝑡) 𝐼 (𝑡)
V∗ (𝜃) 𝐼∗

−
V (𝜃, 𝑡)
V∗ (𝜃)

−
𝐼 (𝑡)

𝐼∗
+ 1)𝑑𝜃.

(33)

Similarly, we have

𝑑𝐽

𝑑𝑡
= ∫

+∞

0

(1 −
V∗ (𝜃)
V (𝜃, 𝑡)

)
𝜕V (𝜃, 𝑡)
𝜕𝑡

𝑑𝜃

= − ∫

+∞

0

V∗ (𝜃) (
V (𝜃, 𝑡)
V∗ (𝜃)

− 1)

⋅ (
𝜕
𝜃
V (𝜃, 𝑡)
V (𝜃, 𝑡)

+ 𝜇 + 𝛼 (𝜃)

+ 𝛽 (1 − 𝜎 (𝜃)) 𝐼 (𝑡)) 𝑑𝜃

= − ∫

+∞

0

V∗ (𝜃) (
V (𝜃, 𝑡)
V∗ (𝜃)

− 1)

⋅ (
𝜕
𝜃
V (𝜃, 𝑡)
V (𝜃, 𝑡)

+ 𝜇 + 𝛼 (𝜃) + 𝛽 (1 − 𝜎 (𝜃)) 𝐼
∗

)𝑑𝜃

+ 𝛽𝐼
∗

∫

+∞

0

V∗ (𝜃) (1 − 𝜎 (𝜃))

⋅ (
V (𝜃, 𝑡)
V∗ (𝜃)

− 1 −
V (𝜃, 𝑡) 𝐼 (𝑡)
V∗ (𝜃) 𝐼∗

+
𝐼 (𝑡)

𝐼∗
)𝑑𝜃.

(34)

Note that

𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

)

= (1 −
V∗ (𝜃)
V (𝜃, 𝑡)

)(
𝜕
𝜃
V (𝜃, 𝑡)
V∗ (𝜃)

−
V (𝜃, 𝑡) ⋅ 𝐷

𝜃
[V∗ (𝜃)]

V∗ (𝜃) V∗ (𝜃)
) .

(35)

We know𝐷
𝜃
[V∗(𝜃)] = −(𝜇+𝛼(𝜃))V∗(𝜃)− (1−𝜎(𝜃))𝛽V∗(𝜃)𝐼∗.

Hence,

V∗ (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

)

= (1 −
V∗ (𝜃)
V (𝜃, 𝑡)

)

⋅ (𝜕
𝜃
V (𝜃, 𝑡) + (𝜇 + 𝛼 (𝜃) + (1 − 𝜎 (𝜃)) 𝛽𝐼∗) V (𝜃, 𝑡)) .

(36)
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We have

𝑑𝐽

𝑑𝑡
= − ∫

+∞

0

V∗ (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

+ 𝛽𝐼
∗

∫

+∞

0

V∗ (𝜃) (1 − 𝜎 (𝜃))

⋅ (
V (𝜃, 𝑡)
V∗ (𝜃)

− 1 −
V (𝜃, 𝑡) 𝐼 (𝑡)
V∗ (𝜃) 𝐼∗

+
𝐼 (𝑡)

𝐼∗
)𝑑𝜃.

(37)

Hence, using integration by parts,

∫

+∞

0

V∗ (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

= [V∗ (𝜃) 𝐺(
V (𝜃, 𝑡)
V∗ (𝜃)

)]

𝜃=+∞

𝜃=0

− ∫

+∞

0

𝐷
𝜃
[V∗ (𝜃)] 𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

= [V∗(𝜃)𝐺(
V(𝜃, 𝑡)
V∗(𝜃)

)]

𝜃=+∞

− V∗ (0) 𝐺(
V (0, 𝑡)
V∗ (0)

) − ∫

+∞

0

𝐷
𝜃
[V∗ (𝜃)] 𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

(38)

and using the following equalities V∗(0) = 𝑝Λ, V(0, 𝑡) = 𝑝Λ,
and 𝐷

𝜃
[V∗(𝜃)] = −𝜇V∗(𝜃) − 𝛼(𝜃)V∗(𝜃) − (1 − 𝜎(𝜃))𝛽V∗(𝜃)𝐼∗.

we have

∫

+∞

0

V∗ (𝜃)
𝜕

𝜕𝜃
𝐺(

V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

= [V∗(𝜃)𝐺(
V(𝜃, 𝑡)
V∗(𝜃)

)]

𝜃=+∞

+ ∫

+∞

0

(𝜇 + 𝛼 (𝜃) + (1 − 𝜎 (𝜃)) 𝛽𝐼
∗

)

⋅ V∗ (𝜃) 𝐺(
V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃.

(39)

Substituting the expression (39) in (37)

𝑑𝐽

𝑑𝑡
= − [V∗(𝜃)𝐺(

V(𝜃, 𝑡)
V∗(𝜃)

)]

𝜃=+∞

− ∫

+∞

0

(𝜇 + 𝛼 (𝜃)) V∗ (𝜃) 𝐺(
V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

+ 𝛽𝐼
∗

∫

+∞

0

V∗ (𝜃) (1 − 𝜎 (𝜃))

⋅ (ln V (𝜃, 𝑡)
V∗ (𝜃)

−
V (𝜃, 𝑡) 𝐼 (𝑡)
V∗ (𝜃) 𝐼∗

+
𝐼 (𝑡)

𝐼∗
)𝑑𝜃,

(40)

and combining (33) and (40), we have

𝑑𝑈

𝑑𝑡
=
𝑑𝑈
1

𝑑𝑡
+
𝑑𝐽

𝑑𝑡

= (1 − 𝑝)Λ(2 −
𝑆 (𝑡)

𝑆∗
−

𝑆
∗

𝑆 (𝑡)
)

− [V∗(𝜃)𝐺(
V(𝜃, 𝑡)
V∗(𝜃)

)]

𝜃=+∞

− ∫

+∞

0

(𝜇 + (1 − 𝜎 (𝜃)) 𝛽𝐼
∗

) V∗ (𝜃) 𝐺(
V (𝜃, 𝑡)
V∗ (𝜃)

) 𝑑𝜃

− ∫

+∞

0

𝛼 (𝜃) V∗ (𝜃)

⋅ [𝐺 (
𝑆 (𝑡)

𝑆∗
) + 𝐺(

𝑆
∗V (𝜃, 𝑡)

𝑆 (𝑡) V∗ (𝜃)
)] 𝑑𝜃.

(41)

That is positive-definite function𝑈(𝑡) has nonpositive deriva-
tive 𝑑𝑈/𝑑𝑡. Furthermore, the equality 𝑑𝑈/𝑑𝑡 = 0 holds only
if 𝑆(𝑡) = 𝑆

∗ and V(𝜃, 𝑡) = V∗(𝜃), simultaneously. Thus the
endemic steady state 𝐸∗ is the only positively invariant subset
of the set with 𝑑𝑈/𝑑𝑡 = 0, and hence by LaSalle’s invariance
principle for semiflows (Corollary 2.3 in [15]), the steady state
𝐸
∗ is globally asymptotically stable when it exists.

The following Corollary immediately follows from the
proof.

Corollary 3. System (3) is uniformly persistent.

5. Concluding Remarks

The vaccination of newborn or neonatal immunization may
be an effective preventive strategy against some pathogens.
The ideal vaccine would be a single dose given at birth and
providing immediate and long protection against multiple
diseases. In this paper, we introduced and analytically studied
the global stability properties of an SIR epidemiological
model with vaccination, where it is assumed that the waning
rate of vaccine-induced immunity is depending on the
vaccine-age. In this model, we introduce the vaccination of
newborns or neonatal immunization in the vaccine-age.

One of the fundamental questions of mathematical epi-
demiology is to find the reproductive number, we derived
an explicit formula for the effective reproductive number of
epidemic system (3) using the condition that the infection-
free steady state 𝐸

0
is unstable if and only if 𝑅V > 1.

We perform a nonlinear stability analysis, by means of
the Lyapunov function techniques and LaSalle’s Invariance
Principle for semiflows. We show that the classical threshold
condition for the effective reproductive number, 𝑅V, holds:
𝑅V > 1; then the endemic steady 𝐸∗ is globally asymptotically
stable, whereas if 𝑅V ≤ 1, then the infection-free steady state
𝐸
0
is globally asymptotically stable.
It is noteworthy, that we only impose integrability condi-

tion on the wane rate function of vaccine 𝛼(𝜃) in the model,
and hence, global stability results derived are robust and do
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not depend on specific forms of this function. Some forms of
the function 𝛼(𝜃) have been proposed in [8, 9].The following
function 𝛼(𝜃) is reported in [9]:

𝛼 (𝜃) = {
0, if 0 < 𝜃 ≤ 𝜃min,

𝛼
0
, if 𝜃min < 𝜃 < 𝜃max,

(42)

where 𝜃min and 𝜃max are minimum and maximum vaccine-
ages, respectively, and 𝛼

0
is positive constant. We generalized

the specific form given in [8]

𝛼 (𝜃) =

{{{{{{{{{

{{{{{{{{{

{

0,

if 0 < 𝜃 ≤ 𝜃min,

𝜅
0
(𝜃 − 𝜃min)

2 exp [−𝜅
1
(𝜃 − 𝜃min)] ,

if 𝜃min < 𝜃 ≤ 𝜃med,

𝛼
0
,

if 𝜃med < 𝜃 < 𝜃max,

(43)

where 𝜅
0
and 𝜅

1
are positive constants and 𝜃med is inter-

medium vaccine-age.
We notice that the effective reproductive number can be

written as

𝑅V = 𝑅
0
(1 − 𝑝

⋅ (1 − ∫

+∞

0

(𝛼 (𝜃) + 𝜇 (1 − 𝜎 (𝜃)))𝐾
0
(𝜃) 𝑑𝜃)) ,

(44)

where 𝑅
0
= 𝛽Λ/(𝜇(𝜇 + 𝛾 + 𝜂)) is the basic reproductive

number of the disease. From this, ameasure of vaccine impact
(see [16]), 𝜙, can be derived as

𝜙 =
𝑅
0
− 𝑅V

𝑅
0

= 𝑝(1 − ∫

+∞

0

(𝛼 (𝜃) + 𝜇 (1 − 𝜎 (𝜃)))𝐾
0
(𝜃) 𝑑𝜃) .

(45)

It is easy to check that

𝜕𝜙

𝜕𝑝
= 1 − ∫

+∞

0

(𝛼 (𝜃) + 𝜇 (1 − 𝜎 (𝜃)))𝐾
0
(𝜃) 𝑑𝜃 > 0. (46)

Thus, the vaccine impact 𝜙 is an increasing function with
respect to the argument 𝑝.

Finally, we note that the approach used in this paper can
be applied to a wider variety of the age-dependent epidemic
models with waning vaccine-induced immunity.
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