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Here, some extensions of Darbo fixed point theorem associated with measures of noncompactness are proved. Then, as

an application, our attention is focused on the existence of solutions of the integral equation x(t) = F(¢, f(t, x(«,(t)),

x(@y(£), (Tx)(O/T(@) x [, (e, s, maxq ) x( (D)) maxgg, oy |2 (p@)) /(=)' )ds, |

[eS)
Vi

(t,s,x(t))ds), 0 < x <1, t €

[0, 1] in the space of real functions defined and continuous on the interval [0, 1].

1. Introduction

The concept of measure of noncompactness plays very impor-
tant role in describing differential and integral equations. It
was introduced by Kuratowski [1] as follows:

a(S) = inf{6>0:

s =[Js, diam(S,-)S(?,lsiSn<oo]>,
i=1
1)

for bounded subsets S of a metric space X. Darbo [2]
used Kuratowski measure of noncompactness to generalize
Shauder fixed point theorem to k-set contractive operators,
which satisfy the condition a(T'(A)) < ka(A) for some k €
[0,1). Up to now, other measures of noncompactness have
been defined. In recent years many papers have been devoted
to the problem of existence of solutions of integral equations,
using the technique of measures of noncompactness and
Darbo fixed point theorem (cf. [3-6]). Recently, the technique
of measure of noncompactness has been used to obtain some
extensions of Darbo fixed point theorem and the obtained
results have important applications [3, 4]. As some applica-
tions of the technique of measures of noncompactness and

Darbo fixed point theorem, the following integral equations
have been considered in [5, 6], respectively:

@0 [ (s maxg,g (@)
0= 0+ TR | T
O<ac<l, te]01],
x©=F(0f 6@,
B(t)
| usx e s, ®)
0

Joov(t,s,x((s (s)))ds) , teR,.
0

Huang and Cao [7] have given a result to find the solution of
the integral equation

x(t) =q@)+ fi (tx (e (1), x (o (1))

+f2 (t,x (B, (1), x (B, (1))
I'(x) (4)

X L t =" f5 (65 x(y,(5))> x (1 (5))) ds.
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In this paper, motivated and inspired by the integral
equations (2), (3), and (4), we are going to prove a theorem
on the existence of solutions of the integral equation

x(t)=F <t,f (t>x (“1 (t)) » X (“2 (t))) ’

(Tx) () ("
ﬁ 8 L w (t, 5, max, (g [x (1 (M)]»

max[O,r(s)] |x (YZ (T))D

X ((t - s)l_“)_lds,

rov(t, s,x(t))ds),
0
O<a<l, tel01],

(5)

in the Banach space C(I) = C[0, 1]. Note that (5) has a rather
general form and extends the integral equation (2). Our aim
will be realized with help of the technique of measure of
noncompactness. In Section 2, we present some definitions
and preliminary results about the concept of measure of
noncompactness. In Section 3, using the existent contractive
condition in [8, Theorem 3.1] and the notion of shifting
distance functions of [9], some generalizations of Darbo fixed
point theorem are proved. In the last section, a result is proved
concerning the existence of solutions for the integral equation

(5).

2. Preliminaries

In this section, some definitions, notions, and results are
presented which will be used in the next sections.

Assume that E is a real Banach space with zero element 6.
The closed ball centered at x with radius r and the ball B(6, r)
are denoted by B(x, r) and B,, respectively. If X is a nonempty
subset of E, then we denote by X and conv(X) the closure
and closed convex hull of X, respectively. Moreover, let My
indicate the family of all nonempty bounded subsets of E and
Ny its subfamily consisting of all relatively compact subsets
of E.

In our considerations, we use the following definition of
the concept of measure of noncompactness.

Definition I (see [10]). A mapping yu : My — [0, 00) is called
a measure of noncompactness if it satisfies the following
conditions.

(1) The family Kery = {X € Mp : u(X) = 0} is nonempty
and Kerp € Np.

(2) X CY = u(X) < u(Y).

3) u(X) = u(X).

(4) u(Conv(X)) = u(X).

5) UAX+(1-1)Y) < Aw(X)+ (1= AV)u(Y) for A € [0, 1].
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(6) If {X,,} is a sequence of closed sets from M such that
X, € X, forn =1,2,...and lim, ,  u(X,) = 0,
then X, = (-, X, is nonempty.

The family Kery described in (1) is said to be the kernel
of the measure of noncompactness y and since u(X,) =
w02, X,) < wu(X,), we infer that (2, X,) = 0. So,
X, € Kerp.

Let C(I) = C([0,1]) denote the Banach space of all
real functions defined and continuous on the interval [0, 1]
equipped with the norm

llll = max {|x (£)[; ¢ € [0,1]}. (6)

Fix a nonempty subset X of C([0,1]). Fore > 0 and x € X
define

w (x,€) = sup {|x (t,) - x (t,)|;

tht €10,1], |t, -t <&},

(7)
wy (X, €) =sup{w(x,€); x € X},

wy (X) = lirr%)a) (X,¢).

Banas and Lecko [11] showed that the function wy(X) is
a measure of noncompactness in C(I). Now, we state the
following two important theorems which play a key role in
the fixed point theory.

Theorem 2 (Schauder [12]). Let U be a nonempty, bounded,
closed, and convex subset of a Banach space E. Then, every
continuous and compact map F : U — U has at least one
fixed point in U.

Theorem 3 (Darbo [10]). Let Q be a nonempty, closed,
bounded, and convex subset of a Banach space E and let F :
Q — Q be a continuous mapping. Assume that there exists a
constant k € [0, 1) such that u(FX) < ku(X) for any nonempty
subset X of Q. Then, F has a fixed point in Q.

The following definition of the concept of shifting dis-
tance functions will be used to generalize Darbo fixed point
theorem.

Definition 4 (see [9]). Let y,¢ : [0,00) — R be two
functions. The pair of functions (¢, y) is said to be a pair of
shifting distance functions, if the following conditions hold:

(i) for u, v € [0, 00) if y(u) < ¢(v), then u < v;
(ii) for {u,},{v,} < [0,00) with lim,_ u, =

lim, , v, = w,ify(u,) < ¢(v,) forall n, then w = 0.

Example 5 (see [9]). The conditions (i) and (ii) of the above
definition are fulfilled for the functions y,¢ : [0,00) — R
defined by y(#) = In((1 + 2£)/2) and ¢(t) = In((1 + ¢)/2).

3. Some Generalizations of
Darbo Fixed Point Theorem

In this section, we prove some generalizations of Darbo fixed
point theorem.
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Now, using the notion of shifting distance functions
of [9], we obtain our generalization of Darbo fixed point
theorem as follows.

Theorem 6. Let U be a nonempty, bounded, closed, and
convex subset of the Banach space E. Moreover, assume that
T :U — U is a continuous function such that

v (1 (TX)) < ¢ (u(X)) (8)

for any nonempty subset X of U, where u is an arbitrary
measure of noncompactness and y, ¢ : [0,00) — R are the
pair of shifting distance functions. Then, T has a fixed point in
U.

Proof. Define the sequence {U,} by U, = U and U, =
Conv(TU,,_,) for all n > 1. If there exists an integer n, > 0
such that ;,t(U ) =0, then U,, is relatively compact and since
TU, <U, thus Theorem 2 1mphes that T has a fixed point.
So suppose that u(U,) > 0 for all n > 0. Using (8) we get

¥ (#(Upr)) = v (1 (Conv (TU,,)))
=y (#(TU,)) < ¢ (u(U,)).

Due to condition (i) of Definition 4 and (9) we infer that
{u(U,)} is a decreasing sequence of positive real numbers.
Thus, there exists > 0 such that (U,) — rasn — oo.
So, in view of (9) and condition (ii) of Definition 4, we get
r = 0 and hence lim, _, , u(U,) = 0. Now, since U,,; < U,,
TU, < U,, and u(U,) — Oasn — 00, condition (6) of
Definition 1 implies that U, = [, U, is nonempty, closed,
convex, and invariant under the operator T' and belongs to
Ker p. So, Theorem 2 completes the proof. O

Taking v = I in Theorem 6, we have the following result.

Corollary 7. Let U be a nonempty, bounded, closed, and
convex subset of the Banach space E. Moreover, assume that
T:U — U is a continuous function such that

u(TX) < ¢ (u (X)) (10)

for any nonempty subset X of U, where u is an arbitrary
measure of noncompactness and ¢ : [0,00) — R is a function
such that

(@) for {u,}.{v,} ¢

[0,00) with lim,_,  u, =
lim, , v, = w, ifu, < ¢(v,) for all n, then w = 0;

(b) for u,v € [0,00) ifu < ¢(v), then u < v.
Then, T has a fixed point in U.

Using Proposition 9 proved in [9] and Theorem 6, we
have the following result.

Corollary 8. Let U be a nonempty, bounded, closed, and
convex subset of the Banach space E. Moreover, assume that
T :U — U is a continuous function such that

v (u(TX)) <y (u(X)) = (u(X)) 1)

for any nonempty subset X of U, where y is an arbitrary
measure of noncompactness and ¢,y : [0,00) — [0,00) are
two nondecreasing and continuous functions satisfying y(t) =
@(t) = 0 ifand only ift = 0. Then, T has a fixed point in U.

Now, motivated and inspired by the contractive condition
in [8, Theorem 3.1], we present another generalization of
Darbo fixed point theorem as follows.

Theorem 9. LetU be a nonempty, bounded, closed, and convex
subset of the Banach space E. Moreover, assume that T : U —
U is a continuous function such that

v (u(TX)) < @ (u(X)) -0 (u(X)) (12)

for any nonempty subset X of U, where u is an arbitrary
measure of noncompactness and y,¢$,0 : [0,00) — [0, 00)
are three functions such that ¢ and 0 are bounded on any
bounded interval in [0,00) and v is continuous. Moreover,
assume that

M yx)<p(y) = x<y;
(2) for any sequence {x,} in [0,00) with x,
0, y(t) - limsup, _, . @(x,) + liminf,

Then, T has a fixed point.

-t >
0(x,) > 0.

Proof. Similarly as in the proof of Theorem 6, we construct
the sequence {U,} by U, = U and U, = Conv(TU,,_,) for all
n > 1. If there exists an integer n, > 0 such that plU, ) =
0, then U,, is relatively compact. Hence, from Theorem 2 we
conclude that T has a fixed point in U. Assume that u(U,,) > 0
for all n > 0. By applying (12) we get

Y (1 (Up)) = v (4 (Conv (TU,,)))
(13)

=y (u(TU,)) <@ (1 (U,) -6 (4 (U,)) -

Since 8 > 0, thus from (13) we get y(u(U,,,,)) < o(u(U,)),
which by condition (1) implies that u(U,,,,) < u(U,). Hence,
{u(U,} is a decreasing sequence of positive real numbers. So,
there exists r > 0 such that

Jim p (U,) =r. (14)

We will prove that 4(U,) — 0asn — co. Taking limit
supremum on both sides of (13) and using the properties of
the functions v, ¢, and 0, we have

y (r) < limsupg (uU,,) + limsup (-6 (uU,)). (1)
Consequently,

y (r) < limsupg (uU,) -~ iminf6 (uU,),  (16)
which implies that

y (r) - lim supg (uU,) + lim inff (uU,) < 0. (17)

So, from condition (2) we conclude that r = 0. Thus, u(U,)) —
0Oasn — ooandlim,_, u(U,) = 0. Now, sinceU,,,, € U,



and TU, < U, thus from condition (6) of Definition 1 we
conclude that U, = (72, U, is nonempty, closed, convex,
and invariant under the operator T' and belongs to Ker .
Consequently, Theorem 2 implies that T has a fixed point in
U. O

Corollary 10 (Darbo [10]). Let Q be a nonempty, closed,
bounded, and convex subset of a Banach space E and let F :
Q — Q be a continuous mapping. Assume that there exists a
constant k € [0, 1) such that u(FX) < ku(X) for any nonempty
subset X of Q. Then, F has a fixed point in Q.

Proof. Take y,¢ = I and 0(t) = (1 — k)t in Theorem 9. O

Taking v = I and 6 = 0 in Theorem 9, we have the
following corollary.

Corollary 11. Let U be a nonempty, bounded, closed, and
convex subset of the Banach space E. Moreover, assume that
T :U — U is a continuous function such that

u(TX) < ¢ (4 (X)) (18)

for any nonempty subset X of U, where u is an arbitrary
measure of noncompactness and ¢ : [0,00) — [0,00) is
bounded on any bounded interval in [0, 00). Moreover, assume
that x < @(y) = x < y and, for any sequence {x,} in [0, 00)
with x,, — t >0,

lim supg (x,,) < t. 19)
Then, T has a fixed point.

4. The Solutions of the Integral Equation of
Mixed Type

In this section, we consider the integral equation (5) and
prove an existence theorem of solutions of that equation.
First, we recall the following two Lemmas of [13] which will be
used to prove the existence theorem of the integral equation

(5).

Lemma 12. Suppose x € C(I) andr : I — 1 is a continuous
function. Define (Fx)(t) = maxq ) |x(t)| fort € I. Then,
Fx € C(I).

Lemmal3. Let(x,) ¢ C(I) and x € C(I). Suppose that x,, —
x in C(I). Then, Fx,, — Fx uniformly on I.

Now, we list the hypotheses which will be used to prove
the existence theorem of the integral equation (5).
(H,) The functions &y, a,,y;,9, [0,1] — [0,1] are
continuous.

(H,) r : [0,1] — [0,1] is continuous and nondecreasing
on [0, 1].
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(H;) F:[0,1] xR xR xR — Risa continuous function
and there exist positive real numbers L,,L,,L; < 1
such that

|F (t, %1, %5, x3) - F (t, y1))’2))’3)|
(20)

< Lyl = y[+ Ly x5 = po| + Ly |5 = p3
fort € [0,1] and x,, x5, X3, ¥, ¥, ¥3 € R. Moreover,

assume that F = Sup;(o.11F(¢,0,0,0)].

(Hy) f : [0,1] x R x R — R is continuous with
o = sup{|f(t,0,0)|; t € [0, 1]}. Further, there exists
continuous and nondecreasing function v, : R, —

R, with y,(0) = 0 so that

(@) 1f (& x5 y1) = (& x, )1 < 9y ((oey = x| + 1y =
1,1)/2), for t € [0, 1] and x;, x,, ¥, ¥, € R.

(Hs) T: C(I) — C(I)is a continuous operator such that

|(Tx) (81) = (Tx) (&5)] <y (% (82) = x (1))
I(Tx) (") <a+blx],

(1)

for x € C(I) and t,t;,t, € [0,1], where y, is the
existent function in the assumption (H,) and a, b are
positive real numbers.

(Hg) u : [0,1] x [0,1] x R, x R, — R is a continuous
function and there exists a function n : [0,1] —
[0, 1] being continuous on [0, 1] and a function ¢, :
R, — R, being continuous and nondecreasing on
R, with ¢;(0) = 0 such that

|” (t,s,xl,y1)| <n(t) ¢, (@)>

|M(t,5,x1,)/1)_u(t)s’x2>y2)| (22)

X = x| + [y1 =y )

S”(t)¢1< 5

fort,s € [0,1] and x, x,, y;, ¥, € R,.

(H;) v:[0,1] xR, xR — Risa continuous function and
there exists a continuous functionm : R, — R, and
a continuous function k : [0, 1] xR, — R, such that
mands — k(t,s) are integrable over R,. Moreover,
there exists the function ¢, : R, — R, such that ¢,
is continuous and nondecreasing with ¢,(0) = 0 and
the following conditions hold.

@) [v(ty, s, x) = vty s,x) < m(s)d,(t, = ),
[v(t, s, x)| < ¢, (IxDk(t,s), |v(t,s, x)-v(t,s, y)| <
¢, (lx — yDk(t, s), for all t,¢,,¢, € [0,1],s € R,,
and x, y € R.

(b) ¢, (t) + y;(t) < ¢(¢) for all t > 0, where y; and
¢ are the existent functions in the assumption
(H,) and Corollary 7, respectively. Moreover,

assume that M = sup, (o jooo k(t, s)ds.



Abstract and Applied Analysis

(Hg) There exists a positive solution 7, such that

_(a+bry)

Lyy, (rp) + Lz”mﬁbl ()

+LyMe, (ry) + L, fo + F <1, (23)
LyM < Ly + Ly, (rp)

X —— <1,
I'(x+1)

where f, = sup{f(£,0,0); t €
sup{n(t)t”; t € [0,1]}.

[0,1]} and n =

Now, we can present and prove the main result of this
section.

Theorem 14. Under the assumptions (H,)-(Hy), (5) has at
least one solution x = x(t) belonging to the Banach space C(I).

Proof. Define the operator G on the Banach space C(I) by the
formula

(Gx) (1) = F <t, Fltox(a ®),x (@, ®)), %
% J u (> s, maxjg g x (11 ()]
0

max(g, o % (v, (1))]) (24)

X ((t - s)l_a)ilds,
J'oo v(t,s, x (1)) ds> ,
0

0<a<l, tel0,1].

Using the imposed assumptions we infer that Gx is con-
tinuous on I for each x € C(I). Moreover, by using our
assumptions, for any ¢ € I, we get

[(Gx) (£)]
- |F (t,f (6x (o () x (a0 (1)),

(Tx) (¢)

t
t) bl )
I'(a) L”( s, max(q, (o [ (11 (7))

max(g, (g |x (v, (1))

X ((t - s)l_“)ilds,

LOO v(t, s, x(t)) ds)

<

F (t, f(tx (e (1), x (g (1))

Mr

Tl )y # (65 maxor) [ (n )],

0
maxg,,o; |* (y2 (1))

X ((t - 5)17“)_1ds,

JOO v(t, s, x(t)) ds> - F(t,0,0, O)I
0
+|F (£,0,0,0)]
<L, |f (t,x (a; (1)), x (ay (1)) = f (1,0, 0)|
+L,|f (£,0,0)]

(Tx) (¥)
I'(x)

2

t
L u (t, s, maxg, ;1 |x (y1 (1)),

max(g,(; % (v, (1))

x((t —s)l_“)_lds

+1L, +F

JOO v(t,s,x(t))ds
0

@+blxl)

I @ (t)

|x (a; )] + |x (a 1))] ) L

SL1‘/’1< >

X L ¢ ( |maX[O,r(s)] |x (r2 (T))l

1
—maxp ) % (y, (0))]| E)

x (t —s)* 'ds

+Ls Jo ¢, (Ix () k(t,s)ds+ F + L, f,.
(25)

Since v, ¢;, and ¢, are nondecreasing, then from (25) we
conclude that

_(a+Db]x|)

I(Gx) (Nl < Lyyy (lIxl) + LGm¢l (llxl) o6

+ LsMdo, (lIx|l) + F + L, f,.
So, in view of assumption (Hjg), the operator G transforms
Bro into itself. Next, we show that G is continuous on the ball
B, . To do this, assume that {x,} is a sequence in B, such that

x, — x and show that Gx, — Gx. Indeed, for each ¢t € I,
we have

|(Gx,,) (1) - (Gx) (1))

F <t, £ (6,3, (o ()%, (o, ()



(Tx,) ()
I'(x)

¢
Jo u (t, s, maxq o |x, (1 ()]
max(o,(o) %, (1> (1))])
X ((t - s)l_a)ilds,
JOO v(t,s x, (1)) ds)
0

-F <t,f(t,x(<x1 ®),x(aq (1)) »

(Tx) (¥)
I'(x)

t
JO u(t,s,maxg,q; |[x (v (D)],
max(g (g % (v, (7))

X ((t - s)l_“)_lds,

LOO v(t, s, x(t)) ds)

<Ly|f(tx, () (1), x, (; (1))
~f(tx (g (1), x (e (1)))]

(Tx,) (1)
I'(x)

t
2 JO u (t’ S Inax[O,r(s)] |xn (Yl (T))l >

maXg ,(5)] |xn (Yz (T))l)
(=9 s

(T
I'(x)

t
L u (t, s, maxq o |x (9 ()]
max(g, g % (v, (1))

x((t - s)l_“)ilds

‘L, LOO v (ts,x, (1)) ds - LOO v (s, x (£)) ds

(27)
On the other hand, we have

(Tx,) (t)

t
IW Jo u (t, 5, max, (g |x, (1 (M)]»

max(o, (s %, (v2 (M)])
x ((t- s)l_“)ilds

10

t
t) bl N
I'(a) Lu( s, max(q, (s [ (1 (7)]

maxo, | (2 (1))])

x((t-9)'™) ds

p ’ (Tx,) (t)

_Garbl))
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t
t) bl S
I'(a) Jo”( s, maxg, (g |%, (1 (7))

max(g,,(g; % (v2 (1))

X ((t - 5)1_“)71615

(Tx,) @) (*
T () JO u(t:s, MaX(o,r(s)] |x n (T))| )
maxqq,(g) % (2 (1))
x ((t-9') ds
(Tx,) @) (*
’ l T («) JO u(t, s, maxg () |x (1 (1)]
maxqq,g) |x (72 (7))
x((t=9") ds
(Tx) () ("
- Fx(oc) L u(ts, maXio,r(s)] |x n (T))l >

maxg,,(s)] |x (12 (T))D

x((t - s)lf“)_lds

T+ "0

1
x (5 [lmaxig,on 5, (0 )
—max(g,; % (y1 (0))]|
+ |maX[0,r(s)] lxn (YZ (T))l
—maxpg,g; % (2 (0))]|] >

||Txn - Tx||

r ((X + 1) n(t) ta¢1 (lmaX[O,r(s)] |x (yl (T))|

1
—maX(o r(s)] |x (72 (T))” E) :
(28)

Due to (27), (28), and our assumptions, we derive that

|(Gx,,) (t) - (Gx) (1))

<Ly ( CACROIEEICHO)

b (0 ) - x () )
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(a+b]x,|)
L, T(a+1)

t*n (t) ¢,

x (|maxgq, (g [x, (v1 (1))
—maxqg,.(y; [ (1 (7))
+ [maxg, g |x, (12 ()]

—maxpg . | (v, (0)]|)

I, Tl, e
[(x+1) !

X (|maxpg,, (g [ (2 ()]
— maxq,(g; X (31 (1)

—max(g,, |x (1, (1))|])

+ L3¢, (|x, (1) —x (2)]) Jo k(t,s)ds.
(29)

Using (29), Lemma 13, and the imposed assumptions, we have
Gx,, — Gx|| — Oasn — oo.

Now, let X be a nonempty subset of the ball B, , x € X,
and fix arbitrarily e > 0. Chooset,,t, € [0, 1] suchthatt, <t,
and t, — t; < e. Then, taking into account our assumptions,
we have

|(Gx) (t,) - (Gx) (1,)]
- \F (tz,f (3 (@ (1)) (e (1))

(Tx) (t,)

t
I'(a) L u (£ 5 maxg, ) x (v (0)]

maX;g ,(s)] lx (¥ (T))l)
x((t,-)"™) ds,
J»Ooo ) (t2>5’ x (tz)) d5>
_F <t1,f (t1, x (g (1)) > x (ay (1))

(Tx) (t,)
I'(x)

t
L u(ty, s, maxq,; |x (v ()]

max(g,(g) % (v (7))])
X ((t1 - s)lfa)_lds,

j:o v (tysx(t) ds)

<Ly |f (tx (01 (), x (o (1))
—f (t x (e (1)) x (s (11)))]
+ Ly | f (85 x (e (1)), x (0 (11)))
—f (b x (o (1)), x (a0 (11)))]

(Tx) (t,)
I'(x)

ty
L u (t5, s, maxg, () |x (v, ()],

2
maxo, | (2 (1))

x((t,—s)"™) ds

(Tx) (t,)
I'(x)

tl
L u(ty, s, maxg, ) |x (v ()]

maxq, (g [ (2 (7))

1

><((1.‘1 - s)l_“)_ ds

[0

+ L, L lv(ty s, x(t,)) = v(t,s x(t,))|ds

+Ls LOO [v(ty,s x(t,)) = v(t, s x(t,))| ds.

(30)

Moreover, we have

(Tx) (t,)

t2
t b bl (s N
I'(a) Jo u(ty, 8, maxge, g |x (1 (7))

maxo, | (2 (1))

X ((t2 - s)l_a)_lds

~ (Tx) (t,)
I'(x)

t
L u(ty, s, maxg,; |x (v ()|
maxqg, g |x (v, (1))
x((t, - 5)17“)_1615

(Tx) (t t
= T()Z) L u (£, s, maxjg, ) |[x (11 ()]
max(g (g |% (2 (1))])
x ((tz - S)l_“)_lds

_ (Ix) (t,)
T'(x)

tl
L u (), s, maxg, ) |x (v ()]

maxpg (g |% (2 (1))])



X((tl - S)I_a)_lds

(Tx) (t,)

tl
t bl bl 71 S
I («) J; w (ty, 8, maxge, g [x (1 (7))

max(o (g |% (2 (1))])

1

X ((1‘1 - s)l_“)_ ds

(Tx) (tl)

t
T T t bl bl R
I'(a) L u (£, 5 maxg, e |x (1 (7)]

maxgg,(q; | (v2 (7))

X((ﬁ - S)I_a)_lds

S (Tx) (t,) [

t2
t2: 5, r(s s
I () Jo u (ty, 8, maxge, g [x (1 (7))

maxq,; [ (v (7))

X ((fz - S)I_u)_lds

t]
- L (£, 5 maxj, ) [x (v ()],

maxg, (o |* (y2 (7))

X((tz - 5)1_“)_1615

31
" Jo u(tys, maXio,r(s)) |x (y: ()]

maxq,o; % (y2 ()])
X ((t2 - s)l_“)_lds
t
- JO u(tys, maxo,,(s)] |x (n (T))|,
maXig,(s)] |x (Yz (T))l)

(CE S)l_“)_lds‘

tl
" L w (ty, s, maxgo, g % (v1 ()]

maXg »(s)] |x (Yz (T))D
x ((1.‘2 - s)l_“)_lds
tl
- L u(tys maxjg ,(s)] |x (n (T))I,

max(o, | (2 (1))
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X((ﬁ - S)Hx)_lds

(Tx) (t,) — (Tx) (t,)]
I' ()

|

|

tl
% JO u (s s, maxqo, ) [x (v1 ()]

max(g (g |% (2 (1))])

X((t1 - S)l_a)ildsl )

(31)

Thus,

(Tx) (t ) t
T(x)z L u (ty, 8 maxg (o |x (11 ()]

max(o,; % (v, (1))])
<((t,=9™) s

(T (1) Jtl

r (OC) u (tly S, maX[O’r(s)] |x ()/1 (T))l N

0

max|o,; % (v, (1))])

X((tl - 5)1_“)_1615

_ @+l
(@)

n(ty) ¢y ()

t ty
xj (t,-9)""ds+ w,, (u, e)j (t, — 5)*\ds
ty 0
h a-1 a—1
#n(e) @y ) | {0 -9 = (1= )" s
l)l/l ((U (x) s))n(
T'(x)

(a+Dblix|)

S v d OLXCICEINE

£) ¢y (Il jO‘ (t, - ) ds

1
+w, (u,€) % - (_(tz )+ tg‘)

+n(t) ¢y (xl) (8 — 1) + 65— £3) x i

* T+ 1) Xy (@ (x,8) n(ty) ¢y (Ixl) x £

(a+bry)
I(x+1)

IN

1
¢, (rp) x £ + w,, (u,e) x — x —&*
fo!
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1
(24
+ ¢y (rg) € % o

F( A I)Wl (w (x,€)) p, (rp) -

(32)

Using (30), (32), and the assumptions of Theorem 14, we
earn

|(Gx) (1) - (Gx) (1))

<1, [% (w(x’w(aps»;w(x,wmz,e)))

a9 |

b
2 [%‘/’1 (rp) % ésa

(33)

-1 1
+w, (u,€) X ;s“ +¢y (ry) " x ;]

1
+ L, x mwl (w(x,8) ¢, (1’0)

+ Ly, (¢) Jo m(s)ds

F Lo (1 (6) (@) [ k() ds,
where
w,, (u,€) = sup {|u(t, s, x1,%,) = u(7,8,%1,%,)|5
t,s,T €[0,1],
[0,70] 5

w, (f€) = sup{|f (t,%,y) = f (t1, %, )|

t,,t, € [0,1],

X1, X, € [t — 7| < e},

[t, —t,| <& x,y €[~}
(34)

The estimate (33) implies that

w (Gx, €)

w(xw(a,€)) + @ (x 0 (0e)) )

SLl‘/’l( 2

+ Llwro (f,S)

(a+bry) 1 4
[mfpl (r9) x o

-1 1
+w, (u,€) X ;s“ +¢y (ry) " x ;]

——— v, (@ (x,€)) ¢, (1))

1
X v
L [T 6 @mEds Ly @xe) M.

(35)

It follows from assumptions (H,), (H,), and (H) that the
functions «;, «,, f,and u are uniformly continuous on the
sets [0, 1], [0, 1], [0, 1] x[—7y, o] X [—7y, 7], and [0, 1] x [0, 1] x
[0,7,] x [0, 7,], respectively. Consequently, we infer that

limw (a;,¢) = limw (ay, €)
e—0 e—0

(36)
= ime, () = fm ) =

Hence, using assumptions (H,) and (H;) and estimate (35),
we get

w, (GX)

0 (X, w(a,€)) +w (X, w(a,e)) )

<71
s LIEIILHOV’I ( >

1 (37)
+ lim <L2 eV @ ()

e—0

+L; M, (w (X, €)) ) .

Since the functions y, and ¢, are continuous and y,(t) +
¢, () < ¢(t), then from (36), (37), and the assumption (Hy),
we conclude that

wy (GX) < Ly, (w (X))

1
+L, X m‘/’l (r0) X Wy (@ (X))

+L3 M, (w, (X))
(38)

1
< <L1 + Ly (rp) m)
(1 (@ (X)) + ¢, (w (X))
< ¢ (w (X)).
Thus, Corollary 7 completes the proof. O
Now, we present the following example which shows that

Theorem 14 can be applied to obtain solutions of the integral
equation (39) but the existent results in [5, 6] are inapplicable.
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Example 15. Now, we investigate the following integral equa-
tion:

x (t)

—t —t

= —— COS ¢
100 (800 (1+£2) (1+ |x @)+ |x28)])

1 1 1
" 100" “’S((l +(1/8) |x(t)|)> I(1/2)
X Jo (arctan <e7ts |maxq g x (7)]

«en)5))

~ MaXpg,q

x ((t-9)"2) "ds
1 (® e’ . (lx@®)l
+ﬁjo 1+t/83m< 8 >d5>’

for t € [0, 1]. Equation (39) is a special case of the integral
equation (5), where

(39)

—t

F(t,x,y,2) = %cos<w>,

100

et

ftxy)= 8(1+£2)(1+ x|+ |y])’
a)=pn)=r)=t

o, (t) =y, (t) = 2t,

1
(Tx) () = COS(W)’

—ts _
u(t,s,x, y) = arctan (y) ,

=S

; i (|x|>
sm| — ).
1+1t/8 8

v(t,s,x) =

(40)

Then, it is easily seen that oy, «,, y;, },, and r satisfy the
assumptions (H;) and (H,) of the Theorem 14. Further, the
function F satisfies assumption (H;) with L, = L, = Ly =
1/10000 and F = 1/100. Since f(t,x, y) = e /8(1 + t*)(1 +
|x|+1yl1), then, for all ¢ € [0, 1] and x;, x;, ¥;, ¥, € R, we have

|f (£ x5 1) = f (t:%, 3,))]

e—t

8(1+12)(1+ |xy|+|»])

—t
e

8(1+22) (1+ |xof + [32])

Abstract and Applied Analysis

—t

e |x2|+|y2|—|x1|—|y1|
8(1+22) [(L+ |y | + [3]) (1 + [xy] + [32])

< —(Jxey =21+ [y, = 2l)

| =

(41)

So, the assumption (H,) is satisfied with y,(¢) = (1/4)t and
fo = 1/8. In this example, we have (Tx)(t) = cos(1/(1 +
(1/8)]x(#)])) and this operator satisfies assumption (Hs) with
y,(t) = t/8,a = 1,and b = 0. On the other hand, for all
t,s € [0,1] and x, ¥, x1, x5, ¥;, ¥, € R, we get

arctan <e_t5 M ) ’
8

Ix - y|
8

—ts _
arctan ( m >

8

—ts _
—arctan (_e |x§ y2| )l

s = _ |x2 - 5
8 8

(65,2, 9)] =

<e’

>

|1/l (t, S, xl,yl) - M(t,S,XZ, y2)| =

< e_t

lxl _)’1| - |x2 _)’2|
8

—t
=e

—t |x1 - x2| + |)’1 - }’2|
8

<e

(42)

So, ¢,(t) = (1/4)t and n(t) = €. Moreover, n =
sup{vte’; t € [0,1]} = 1/e. Thus, assumption (Hy)
holds. Now, notice that the function v(t,s,x) = (e*/(1 +
t/8)) sin(|x|/8) is continuous and satisfies the conditions (a)
and (b) of the assumption (H,). Indeed, forallt,¢,, ¢, € [0, 1],
seR,,and x, y € R, we have

[v(ty s, x) = v(t,s x)|
e’ (lxl) e’ (lxl)l
———sin( — |- ———sin( —
1+1¢,/8 8 1+1¢,/8 8
Sl -t

8 >

<e

R C

x
X2 (43)

v(t, s, x)| <
Iv ) 1+1t/8 8

lv(t,s,x) - v(ts y)]|

e’ | < |x|> e’ . |y|
sin — | - sin [ =
1+t/8 8 1+1t/8 8

et (=]
T 1+1t/8 8 '
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So, ¢,(t) = t/8, m(s) = e, and k(t,s) = e /(1 + t/8).
Moreover, M = sup,¢(q 1 JOOO k(t,s)ds = 1, y,(t) + ¢,(t) =
t/4 = ¢(t), and the condition (b) of the assumption (H,)
holds with ¢(t) = t/4. Thus, the existent inequalities in
assumption (Hy) have the forms

1 1 1 1 n

Tyt X Ty t X
40000 ° * 40000e ~ T'(3/2) ° " 10000 ~ 8

1 1
=X ——+ —— <71,
8 10000 100
1 1 1 70 1
< + X — X <1
10000 ~ 10000 10000 4 TI'(3/2)

It is easily seen that the last inequalities have a positive
solution. For example, r, = 1/2. We see that all assumptions
of Theorem 14 are satisfied. Consequently, from Theorem 14
the integral equation (39) has a solution in the space C(I).

(44)
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