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Wederive the q-analogue of thewell-knownRuscheweyh differential operator using the concept of q-derivative.Here, we investigate
several interesting properties of this q-operator by making use of the method of differential subordination.

1. Introduction

Recently, the area of 𝑞-analysis has attracted the serious
attention of researchers. This great interest is due to its
application in various branches of mathematics and physics.
The application of 𝑞-calculus was initiated by Jackson [1, 2].
He was the first to develop 𝑞-integral and 𝑞-derivative in
a systematic way. Later, from the 80s, geometrical interpre-
tation of 𝑞-analysis has been recognized through studies
on quantum groups. It also suggests a relation between
integrable systems and 𝑞-analysis. In ([3–5]) the 𝑞-analogue
of Baskakov Durrmeyer operator has been proposed, which
is based on 𝑞-analogue of beta function. Another impor-
tant 𝑞-generalization of complex operators is 𝑞-Picard and
𝑞-Gauss-Weierstrass singular integral operators discussed in
[6–8]. The authors studied approximation and geometric
properties of these 𝑞-operators in some subclasses of analytic
functions in compact disk. Very recently, other 𝑞-analogues
of differential operators have been introduced in [9]; see also
([10, 11]). These 𝑞-operators are defined by using convolu-
tion of normalized analytic functions and 𝑞-hypergeometric
functions, where several interesting results are obtained.
From this point, it is expected that deriving 𝑞-analogues
of operators defined on the space of analytic functions
would be important in future. A comprehensive study on
applications of 𝑞-analysis in operator theory may be found in
[12].

We provide some notations and concepts of 𝑞-calculus
used in this paper. All the results can be found in [12–14]. For
𝑛 ∈ N, 0 < 𝑞 < 1, we define

[𝑛]𝑞 =
1 − 𝑞
𝑛

1 − 𝑞
,

[𝑛]𝑞! = {
[𝑛]𝑞[𝑛 − 1]𝑞 ⋅ ⋅ ⋅ [1]𝑞, 𝑛 = 1, 2, . . . ;

1, 𝑛 = 0.

(1)

As 𝑞 → 1, [𝑛]𝑞 → 𝑛, and this is the bookmark of a 𝑞-
analogue: the limit as 𝑞 → 1 recovers the classical object.

For complex parameters 𝑎, 𝑏, 𝑐, 𝑞 (𝑐 ∈ C \ {0, −1,

−2, . . .}, |𝑞| < 1), the 𝑞-analogue of Gauss’s hypergeometric
function 2Φ1(𝑎, 𝑏; 𝑐, 𝑞, 𝑧) is defined by

2Φ1 (𝑎, 𝑏; 𝑐, 𝑞, 𝑧) =

∞

∑

𝑘=0

(𝑎, 𝑞)
𝑘
(𝑏, 𝑞)
𝑘

(𝑞, 𝑞)
𝑘
(𝑐, 𝑞)
𝑘

𝑧
𝑘
, (𝑧 ∈ U) , (2)

where (𝑛, 𝑞)𝑘 is the 𝑞-analogue of Pochhammer symbol
defined by

(𝑛, 𝑞)
𝑘

= {
1, 𝑘 = 0;

(1 − 𝑛) (1 − 𝑛𝑞) (1 − 𝑛𝑞
2
) ⋅ ⋅ ⋅ (1 − 𝑛𝑞

𝑘−1
) , 𝑘 ∈ N.

(3)
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The 𝑞-derivative of a function ℎ(𝑥) is defined by

𝐷𝑞 (ℎ (𝑥)) =
ℎ (𝑞𝑥) − ℎ (𝑥)

(𝑞 − 1) 𝑥
, 𝑞 ̸= 1, 𝑥 ̸= 0, (4)

and𝐷𝑞(ℎ(0)) = 𝑓
󸀠
(0). For a function ℎ(𝑧) = 𝑧𝑘 observe that

𝐷𝑞 (ℎ (𝑧)) = 𝐷𝑞 (𝑧
𝑘
) =

1 − 𝑞
𝑘

1 − 𝑞
𝑧
𝑘−1

= [𝑘]𝑞𝑧
𝑘−1
; (5)

then lim𝑞→1𝐷𝑞(ℎ(𝑧)) = lim𝑞→1[𝑘]𝑞𝑧
𝑘−1

= 𝑘𝑧
𝑘−1

= ℎ
󸀠
(𝑧),

where ℎ󸀠(𝑧) is the ordinary derivative.
Next, we state the classA of all functions of the following

form:

𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=2

𝑎𝑘𝑧
𝑘
, (6)

which are analytic in the open unit disk U = {𝑧 ∈ C : |𝑧| <

1}. If 𝑓 and 𝑔 are analytic functions in U, we say that 𝑓 is
subordinate to 𝑔; written 𝑓 ≺ 𝑔, if there is a function 𝑤

analytic in U, with 𝑤(0) = 0, |𝑤(𝑧)| < 1, for all 𝑧 ∈ U, such
that𝑓(𝑧) = 𝑔(𝑤(𝑧)) for all 𝑧 ∈ U. If 𝑔 is univalent, then𝑓 ≺ 𝑔

if and only if 𝑓(0) = 𝑔(0) and 𝑓(U) ⊆ 𝑔(U).
For each 𝐴 and 𝐵 such that −1 ≤ 𝐵 < 𝐴 ≤ 1, we define

the function

ℎ (𝐴, 𝐵; 𝑧) =
1 + 𝐴𝑧

1 + 𝐵𝑧
, (𝑧 ∈ U) . (7)

It is well known that ℎ(𝐴, 𝐵; 𝑧) for −1 ≤ 𝐵 ≤ 1 is the
conformal map of the unit disk onto the disk symmetrical
with respect to the real axis having the center (1−𝐴𝐵)/(1−𝐵2)
for 𝐵 ̸= ± 1 and radius (𝐴 − 𝐵)/(1 − 𝐵

2
). The boundary circle

cuts the real axis at the points (1−𝐴)/(1−𝐵) and (1+𝐴)/(1+𝐵).

Definition 1. Let 𝑓 ∈ A. Denote by R𝜆
𝑞
the 𝑞-analogue of

Ruscheweyh operator defined by

R
𝜆

𝑞
𝑓 (𝑧) = 𝑧 +

∞

∑

𝑘=2

[𝑘 + 𝜆 − 1]𝑞!

[𝜆]𝑞![𝑘 − 1]𝑞!
𝑎𝑘𝑧
𝑘
, (8)

where [𝑎]𝑞 and [𝑎]𝑞! are defined in (1).

From the definition we observe that, if 𝑞 → 1, we have

lim
𝑞→1

R
𝜆

𝑞
𝑓 (𝑧) = 𝑧 + lim

𝑞→1
[

∞

∑

𝑘=2

[𝑘 + 𝜆 − 1]𝑞!

[𝜆]𝑞![𝑘 − 1]𝑞!
𝑎𝑘𝑧
𝑘
]

= 𝑧 +

∞

∑

𝑘=2

(𝑘 + 𝜆 − 1)!

(𝜆)! (𝑘 − 1)!
𝑎𝑘𝑧
𝑘
= R
𝜆
𝑓 (𝑧) ,

(9)

where R𝜆 is Ruscheweyh differential operator which was
defined in [15] and has been studied by many authors, for
example [16–18].

It can also be shown that this 𝑞-operator is hypergeomet-
ric in nature as

R
𝜆

𝑞
𝑓 (𝑧) = 𝑧 2Φ1 (𝑞

𝜆+1
, 𝑞, 𝑞, 𝑞; 𝑧) ∗ 𝑓 (𝑧) , (10)

where 2Φ1 is the 𝑞-analogue of Gauss hypergeometric
function defined in (2), and the symbol (∗) stands for the
Hadamard product (or convolution).

The following identity is easily verified for the operator
R𝜆
𝑞
:

𝑞
𝜆
𝑧 (𝐷𝑞 (R

𝜆

𝑞
𝑓 (𝑧))) = [𝜆 + 1]𝑞R

𝜆+1

𝑞
𝑓 (𝑧) − [𝜆]𝑞R

𝜆

𝑞
𝑓 (𝑧) .

(11)

2. Main Results

Before we obtain our results, we state some known lemmas.
Let 𝑃(𝛽) be the class of functions of the form

𝜙 (𝑧) = 1 + 𝑐1𝑧 + 𝑐2𝑧
2
+ ⋅ ⋅ ⋅ , (12)

which are analytic in U and satisfy the following inequality:

Re (𝜙 (𝑧)) > 𝛽, (0 ≤ 𝛽 < 1; 𝑧 ∈ U) . (13)

Lemma 2 (see [19]). Let 𝜙𝑗 ∈ 𝑃(𝛽𝑗) be given by (12), where
(0 ≤ 𝛽𝑗 < 1; 𝑗 = 1, 2); then

(𝜙1 ∗ 𝜙2) ∈ 𝑃 (𝛽3) , (𝛽3 = 1 − 2 (1 − 𝛽1) (1 − 𝛽2)) , (14)

and the bound 𝛽3 is the best possible.

Lemma 3 (see [20]). Let the function 𝜙, given by (12), be in
the class 𝑃(𝛽). Then

Re𝜙 (𝑧) > 2𝛽 − 1 +
2 (1 − 𝛽)

1 + |𝑧|
, (0 ≤ 𝛽 < 1) . (15)

Lemma 4 (see [21]). The function (1−𝑧)𝛾 ≡ 𝑒𝛾 log(1−𝑧), 𝛾 ̸= 0, is
univalent inU if and only if 𝛾 is either in the closed disk |𝛾−1| ≤
1 or in the closed disk |𝛾 + 1| ≤ 1.

We now generalize the lemmas introduced in [22] and
[23], respectively, using 𝑞-derivative.

Lemma 5. Let ℎ(𝑧) be analytic and convex univalent inU and
ℎ(0) = 1 and let 𝑔(𝑧) = 1 + 𝑏1𝑧 + 𝑏2𝑧2 + ⋅ ⋅ ⋅ be analytic in U. If

𝑔 (𝑧) +
𝑧𝐷𝑞 (𝑔 (𝑧))

𝑐
≺ ℎ (𝑧) , (𝑧 ∈ U; 𝑐 ̸= 0) , (16)

Then, for Re(𝑐) ≥ 0,

𝑔 (𝑧) ≺
𝑐

𝑧𝑐
∫

𝑧

0

𝑡
𝑐−1
ℎ (𝑡) 𝑑𝑡. (17)

Proof. Suppose that ℎ is analytic and convex univalent in U

and 𝑔 is analytic in U. Letting 𝑞 → 1 in (16), we have

𝑔 (𝑧) +
𝑧𝑔
󸀠
(𝑧)

𝑐
≺ ℎ (𝑧) , (𝑧 ∈ U; 𝑐 ̸= 0) . (18)

Then, from Lemma in [22], we obtain

𝑔 (𝑧) ≺
𝑐

𝑧𝑐
∫

𝑧

0

𝑡
𝑐−1
ℎ (𝑡) 𝑑𝑡. (19)
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Lemma 6. Let 𝑞(𝑧) be univalent in U and let 𝜃(𝑤) and 𝜙(𝑤)
be analytic in a domain𝐷 containing 𝑞(U)with 𝜙(𝑤) ̸= 0when
𝑤 ∈ 𝑞(U). Set𝑄(𝑧) = 𝑧𝐷𝑞(𝑞(𝑧))𝜙(𝑞(𝑧)), ℎ(𝑧) = 𝜃(𝑞(𝑧)+𝑄(𝑧))
and suppose that

(1) Q(z) is starlike univalent in U;
(2) Re(𝑧𝐷𝑞(ℎ(𝑧))/𝑄(𝑧)) = Re((𝐷𝑞(𝜃𝑞(𝑧)))/𝜙(𝑞(𝑧))) +

(𝑧𝐷𝑞(𝑄(𝑧))/𝑄(𝑧))) > 0 (𝑧 ∈ U).

If 𝑝(𝑧) is analytic in U, with 𝑝(0) = 𝑞(0), 𝑝(U) ⊂ 𝐷, and

𝜃 (𝑝 (𝑧)) + 𝑧𝐷𝑞 (𝑝 (𝑧)) 𝜙 (𝑝 (𝑧))

≺ 𝜃 (𝑞 (𝑧)) + 𝑧𝐷𝑞 (𝑞 (𝑧)) 𝜙 (𝑞 (𝑧)) = ℎ (𝑧) ,

(20)

then 𝑝(𝑧) ≺ 𝑞(𝑧) and 𝑞(𝑧) is the best dominant.

The proof is similar to the proof of Lemma 5.

Theorem 7. Let > 0, 𝛼 > 0, and −1 ≤ 𝐵 < 𝐴 ≤ 1. If 𝑓 ∈ A
satisfies

(1 − 𝛼)

R𝜆
𝑞
𝑓 (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
𝑓 (𝑧)

𝑧
≺ ℎ (𝐴, 𝐵; 𝑧) , (21)

then

Re((
R𝜆
𝑞
𝑓 (𝑧)

𝑧
)

1/𝑛

)

> (
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 − 𝐴𝑢

1 − 𝐵𝑢
) 𝑑𝑢)

1/𝑛

(𝑛 ≥ 1) .

(22)

The result is sharp.

Proof. Let

𝑔 (𝑧) =

R𝜆
𝑞
𝑓 (𝑧)

𝑧
, (23)

for 𝑓 ∈ A. Then the function 𝑔(𝑧) = 1 + 𝑏1𝑧 + ⋅ ⋅ ⋅ is analytic
in U. By using logarithmic 𝑞-differentiation on both sides of
(23) and multiplying by 𝑧, we have

𝑧𝐷𝑞 (𝑔 (𝑧))

𝑔 (𝑧)
=

𝑧𝑅
𝜆

𝑞
𝑓 (𝑧)

𝑅𝜆
𝑞
𝑓 (𝑧)

− 1; (24)

by making use of identity (11), we obtain

𝑧𝐷𝑞 (𝑔 (𝑧))

𝑔 (𝑧)
=
[𝜆 + 1]𝑞

𝑞𝜆

𝑅
𝜆+1

𝑞
𝑓 (𝑧)

𝑅𝜆
𝑞
𝑓 (𝑧)

−
[𝜆]𝑞

𝑞𝜆
− 1. (25)

Taking into account that [𝜆 + 1]𝑞 = [𝜆]𝑞 + 𝑞
𝜆, we obtain

𝑞
𝜆

[𝜆 + 1]𝑞

𝑧𝐷𝑞 (𝑔 (𝑧)) + 𝑔 (𝑧) =
R𝜆+1𝑓 (𝑧)

𝑧
. (26)

From (11), (23), and (26), we get

𝑔 (𝑧) +
𝑞
𝜆
𝛼

[𝜆 + 1]𝑞

𝑧𝐷𝑞 (𝑔 (𝑧)) ≺ ℎ (𝐴, 𝐵; 𝑧) . (27)

Now, applying Lemma 5, we have

𝑔 (𝑧) ≺
[𝜆 + 1]𝑞

𝑞𝜆𝛼
𝑧
−[𝜆+1]𝑞/𝑞

𝜆
𝛼
∫

1

0

𝑡
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 + 𝐴𝑡

1 + 𝐵𝑡
) 𝑑𝑡,

(28)

or by the concept of subordination

R𝜆
𝑞
𝑓 (𝑧)

𝑧
=
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 + 𝐴𝑢𝑤 (𝑧)

1 + 𝐵𝑢𝑤 (𝑧)
) 𝑑𝑢.

(29)

In view of −1 ≤ 𝐵 < 𝐴 ≤ 1 and 𝜆 > 0, it follows from (29)
that

Re(
R𝜆
𝑞
𝑓 (𝑧)

𝑧
) >

[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 − 𝐴𝑢

1 − 𝐵𝑢
)𝑑𝑢,

(30)

with the aid of the elementary inequality Re(𝑤1/𝑛) ≥

(Re𝑤)1/𝑛 for Re𝑤 > 0 and 𝑛 ≥ 1. Hence, inequality (22)
follows directly from (30). To show the sharpness of (22), we
define 𝑓 ∈ A by

R𝜆
𝑞
𝑓 (𝑧)

𝑧
=
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 + 𝐴𝑢𝑧

1 + 𝐵𝑢𝑧
) 𝑑𝑢. (31)

For this function, we find that

(1 − 𝛼)

R𝜆
𝑞
𝑓 (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
𝑓 (𝑧)

𝑧
=
1 + 𝐴𝑧

1 − 𝐵𝑧
,

R𝜆
𝑞
𝑓 (𝑧)

𝑧
󳨀→

[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 − 𝐴𝑢

1 − 𝐵𝑢
) 𝑑𝑢

as 𝑧 󳨀→ −1.

(32)

This completes the proof.

Corollary 8. Let 𝐴 = 2𝛽 − 1 and 𝐵 = −1, where 0 ≤ 𝛽 < 1

and 𝛼, 𝜆 > 1. If 𝑓 satisfies

(1 − 𝛼)

R𝜆
𝑞
𝑓 (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
𝑓 (𝑧)

𝑧
≺ ℎ (2𝛽 − 1, −1; 𝑧) , (33)

then

Re((
R𝜆
𝑞
𝑓 (𝑧)

𝑧
)

1/𝑛

)

> ( (2𝛽 − 1) 𝑢
[𝜆+1]𝑞/𝑞

𝜆
𝛼

+
2 (1 − 𝛽) [𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

1 + 𝑢
𝑑𝑢)

1/𝑛

(𝑛 ≥ 1) .

(34)
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Proof. Following the same steps as in the proof ofTheorem 7
and considering 𝑔(𝑧) = R𝜆

𝑞
𝑓(𝑧)/𝑧, the differential subordi-

nation (27) becomes

𝑔 (𝑧) +
𝑞
𝜆
𝛼

[𝜆 + 1]𝑞

𝑧𝐷𝑞 (𝑔 (𝑧)) ≺
1 + (2𝛽 − 1) 𝑧

1 + 𝑧
. (35)

Therefore,

Re((
R𝜆
𝑞
𝑓 (𝑧)

𝑧
)

1/𝑛

)

> (
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(
1 + (1 − 2𝛽) 𝑢

1 + 𝑢
)𝑑𝑢)

1/𝑛

= (
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

× ((2𝛽 − 1) +
2 (1 − 𝛽)

1 + 𝑢
)𝑑𝑢)

1/𝑛

= ( (2𝛽 − 1) 𝑢
[𝜆+1]𝑞/𝑞

𝜆
𝛼

+
2 (1 − 𝛽) [𝜆 + 1]𝑞

𝑞𝜆
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

1 + 𝑢
𝑑𝑢)

1/𝑛

.

(36)

Theorem 9. Let 𝜆 > 0 and 0 ≤ 𝜌 < 1. Let 𝛾 be a complex
number with 𝛾 ̸= 0 and satisfy either |2𝛾(1 − 𝜌)([𝜆 + 1]𝑞/𝑞𝜆) −
1| ≤ 1 or |2𝛾(1 − 𝜌)([𝜆 + 1]𝑞/𝑞𝜆) + 1| ≤ 1. If 𝑓 ∈ A satisfies
the condition

Re(
R𝜆+1
𝑞
𝑓 (𝑧)

R𝜆
𝑞
𝑓 (𝑧)

) > 𝜌, (𝑧 ∈ U) , (37)

then

(

R𝜆
𝑞
𝑓 (𝑧)

𝑧
)

𝛾

≺
1

(1 − 𝑧)
2𝛾(1−𝜌)([𝜆+1]𝑞/𝑞

𝜆)
, (𝑧 ∈ U) , (38)

where 𝑞(𝑧) is the best dominant.

Proof. Let

𝑝 (𝑧) = (

R𝜆
𝑞
𝑓 (𝑧)

𝑧
)

𝛾

, (𝑧 ∈ U) . (39)

Then, by making use of (11), (37), and (39), we obtain

1 +
𝑞
𝜆
𝑧𝐷𝑞 (𝑝 (𝑧))

𝛾[𝜆 + 1]𝑞𝑝 (𝑧)
≺
1 + (1 − 2𝜌) 𝑧

1 − 𝑧
, (𝑧 ∈ U) . (40)

We now assume that

𝑞 (𝑧) =
1

(1 − 𝑧)
2𝛾(1−𝜌)[𝜆+1]𝑞/𝑞

𝜆
, 𝜃 (𝑤) = 1,

𝜙 (𝑤) =
𝑞
𝜆

𝛾[𝜆 + 1]𝑞𝑤
;

(41)

then 𝑞(𝑧) is univalent by condition of the theorem and
Lemma 4. Further, it is easy to show that 𝑞(𝑧), 𝜃(𝑤), and 𝜙(𝑤)
satisfy the conditions of Lemma 6. Note that the function

𝑄 (𝑧) = 𝑧𝐷𝑞 (𝑞 (𝑧)) 𝜙 (𝑞 (𝑧)) =
2 (1 − 𝜌) 𝑧

1 − 𝑧
(42)

is univalent starlike in U and

ℎ (𝑧) = 𝜃 (𝑞 (𝑧)) + 𝑄 (𝑧) =
1 + (1 − 2𝜌) 𝑧

1 − 𝑧
. (43)

Combining (40) and Lemma 6 we get the assertion of
Theorem 9.

Theorem 10. Let 𝛼 < 1, 𝜆 > 0 and −1 ≤ 𝐵𝑖 < 𝐴 𝑖 ≤ 1. If each
of the functions 𝑓𝑖 ∈ A satisfies the following subordination
condition,

(1 − 𝛼)

R𝜆
𝑞
𝑓𝑖 (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
𝑓𝑖 (𝑧)

𝑧
≺ ℎ (𝐴 𝑖, 𝐵𝑖; 𝑧) ,

(44)

then,

(1 − 𝛼)

R𝜆
𝑞
Θ (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
Θ (𝑧)

𝑧
≺ ℎ (1 − 2𝛾, −1; 𝑧) , (45)

where

Θ (𝑧) = R
𝜆

𝑞
(𝑓1 ∗ 𝑓2) (𝑧) , (46)

𝛾 = 1 −
4 (𝐴1 − 𝐵1) (𝐴2 − 𝐵2)

(1 − 𝐵1) (1 − 𝐵2)

× (1 −
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

1 + 𝑢
𝑑𝑢) .

(47)

Proof. we define the function ℎ𝑖 by

ℎ𝑖 (𝑧) = (1 − 𝛼)

R𝜆
𝑞
𝑓𝑖 (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
𝑓𝑖 (𝑧)

𝑧

(𝑓𝑖 ∈ A, 𝑖 = 1, 2) ;

(48)

we have ℎ𝑖(𝑧) ∈ 𝑃(𝛽𝑖), where 𝛽𝑖 = (1 −𝐴 𝑖)/(1 − 𝐵𝑖) (𝑖 = 1, 2).
By making use of (11) and (48), we obtain

R
𝜆

𝑞
𝑓𝑖 (𝑧) =

[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑡
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

ℎ𝑖 (𝑡) 𝑑𝑡, (𝑖 = 1, 2) ,

(49)

which, in the light of (46), can show that

R
𝜆

𝑞
Θ (𝑧) =

[𝜆 + 1]𝑞

𝑞𝜆𝛼
𝑧
1−([𝜆+1]𝑞/𝑞

𝜆
𝛼)
∫

1

0

𝑡
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

ℎ0 (𝑡) 𝑑𝑡,

(50)
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where, for convenience,

ℎ0 (𝑧) = (1 − 𝛼)

R𝜆
𝑞
Θ (𝑧)

𝑧
+ 𝛼

R𝜆+1
𝑞
Θ (𝑧)

𝑧

=
[𝜆 + 1]𝑞

𝑞𝜆𝛼
𝑧
1−([𝜆+1]𝑞/𝑞

𝜆
𝛼)

× ∫

1

0

𝑡
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(ℎ1 ∗ ℎ2) (𝑡) 𝑑𝑡.

(51)

Note that, by using Lemma 2,we have (ℎ1∗ℎ2) ∈ 𝑃(𝛽3), where
𝛽3 = 1 − 2(1 − 𝛽1)(1 − 𝛽2).

Now, with an application of Lemma 3, we have

Re (ℎ0 (𝑧))

=
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1 Re ((ℎ1 ∗ ℎ2) (𝑢𝑧)) 𝑑𝑢

≥
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(2𝛽3 − 1 +
2 (1 − 𝛽3)

1 + 𝑢 |𝑧|
) 𝑑𝑢

>
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

(2𝛽3 − 1 +
2 (1 − 𝛽3)

1 + 𝑢
)𝑑𝑢

= 1 −
4 (𝐴1 − 𝐵1) (𝐴2 − 𝐵2)

(1 − 𝐵1) (1 − 𝐵2)

× (1 −
[𝜆 + 1]𝑞

𝑞𝜆𝛼
∫

1

0

𝑢
([𝜆+1]𝑞/𝑞

𝜆
𝛼)−1

1 + 𝑢
𝑑𝑢) = 𝛾,

(52)

which shows that the desired assertion of Theorem 10 holds.
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