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This paper is concerned with the shunting inhibitory cellular neural networks (SICNNs) with time-varying delays in the leakage (or
forgetting) terms. Under proper conditions, we employ a novel argument to establish a criterion on the global exponential stability
of pseudo almost periodic solutions by using Lyapunov functional method and differential inequality techniques. We also provide

numerical simulations to support the theoretical result.

1. Introduction

In the last three decades, shunting inhibitory cellular neural
networks (SICNNs) have been extensively applied in psy-
chophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing. Hence, they have
been the object of intensive analysis by numerous authors
in recent years. In particular, there have been extensive
results on the problem of the existence and stability of the
equilibrium point and periodic and almost periodic solutions
of SICNNs with time-varying delays in the literature. We refer
the reader to [1-7] and the references cited therein.

It is well known that SICNNs have been introduced as
new cellular neural networks (CNNs) in Bouzerdoum et al.
in [1, 8, 9], which can be described by

xj; (£) = —ay; () ;5 (1)

- Z ijl () f (g (t = 70 (1)) x;; (2)
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| Ry 00 (=) duy 0+ 2,0,
0

i=12,....m, j=12,...,n,

where C;; denotes the cell at the (i, j) position of the lattice.
The r-neighborhood N, (i, j) of C;; is given as

N, (i, j) = {Cq : max (|k =il , |1 - j|) <,
(2)

l1<k<m,1<l<n},

where N, (i, j) is similarly specified, x;; is the activity of
the cell Cj;, L;;(t) is the external input to Cj;, the function
a;;(t) > 0 represents the passive decay rate of the cell activity,
Cﬁ}l(t) and Bf.‘jl(t) are the connection or coupling strength of
postsynaptic activity of the cell transmitted to the cell C;j, and
the activity functions f(-) and g(-) are continuous functions
representing the output or firing rate of the cell Cy;, and
Ty (t) = 0 corresponds to the transmission delay.

Obviously, the first term in each of the right side of (1)
corresponds to stabilizing negative feedback of the system
which acts instantaneously without time delay; these terms
are variously known as “forgettin” or leakage terms (see,
for instance, Kosko [10], Haykin [11]). It is known from
the literature on population dynamics and neural networks
dynamics (see Gopalsamy [12]) that time delays in the
stabilizing negative feedback terms will have a tendency
to destabilize a system. Therefore, the authors of [13-19]
dealt with the existence and stability of equilibrium and
periodic solutions for neuron networks model involving
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leakage delays. Recently, Liu and Shao [20] considered the
following SICNNs with time-varying leakage delays:
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where i = 1,2,....,m, j = L2,...,n, 10 R — [0 +
00) denotes the leakage delay. By using Lyapunov functional
method and differential inequality techniques, in [20], some
sufficient conditions have been established to guarantee that
all solutions of (1) converge exponentially to the almost
periodic solution. Moreover, it is well known that the global
exponential convergence behavior of solutions plays a key
role in characterizing the behavior of dynamical system since
the exponential convergent rate can be unveiled (see [21-
24]). However, to the best of our knowledge, few authors
have considered the exponential convergence on the pseudo
almost periodic solution for (1). Motivated by the above
discussions, in this paper, we will establish the existence and
uniqueness of pseudo almost periodic solution of (1) by using
the exponential dichotomy theory and contraction mapping
fixed point theorem. Meanwhile, we also will give the condi-
tions to guarantee that all solutions and their derivatives of
solutions for (1) converge exponentially to the pseudo almost
periodic solution and its derivative, respectively.

For convenience, we denote by R’ (R = R!Y) the set of all
p-dimensional real vectors (real numbers). We will use

{2 O} = (i, @) x0, O ox0 (@)1

Xip ()5 oo s Xy () 5oy Xy (1)) € R

(4)

mxn

For any x(t) = {x;;(t)} € R™" we let |x| denote the absolute-
value vector given by |x| = {|xij|} and define ||x(¢)| =
max(,-’j){lxij(t)|}. A matrix or vector A > 0 means that all
entries of A are greater than or equal to zero. A > 0 can be
defined similarly. For matrices or vectors A; and A,, A; > A,
(resp. A, > A,) meansthat A, — A, > 0 (resp. A, — A, > 0).
For the convenience, we will introduce the notations:

K =sup |h (1),

teR

h™ = gluglh(t)l, (5)

where h(t) is a bounded continuous function.
The initial conditions associated with system (3) are of the
form:

xij (S) = (Pz] (S)’ s € (_OO) 0] >
(6)
., mn},

ije]:={11,...,1n,21,...,2n,...,ml,..

where ¢;;(-) and (pl.'j(-) are real-valued bounded continuous
functions defined on (—00, 0].
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The paper is organized as follows. Section 2 includes some
lemmas and definitions, which can be used to check the
existence of almost periodic solutions of (3). In Section 3,
we present some new sufficient conditions for the existence
of the continuously differentiable pseudo almost periodic
solution of (3). In Section 4, we establish sufficient conditions
on the global exponential stability of pseudo almost periodic
solutions of (3). At last, an example and its numerical
simulation are given to illustrate the effectiveness of the
obtained results.

2. Preliminary Results

In this section, we will first recall some basic definitions and
lemmas which are used in what follows.

In this paper, BC(R, R?) denotes the set of bounded con-
tinued functions from R to R”. Note that (BC(R, R?), || - [|,)
is a Banach space where || - ||, denotes the supnorm || f||, :=

sup;erll f ()]

Definition 1 (see [25, 26]). Let u(t) € BC(R, R?). u(t) is said
to be almost periodic on R if, for any & > 0, the set T'(u, €) =
{6 : lu(t+68)—u(t)| < e for all t € R} isrelatively dense; that
is, forany e > 0, itis possible to find areal number [ = I(g) > 0;
for any interval with length I(¢), there exists a number § =
d(&) in this interval such that [|u(t+6)—u(t)|| < &, for all t € R.

We denote by AP(R,R") the set of the almost periodic
functions from R to R”. Besides, the concept of pseudo
almost periodicity (pap) was introduced by Zhang in the
early nineties. It is a natural generalization of the classical
almost periodicity. Precisely, define the class of functions
PAP,(R, R) as follows:

S -
{f eBC(RR)| lim — J_T|f(t)|dt - 0}. %)
A function f € BC(R,R") is called pseudo almost periodic
if it can be expressed as

f=h+o, (8)

where h € AP(R, R") and ¢ € PAP,(R, R"). The collection of
such functions will be denoted by PAP(R, R"). The functions
h and ¢ in the above definition are, respectively, called the
almost periodic component and the ergodic perturbation
of the pseudo almost periodic function f. The decompo-
sition given in definition above is unique. Observe that
(PAP(R,R"), |l - l») is a Banach space and AP(R,R") is a
proper subspace of PAP(R,R") since the function ¢(t) =
cosmt + cost + e Y i pseudo almost periodic function
but not almost periodic. It should be mentioned that pseudo
almost periodic functions possess many interesting proper-
ties; we shall need only a few of them and for the proofs we
shall refer to [25].

Lemma 2 (see [25, page 57]). If f € PAP(R,R) and g is its
almost periodic component, then we have

g(R) c f(R). 9)
Therefore | fll, = llgll,, = inf,rlg(x)| = inf gl f(x)].
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Lemma 3 (see [25, page 140]). Suppose that both functions f
and its derivative f' are in PAP(R,R). That is, f = g + ¢ and
f' = a+ B, where g, € AP(R,R) and ¢, 3 € PAPy(R,R).
Then the functions g and ¢ are continuous differentiable so that

g =a, ¢ = (10)

Lemma 4. Let B = {f | f, f' € PAP(R,R)} equipped with
the induced norm defined by || f|z. = max{| fll.,, ||f'||00} =

max{sup, g | f(t), sup,cr| f'(t)|}, and then B* is a Banach
space.

Proof. Suppose that {f,} 7] is a Cauchy sequence in B", and
then for any € > 0, there exists N(g) > 0, such that

7o~ ful

=max {?uﬂg |fp (t) _fq (t)' , iuug'fp’ () - fq’ (t)'} <&,

Vp,q= N ().
1D

By the definition of pseudo almost periodic function, let

fp=9p+¢, where g, € AP(R,R), )
P, € PAP, (R,R), p=1,2,....
From Lemma 3, we obtain
! ! ! !
fp=9,+¢, whereg,eAP(R,R), )

<p; € PAP, (R,R), p=1,2,....

On comblmng (11) with Lemma?2, we deduce that,
{gP}P 1,{gp};°<i ¢ AP(R,R) are Cauchy sequence, so that
{(pp}P " {(pp}p: ¢ PAP)(R, R) are also Cauchy sequence.
Firstly, we show that there exists g € AP(R, R) such that
g, uniformly converges to g, as p — +00.
Note that {gp} is Cauchy sequence in AP(R,R).
for all € > 0, AN(e), such that for all p,g > N(e)

|9,()—g,(®)] <& VteR. (14)

Soforfixedt € R, itiseasy to see {gp(t)};f; is Cauchy number
sequence. Thus, the limits of g,,(f) existas p — +oo and let
g(t) = limpHJroogP(t). In (14), letg — +00, and we have

lgt)-g,®0|<e VieR, p=N(e). (15)

Thus, g,, uniformly converges to g, as p — +00. Moreover,
from the Theorem 1.9 [26, page 5], we obtain g € AP(R, R).
Similarly, we also obtain that there exist g* € AP(R,R) and
¢, 9" € BC(R, R), such that

- g, 0| <e

o) -9, (0)] <&,

0] <,

VteR, p>N (e,

which lead to

! * ! *
=9 $H=¢ ¢,=9¢, @)
where p — +00 and “=” means uniform convergence.

Next, we claim that ¢, ¢* € PAP,(R). Together with (16)

and the facts that

lim — J |(pp (s)| ds = lim 1 [ |(p; (s)| ds =0,

rreoar r— 4002y
p=L12...,
_[ |¢(S)|ds<—J |(p(s) <PP(S)'ds
+_J |<Pp(5)|ds, r>0, n=1,2,.
1 (", . L ’
NG (9)]ds
L ("1 (9)]d _
+2—rj_r|<pp(s)| s r>0, p=12...,
(18)

we have

r— 4002

lim —J lp(s)|ds =0, lim —J. l* (s)| ds = 0.

r—+0072
(19)

Hence ¢, ¢" € PAP(R). Let f = g+ ¢, f* = g" + ¢", then
f=g+pePAP (R), f* = g" +¢" € PAP (R)and f, = f,

f;:»f*asp — +00.
Finally, we reveal f' = f*. Fort, At € R, it follows that

t+At
ot + A0~ £, (t) = L £ ds. (20)

In view of the uniform convergence of f, and f;, let
p — +oo for (20), and we get

t+At

fevan-fo=[ £ s )
which implies that
t+At

d

f (t) = w
At (22)

f+A)-f@)
AtaOA— = 0.

In summary, in view of (15), (16), and (22), we obtain
that the Cauchy sequence { fp};‘i C B satisfies

If, = . — 0(p — +o0), (23)

and f € B". This yields that B* is a Banach space. The proof
is completed. O



Remark 5. Let B = {f | f.f € PAP(R,R™™)}
equipped with the induced norm defined by |fll; =

max{|| flloo I /' loo} = maxfsup, el f(O, sup,erllf @)1} 1t
follows from Lemma 4 that B is a Banach space.

Definition 6 (see [19, 20]). Let x € R’ and Q(t) bea p x p
continuous matrix defined on R. The linear system

X' () =Q)x(t) (24)

is said to admit an exponential dichotomy on R if there exist
positive constants k, «, and projection P and the fundamental
solution matrix X () of (24) satisfying

"X (t)yPx! (s)“ <ke ™™ fort>s,
(25)

|x®a-P)y X! (5)]| < ke, forts<s.

Lemma 7 (see [19]). Assume that Q(t) is an almost periodic
matrix function and g(t) € PAP(R,RP?). If the linear system
(24) admits an exponential dichotomy, then pseudo almost
periodic system

X () =QM)x®t)+g(t) (26)

has a unique pseudo almost periodic solution x(t), and

x(t) = r X (1) PX* (s)g(s)ds
- (27)
- J X (t)(I-P) X" (s) g (s)ds.
t

Lemma 8 (see [19, 20]). Let ¢(t) be an almost periodic
function on R and

M [

1

) 1 t+T .
]= lim fj G(s)ds>0, i=12,...,p. (28)
t

T — +00

Then the linear system

x' (1) = diag (¢, (), —¢, () ..., —¢, (1)) x(t)  (29)

admits an exponential dichotomy on R.

3. Existence of Pseudo Almost
Periodic Solutions

In this section, we establish sufficient conditions on the
existence of pseudo almost periodic solutions of (3).
Forijkl € J,a; : R — (0,+00) is an almost periodic
function, NipTa * R — [0, +00), and Lij,Cf.‘jl,Bf.‘jl R —
R are pseudo almost periodic functions. We also make the
following assumptions which will be used later.
We also make the following assumptions.

(SI1) There exist constants M Mg, Ly, and L g such that

lf@-fM|<Lilu-vl, |f@w|<My,
|g(u)—g(v)|£Lg|u—v|, |g(u)|sMg, (30)
Yu,v € R.
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(S2) For ij € ], the delay kernels Kjj : [0,00) — R are

continuous, and |K,-j(t)|eﬁt are integrable on [0, co)
for a certain positive constant f3.

(S3) Let

t t
J ek aij(”)duLij (s)ds
—00

I

L = max ymax {sup
(i.j) Lter

max {sup Lj; (£) — a;; (1)

(i) Lter

t o
X j el uLij (s)ds
—00

e

(31)

Moreover, there exists a constant x such that

N
1 a..
max {—_Eij,<1 + —11>Ei]-]> <k,
(i) | % A
+
1 a.
max {—_Fij, <1 + —?)Fij]» <1,
(63) | %; a;

where

0<k<lL,

(32)

Y (L kD +|f )

_ o+
E;; = laij”ij +
CueN, (i.j)

kit
+ Z Bij

CueN,(i.7)
X L |K;; ()| du (L7 ( + L) +]g (0)]) ] (k+1L),
ijel,

.
F; = la;m; oy cf.‘j’ (My+L (x+1))
CyeN, (i,f)
kit 0
+ ) B J |K;; ()| duM,
CueN,(i.f) 0

+ LOO |K;; )| duL? (e + L)) ] )

ijel.
(33)

Lemma 9. Assume that assumptions (S,) and (S,) hold. Then,
for ¢(-) € PAP(R,R), the function IOOO Kij(w)g(e(t — u)) du
belongs to PAP(R, R), where ij € ].
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Proof. Let ¢ € PAP(R, R). Obviously, (S;) implies that g is a
uniformly continuous function on R. By using Corollary 5.4
in [25, page 58], we immediately obtain the following:

gl@®) =x )+ x, (1) € PAP(R,R),  (34)
where y; € AP(R,R) and y, € PAP(R,R). Then, for any
€ > 0, it is possible to find a real number [ = I(e) > 0; for any

interval with length [, there exists a number 7 = 7(¢) in this
interval such that

€
t+71)—x, ()] < = , ViteR, ije],
|X1 Xl | 1+ J-O 'Kij (u)'du ]
Jim o | e wldr=o
(35)

It follows that

(0]

UOOK,-J- (u) x; (t+T—u)du—j K;; () x, ¢t —u)du
0 0

< LOO |Kij (u)| I)(1 (t+T-u)-x (t—u)|du

&

K (u)) du

< L |Kij (u)|du1+Jooo'
<e VteR,ije],

B L Kij (u) x, (v —u) du|dv

< lim J J IK,; )] [, (v = )] dudv
= lim LOO [y 60 [ i (7= ] v
= rETOO% LOO le] (u)' J Ixz (2)| dz du
< rgqlmzi LOO lK,] (u)' J lxz (2)| dz du

IN

. b 1 1
rl—1>IP00 JO |Kij (u)| (1 N ;u) 2(r+u)

r+u
xJ Ix; ()| dz du

N /ryu "

< rEIPoo JO |K1] (M)| e m J |X2 (Z)l dz du
) ﬁu 1 r+u

= rl—1>r+l-]oo J |K (u)| 2 ( + u) J_r —u |X2 (Z)l dzdu

0, wherer >

/—13, ije].
(36)

5
Thus,
J K () x, (t - w)du € AP (R, R),
o00 (37)
L K;; () x, (t - u) du € PAP, (R, R),
which yield
J K (u) g; (9 (t —w)) du
0
_ L K;; () x, (¢ — ) du
N L K () x, (t - w)du € PAP(R,R), ij € .
(38)
The proof of Lemma 9 is completed. U

Theorem 10. Let (S,), (S,), and (S;) hold. Then, there exists
at least one continuously differentiable pseudo almost periodic
solution of system (3).

Proof. Let ¢ € B. Obviously, the boundedness of ¢’ and (S,)
imply that f and ¢;; are uniformly continuous functions on

R forij € J. Set f(t,z) = (pij(t —z) (ij € J). By Theorem 5.3
in [25, page 58] and Definition 5.7 in [25, page 59], we can
obtain that f € PAP(R x Q) and f is continuous in z € K
and uniformly in ¢ € R for all compact subset K of Q. This,
together with 7 751 € PAP(R,R) and Theorem 5.11 in [25,
page 60], implies that

;i (t-7; (1) € PAP(R,R),
;i (t =1 () € PAP (R, R), (39)
ijel.
Again from Corollary 5.4 in [25, page 58], we have
f(p;(t-7;®)) e PAP(R,R), ije],  (40)

which, together with Lemma 9, implies

t
a;j (1) J
t=1;;(t)

i

(pi'j (s)ds

= a; (t) @; (1) — a; (1) @;; (t = 1;; (1)) € PAP (R, R),

ije],
- Y Ciof(

CueN, (i.j)

-3 Ho

CueN,(i.1)

P (t = 7 (1)) ;5 ()

x [ Ky 0.9 (0 (¢ - ) dugy )+ 1, 0) € PAP (R.R),
0

ijel.
(41)



For any ¢ € B, we consider the pseudo almost periodic solu-
tion x?(¢) of nonlinear pseudo almost periodic differential
equations

t
! !
x;; (£) = —a;; (t) x;; () + a; (t) Jt%m @;; (s)ds

- Y CHOflpult-1a®) 950

Ci€EN, (1 ])

-3 Ho

CueN,(irj)
X LOO K;; () g (@i (t — w)) dugy; (t) + L;; (1),
ijel.
(42)

Then, notice that M[a;;] > 0, ij € J, and it follows from
Lemma 8 that the linear system,

Xl (0) = —a; (1) x; (1), dj €], (43)

admits an exponential dichotomy on R. Thus, by Lemma 7,

we obtain that the system (42) has exactly one pseudo almost
periodic solution:

X (1) = (1)}

= {Jt e [} ayadu
00
S
X [a,-j (s) J
s=13;(s)

3 Z Ckl s)

CuEN, (1])
X f (P (s = 7 (5))) 935 (5)

_ Z Bkl s)

Cu €Ny (1 ])

(p{j (u)du

% L Kij () g (9 (s —w)) dug; (s)

+L;i(s) ] ds} .
(44)

From (§,), (S,), and the Corollary 5.6 in [25, page 59], we get
? 1)) = {4
( ®) = {0}

= {[% (t) j%( SDi’j (s)ds

- Y GO f(pu(t-Ta(®)) gy (®)

CyeN, (i.)
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- ) B

CueN,(i.1)
y L K,; () g (@i (¢ - w) dugy; (6) + L (1)
- a;; (t)

t
x J e J.; a,vj(u)du
—00

S
X [aij (s) J
s=1;j(s)

B Z Ckl (s)

Clu €N, (l])
X f (P (s =7 (9))) 93 (5)

-y e

CueN,(i.f)

(pi'j (1) du

< | Ky 00 9 (o (s =) g 9

+Lj; (s) ] ds}

(45)

which is a pseudo almost periodic function. Therefore, x¥ €
B. Let (po(t) = x°(¢). Then,

¢ (1) = o} ()} - H

e “ff(“)d”Lij (s) ds} € B,

o (46)
=[]
Set
B ={elecBlo-¢, <. @
Ifg € B**, then
lols <o = ¢°|l, + |o°], <%+ L. (48)

Now, we define a mapping T : B** — B"" by setting

T(¢) () =x*(t), VeeB™. (49)

We next prove that the mapping T is a contraction mapping
of the B*".
First we show that, for any ¢ € B**, T(¢) = x? € B*".
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Note that
T (9) (1) - ¢° (1)

g

t
J e Lt a;;(w)du
—00

x [au(S)J o/, () du
s=1;(s)

- Y O flou(s - (9))) 9 )
CyeN, (i-f)

- B (s)

%%mj

}

X Jo K;; (u) g (¢ (s —u)) dug;; (s) ] ds

t t
< {J e L a;du
(&¢)
¥

x [aijrli;“(p”B

+ Z ijﬁ (|f(‘Pk1 (s =14 (9))

CueN, (i.f)

~LO [+ 17 @) ol

kit
+ ) B

CueN,(i.f)
<[ Iy )
X(|El (pra(s—w)—g (0)| + |£7 (0)|)d”

<ol s}

1 +
: {; [n 3y (Uels+1f o)
ij CueN, (i,j)

o BZZ+L 'Kij(“)'d“(LgH<P||B+|g(0)|)]

Cu€eN,(if)

X ||<P||B}

i CkIGNr(iaj)

kIt
+ Z Bij

CueN,(i.7)

7
X L |K;; ()] dut (L9 (1 +L)+g (0)]) }(K +L) } ,

(T ()0 -¢"®)]

|

[%mLM%@&

ij

- Y O f(pult-14®)) g, )

CeN, (i.f)

- ) B®

CyeN, (i)

X L K () g (¢ (t = u)) dug; (¢)
—a; (1) f e [} adu

X [aij (s) J (pi'j (u)du
s=1;5(s)

- Y CHO flou(s 1) 9 ()

CeN, (i.f)

SDIRAC

CueN,(i.)

}

x J Kij () g (9 (s —w)) dug; (S)] ds
0

Y (], + | f )

+ o+
X |:aij7”ij +
CueN, (i.f)

kIt
+ Z Bl.j

CueN,(i.5)

x Jo 'Kij (”)| du (Lg”‘P“B + |9 (O)D j| "‘P"B}

Y cf‘j” (L e+ 1)+ |f 0))

+ ¥
X [aijnij +
CueN, (i.j)

kit
+ Z B,.j

CueN,(i.f)



8
X L |K;; ()] dut (L9 (1 + L) + |g(0)|)]
X (k+1L) } .
(50)
It follows that
7 (9) = ¢°], < max{—E,;.( 1+ Vgl e @
BT Gy (a7 a; )T

that is, T(p) = x* € B*".

Second, we show that T is a contract operator.

In fact, in view of (44), (48), (S), (S,), and (S;), for ¢, v €
B**, we have

T (¢®)-T (v (@)
- {|(T (p®)-T (v (f)))iju

t
_ J e Lt a,-j(u)du
-0

X [aij (s) r i ((Pi,j (u) - Wi’j (u)) du
s=1(s

- Y do

CueN, (i-7)
X (f (s (s = 70 (9))) 95 (5)
~f (Y (s =10 () v (5))
- XY B

CueN,(i.f)

X (L K;; () g (@i (s —w)) dug; (s)

i

x (i (s —w)) duy;; (s) > ] ds

t
< {J e [} aau)du
—00

< |ainsle - vl

Y S @ (s -1 )]

CueN, (i.f)

%Joy &= w; )
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+|f (9 (s = 7 (5)))
~f (W (s =70 )] v )]

+ Z B:-Cjﬁ (L 'K,-j (M)'

CueN,(i.)
x|g (¢ (s —w))| du |‘Pij () -y (5)|
o], g

X|g (¢ (s — 1)) —g (W (s — w))| du

o)

1
<AL [aille -,

a;

I

v X G (Mello-vly

CyeN, (i,f)
+ Lo —vllvl;)

it

+ ) B

CueN,(i.f)

x (L K, )] du, o - vl

o |7 iy @l dutlo - vlalyl )|

_ i atnt
= a iilij

4
+ ) Gy (Mp+Uylls)
CeN, (i-f)

kit
+ ) B

CueN,(i,f)

x (LOO 'Kij (u)| duM,
o [ Ry ol dutul )| o - vila}

1 + o+
< {; [“iﬂij

oy cfff (M; + 17 (k + L))
CeN, (i-f)
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K;; duM
% (L [K;; ()] dub,
+ I 'Kij (u)'duLg (K+L)>]
0
<lo-vli}.

(T (e®)-T(w®))|
=T -1 ), |}

|

a;; (1) t (¢ () = v (s)) ds
'] '] ']

t=11;;(t)

- X Co

CueN, (irf)
X (f (g (t = 70 (1)) @3 (8)
~f (y (=1 (0)) ;1))
- X B

CueN,(i.f)
x (L Kij(u) g (Pu
X (t = u)) dug; (t)

- L K;; () g (v (t —w))du

X y;; (£) > ]

! - It a,-j(u)du
— aij (t) e ’s
—00

X [aij (s) J-S ) ((pl{j (u) - II/;j (u)) du

s=;(s

- )Y G

CueN, (i)
< (f (@ (s = 70 () 95 (5)
—f (W (s = 7 (5)))
Xy (5))
- Y B

CueN,(i.7)

X (L Kij () g (gx (s — w)) dug;; (s)

- J-DOKij () g

0

}

x (W (s —w)) duy;; (s) ) ] ds

+
< 1+ ﬁ |:a+11+
- ai} 1y

Y (M4 k4 D)

CueN, (i.5)
oy Bj}”(] | (u0)| du,
CueN,(i.) 0
K. d
o [ Ky 0] du
x LI (K+L))]
<lo- vl
(52)
which yields
(o) -1y s o L (142 )1, Lo
PTG ey T\ )Y "
(53)

which implies that the mapping T : B** — B*" isa
contraction mapping. Therefore, using Theorem 0.3.1 of [27],
we obtain that the mapping T possesses a unique fixed point

x" = {x:; (t)} € B*", Tx" =x". (54)

By (42) and (44), x* satisfies (42). So (3) has at least one
continuously differentiable pseudo almost periodic solution
x". The proof of Theorem 10 is now completed. O

4. Exponential Stability of the Pseudo Almost
Periodic Solution

In this section, we will discuss the exponential stability of the
pseudo almost periodic solution of system (3).

Definition 11. Let x*(t) = {xi*j(t)} be the pseudo almost
periodic solution of system (3). If there exist constants & > 0
and M > 1 such that, for every solution x(t) = {xij(t)} of
system (3) with any initial value ¢(¢) = {(pij(t)} satistying (6),

e @ == @,

= max fmax{|x; () = 5 O] | (0 x5 O}
L]

< Mo - x*"oe_m, vt > 0,

(55)
where flo - x|, = max{sup, ymax ;lg;(t) - xi*j(t)l,
Sup,oMax j |¢£j(t) —xf].’(t) [}. Then x* (¢) is said to be globally
exponentially stable.
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Theorem 12. Suppose that all conditions in Theorem 10 are
satisfied. Then system (3) has at least one pseudo almost peri-
odic solution x*(t). Moreover, x*(t) is globally exponentially
stable.

Proof. By Theorem 10, (3) has at least one continuously dif-
ferentiable pseudo almost periodic solution x™(¢) = {xfj(t)}
such that

|lx*[|5 < e + L. (56)

Suppose that x(¢t) = {xij(t)} is an arbitrary solution of (1)
associated with initial value ¢(t) = {(pij(t)} satisfying (6). Let

y(®) = {y;;()} = {x;;(t) - x;;(1)}. Then

yi']. (t) = —ay; () y; (t i (t))
- Y clo
CueN, (i.j)

X [f (o (8 =70 (8))) x5 (0)
= f (g (£ = 70 (1)) x5 ®)]

3 Z Bkl )

CueNy (1)
x Ho Kij(w) g (% (£ = w)) dux,-j (1)

- Jo K;; (u) g (x (t — ) duxi*j (1)

= —4; (t) Yij ()

t

+a;; (f) J yi’j (1) du

t=n;;(t)

- Y CE®[f G (= 1 )% (1)

CeN, (i-f)
~ g (t =14 ®))
x x5 ()]

IR

CueN, (i)

dis

- L Kj; (1) g (xg (t — ) duxi*j @® 1.
(57)

K;; (u) g (xp (t — w)) dux;; (t)

Abstract and Applied Analysis

Define continuous functions I;(w) and IT;(w) by setting

T (W) = —a; +w +a;ne e

+ Z Cf.‘jl+ (Mf + L e ( + L))
CueN, (i.f)

+ Z Blir

CkleN (1])
X (J |Kij (u)| duM?
0

+ JOO 'Kij (u)' L9 du (x + L)> ,
0

a
IT; (w) = <1+— 5 )
a; - w

+ o+ wq,]

[ l] rll]

oy o (Mf + L e (x + L))
CueN, (i.f)

3 ([

CueN,(if)

(o]
+ J |K,-j (u)| LIe*du
0

X(K+L))],

where t > 0, w € [0, 8], ij € J. Then, from (S;), we have

(58)

I-‘ij (0) a + az]r]t]

Y (M L e+ D))
CeN, (i-f)

kit
+ Z Bij
Cl€N,(ij)

. (LOO |K; ()| dum?

+ J |1<,.j (u)|Lgdu (K+L)>
0
_ 1 ..
=-a; I—EFU <0, ije],
1
Hij (0) =1+ —
aij
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Yy (M 4+ k+ D)

+ o+
X [aijﬂij +
CueN, (i.f)

4
+ Z BZI
CueN,(i.j)

8 <L°° |K; ()| dumt?

+ Loo |K;j (o)) Lt (5 + L)) ]

= ai; F 1 "
= 1+E i <1, ije],

ij
(59)

which, together with the continuity of I;;(w) and H,-j(w),
implies that we can choose a constant € (0, min{p,
min; ;) ai;}) such that

L;A) =-a; + A+ a;;q;.e’wf;

+ Z C:.‘jﬁ (Mf + LS M (k + L))
CueN, (i.f)

kit
+ Z Bij

Cu€eN,(if)

) (60)
X <J-O 'K,-j (u)' dum?

+ JOO |K,-j (u)| L9eMdu (x + L))
0

_ Bij
:(aij_)t)(ﬁ—l><0,

A a;;
%) +a,.;—)t

X |:a;;r]i;e’\r";+ Z C:‘jﬁ (Mf+LfeM’:’ (k + L))
CueN, (i.j)

£ Y B (LOO IK,; () dut®

CueN,(if)

(oe]
+ J 'Kij (u)' L9eMdu
0

><(;<+L)>]

(61)

1

where
M
Bij = ai;rli;e g
oy o (Mf + LM (e + L))
CueN, (i.7)

kit
+ Z B; i (62)
CueN,(i.1)

x (joo |K;; ()| dumt?
0
+ jm |K;; ()| L9 du (K+L)>, ije].
0

Let M be a constant such that
ai; -A
ﬁij
which, together with (60), yields

i_ /3ij /5ij
M ai;—)t ai;—)t

M >

>1, Vije], (63)

<0,

<1, Yije].  (64)

Consequently, for any € > 0, it is obvious that

Iy @l < (o —x"lly + &)™ < M(lp - x"[, +e)e™

t € (—00,0] .
(65)
In the following, we will show that
by @l < Mol +e)e ™, ves0.  (66)

Otherwise, there must exist ij € J and 6 > 0 such that

ly @), =max{|y;; @] |y @[} = M (o - x"|, + ) e,
ly Ol <M (o - x|, +&)e™, Vte(-00,0).
(67)
Note that

y;j (s) + a;j (s) Vij (s)
= a; (s) J

s=1;(s

-y e

CueN, (i.))
x [ f (i (s = 134 (9))) x5 (5)
—f (x5 = 1 (9))) x; )]
DI AC)

CueN,(i.5)

N

: yi'j (u) du

X [J;) Kz] (u) g (‘xkl (S - M)) duxi]- (S)
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Y O (If G 5= )|y ) = x5 )]

_ j K;; (1) g (xg (s —w) duxi*j )],
0

s€[0,t], t€[0,0].
(68)

Multiplying both sides of (68) by elo @ ong integrating on
[0,t], we get

yij (6) = y; (0) e Jo @ (du

t
+ J e I: a,-j(u)du
0

X [aij (s) J' yi'j (u) du
s=1;5(s)

- Y G

CueN, (i-f)
X (f (o (5 = 10 ())) x5 ()
= f (g (s = 7 (5))) x5 (s))
- ) B

CueN,(i.7)
% (L Kj; (1) g (g (s = w)) dux;; (s)

{7y w0 (s 5 ) ey 9 ) s,

t €[0,0].
(69)

Thus, with the help of (67), we have
|y )]

[
yy (@) ¢ b

0 )
+ J e J—s a,-]-(u)du
0

X [a,-j (s) J. yi'j (u)du
s=1;5(s)

= Y O (f G (s =1 (9))) x5 (5)
CyeN, (i.)

- F (i (5= 7 (90)) x5 9)
- Y B

CueN, (i, 7)

X <J;) K;] (u) g ('xkl (5 - M)) duxij (S)

_ L Kjj (u) g (x5 (s —w)) dux;; (s)> ] ds

IR
< ("(P - X*”O + 8) e—a,-jG + J e L a;;(w)du
0

P T EE

CiieN, (i.f)
+|f (g (s = 730 (5)))
-f (x;l (s = 7wy (S)))|

o+ Y By

CkleNq(iJ)
8 (Jooo |Kij (u)| |g (o0 (s - ”))| du |xij (s) - x:j (s)'
+ j'ooo 'Kij (u)' Ig (xk, (5 — u))
g (x5 (s = w))| du
XVH@D]&
< o=y ) [

e o - 71, v )6

vy Cf (M [y
CeN, (i-5)

+ L [y (s =7 ()] | 9)])

kit
+ Z Bij

CreN, (i)
) (Jooo [K; 00| duda? |y, 5)|

1 0] - 0t
X 'x; (s)| >] ds

0
< (”q) - x*”() + 8) eia"fe + J e L a;;(w)du
0

[ o'l + )

+ Z Cf.‘jl+
CueN, (i.5)
x (MM (o - x"[, + ) e™

+ LM (lo = x|, +¢) e MemTa(s)

kit
+ Z B;;

CueN,(i.f)

gl

([ eyl (g -1y )
0
i Jo 'Kif (u)' LM ("(P - x*”o +é)

xi*j (s)| )] ds

x e Mgy

< M(Jp-x°[, +¢)
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e—a,;e
X
M

+ o+ A
x [aij’?ije K

0 0
+ j e _L uij(u)due—/\s
0

+ Z Cf.‘].l+ (Mf 4 LS M (k + L))
CyeN, (i)

+ J*oo |K,»j (u)| L9eMdu (x + L)>] ds}
0
< Mg, o)

e—a,}@ -0 0 3
X +e % J @i~ )Sdsﬁi-
M 0 ]

<M (o= x"y+e)e™

A-a;)0 , -
j N ﬁz] (1 _ e(/\—aij)e)
M a; - A

20
Bij
a -1\’

)

-e(
X

= M(lp-], +e)e

L Bij RO AU
|\ M ai;—)t

(70)

which, together with (64) and (67), implies that
|y @] < M (g -x"llg +2) e,

ly @), = max{|y; ©)].]y; ©)]}

(71)

(72)

=|y; @] = M (o - x7[; +&) e
From (60), (61) and (67)-(72) yield
| @)

<a;(0)]y; 0)|

0
+ |a; (9)j yl-'j (1) du
0-17,,(6)

Mij

-3 do

CueN, (i.j)
x [ f (x4 (6 - 74 (6))) x;; (6)
S ACICEEMONEAG)
- X O

CeN,(i>j)

x “0 Kjj () g (i (8 - w)) dux;; (0)

_ J-o K;; (u) g (x5 (0 —w)) dux:j (9)”

< aj |y; )]

(e (g )
+ Z CZ’I !
Cu€EN,(i,5)

X (1f (i (6 = 7a 0))] |x;; 6) — 55 6)]
+ |f (xkl (6 = Tk (9))) -f (sz (CRE (6)))|
%))

X

+ Z BZZ+ <J000 |Kij (“)| | (41 (6 — )| du

CueN,(i.7)
x |x; (6) - x;; (0)]
R
x |g (xi (0 —w))
=g (x (6 - w))| du

5 ©) )

1 B \aae, Pi
M ai;—)t ai;—)t

>

Cy €N, (i,))

X

< {a;;

+ 4+ A
+aijrlije 7+

x (Mf + LM (e + L)) + Yy B
Cu€eN,(if)

X (J'O(X) |K,-j (u)| duM?

+ LOO 'K,-j (u)' L9Mdu (x + L)) } M

x (Jlo = x|, +¢) e

<M(lg-x",+e)e™

N
+f 1 /3ij (A-a;)0 4j
4%<M‘;tae T o
ij

<M (o -x"||, +¢) e,

13
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which contradicts (72). Hence, (66) holds. Lettinge — 0%,
we have from (66) that

—At
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5. An Example

In this section, we give an example with numerical simulation

ly@ll, < Mg - x|, Vt>o0, (74)  to demonstrate the results obtained in previous sections.
which implies Example 13. Consider the following SICNNs with time-
N e - varying delays in the leakage terms:
Ix@® -x* @), < Mlg - x"[|,e™, vE>0. (75 ying €eray 8
This completes the proof. O
dx;; ki .2
% (1) x;; (t —1;j (t)) B Z Cij (xkl (t —sin t)) x;; (£)
G €N, (i, )
(76)
N ..
_ Z B;; L K;; (u) g (xy (t —u)) dux;+L;(t), i,j=123,
Cu€eN,(i,j)
ay; A, A3 113
Ay Gy Gy | =313
az; sy Qi3 313
By, By, By C,; Cp Cps 0.1 02 0.1
B, By, Byy|=|Cy Cp Cys| =102 0 021,
By, Bs, B, Cy; Cy Co 0.1 02 0.1
r 0.1 0.1 d 0T
sin® /3t + cos* /3t + sin®2¢f +
1+t 1+¢2 + 12
;7 ;/’ ;/I 2 01 .2 01 2 l
u a2 s cos® /5t + 5 sin®+/5¢ + S cos’2t + = (77)
M1 M Mz | = 0.01 1+t 1+t +t
M1 M2 133
. 0.1 0.1
. 2 2 . 2
sin“2t + cos” 3t + sin” V2t +
1+t 1+¢2 V2 1+t
_ 1 -
0.7 + 0.24 sin> V2t — 0.41 +0.5cos’t 1
1+1t?
Ly Ly, Ly 2 2
0.61 + 0.2 cos™t — 0.67 + 0.2sin"t 1
Ly Ly Ly | = + 12
Ly L3y Lj; . 1 o,
0.59+0.4cos’t — 5 0.5+04Lsin’t 1
1+t
Kl kI
Set Y Ch= Bl = 0.5,
x=0.7, r=q= 1, Kij (M) - |Sil’1 ul e_“, Cr €N (1,3) Ci €N (1,3)
. . Kl kI
1= 1)2) 3) _] - 1) 2) 3$ (78) Z C21 = Z BZ] = 0‘8,
1 CeN; (2,1) CueN;(2,1)
f@)=g@)= o5 (=10 fx+ 1),
Kl Kl
Clearly, Z sz = Z BZZ = ].2,
CrueN;(22) CreN;(2,2)
M, =M_,=0.04 L,=L_=0.04
f 9 ’ f g ’ Kl kl
11 11 g Cy€EN,(2,3) Cu €N, (2,3)
CueN, (1,1) CueN, (1,1)
Kl kI Kl kI
Z Cp = Z B, =038, Z Cy = Z B3, =0.5,
Cu€N; (1,2) Cu€eN,(1,2) CuEN, (3,1) CuEN, (3,1)
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Kl Kl
Y Ch= ) BL=08
Cl €N (3,2) Cu€EN;(3,2)
Kl Kl
Y Ch= ) By=05
C€N;(3,3) C€eN,(3,3)

(79)
where ij € ] ={11,12,13,21,22,23,31, 32,33}. Then,

b

t t
J e X “ij(”)duLij (s)ds
—00

L = max {max {sup

(i.j) [ teR
max jsup |L;; (t) —a;; (t)
gl -
t . 4
X J. el “Lij (s)ds } }
=1>0,
0.7=x<L=1,

1 a;
max 1 —E;;,| 1+ — | E;r =0.6603 < «,
G | ag a;

1 a;
max{ —F,, [ 1+ ) F; | =05804 < 1.
() | %; a;;

It follows that system (56) satisfies all the conditions in
Theorems 10 and 12. Hence, system (76) has exactly one
pseudo almost periodic solution. Moreover, the pseudo
almost periodic solution is globally exponentially stable. The
fact is verified by the numerical simulation in Figures 1, 2, and
3 and there are three different initial values which are ¢; = 1,
P12 = =490 =29 =5¢;3 =3¢ = -1,
P30 = 2,033 = =501 = 2,9, = -L3 =59, =4
$02 =203 =195 =3, = -4, ¢33 =3and ¢, = -2,
P12 = L3 = =595 = ~4, 90 = -2, = -1, 033 =3,
@3, = 4, @33 = =3, respectively.

(80)

Remark 14. By using the inequality analysis technique, in
[19, 20], the authors obtained the existence of almost periodic
solution of SICNNs with leakage delays, but they did not
give the existence and global exponential convergence for
the pseudo almost periodic solution. Since [1-9] only dealt
with SICNNs without leakage delays, [14-18, 21-24] give
no opinions about the problem of pseudo almost periodic
solutions for SICNNs with leakage delays. One can observe
that all the results in these literatures and the references
therein cannot be applicable to prove the existence and
exponential stability of pseudo almost periodic solutions for
SICNN s (56).
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