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This paper deals with the Choquet integral of fuzzy-number-valued functions based on the nonnegative real line. We firstly give
the definitions and the characterizations of the Choquet integrals of interval-valued functions and fuzzy-number-valued functions
based on the nonadditive measure. Furthermore, the operational schemes of above several classes of integrals on a discrete set are
investigated which enable us to calculate Choquet integrals in some applications. Secondly, we give a representation of the Choquet
integral of a nonnegative, continuous, and increasing fuzzy-number-valued function with respect to a fuzzy measure. In addition,
in order to solve Choquet integral equations of fuzzy-number-valued functions, a concept of the Laplace transformation for the
fuzzy-number-valued functions in the sense of Choquet integral is introduced. For distorted Lebesgue measures, it is shown that
Choquet integral equations of fuzzy-number-valued functions can be solved by the Laplace transformation. Finally, an example is
given to illustrate the main results at the end of the paper.

1. Introduction

The Choquet integral [1–4] with respect to a fuzzy measure
was proposed by Murofushi and Sugeno. It was introduced
by Choquet in potential theory with the concept of capacity.
Then, it has been used for utility theory in the field of
economic theory [5] and has been used for image processing,
pattern recognition, information fusion, and data mining
[4, 6–8] in the context of fuzzy measure theory [9–13].

The development of the theory of integral equations is
closely linked to the study of mathematical physics problems.
The integral equation has the extremely widespread applica-
tion in the field of engineering and mechanics and so forth.
The early history of integral equation goes back to the special
integral equation studied by several mathematicians, such as
Laplace, Fourier, Poisson, Abel, and Liouville in the late eigh-
teenth and early nineteenth century. With the development
of computing technology, the integral equation as one of the
important foundations of engineering calculation has been

widely and effectively used. Today, with physical problems
becoming more and more complex, integral equation is
becoming more and more useful.

Fuzzy integral and differential equations were discussed
by many authors [14–16], which have been suggested as a
way of modeling uncertain and incompletely specified sys-
tems. Sugeno has described carefully the representation of
Choquet integral and Choquet integral equations of real-
valued increasing functions, and some important conclusions
have been obtained [17]. Unfortunately, it is not reasonable
to assume that all data are real data before we elicit them
from practical data. Sometimes, fuzzy data may exist, such as
in pharmacological, financial, and sociological applications.
Motivated by the above papers and related research works on
this topic, the paper discusses the representation of Choquet
integral and Choquet integral equations of increasing fuzzy-
number-valued functions.

The rest of this study is organized as follows. In Section 2,
we review some basic definitions of fuzzy measure and
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Choquet integrals of real-valued functions. Section 3 gives
the definitions and the characterizations of the Choquet inte-
grals of interval-valued functions and fuzzy-number-valued
functions based on the nonadditive Sugeno measure. Fur-
thermore, the operational schemes of above several classes of
integrals on a discrete sets are investigated which enable us to
calculate Choquet integrals in applications. Section 4 gives a
representation of the Choquet integral of a nonnegative, con-
tinuous, and increasing fuzzy-number-valued function with
respect to a fuzzymeasure. In Section 5, in order to solveCho-
quet integral equations of fuzzy-number-valued functions, a
concept of the Laplace transformation for the fuzzy-number-
valued functions in the sense of Choquet integral is intro-
duced. For distorted Lebesguemeasures, it is shown thatCho-
quet integral equations of fuzzy-number-valued functions
can be solved by the Laplace transformation. In addition, an
example is given to illustrate themain results at the end of the
paper. The paper ends with conclusions in Section 6.

2. Preliminaries

In this section, wewill introduce some basic definitions about
fuzzy measures, Choquet integral, and fuzzy numbers.

Definition 1 (see [6, 7, 18–20]). Let 𝑋 be a nonempty set and
A a 𝜎-algebra on 𝑋. A fuzzy measure on 𝑋 is a set function
𝜇 : A → [0,∞) satisfying the following conditions:

(1) 𝜇(0) = 0;
(2) 𝐴 ∈ 𝑋, 𝐵 ∈ 𝑋, 𝐴 ⊂ 𝐵 implies 𝜇(𝐴) ≤ 𝜇(𝐵);
(3) In 𝑋, if 𝐴

1
⊂ 𝐴
2
⊂ 𝐴
3
⊂ ⋅ ⋅ ⋅ , and ⋃

∞

𝑛=1
𝐴
𝑛
∈ 𝑋, then

lim
𝑛→∞

𝜇(𝐴
𝑛
) = 𝜇(⋃

∞

𝑛=1
𝐴
𝑛
);

(4) In 𝑋, if 𝐴
1
⊃ 𝐴
2
⊃ 𝐴
3
⊃ ⋅ ⋅ ⋅ , and ⋂

∞

𝑛=1
𝐴
𝑛
∈ 𝑋, then

lim
𝑛→∞

𝜇(𝐴
𝑛
) = 𝜇(⋂

∞

𝑛=1
𝐴
𝑛
).

𝜇 is said to be lower semicontinuous if it satisfies the above
conditions (1)–(3); 𝜇 is said to be upper semicontinuous if it
satisfies the above conditions (1), (2), and (4); 𝜇 is said to be
continuous if it satisfies the above conditions (1)–(4).

(𝑋,A, 𝜇) is said to be a nonadditive measure space.
One can see that a fuzzy measure is a normal monotone

set function which vanishes at the empty set. Furthermore, a
fuzzy measure on 𝑋 is said to be

(i) additive if 𝜇(𝐴 ∪ 𝐵) = 𝜇(𝐴) + 𝜇(𝐵) for all disjoint
subsets 𝐴, 𝐵 ∈ 𝑋;

(ii) subadditive if 𝜇(𝐴 ∪ 𝐵) ≤ 𝜇(𝐴) + 𝜇(𝐵) for all disjoint
subsets 𝐴, 𝐵 ∈ 𝑋;

(iii) superadditive if 𝜇(𝐴∪𝐵) ≥ 𝜇(𝐴)+𝜇(𝐵) for all disjoint
subsets 𝐴, 𝐵 ∈ 𝑋;

(iv) cardinality-based if for any𝐴 ∈ 𝑋, 𝜇(𝐴) depends only
on the cardinality of 𝐴;

(v) a 0 − 1 fuzzy measure if its range is {0, 1};
(vi) a 0−1possibility fuzzymeasure focused on𝐴, denoted

by Pos
𝐴
, if Pos

𝐴
(𝐵) = 1 if and only if 𝐴 ∩ 𝐵 ̸= 0, and

Pos
𝐴
(𝐵) = 0 otherwise;

(vii) a 0−1 necessity fuzzymeasure focused on𝐴, denoted
by Nec

𝐴
, if Nec

𝐴
(𝐵) = 1 if and only if 𝐵 ⊆ 𝐴, and

Nec
𝐴
(𝐵) = 0 otherwise.

Let 𝑓 : 𝑋 → (−∞, +∞) be a measurable function with
respect toA. That is, 𝑓 satisfies the condition

𝑓
𝛼
= {𝑥 | 𝑓 (𝑥) ≥ 𝛼} ∈ A (1)

for any 𝛼 ∈ R.

Definition 2 (see [1]). Let (𝑋,A, 𝜇) be a nonadditive measure
space and 𝑓 a measurable function on 𝑋. The Choquet
integral of a real-valued function 𝑓 : 𝑋 → (−∞, +∞) is
defined as

(𝑐) ∫
𝑋

𝑓𝑑𝜇 = ∫

0

−∞

[𝜇 (𝑓
𝛼
) − 𝜇 (𝑋)] 𝑑𝛼 + ∫

∞

0

𝜇 (𝑓
𝛼
) 𝑑𝛼, (2)

if both of Riemann integrals exist and at least one of them has
finite value.

Let 𝐸 ∈ A. Then Choquet integral of a nonnegative real-
valued function 𝑓 : 𝑋 → [0, +∞) is defined as

(𝑐) ∫
𝐸

𝑓𝑑𝜇 = ∫

∞

0

𝜇 (𝐸 ∩ 𝑓
𝛼
) 𝑑𝛼. (3)

Since 𝜇(𝐸 ∩ 𝑓
𝛼
) is nonincreasing with respect to 𝛼, the

Choquet integral of real-valued function 𝑓 with respect to 𝜇

exists. If (𝑐) ∫
𝐸
𝑓𝑑𝜇 < ∞, then 𝑓 is said to be 𝐶-integrable

with respect to 𝜇 on 𝑋. Choquet integral has the following
properties [1].

(1) If 𝑔 ≤ ℎ, then (𝑐) ∫
𝐸
𝑔𝑑𝜇 ≤ (𝑐) ∫

𝐸
ℎ𝑑𝜇.

(2) If 𝐴 ⊂ 𝐵, then (𝑐) ∫
𝐴
𝑓𝑑𝜇 ≤ (𝑐) ∫

𝐵
𝑓𝑑𝜇.

(3) Let 𝜇 be lower semicontinuous. If 𝑓
𝑛

↑ 𝑓 a.e. in 𝐸,
then (𝑐) ∫

𝐸
𝑓
𝑛
𝑑𝜇 ↑ (𝑐) ∫

𝐸
𝑓𝑑𝜇.

(4) Let 𝜇 be upper semicontinuous. If 𝑓
𝑛

↓ 𝑓 a.e. in 𝐸,
and there exists a 𝐶-integrable function 𝑔 such that
𝑓
1
≤ 𝑔, then (𝑐) ∫

𝐸
𝑓
𝑛
𝑑𝜇 ↓ (𝑐) ∫

𝐸
𝑓𝑑𝜇.

𝐼(𝑅
+
) = {𝑟 : [𝑟, 𝑟] ⊂ 𝑅

+
} denotes the set of all interval

numbers on 𝑅
+, where 𝑅

+
= [0, +∞). With the definition

from Wu et al. [21], interval numbers should satisfy the
following basic operations:

(1) 𝑟 ∗ 𝑝 = [𝑟 ∗ 𝑝, 𝑟 ∗ 𝑝](∗ denotes + ∨ ∧);

(2) 𝑘 ⋅ 𝑟 = [𝑘𝑟, 𝑘𝑟], (𝑘 ∈ R+);
(3) 𝑟 ≤ 𝑝 ⇔ 𝑟 ≤ 𝑝, 𝑟 ≤ 𝑝;

(4) 𝑑(𝑟, 𝑝) = max{|𝑟 − 𝑝|, |𝑟 − 𝑝|};
(5) If 𝑑(𝑟

𝑛
, 𝑟) → 0, then 𝑟

𝑛
→ 𝑟.

A fuzzy subset of 𝑅 is a function 𝑢 : 𝑅 → [0, 1].
For each fuzzy set 𝑢 defined as above, we denote by 𝑢

𝜆
=

{𝑥 ∈ 𝑅 : 𝑢(𝑥) ≥ 𝜆}, for any 𝜆 ∈ [0, 1], its 𝜆-level set. By
supp𝑢 we denote the support of 𝑢; that is, the set {𝑥 ∈ 𝑅 :

𝑢(𝑥) > 0}. By 𝑢
0
we denote the closure of supp𝑢; that is,

𝑢
0

= {𝑥 ∈ 𝑅 : 𝑢(𝑥) > 0}. Let 𝐸 be the collection of all fuzzy
sets of 𝑅. We call 𝑢 ∈ 𝐸 a fuzzy number if it satisfies the
following conditions [22]:
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(1) 𝑢 is normal; that is, there exists 𝑥
0

∈ 𝑅 such that
𝑢(𝑥
0
) = 1;

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for any 𝑥, 𝑦 ∈ 𝑅, 0 ≤ 𝜆 ≤ 1;
(3) 𝑢 is upper semicontinuous; that is, 𝑢(𝑥

0
) ≥

lim
𝑘→∞

𝑢(𝑥
𝑘
) for any 𝑥

𝑘
∈ 𝑅 (𝑘 = 0, 1, 2, . . .), 𝑥

𝑘
→

𝑥
0
;

(4) 𝑢
0
= {𝑥 ∈ 𝑅 : 𝑢(𝑥) > 0} is compact.

We denote the collection of all fuzzy numbers by 𝑅̃.
𝑎 is said to be a nonnegative fuzzy number if supp, 𝑎 =

{𝑥 ∈ 𝑅 | 𝑎(𝑥) > 0} ⊂ 𝑅
+.We can define the semiorder and the

distance in space 𝑅̃ [22]. Let 𝑎, 𝑏̃ ∈ 𝑅̃. Then 𝑎 ≤ 𝑏̃ if 𝑎
𝜆

≤ 𝑏
𝜆

and 𝑎
𝜆

≤ 𝑏
𝜆
for 𝜆 ∈ (0, 1]; 𝑎 + 𝑏̃ = 𝑐 if 𝑎

𝜆
+ 𝑏
𝜆

= 𝑐
𝜆
for

𝜆 ∈ (0, 1]; 𝐷(𝑎, 𝑏̃) = sup
𝜆∈[0,1]

𝐷(𝑎
𝜆
, 𝑏
𝜆
) is the distance of 𝑎

and 𝑏̃. Let 𝑎
𝑛
⊂ 𝑅̃. If 𝐷(𝑎

𝑛
, 𝑎) → 0, then 𝑎

𝑛
→ 𝑎.

𝑅+ denotes the collection of all nonnegative fuzzy num-
bers.

Lemma 3 (see [22]). Let 𝑎 ∈ 𝑅̃. Then

(1) 𝑎
𝜆
is a nonempty, bounded, and closed interval for each

𝜆 ∈ [0, 1];
(2) if 0 ≤ 𝜆

1
≤ 𝜆
2
≤ 1 then 𝑎

𝜆
2

⊂ 𝑎
𝜆
1

;

(3) if 𝜆
𝑛
≥ 0 and 𝜆

𝑛
→ 𝜆 (𝜆 ∈ (0.1]), then⋂

∞

𝑛=1
𝑎
𝜆
𝑛

= 𝑎
𝜆
.

Conversely, there exists a 𝑏
𝜆

⊂ 𝑅 for each 𝜆 ∈ (0, 1],
which satisfies the conditions (1)–(3); then there exists a unique
fuzzy number 𝑎 ∈ 𝑅̃ such that 𝑏

𝜆
= 𝑎
𝜆
, 𝜆 ∈ (0, 1] and

𝑎
0
= ⋃
𝜆∈(0,1]

𝑎
𝜆
⊂ 𝑏
0
.

3. Choquet Integrals of Interval-Valued
Functions and Fuzzy-Number-Valued
Functions Based on Nonadditive Measures

In this section, we will give the definitions and the characteri-
zations of the Choquet integrals of interval-valued functions
and fuzzy-number-valued functions based on the nonaddi-
tive Sugeno measure. Furthermore, the operational schemes
of above several classes of integrals on a discrete sets are
investigated which enable us to calculate Choquet integrals
in applications.

We first introduce the concept of the Choquet integrals
for the interval-valued functions as follows.

Definition 4 (see [23]). An interval-valued function 𝐹 : 𝑋 →

𝐼(𝑅
+
) is said to be measurable if both 𝐹(𝑥) and 𝐹(𝑥) are

measurable functions, where 𝐹(𝑥) = [𝐹(𝑥), 𝐹(𝑥)], 𝐹(𝑥) is the
left end point of interval 𝐹(𝑥) and 𝐹(𝑥) is the right end point
of interval 𝐹(𝑥).

Interval-valued function 𝐹 : 𝑋 → 𝐼(𝑅
+
) is 𝐶-integrally

bounded if there exists a Choquet integrable function ℎ :

𝑋 → 𝑅
+ such that |𝑥̇| ≤ ℎ(𝑡) for every selection 𝑥̇ ∈ 𝐹.

We denote 𝑃
0
(𝑋) = {𝐸 | 𝐸 ⊂ 𝑋 and 𝐸 ̸= 0}. Let (𝑋,A, 𝜇)

be a measure space, 𝐴, 𝐵 ⊂ A, and let 𝐹 : 𝐴 → 𝑃
0
(𝐵) be a

measurable set valued mapping. 𝑓 is said to be a measurable

selection of 𝐹 if there exists a measurable mapping 𝑓 : 𝐴 →

𝐵 such that 𝑓(𝑥) ∈ 𝐹(𝑥) for every 𝑥 ∈ 𝐴.

Definition 5. Let (𝑋,A, 𝜇) be a nonadditive measure space.
Assume that 𝐹 : 𝑋 → 𝐼(𝑅

+
) is measurable, 𝐶-integrally

bounded interval-valued function, and 𝐸 ∈ A. 𝐹 is said to
be 𝐶-integrable if

(𝑐) ∫
𝐸

𝐹𝑑𝜇 =: {(𝑐) ∫
𝐸

𝑔𝑑𝜇 | 𝑔 ∈ 𝑆
𝐹(𝑥)

} (4)

is a closed interval on 𝐼(𝑅
+
), where

𝑆
𝐹(𝑥)

= {𝑔 | 𝑔 : 𝑋 󳨀→ 𝑅
+ is a measurable selection of 𝐹 (𝑥)} .

(5)

Theorem 6. Let (𝑋,A, 𝜇) be a nonadditive measure space.
Suppose that 𝜇 is a fuzzymeasure,𝐸 ∈ A, and𝐹 is nonnegative
measurable, 𝐶-integrally bounded interval-valued function;
then 𝐹 is 𝐶-integrable on 𝐸 and

(𝑐) ∫
𝐸

𝐹𝑑𝜇 = [(𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇] . (6)

Proof. Since 𝐹 is nonnegative measurable on 𝐸, 𝐹 and 𝐹 are
measurable on𝐸.Thus 𝐹 and 𝐹 are twomeasurable selections
of 𝐹. On the other hand, 𝐹 is 𝐶-integrally bounded; we have

𝐹 ≤ ℎ, 𝐹 ≤ ℎ. (7)

By the properties of Choquet integral of real valued functions,
we know that 𝐹 and 𝐹 are 𝐶-integrable on 𝐸. Let 𝑀 ∈

(𝑐) ∫
𝐸
𝐹𝑑𝜇. That is to say, there exists a measurable selection

𝑔 of 𝐹, such that (𝑐) ∫
𝐸
𝑔𝑑𝜇 = 𝑀. We can prove that 𝑀 ∈

[(𝑐) ∫
𝐸
𝐹𝑑𝜇, (𝑐) ∫

𝐸
𝐹𝑑𝜇]. Indeed, notice that 𝐹 ≤ 𝑔 ≤ 𝐹, and

by the properties of Choquet integral of real-valued functions
we have

(𝑐) ∫
𝐸

𝐹𝑑𝜇 ≤ (𝑐) ∫
𝐸

𝑔𝑑𝜇 ≤ (𝑐) ∫
𝐸

𝐹𝑑𝜇. (8)

This follows that

𝑀 ∈ [(𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇] . (9)

Thus,

{(𝑐) ∫
𝐸

𝑔𝑑𝜇 | 𝑔 ∈ 𝑆
𝐹(𝑥)

} ⊂ [(𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇] . (10)

Conversely, we can show that

[(𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇] ⊂ (𝑐) ∫
𝐸

𝐹𝑑𝜇. (11)

For measurable selections 𝑝(𝑥),𝑚(𝑥) ∈ 𝐹(𝑥), we get that

𝑡𝑝 (𝑥) + (1 − 𝑡)𝑚 (𝑥) ∈ 𝐹 (𝑥) (12)
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is measurable selection of 𝐹 for any 0 ≤ 𝑡 ≤ 1. Therefore,

𝑡 ⋅ (𝑐) ∫
𝐸

𝑝 (𝑥) 𝑑𝜇 + (1 − 𝑡) ⋅ (𝑐) ∫
𝐸

𝑚(𝑥) 𝑑𝜇

= (𝑐) ∫
𝐸

[𝑡𝑝 (𝑥) + (1 − 𝑡)𝑚 (𝑥)] 𝑑𝜇

∈ {(𝑐) ∫
𝐸

𝑔𝑑𝜇 | 𝑔 ∈ 𝑆
𝐹(𝑥)

} .

(13)

It implies that (𝑐) ∫
𝐸
𝐹𝑑𝜇 = {(𝑐) ∫

𝐸
𝑔𝑑𝜇 | 𝑔 ∈ 𝑆

𝐹(𝑥)
} is a convex

set. On the other hand, since 𝐹 and 𝐹 are two measurable
selections of 𝐹, and

(𝑐) ∫
𝐸

𝐹𝑑𝜇 ∈ (𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇 ∈ (𝑐) ∫
𝐸

𝐹𝑑𝜇, (14)

we have

[(𝑐) ∫
𝐸

𝐹𝑑𝜇, (𝑐) ∫
𝐸

𝐹𝑑𝜇] ⊂ {(𝑐) ∫
𝐸

𝑔𝑑𝜇 | 𝑔 ∈ 𝑆
𝐹(𝑥)

} . (15)

Hence,

(𝑐) ∫
𝐸

𝐹𝑑𝜇 = [(𝑐) ∫
𝐸

𝐹𝑑𝑔
𝜇
, (𝑐) ∫
𝐸

𝐹𝑑𝜇] . (16)

That is, 𝐹 is 𝐶-integrable.

From the above theorem, we know that interval-valued
function 𝐹 is 𝐶-integrable on 𝐸 if (𝑐) ∫

𝐸
𝐹𝑑𝜇 and (𝑐) ∫

𝐸
𝐹𝑑𝜇

exist and are bounded.
Next, we will introduce the concept of the Choquet

integrals for the Fuzzy-number-valued functions as follows.
Fuzzy-number-valued function 𝐹 : 𝑋 → 𝑅̃

+ on𝑋 is said
to be measurable if 𝐹

𝜆
and 𝐹

𝜆
are measurable functions with

respect to 𝑥 ∈ 𝑋 for any 𝜆 ∈ [0, 1].
Fuzzy-number-valued function 𝐹 : 𝑋 → 𝑅̃

+ is said to
be 𝐶-integrally bounded if there exists a Choquet integrable
function ℎ : 𝑋 → 𝑅

+ such that |𝑥̇| ≤ ℎ(𝑡) for every selection
𝑥̇ ∈ [𝐹(𝑡)]

0
.

Definition 7. Let (𝑋,A, 𝜇) be a nonadditive measure space.
Assume that 𝐸 ∈ A, 𝐹 : 𝑋 → 𝑅̃

+ is measurable and 𝐶-
integrally bounded function. 𝐹 is said to be 𝐹𝐶-integrable if

{[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

=: {(𝑐) ∫
𝐸

𝑔𝑑𝜇 | 𝑔 ∈ 𝑆
𝐹
𝜆

} , 0 ≤ 𝜆 ≤ 1} (17)

determines a unique fuzzy number 𝑎 ∈ 𝑅̃
+, which is denoted

by (𝑐) ∫
𝐸
𝐹𝑑𝜇 = 𝑎, where 𝑆

𝐹
𝜆

= {𝑔 : 𝑋 → 𝑅
+
, 𝑔 ∈ 𝐹

𝜆
is a

measurable selection of 𝐹
𝜆
}.

Theorem 8. Let (𝑋,A, 𝜇) be a nonadditive measurable space.
Assume 𝜇 is a continuous fuzzy measure, 𝐸 ∈ A, 𝐹 : 𝑋 → 𝑅̃

+

ismeasurable and𝐶-integrally bounded function; then𝐹 is𝐹𝐶-
integrable on 𝐸 if and only if 𝐹

𝜆
and 𝐹

𝜆
are 𝐶-integrable on 𝐸

and

[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] (18)

for any 𝜆 ∈ [0, 1].

Proof. For the necessity, since 𝐹 is measurable and 𝐶-
integrally bounded function, 𝐹

𝜆
and 𝐹

𝜆
are measurable for

every 𝜆 ∈ [0, 1] and there exists a Choquet integrable func-
tion ℎ(𝑥) such that 0 ≤ 𝐹

𝜆
≤ ℎ(𝑥), 0 ≤ 𝐹

𝜆
≤ ℎ(𝑥), and then

(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇 ≤ (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇 ≤ (𝑐) ∫

𝐸

ℎ (𝑥) 𝑑𝜇 < ∞. (19)

That is, 𝐹
𝜆
, 𝐹
𝜆
are 𝐶-integrable and

[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] (20)

for any 𝜆 ∈ [0, 1].
For the sufficiency, let 𝐹 be a Fuzzy-number-valued func-

tion. Note that

[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] ; (21)

we need only to prove that the interval family

{[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] , 𝜆 ∈ [0, 1]}

(22)

determines a unique fuzzy number. Indeed, the interval fam-
ily

{[(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇]} (23)

satisfies the conditions of Lemma 3.

(1) 𝐹 is a measurable fuzzy-number-valued function; for
each 𝜆 ∈ [0, 1], we have 𝐹

𝜆
(𝑥) ≤ 𝐹

𝜆
(𝑥), and therefore

(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇 ≤ (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇. (24)

(2) Since 𝐹
𝜆
2

⊂ 𝐹
𝜆
1

for 0 ≤ 𝜆
1
≤ 𝜆
2
≤ 1, that is,

𝐹
𝜆
1

(𝑥) ≤ 𝐹
𝜆
2

(𝑥) , 𝐹
𝜆
1
(𝑥) ≥ 𝐹

𝜆
2
(𝑥) , (25)

we have

(𝑐) ∫
𝐸

𝐹
𝜆
1

𝑑𝜇 ≤ (𝑐) ∫
𝐸

𝐹
𝜆
2

𝑑𝜇,

(𝑐) ∫
𝐸

𝐹
𝜆
1

𝑑𝜇 ≥ (𝑐) ∫
𝐸

𝐹
𝜆
2

𝑑𝜇,

[(𝑐) ∫
𝐸

𝐹
𝜆
1

𝑑𝜇, (𝑐) ∫
𝐸

𝐹
𝜆
1

𝑑𝜇]

⊃ [(𝑐) ∫
𝐸

𝐹
𝜆
2

𝑑𝜇, (𝑐) ∫
𝐸

𝐹
𝜆
2

𝑑𝜇] .

(26)

(3) For each 𝜆
𝑛
↑ 𝜆 ∈ (0, 1], ⋂∞

𝑛=1
𝐹
𝜆
𝑛

(𝑥) = 𝐹
𝜆
(𝑥), that is,

lim
𝑛→∞

𝐹
𝜆
𝑛

= 𝐹
𝜆
, lim
𝑛→∞

𝐹
𝜆
𝑛

= 𝐹
𝜆
. It is easy to see



Abstract and Applied Analysis 5

that 𝐹
𝜆
1

≤ 𝐹
𝜆
𝑛

≤ 𝐹
𝜆
𝑛

≤ 𝐹
𝜆
1

, 𝐹
𝜆
1

, 𝐹
𝜆
1

are integrable,
and by the continuity of 𝜇, then

∞

⋂

𝑛=1

[(𝑐) ∫
𝐸

𝐹
𝜆
𝑛

𝑑𝜇, (𝑐) ∫
𝐸

𝐹
𝜆
𝑛

𝑑𝜇]

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] .

(27)

In conclusion, there exists a unique fuzzy number 𝑎 ∈ 𝑅̃
+

such that

𝑎
𝜆
= [(𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] . (28)

Furthermore, we get that 𝐹 is 𝐹𝐶-integrable on 𝐸 and

[(𝑐) ∫
𝐸

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝐸

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝐸

𝐹
𝜆
𝑑𝜇] . (29)

In the last part of the section, we will investigate the
operational schemes of above several classes of integrals on
a discrete set.

Let𝑋 = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a discrete set.Thenwewill give

a new scheme to calculate the value of the Choquet integral.

Theorem 9 (see [8]). Let 𝑓 be a real-valued function on 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then Choquet integral of 𝑓 with respect to a

fuzzy measure 𝜇 on 𝑋 is given by

(𝑐) ∫
𝑋

𝑓𝑑𝜇 =

𝑛

∑

𝑖=1

[𝑓 (𝑥
󸀠

𝑖
) − 𝑓 (𝑥

󸀠

𝑖−1
)] 𝜇 (𝑋

󸀠

𝑖
) , (30)

or equivalently, by

(𝑐) ∫
𝑋

𝑓𝑑𝜇 =

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝑓 (𝑥

󸀠

𝑖
) , (31)

where 𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
is a permutation of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
such

that 𝑓(𝑥
󸀠

0
) ≤ 𝑓(𝑥

󸀠

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝑓(𝑥

󸀠

𝑛
), 𝑓(𝑥

󸀠

0
) = 0, 𝑋

󸀠

𝑖
=

{𝑥
󸀠

𝑖
, 𝑥
󸀠

𝑖+1
, . . . , 𝑥

󸀠

𝑛
}, 𝑖 = 1, 2, . . . , 𝑛, and 𝑋

󸀠

𝑛+1
= 0.

Theorem 10. Let 𝐹 be an interval-valued function on 𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then Choquet integral of 𝐹 with respect to a

fuzzy measure 𝜇 on 𝑋 is given by

(𝑐) ∫
𝑋

𝐹𝑑𝜇 =

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
) , (32)

where 𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
is a permutation of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
such

that 𝐹(𝑥
󸀠

0
) ≤ 𝐹(𝑥

󸀠

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝐹(𝑥

󸀠

𝑛
), 𝐹(𝑥

󸀠

0
) = [0, 0], 𝑋󸀠

𝑖
=

{𝑥
󸀠

𝑖
, 𝑥
󸀠

𝑖+1
, . . . , 𝑥

󸀠

𝑛
}, 𝑖 = 1, 2, . . . , 𝑛, and 𝑋

󸀠

𝑛+1
= 0.

Proof. Since 𝐹 is an interval-valued function on𝑋, in view of
Theorem 6, we have

(𝑐) ∫
𝑋

𝐹𝑑𝜇 = [(𝑐) ∫
𝑋

𝐹𝑑𝜇, (𝑐) ∫
𝑋

𝐹𝑑𝜇] . (33)

Note that 𝐹 and 𝐹 are real-valued function on𝑋, respectively.
ByTheorem 9 we get

(𝑐) ∫
𝑋

𝐹𝑑𝜇 = [

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
) ,

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
)]

=

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
) ,

(34)

where 𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
is a permutation of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
such

that 𝐹(𝑥
󸀠

0
) ≤ 𝐹(𝑥

󸀠

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝐹(𝑥

󸀠

𝑛
), 𝐹(𝑥

󸀠

0
) = [0, 0], 𝑋󸀠

𝑖
=

{𝑥
󸀠

𝑖
, 𝑥
󸀠

𝑖+1
, . . . , 𝑥

󸀠

𝑛
}, 𝑖 = 1, 2, . . . , 𝑛, and 𝑋

󸀠

𝑛+1
= 0.

Theorem 11. Let𝐹 be a fuzzy-number-valued function on𝑋 =

{𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Then Choquet integral of 𝐹 with respect to a

fuzzy measure 𝜇 on 𝑋 is given by

(𝑐) ∫
𝑋

𝐹𝑑𝜇 =

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
) , (35)

where 𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
is a permutation of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
such

that 𝐹(𝑥
󸀠

0
) ≤ 𝐹(𝑥

󸀠

1
) ≤ ⋅ ⋅ ⋅ ≤ 𝐹(𝑥

󸀠

𝑛
), 𝐹(𝑥

󸀠

0
) = 0̃, 𝑋

󸀠

𝑖
=

{𝑥
󸀠

𝑖
, 𝑥
󸀠

𝑖+1
, . . . , 𝑥

󸀠

𝑛
}, 𝑖 = 1, 2, . . . , 𝑛, and 𝑋

󸀠

𝑛+1
= 0.

Proof. Since 𝐹 is a fuzzy-number-valued on 𝑋, in view of
Theorem 8, we have

[(𝑐) ∫
𝑋

𝐹𝑑𝜇]

𝜆

= [(𝑐) ∫
𝑋

𝐹
𝜆
𝑑𝜇, (𝑐) ∫

𝑋

𝐹
𝜆
𝑑𝜇] (36)

for any 𝜆 ∈ [0, 1]. By the semiorder in space 𝑅̃ (i.e., let 𝑎, 𝑏̃ ∈

𝑅̃. Then 𝑎 ≤ 𝑏̃ if 𝑎
𝜆
≤ 𝑏
𝜆
and 𝑎

𝜆
≤ 𝑏
𝜆
) andTheorem 10, there

is a sequence 𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
on 𝑋 such that 𝐹(𝑥

󸀠

0
) ≤ 𝐹(𝑥

󸀠

1
) ≤

⋅ ⋅ ⋅ ≤ 𝐹(𝑥
󸀠

𝑛
), 𝐹(𝑥

󸀠

0
) = 0̃, 𝑋󸀠

𝑖
= {𝑥
󸀠

𝑖
, 𝑥
󸀠

𝑖+1
, . . . , 𝑥

󸀠

𝑛
}, 𝑖 = 1, 2, . . . , 𝑛,

𝑋
󸀠

𝑛+1
= 0, and 𝑥

󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
is a permutation of 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
.

Consequently,

[(𝑐) ∫
𝑋

𝐹𝑑𝜇]

𝜆

= [

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹
𝜆
(𝑥
󸀠

𝑖
) ,

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹
𝜆
(𝑥
󸀠

𝑖
)]

(37)

for any 𝜆 ∈ [0, 1]. Therefore,

(𝑐) ∫
𝑋

𝐹𝑑𝜇 =

𝑛

∑

𝑖=1

[𝜇 (𝑋
󸀠

𝑖
) − 𝜇 (𝑋

󸀠

𝑖+1
)] 𝐹 (𝑥

󸀠

𝑖
) . (38)

4. The Representation of Choquet Integral of
Fuzzy-Number-Valued Functions

Sugeno has described carefully the representation of Cho-
quet integral of real-valued increasing functions, and some
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important conclusions have been obtained [17]. Motivated by
this, we will discuss the representation of Choquet integral of
fuzzy-number-valued functions in this section.

Definition 12. Fuzzy-number-valued function 𝐹 : 𝑋 → 𝑅̃
+

is said to be continuous on 𝑋 if for every 𝑥
0
∈ 𝑋 there are

lim
𝑥→𝑥

0

𝐹
𝜆
(𝑥) = 𝐹

𝜆
(𝑥
0
) ,

lim
𝑥→𝑥

0

𝐹
𝜆
(𝑥) = 𝐹

𝜆
(𝑥
0
) ,

(39)

where 𝜆 ∈ [0, 1].

Definition 13. Fuzzy-number-valued function 𝐹 : 𝑋 → 𝑅̃
+

is said to be increasing on 𝑋 if for every 𝑥
1

≤ 𝑥
2
there are

𝐹
𝜆
(𝑥
1
) ≤ 𝐹
𝜆
(𝑥
2
) and 𝐹

𝜆
(𝑥
1
) ≤ 𝐹
𝜆
(𝑥
2
), where 𝑥

1
, 𝑥
2
∈ 𝑋 and

𝜆 ∈ [0, 1].
LetF+ be a class ofmeasurable, nonnegative, continuous,

and increasing fuzzy-number-valued functions.
Let ] be a Lebesgue measure for [𝑎, 𝑏] ⊂ [0,∞), ][𝑎, 𝑏] =

𝑏 − 𝑎.

Definition 14 (see [17]). Let 𝑚 : 𝑅
+

→ 𝑅
+ be a continuous

and increasing function and 𝑚(0) = 0. A fuzzy measure 𝜇
𝑚
,

a distorted Lebesgue measure, is defined by 𝜇
𝑚
(⋅) = 𝑚(](⋅)).

Definition 15 (see [24]). A fuzzy-number-valued function 𝐹 :

[𝑎, 𝑏] → 𝑅̃ is differentiable at 𝑥 ∈ [𝑎, 𝑏] if there exist fuzzy
number-valued functions 𝐹󸀠(𝑥) such that

[𝐹
󸀠
(𝑥)]
𝜆
= [𝐹
󸀠

𝜆
(𝑥) , 𝐹

󸀠

𝜆
(𝑥)] (40)

for every 𝜆 ∈ [0, 1], where 𝐹
󸀠
(𝑥) is the fuzzy derivative of

𝐹(𝑥).
Note that 𝜇

𝑚
is induced from the Lebesguemeasure ] by a

monotone transformation, where 𝜇
𝑚
([𝑎, 𝑏]) = 𝑚(]([𝑎, 𝑏])) =

𝑚(𝑏 − 𝑎). Apparently it loses additivity, unless 𝑚(𝑡) = 𝑡, but
reserves monotonicity. In what follows we assume that 𝑚(𝑡)

is differentiable.
In this section, we consider the calculation of Choquet

integrals. Let 𝜇 be a general fuzzy measure and consider
𝜇([𝜏, 𝑡]) for a closed interval [𝜏, 𝑡]; then 𝜇([𝜏, 𝑡]) is decreasing
for 𝜏 and increasing for 𝑡. Throughout the paper, we assume
that the functions 𝑚(𝑡), 𝐹(𝑡) and 𝐺(𝑡) are continuously
differentiable. We also assume that 𝜇([𝜏, 𝑡]) is continuously
differentiable with respect to 𝜏 on [0, 𝑡] for every 𝑡 > 0. In
addition, we require the regularity condition that 𝜇({𝑡}) = 0

holds for every 𝑡 ≥ 0. We write 𝜇
󸀠
([𝜏, 𝑡]) = (𝜕/𝜕𝜏)𝜇([𝜏, 𝑡]),

where we note that 𝜇󸀠([𝜏, 𝑡]) ≤ 0 for 𝜏 ≤ 𝑡. If 𝜇 = 𝜇
𝑚
then

𝜇
󸀠
([𝜏, 𝑡]) = −𝑚

󸀠
(𝑡 − 𝜏) where 𝑚

󸀠
(𝑡) = 𝑑𝑚(𝑡)/𝑑𝑡. First we

consider a case that 𝐹(𝑡) is strictly increasing.
Fuzzy-number-valued function 𝐹 : 𝑋 → 𝑅̃ is said to

be 𝐿-integrally bounded if there exists a Lebesgue integrable
function ℎ : 𝑋 → 𝑅

+ such that |𝑥̇| ≤ ℎ(𝑡) for every section
𝑥̇ ∈ [𝐹(𝑡)]

0
.

Definition 16 (see [22]). Let fuzzy-number-valued functions
𝐹 : [𝑎, +∞) → 𝑅̃ be measurable and 𝐿-integrally bounded.
𝐹 is called Kaleva-integrable if

{[∫

+∞

𝑎

𝐹(𝑡)𝑑𝑡]

𝜆

=: {(𝐿) ∫

+∞

𝑎

𝑔 (𝑡) 𝑑𝑡 | 𝑔 (𝑡) ∈ 𝑆
[𝐹(𝑡)]

𝜆

} , 0 ≤ 𝜆 ≤ 1}

(41)

determines a unique fuzzy number 𝑎 ∈ 𝑅̃, which is denoted
by (𝐾) ∫

+∞

𝑎
𝐹(𝑡) 𝑑𝜇 = 𝑎, where 𝑆

[𝐹(𝑡)]
𝜆

= {𝑔(𝑡) ∈ [𝐹(𝑡)]
𝜆
is a

measurable selection}.

Lemma 17 (see [22]). Let 𝐹 : [𝑎, +∞) → 𝑅̃ be measurable
and C-integrally bounded fuzzy-number-valued function; then
𝐹 is Kaleva integrable on [𝑎, +∞) if and only if 𝐹

𝜆
(𝑡) and𝐹

𝜆
(𝑡)

are 𝐿-integrable on [𝑎, +∞) and

[(𝐾)∫

𝑡

0

𝐹(𝜏)𝑑𝜏]

𝜆

= [(𝐿) ∫

𝑡

0

𝐹
𝜆
(𝜏) 𝑑𝜏, (𝐿) ∫

𝑡

0

𝐹
𝜆
(𝜏) 𝑑𝜏]

(42)

for any 𝜆 ∈ [0, 1].

Theorem 18. Let 𝐹(𝑡) ∈ F+. Then −𝜇
󸀠
([𝜏, 𝑡])𝐹(𝜏) is Kaleva

integrable on [0, 𝑡] and

[(𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])]𝐹(𝜏)𝑑𝜏]

𝜆

= [(𝐿) ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

𝜆
(𝜏) 𝑑𝜏,

(𝐿) ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

𝜆
(𝜏) 𝑑𝜏] .

(43)

Proof. Since𝐹(𝑡) ∈ F+, for every𝜆 ∈ [0, 1]we get that𝐹
𝜆
and

𝐹
𝜆
are measurable, nonnegative, continuous, and increasing

real-valued functions on [0, 𝑡]. It follows that 𝐹
𝜆
and 𝐹

𝜆
are

𝐿-integrable on [0, 𝑡]. 𝜇([𝜏, 𝑡]) is 𝐿-integrable on [0, 𝑡] as it
is continuously differentiable with respect to 𝜏 on [0, 𝑡] for
every 𝑡 > 0. In view of Lemma 17, [−𝜇

󸀠
([𝜏, 𝑡])]𝐹(𝜏) is Kaleva

integrable on [0, 𝑡] and

[(𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏]

𝜆

= [(𝐿) ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

𝜆
(𝜏) 𝑑𝜏,

(𝐿) ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

𝜆
(𝜏) 𝑑𝜏] .

(44)

Lemma 19 (see [17]). Let 𝑓(𝑡) be a real strictly increasing
function. Then the Choquet integral of 𝑓 with respect to 𝜇 on
[0, 𝑡] is represented as

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝑓 (𝜏) 𝑑𝜏. (45)
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In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇
𝑚

(𝜏) = ∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝑓 (𝜏) 𝑑𝜏. (46)

Lemma 20 (see [17]). Let 𝑓(𝑡) be a constant real-valued
function: 𝑓(𝑡) = 𝐶, ∀𝑡 ∈ 𝑅

+
= (0, +∞). Then

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐶𝑑𝜏. (47)

In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇
𝑚

(𝜏) = 𝐶𝑚 (𝑡) . (48)

Lemma 21 (see [17]). Let 𝑓(𝑡) be a measurable, nonnegative,
continuous, and increasing real-valued function. Then the
Choquet integral of 𝑓 with respect to 𝜇 on [0, 𝑡] is represented
as

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇 (𝜏) = ∫

∞

0

𝜇 ({𝜏 | 𝑓 (𝜏) ≥ 𝑟} ∩ [0, 𝑡]) 𝑑𝑟

= −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝑓 (𝜏) 𝑑𝜏.

(49)

In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝑓 (𝜏) 𝑑𝜇
𝑚

(𝜏) = ∫

∞

0

𝜇 ({𝜏 | 𝑓 (𝜏) ≥ 𝑟} ∩ [0, 𝑡]) 𝑑𝑟

= ∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝑓 (𝜏) 𝑑𝜏.

(50)

Theorem 22. Let 𝐹(𝑡) be a strictly increasing fuzzy-number-
valued function.Then the Choquet integral of 𝐹with respect to
𝜇 on [0, 𝑡] is represented as

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏. (51)

In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝜏) = (𝐾)∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹 (𝜏) 𝑑𝜏. (52)

Proof. ByTheorem 8, we have

[(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏)]

𝜆

= [(𝑐) ∫
[0,𝑡]

𝐹
𝜆
(𝜏) 𝑑𝜇 (𝜏) , (𝑐) ∫

[0,𝑡]

𝐹
𝜆
(𝜏) 𝑑𝜇 (𝜏)]

(53)

for any 𝜆 ∈ [0, 1]. Since 𝐹(𝑡) is strictly increasing, 𝐹
𝜆
(𝑡) and

𝐹
𝜆
(𝑡) are strictly increasing real-valued functions, respec-

tively. In view of Lemma 19, we have

(𝑐) ∫
[0,𝑡]

𝐹
𝜆
(𝜏) 𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹

𝜆
(𝜏) 𝑑𝜏,

(𝑐) ∫
[0,𝑡]

𝐹
𝜆
(𝜏) 𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹

𝜆
(𝜏) 𝑑𝜏.

(54)

It follows that

[(𝑐) ∫
[0,𝑡]

𝐹(𝜏)𝑑𝜇(𝜏)]

𝜆

= [−∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹

𝜆
(𝜏) 𝑑𝜏, −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹𝜆 (𝜏) 𝑑𝜏] .

(55)

On the other hand,

∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹𝜆 (𝜏) 𝑑𝜏

= ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] [𝐹

𝜆
(𝜏) , 𝐹

𝜆
(𝜏)] 𝑑𝜏

= [−∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹

𝜆
(𝜏) 𝑑𝜏, −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐹𝜆 (𝜏) 𝑑𝜏] .

(56)

Therefore,

[(𝑐) ∫
[0,𝑡]

𝐹(𝜏)𝑑𝜇(𝜏)]

𝜆

= ∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹𝜆 (𝜏) 𝑑𝜏. (57)

By the arbitrary of 𝜆, we have

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏. (58)

For 𝜇 = 𝜇
𝑚
, we note that −𝜇

󸀠
([𝜏, 𝑡]) = 𝑚

󸀠
(𝑡 − 𝜏); hence,

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝜏) = (𝐾)∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹 (𝜏) 𝑑𝜏. (59)

Theorem 23. Let 𝐹(𝑡) be a constant fuzzy-valued function;
that is, 𝐹(𝑡) = 𝐶, ∀𝑡 ∈ 𝑅

+
= (0, +∞). Then

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏)

= (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐶𝑑𝜏 = 𝐶𝜇 ([0, 𝑡]) .

(60)

In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝜏) = 𝐶𝑚 (𝑡) . (61)

Proof. Note that𝐶 = [𝐶, 𝐶], where𝐶 and𝐶 are constant real-
valued functions, respectively. In view of Lemma 20, we have

(𝑐) ∫
[0,𝑡]

𝐶𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐶𝑑𝜏,

(𝑐) ∫
[0,𝑡]

𝐶𝑑𝜇 (𝜏) = −∫

𝑡

0

𝜇
󸀠
([𝜏, 𝑡]) 𝐶𝑑𝜏.

(62)
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The rest of the proof follows in exactly the same way as that
of Theorem 22. Hence,

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏)

= (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐶𝑑𝜏 = 𝐶𝜇 ([0, 𝑡]) .

(63)

For 𝜇 = 𝜇
𝑚
, we obtain 𝜇

󸀠
([𝜏, 𝑡]) = −𝑚

󸀠
(𝑡 − 𝜏). It follows that

(𝑐) ∫
[0,𝑡]

𝐶𝑑𝜇 (𝜏) = (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐶𝑑𝜏

= ∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐶𝑑𝜏

= (𝐾)𝐶∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝑑𝜏 = 𝐶𝑚 (𝑡) ,

(64)

where 𝑚(0) = 0.

Theorem 24. Let 𝐹(𝑡) ∈ F+. Then the Choquet integral of 𝐹
with respect to 𝜇 on [0, 𝑡] is represented as

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏. (65)

In particular, for 𝜇 = 𝜇
𝑚

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝜏) = (𝐾)∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹 (𝜏) 𝑑𝜏. (66)

Proof. The theorem has been proved when 𝐹(𝑡) is a strictly
increasing or constant fuzzy-number-valued function by
Theorem 22 or Theorem 23. Without loss of generality, we
consider a continuous and increasing function such that

𝐹 (𝑡) =

{{

{{

{

𝐹
1
(𝑡) , 0 ≤ 𝑡 < 𝑡

1
,

𝐹
2
(𝑡) , 𝑡

1
≤ 𝑡 < 𝑡

2
,

𝐹
3
(𝑡) , 𝑡

2
≤ 𝑡 < ∞,

(67)

where 𝐹
1
(𝑡) and 𝐹

3
(𝑡) are strictly increasing, 𝐹

2
(𝑡) is constant,

and 𝐹
1
(𝑡
1
) = 𝐹
2
(𝑡) = 𝐹

3
(𝑡
2
).

(i) For 0 ≤ 𝑡 < 𝑡
1

Note that 𝐹
1
(𝑡) is strictly increasing on [0, 𝑡

1
); from

Theorem 22, we obtain

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹1 (𝜏) 𝑑𝜏. (68)

(ii) For 𝑡
1
≤ 𝑡 < 𝑡

2

In view of the construction of 𝐹(𝑡) on [0, 𝑡], we have

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝑐) ∫
[0,𝑡
1
]

𝐹
1
(𝜏) 𝑑𝜇 (𝜏)

+ (𝑐) ∫
[𝑡
1
,𝑡]

𝐹
2
(𝜏) 𝑑𝜇 (𝜏) .

(69)

Since 𝐹
1
(𝑡) is strictly increasing on [0, 𝑡

1
), and 𝐹

2
(𝑡) is

constant on [𝑡
1
, 𝑡
2
), by Theorems 22 and 23,

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏) = (𝐾)∫

𝑡
1

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

1
(𝜏) 𝑑𝜏

+ (𝐾)∫

𝑡

𝑡
1

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

2
(𝜏) 𝑑𝜏

= (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏.

(70)

(iii) For 𝑡
2
≤ 𝑡 < ∞

Since𝐹
1
(𝑡) is strictly increasing on [0, 𝑡

1
), 𝐹
2
(𝑡) is constant

on [𝑡
1
, 𝑡
2
), and 𝐹

3
(𝑡) is strictly increasing on [𝑡

1
,∞), by

Theorems 22 and 23, we have

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏)

= (𝑐) ∫
[0,𝑡
1
]

𝐹
1
(𝜏) 𝑑𝜇 (𝜏) + (𝑐) ∫

[𝑡
1
,𝑡
2
]

𝐹
2
(𝜏) 𝑑𝜇 (𝜏)

+ (𝑐) ∫
[𝑡
2
,𝑡]

𝐹
3
(𝜏) 𝑑𝜇 (𝜏)

= (𝐾)∫

𝑡
1

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

1
(𝜏) 𝑑𝜏

+ (𝐾)∫

𝑡
2

𝑡
1

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

2
(𝜏) 𝑑𝜏

+ (𝐾)∫

𝑡

𝑡
2

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹

3
(𝜏) 𝑑𝜏

= (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏.

(71)

For 𝜇 = 𝜇
𝑚
, we obtain that

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝜏) = (𝐾)∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹 (𝜏) 𝑑𝜏. (72)

Remark 25. Note that Theorem 24 holds only for a continu-
ous and increasing 𝐹, but in the case 𝜇

𝑚
= ], it holds for any

𝐹.

Remark 26. Let us consider the representation of theChoquet
integral for a continuous case shown in Theorem 24 in
relation with a discrete case. Now [0, 𝑡] is transformed into
the discrete set {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}. Since𝐹 is an increasing fuzzy-

number-valued function, we have 𝑥
𝑖
= 𝑥
󸀠

𝑖
, 𝑖 = 1, 2, . . . , 𝑛 in

Theorem 11. For the sake of simplicity, let 0 = 𝑥
0
< 𝑥
1
< ⋅ ⋅ ⋅ <
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𝑥
𝑛

= 𝑡, 𝐹(𝑥
0
) = 0̃ and [𝑥

𝑖
, 𝑡] = {𝑥

𝑖
, 𝑥
𝑖+1

, . . . , 𝑥
𝑛
}. It follows

that

(𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇 (𝜏)

=

𝑛

∑

𝑖=1

[𝜇 ([𝑥
𝑖
, 𝑡]) − 𝜇 ([𝑥

𝑖+1
, 𝑡])] 𝐹 (𝑥

󸀠

𝑖
)

=

𝑛

∑

𝑖=1

− [𝜇 ([𝑥
𝑖
, 𝑡]) − 𝜇 ([𝑥

𝑖+1
, 𝑡])]

Δ𝑥
𝑖

𝐹 (𝑥
󸀠

𝑖
) Δ𝑥
𝑖

= (𝐾)∫

𝑡

0

[−𝜇
󸀠
([𝜏, 𝑡])] 𝐹 (𝜏) 𝑑𝜏.

(73)

5. Choquet Integral Equations of
Fuzzy-Number-Valued Functions

In this section, let us consider a Choquet integral equation
based onTheorem 24 as shown below. Given continuous and
increasing fuzzy-number-valued functions 𝐺(𝑡) with 𝐺(0) =

0̃, let us find continuous and increasing fuzzy-number-valued
functions 𝐹(𝑡) such that

𝐺 (𝑡) = (𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝑡) (74)

which is expressed as

𝐺 (𝑡) = (𝐾)∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹 (𝜏) 𝑑𝜏. (75)

Definition 27. Let 𝑓(𝑡) be a real-valued function defined on
[0, +∞). The following

F (𝑠) = ∫

+∞

0

𝑒
−𝑠𝑡

𝑓 (𝑡) 𝑑𝑡 (76)

is said to be the Laplace transformation of 𝑓(𝑡) if the infinite
integral∫+∞

0
𝑒
−𝑠𝑡

𝑓(𝑡)𝑑𝑡 is convergentwith respect to the value
of parameter 𝑠. We denote its Laplace transformation as
F(𝑠) = 𝐿[𝑓(𝑡)] and the inverse Laplace transformation as
𝑓(𝑡) = 𝐿

−1
[F(𝑠)].

Definition 28. Let𝐹(𝑥, 𝑦) be a fuzzy-number-valued function
defined on [0, +∞) × [0, +∞). (𝐾) ∫

∞

0
𝐹(𝑥, 𝑦)𝑑𝑥 is said to be

convergent with respect to the parameter 𝑦 if for every fixed
𝑦 ∈ [0, +∞), (𝐾) ∫

+∞

0
𝐹(𝑥, 𝑦)𝑑𝑥 exists.

Definition 29. Let 𝐹(𝑡) be a fuzzy-number-valued function
defined on [0, +∞). The following

F̃ (𝑠) = (𝐾)∫
[0,+∞)

𝑒
−𝑠𝑡

𝐹 (𝑡) 𝑑𝑡 (77)

is said to be the Laplace transformation of 𝐹(𝑡) if the Kaleva
integral ∫∞

0
𝑒
−𝑠𝑡

𝐹(𝑡)𝑑𝑡 is convergent with respect to the value
of parameter 𝑠. We denote its Laplace transformation as
F̃(𝑠) = 𝐿[𝐹(𝑡)] and the inverse Laplace transformation as
𝐹(𝑡) = 𝐿

−1
[F̃(𝑠)].

Remark 30. In view of Theorem 8, we have

F̃
𝜆
(𝑠) = [∫

+∞

0

𝑒
−𝑠𝑡

𝐹
𝜆
(𝑡) 𝑑𝑡, ∫

+∞

0

𝑒
−𝑠𝑡

𝐹
𝜆
(𝑡) 𝑑𝑡] , (78)

for all 𝜆 ∈ [0, 1].

Theorem 31. Let 𝐺(𝑡) = (𝑐) ∫
[0,𝑡]

𝐹(𝜏)𝑑𝜇
𝑚
(𝑡). Then

G̃ (𝑠) = 𝑠M (𝑠) F̃ (𝑠) ,

𝐺 (𝑠) = 𝐿
−1

[𝑠M (𝑠) F̃ (𝑠)] ,

(79)

where G̃(𝑠) = 𝐿[𝐺(𝑡)],M(s) = 𝐿[𝑚(𝑡)], and F̃(𝑠) = 𝐿[𝐹(𝑡)].

Proof. Since 𝐺(𝑡) = (𝑐) ∫
[0,𝑡]

𝐹(𝜏)𝑑𝜇
𝑚
(𝑡) = (𝐾) ∫

𝑡

0
𝑚
󸀠
(𝑡 −

𝜏)𝐹(𝜏)𝑑𝜏, it follows easily from the condition that

G̃
𝜆
(𝑠) = [∫

+∞

0

𝑒
−𝑠𝑡

𝐺
𝜆
(𝑡) 𝑑𝑡, ∫

+∞

0

𝑒
−𝑠𝑡

𝐺
𝜆
(𝑡) 𝑑𝑡]

= [∫

+∞

0

𝑒
−𝑠𝑡

∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹

𝜆
(𝜏) 𝑑𝜏 𝑑𝑡,

∫

+∞

0

𝑒
−𝑠𝑡

∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹

𝜆
(𝜏) 𝑑𝜏 𝑑𝑡] ,

(80)

for all 𝜆 ∈ [0, 1].
Notice that

∫

+∞

0

𝑒
−𝑠𝑡

∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹

𝜆
(𝜏) 𝑑𝜏 𝑑𝑡

= ∫

+∞

0

∫

+∞

𝜏

𝑒
−𝑠𝑡

𝑚
󸀠
(𝑡 − 𝜏) 𝐹

𝜆
(𝜏) 𝑑𝑡 𝑑𝜏

= ∫

+∞

0

𝐹
𝜆
(𝜏) ∫

+∞

𝜏

𝑒
−𝑠𝑡

𝑚
󸀠
(𝑡 − 𝜏) 𝑑𝑡 𝑑𝜏

= ∫

+∞

0

𝐹
𝜆
(𝜏) [𝑒

−𝑠𝑡
𝑚(𝑡 − 𝜏)

󵄨󵄨󵄨󵄨󵄨

+∞

𝜏
− ∫

+∞

𝜏

𝑚(𝑡 − 𝜏) 𝑑𝑒
−𝑠𝑡

] 𝑑𝜏

= ∫

+∞

0

𝐹
𝜆
(𝜏) [−∫

+∞

𝜏

𝑚(𝑡 − 𝜏) (−𝑠) 𝑒
−𝑠𝑡

𝑑𝑡] 𝑑𝜏

= 𝑠∫

+∞

0

𝐹
𝜆
(𝜏) [∫

+∞

0

𝑚(𝑡 − 𝜏) (−𝑠) 𝑒
−𝑠(𝑡−𝜏)

𝑒
−𝑠𝜏

𝑑 (𝑡 − 𝜏)] 𝑑𝜏

= 𝑠∫

+∞

0

𝐹
𝜆
(𝜏) [𝑒

−𝑠𝜏
∫

+∞

0

𝑒
−𝑠(𝑡−𝜏)

𝑚(𝑡 − 𝜏) 𝑑 (𝑡 − 𝜏)] 𝑑𝜏

= 𝑠∫

+∞

0

𝐹
𝜆
(𝜏) 𝑒
−𝑠𝜏

M (𝑠) 𝑑𝜏

= 𝑠M (𝑠) ∫

+∞

0

𝑒
−𝑠𝜏

𝐹
𝜆
(𝜏) 𝑑𝜏 = 𝑠M (𝑠)F

𝜆
(𝑠) .

(81)

Following the same argument, we can prove that

∫

+∞

0

𝑒
−𝑠𝑡

∫

𝑡

0

𝑚
󸀠
(𝑡 − 𝜏) 𝐹

𝜆
(𝜏) 𝑑𝜏 𝑑𝑡 = 𝑠M (𝑠)F

𝜆
(𝑠) . (82)
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Hence,

G̃ (𝑠) = 𝑠M (𝑠) F̃ (𝑠) ,

𝐺 (𝑠) = 𝐿
−1

[𝑠M (𝑠) F̃ (𝑠)] .

(83)

Theorem 32. For continuous and increasing fuzzy-valued
functions 𝐺(𝑡) with 𝐺(0) = 0̃,

F̃ (𝑠) =
G̃ (𝑠)

𝑠M (𝑠)
, 𝐹 (𝑠) = 𝐿

−
[

G̃ (𝑠)

𝑠M (𝑠)
] , (84)

where G̃(𝑠) = 𝐿[𝐺(𝑡)],M(𝑠) = 𝐿[𝑚(𝑡)], and F̃(𝑠) = 𝐿[𝐹(𝑡)].

Proof. It follows easily fromTheorem 31 that

G̃ (𝑠) = 𝑠M (𝑠) F̃ (𝑠) ,

𝐺 (𝑠) = 𝐿
−1

[𝑠M (𝑠) F̃ (𝑠)] .

(85)

It is obvious that

F̃ (𝑠) =
G̃ (𝑠)

𝑠M (𝑠)
,

𝐹 (𝑠) = 𝐿
−1

[
G̃ (𝑠)

𝑠M (𝑠)
] ,

(86)

where G̃(𝑠) = 𝐿[𝐺(𝑡)],M(𝑠) = 𝐿[𝑚(𝑡)], and F̃(𝑠) = 𝐿[𝐹(𝑡)].
The Dirac delta function is defined by the properties

𝛿 (𝑡) = {
0, for 𝑡 ̸= 0,

undefined, at 𝑡 = 0,
(87)

and ∫
+∞

−∞
𝛿(𝑡)𝑑𝑡 = 1; that is, the function has unit area.

The Laplace transform of the Dirac Delta function 𝛿(𝑡) is
shown as follows:

𝐿 [𝛿 (𝑡)] = ∫

+∞

0

𝑒
−𝑠𝑡

𝛿 (𝑡) 𝑑𝑡 = 1. (88)

So

𝐿
−1

[1] = 𝛿 (𝑡) . (89)

Example 33. Let 𝑚(𝑡) = 𝑡 and let the membership function
of 𝐺(𝑡) be

𝑚
𝐺(𝑡)

(𝑥) = {
𝑥, 𝑥 ∈ [0, 1] ,

0, 𝑥 ∉ [0, 1] ,
𝑡 ≤ 1. (90)

Then by Theorem 32 we can solve the Choquet integral
equation

𝐺 (𝑡) = (𝑐) ∫
[0,𝑡]

𝐹 (𝜏) 𝑑𝜇
𝑚

(𝑡) . (91)

Indeed, let 𝑚(𝑡) = 𝑡; thenM(𝑠) = 1/𝑠
2 . The 𝜆-cut of 𝐺(𝑡) is

represented by interval: 𝐺
𝜆
(𝑡) = {𝑥 | 𝑚

𝐺(𝑡)
(𝑥) ≥ 𝜆} = [𝜆, 1];

that is 𝐺
𝜆
(𝑡) = 𝜆, 𝐺

𝜆
(𝑡) = 1. In view of Remark 30, we have

G̃
𝜆
(𝑠) = [∫

+∞

0
𝑒
−𝑠𝑡

𝐺
𝜆
(𝑡)𝑑𝑡, ∫

+∞

0
𝑒
−𝑠𝑡

𝐺
𝜆
(𝑡)𝑑𝑡] = [𝜆/𝑆, 1/𝑆].

Then

F
𝜆
(𝑠) =

G
𝜆
(𝑠)

𝑠M (𝑠)
= 𝜆,

F
𝜆
(𝑠) =

G
𝜆
(𝑠)

𝑠M (𝑠)
= 1.

(92)

Furthermore,

𝐹
𝜆
(𝑡) = 𝐿

−1
(F
𝜆
(𝑠)) = 𝜆𝛿 (𝑡) ,

𝐹
𝜆
(𝑡) = 𝐿

−1
(F
𝜆
(𝑠)) = 𝛿 (𝑡) .

(93)

Therefore, for every 𝜆 ∈ [0, 1]

𝐹
𝜆
(𝑡) = [𝐹

𝜆
(𝑡) , 𝐹
𝜆
(𝑡)] = [𝜆𝛿 (𝑡) , 𝛿 (𝑡)] . (94)

Then we have the membership function of 𝐹(𝑡) as

𝑚
𝐹(𝑡)

(𝑥) =

{

{

{

𝑥

𝛿 (𝑡)
, 𝑥 ∈ [0, 𝛿 (𝑡)] , 𝑡 = 0,

0, otherwise.
(95)

6. Conclusions and Remarks

In this paper, we have considered the Choquet integrals of
fuzzy-number-valued functions based on the nonnegative
real line.We have discussed the Choquet integrals of interval-
valued functions and fuzzy-number-valued functions based
on nonadditive Sugeno measures and showed the repre-
sentation theorem of them, respectively. We also gave the
operational schemes of above several classes of integrals
on discrete sets. Then we have given a representation of
the Choquet integral of a nonnegative, continuous, and
increasing fuzzy-number-valued function with respect to a
fuzzymeasure. In addition, in order to solve Choquet integral
equations of fuzzy-number-valued function, a concept of the
Laplace transformation for calculation has been introduced.
For distorted Lebesgue measures, it was shown that Choquet
integral equations of fuzzy-number-valued function could be
solved by the Laplace transformation. Finally, we have given
an example to illustrate themain result at the end of the paper.
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