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We analyze the impact of seasonal activity of psyllid on the dynamics of Huanglongbing (HLB) infection. A newmodel about HLB
transmissionwith Logistic growth in psyllid insect vectors and periodic coefficients has been investigated. It is shown that the global
dynamics are determined by the basic reproduction number 𝑅

0
which is defined through the spectral radius of a linear integral

operator. If 𝑅
0
< 1, then the disease-free periodic solution is globally asymptotically stable and if 𝑅

0
> 1, then the disease persists.

Numerical values of parameters of the model are evaluated taken from the literatures. Furthermore, numerical simulations support
our analytical conclusions and the sensitive analysis on the basic reproduction number to the changes of average and amplitude
values of the recruitment function of citrus are shown. Finally, some useful comments on controlling the transmission of HLB are
given.

1. Introduction

Plant disease is an important constraint to crop production.
Due to plant diseases, more than 10% of global food pro-
duction is lost and 800 million people do not have adequate
food in the world [1–3]. Plant pathologists cannot ignore
the juxtaposition of these figures for food shortage and the
reduction of crops caused by plant disease.

Nowadays, Huanglongbing (HLB) which is a century old
disease caused by the bacteria Candidatus Liberibacter spp
is one of the most serious problems of citrus worldwide
[4]. HLB has been responsible for the near destruction of
citrus industries in Asia and Africa [4]. The main symptoms
on HLB-infected citrus trees are yellow shoots, leaves with
blotchy mottle, and small lopsided fruits [4, 5]. The HLB is
a phloem-restricted, noncultured, Gram-negative bacterium
causing crippling diseases denoting “greening” in South
Africa, “mottle leaf ” in the Philippines, “dieback” in India,
and “vein phloem degeneration” in Indonesia. The infected
citrus orchards are usually destroyed or becomeunproductive
in 5 to 8 years [4].

Most of the known plant viruses are transmitted by
insect vectors and entirely dependent on the behaviour and

dispersal capacity of their vectors to spread from plant to
plant. HLB, a destructive disease of citrus, can be transmitted
by grafting from citrus to citrus and by dodder to periwinkle.
The citrus psyllid (Diaphorina Citri Kuwayama) is natural
and mainly vector [4]. In this paper, we mainly consider that
HLB transmitted from tree to tree by Asian citrus psyllid
insect vectors.

Mathematical models play an important role in under-
standing the epidemiology of vector-transmitted plant dis-
eases. Since the introduction of HLB, a lot of researches
have been conducted on the epidemiology of the disease and
on the vector, but the result of these two lines of inquiry
integrated is very few.Analyticalmodels have also beendevel-
oped for the spread of citrus canker [6], butmodels for vector-
transmitted bacterial pathogens are still preliminary [7]. In
[8], the authors proposed a deterministic compartmental
mathematic model to analyze HLB spread between citrus
plants. They assumed that all coefficients of the model are
constant (autonomous systems). However, in the real world,
actual data and evidence show that dynamics of disease
transmission are not as simple as shown in the model. In
[9], Hall and Hentz have studied seasonal activity of psyllid
insect vectors which is correlated with humidity. Seasonal
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fluctuations in the transmission of infectious diseases imply
that the corresponding mathematical models may admit
periodic solutions. It is interesting and important to study
the globally dynamics which are determined by threshold
parameter 𝑅

0
in periodic epidemiological models.

Based on above introduction, we propose a model with
periodic transmission rates to investigate the seasonal HLB
epidemics [10, 11]. In this model, we consider Logistic growth
term for dynamics of susceptible psyllid vector. Furthermore,
we assumed that the infective citrus population is generated
through susceptible citrus which was bit by infective psyllid
and the susceptible psyllid bit the infective citrus which will
become infective psyllid. Then, the periodic system is as
follows:

𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= Λ (𝑡) − 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) ,

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡) − 𝜇1 (𝑡) 𝐼ℎ (𝑡) − 𝑑 (𝑡) 𝐼ℎ (𝑡) ,

𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏 (𝑡) (𝑆V (𝑡) + 𝐼V (𝑡)) [1 −

𝑆V (𝑡) + 𝐼V (𝑡)

𝑚 (𝑆
ℎ (𝑡) + 𝐼ℎ (𝑡))

]

− 𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) ,

(1)

with initial condition

𝑆
ℎ
(0) > 0, 𝐼

ℎ
(0) > 0, 𝑆V (0) > 0, 𝐼V (0) > 0.

(2)

Here, 𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), and 𝐼V(𝑡) represent susceptible citrus

host, infected citrus host, susceptible psyllid, and infected
psyllid, respectively. We can easily see that 𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) +

𝐼
ℎ
(𝑡) and 𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡) are the number of citrus

population and psyllid population, respectively. Λ(𝑡) is the
recruitment rate of citrus at time 𝑡, 𝛽

1
(𝑡) is the infected rate of

citrus host at time 𝑡, 𝜇
1
(𝑡) and 𝑑(𝑡) are the nature death and

disease induced death rate of citrus host at time 𝑡, respectively,
𝑏(𝑡) is the intrinsic growth rate of psyllid at time 𝑡, 𝛽

2
(𝑡) and

𝜇
2
(𝑡) are the infected rate and the nature death rate of psyllid

at time 𝑡, respectively, and𝑚(> 0) is themaximumabundance
of psyllid per citrus. Λ(𝑡), 𝛽

1
(𝑡), 𝜇
1
(𝑡), 𝑑(𝑡), 𝑏(𝑡), 𝛽

2
(𝑡), and

𝜇
2
(𝑡) are continuous, positive 𝜔-periodic functions.
The paper is organized as follows. In the next section,

we give the basic reproduction number of (1). In Sections 3
and 4, the results show that the dynamical properties of the
model are completely determined by 𝑅

0
. That is, if 𝑅

0
< 1,

the disease-free periodic solution is globally asymptotically
stable, and if 𝑅

0
> 1, the model is permanence. In Section 5,

we present numerical simulations which demonstrate the
theoretical analysis and a brief discussion of ourmain results.

2. Basic Reproduction Number

In the following, we introduce some notations and lemmas
which will be used for our further argument.

Let (𝑅𝑘, 𝑅𝑘
+
) be the standard ordered 𝑘-dimensional

Euclidean space with a norm ‖ ⋅ ‖. For 𝑢, V ∈ 𝑅
𝑘; we denote

𝑢 ≥ V if 𝑢 − V ∈ 𝑅𝑘
+
, 𝑢 > V if 𝑢 − V ∈ 𝑅𝑘

+
\ {0}, and 𝑢 ≫ V if

𝑢 − V ∈ Int(𝑅𝑘
+
), respectively.

Define 𝑔𝐿 = max
𝑡∈[0,𝜔)

𝑔(𝑡) and 𝑔𝑀 = min
𝑡∈[0,𝜔)

𝑔(𝑡),
where 𝑔(𝑡) is a continuous, positive, 𝜔-periodic function.

Consider the following linear ordinary differential sys-
tem:

𝑑𝑥 (𝑡)

𝑑𝑡
= 𝐴 (𝑡) 𝑥 (𝑡) , (3)

where 𝐴(𝑡) is a continuous, cooperative, irreducible, and
𝜔-periodic 𝑘 × 𝑘 matrix function. Denote Φ

𝐴
(𝑡) be the

fundamental solution matrix of (3) and 𝑟(Φ
𝐴
(𝜔)) be the

spectral radius ofΦ
𝐴
(𝜔). By the Perron-Frobenius Theorem,

we know that 𝑟(Φ
𝐴
(𝜔)) is the principle eigenvalue of Φ

𝐴
(𝜔);

that is, it is simple and admits an eigenvector V∗ ≫ 0.

Lemma 1 (see [12]). Let 𝑝 = (1/𝜔) ln 𝑟(Φ
𝐴(⋅)
(𝜔)). Then there

exists a positive 𝜔-periodic function V(𝑡) such that exp(𝑝𝑡)V(𝑡)
is a solution of (3).

Consider the following nonautonomous linear equation:
𝑑𝑆
ℎ (𝑡)

𝑑𝑡
= Λ (𝑡) − 𝜇1 (𝑡) 𝑆ℎ (𝑡) , (4)

whereΛ(𝑡) and 𝜇
1
(𝑡) are the same as in System (1). FromZhang

and Teng ([13, Lemma 2.1]) and simple calculation, we have the
following lemma.

Lemma 2. System (4) has a unique positive 𝜔-periodic solu-
tion 𝑆∗

ℎ
(𝑡) which is globally asymptotically stable.

Consider the following nonautonomous Logistic equation:
𝑑𝑆V (𝑡)

𝑑𝑡
= 𝑏 (𝑡) 𝑆V (𝑡) (1 −

𝑆V (𝑡)

𝑚𝑆
ℎ
(𝑡)
) , (5)

where 𝑏(𝑡) and𝑚 are the same as in system (1). From Teng and
Li ([14, Lemma 2]) and simple calculation, we can obtain the
following lemma.

Lemma3. System (5) has a unique positive𝜔-periodic solution
𝑆
∗

V (𝑡) which is globally asymptotically stable, where 𝑆∗V (𝑡) =

𝑚𝑆
∗

ℎ
(𝑡).

According to Lemmas 2 and 3, it is easy to see that (1) has
a unique disease-free periodic solution (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0).
Now, we use the generation operator approach (see [15])

to derive the basic reproduction number. Applying the sym-
bol of the theory in Wang and Zhao [15], for system (1), we
have

F (𝑡, 𝑥) = (

𝛽
1
(𝑡) 𝑆
ℎ
(𝑡) 𝐼V (𝑡)

𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡)

0

0

) ,
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V
+
(𝑡, 𝑥) = (

0

0

Λ (𝑡)

𝑏 (𝑡) (𝑆V (𝑡) + 𝐼V (𝑡))

) ,

V
−
(𝑡, 𝑥) = (

(𝜇
1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡)

𝜇
2 (𝑡) 𝐼V (𝑡)

𝜇
1 (𝑡) 𝑆ℎ + 𝛽1 (𝑡) 𝑆ℎ (𝑡) 𝐼V (𝑡)

𝑏 (𝑡)
(𝑆V (𝑡) + 𝐼V (𝑡))

2

𝑚(𝑆
ℎ (𝑡) + 𝐼ℎ (𝑡))

+𝛽
2
(𝑡) 𝑆V (𝑡) 𝐼ℎ (𝑡)

) ,

(6)

where 𝑥 = (𝐼
ℎ
(𝑡), 𝐼V(𝑡), 𝑆ℎ(𝑡), 𝑆V(𝑡))

𝑇. Then System (1) can be
written as the following form:

𝑑𝑥 (𝑡)

𝑑𝑡
= F (𝑡, 𝑥 (𝑡)) −V (𝑡, 𝑥 (𝑡)) , (7)

whereV(𝑡, 𝑥(𝑡)) =V−(𝑡, 𝑥(𝑡)) −V+(𝑡, 𝑥(𝑡)).
It is easy to obtain that the conditions (A1)–(A5) in [15]

hold. In the following, we will check the conditions (A6) and
(A7) in [15].

We know that 𝑥∗(𝑡) = (0, 0, 𝑆
∗

ℎ
(𝑡), 𝑆
∗

V (𝑡)) is the disease-
free periodic solution of system (7). Denote

𝑓 (𝑡, 𝑥 (𝑡)) = F (𝑡, 𝑥 (𝑡)) −V (𝑡, 𝑥 (𝑡)) ,

𝑀 (𝑡) = (
𝜕𝑓
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

3≤𝑖,𝑗≤4

,

(8)

where 𝑓
𝑖
(𝑡, 𝑥(𝑡)) and 𝑥

𝑖
are the 𝑖th components of 𝑓(𝑡, 𝑥(𝑡))

and 𝑥, respectively. According to (6), we have

𝑀(𝑡) = (

−𝜇
1
(𝑡) 0

𝑏 (𝑡) 𝑆
∗2

V (𝑡)

𝑚𝑆
∗2

ℎ
(𝑡)

−𝑏 (𝑡)
) . (9)

It is easy to see that 𝑟(Φ
𝑀
(𝜔)) < 1, where 𝑟(Φ

𝑀
(𝜔))

is the spectral radius of Φ
𝑀
(𝜔). This implies that 𝑥∗(𝑡) is

linearly asymptotically stable in the disease-free subspace
𝑋
𝑆
= {(0, 0, 𝑆

ℎ
, 𝑆V) ∈ 𝑅

4

+
}. Thus, condition (A6) in [15] holds.

We further define

𝐹 (𝑡) = (
𝜕F
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

1≤𝑖,𝑗≤2

,

𝑉 (𝑡) = (
𝜕V
𝑖
(𝑡, 𝑥
∗
(𝑡))

𝜕𝑥
𝑗

)

1≤𝑖,𝑗≤2

,

(10)

whereF
𝑖
(𝑡, 𝑥) andV

𝑖
(𝑡, 𝑥) are the 𝑖th components ofF(𝑡, 𝑥)

andV(𝑡, 𝑥), respectively. Then, from (6), we obtain that

𝐹 (𝑡) = (
0 𝛽

1
(𝑡) 𝑆
∗

ℎ
(𝑡)

𝛽
2
(𝑡) 𝑆
∗

V (𝑡) 0
) ,

𝑉 (𝑡) = (
𝜇
1
(𝑡) + 𝑑 (𝑡) 0

0 𝜇
2
(𝑡)
) .

(11)

Let 𝑌(𝑡, 𝑠) be a 2 × 2matrix solution of the system:

𝑑𝑌 (𝑡, 𝑠)

𝑑𝑡
= −𝑉 (𝑡) 𝑌 (𝑡, 𝑠) , ∀𝑡 ≥ 𝑠,

𝑌 (𝑠, 𝑠) = 𝐼,

(12)

where 𝐼 is 2 × 2 identity matrix. From (11) and (12), we have
𝑟(Φ
−𝑉
(𝜔)) < 1. Therefore, the condition (A7) in [15] also

holds.
Let 𝐶

𝜔
be the ordered Banach space of all 𝜔-periodic

function from 𝑅 → 𝑅
2, which is equipped with maximum

norm ‖ ⋅ ‖
∞

and the positive cone 𝐶+
𝜔
= {𝜙 ∈ 𝐶

𝜔
: 𝜙(𝑡) ≥ 0,

for all 𝑡 ∈ 𝑅}. Define the following linear operator 𝐿 : 𝐶
𝜔
→

𝐶
𝜔
by

(𝐿𝜙) (𝑡) = ∫

+∞

0

𝑌 (𝑡, 𝑡 − 𝑎) 𝐹 (𝑡 − 𝑎) 𝜙 (𝑡 − 𝑎) 𝑑𝑎,

∀𝑡 ∈ 𝑅, 𝜙 ∈ 𝐶
𝜔
.

(13)

Based on the assumptions above and the results of Wang and
Zhang [15], we can derive the basic reproduction number 𝑅

0

of system (1) as follows:

𝑅
0
= 𝑟 (𝐿) , (14)

and obtain the following conclusion.

Theorem 4. For system (1), the following statements are valid:

(i) 𝑅
0
= 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) = 1,

(ii) 𝑅
0
> 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) > 1,

(iii) 𝑅
0
< 1 if and only if 𝑟(Φ

𝐹−𝑉
(𝜔)) < 1,

where 𝐹(𝑡) and 𝑉(𝑡) are defined in (11).

It follows from Theorem 4 that the disease-free periodic
solution (𝑆

∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) of system (1) is asymptotically
stable if 𝑅

0
< 1, and it is unstable if 𝑅

0
> 1.

In order to calculate 𝑅
0
, we consider the following linear

𝜔-periodic system:

𝑑𝑤

𝑑𝑡
= (−𝑉 (𝑡) +

1

𝜆
𝐹 (𝑡))𝑤, 𝜆 ∈ (0,∞) . (15)

Let 𝑊(𝑡, 𝑠, 𝜆), 𝑡 ⩾ 𝑠, 𝑠 ∈ 𝑅, be the evolution operator of
the System (15) on 𝑅2. Since 𝐹(𝑡) is nonnegative and −𝑉(𝑡)
is cooperative, then 𝑟(𝑊(𝜔, 0, 𝜆)) is continuous and nonin-
creasing for 𝜆 ∈ (0,∞), and lim

𝜆→∞
𝑟(𝑊(𝜔, 0, 𝜆)) < 1.

Thus, we have the following result, which will be used in our
numerical calculation of the basic reproduction ratio 𝑅

0
in

Section 5.

Lemma 5 (see [15]). The following statements are valid.

(i) If 𝑟(𝑊(𝜔, 0, 𝜆)) = 1 has a positive solution, 𝜆
0
is an

eigenvalue of 𝐿, and hence 𝑅
0
> 0.

(ii) If 𝑅
0
> 0, then 𝜆 = 𝑅

0
is the unique solution of 𝑟(𝑊(𝜔,

0, 𝜆)) = 1.
(iii) 𝑅

0
= 0 if and only if 𝑟(𝑊(𝜔, 0, 𝜆)) < 1 for all 𝜆 > 0.
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3. Global Stability of Disease-Free
Periodic Solution

In this section we will prove the global asymptotical stability
of the disease-free periodic solution (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0).
Let𝑁

ℎ
(𝑡) = 𝑆

ℎ
(𝑡) + 𝐼

ℎ
(𝑡),𝑁V(𝑡) = 𝑆V(𝑡) + 𝐼V(𝑡). Denote

Ω = {(𝑆
ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈ 𝑅

4

+
| 0 ≤ 𝑆

ℎ
+ 𝐼
ℎ
≤ 𝑁
1
< +∞,

0 ≤ 𝑆V + 𝐼V ≤ 𝑁2 < +∞} ,

(16)

where 𝑁
1
= Λ
𝐿
/𝜇
𝑀

1
and 𝑁

2
= 𝑚𝑁

1
. Similar to [16, 17], we

firstly prove the following lemmas.

Lemma 6. Ω is a positively invariant set for (1).

Proof. From the equations in (1), we have

𝑑𝑁
ℎ
(𝑡)

𝑑𝑡
= Λ (𝑡) − 𝜇

1
(𝑡)𝑁
ℎ
(𝑡)

≤ Λ
𝐿
− 𝜇
𝑀

1
𝑁
ℎ
(𝑡)

≤ 0 if 𝑁
ℎ (𝑡) ≥ 𝑁1,

𝑑𝑁V (𝑡)

𝑑𝑡
= 𝑏 (𝑡)𝑁V (1 −

𝑁V

𝑚𝑁
ℎ

) − 𝜇
2
(𝑡) 𝐼V (𝑡)

≤ 𝑏 (𝑡)𝑁V (𝑡) (1 −
𝑁V (𝑡)

𝑚𝑁
ℎ

)

≤ 0 if 𝑁V (𝑡) ≥ 𝑁2

(17)

which implies that Ω is a positive invariant compact set for
(1). The proof is completed.

Lemma 7. Let (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) be any solution of

system (1). It holds that

lim
𝑡→+∞

(𝑁
ℎ (𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0,

lim
𝑡→+∞

(𝑁V (𝑡) − 𝑆
∗

V (𝑡)) = 0,
(18)

where 𝑆∗
ℎ
(𝑡), 𝑆∗V (𝑡) are defined in Lemmas 2 and 3, respectively.

Proof. We denote that 𝑦
1
(𝑡) = 𝑁

ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡). It follows from

the first equation of (17) that 𝑑𝑦
1
(𝑡)/𝑑𝑡 ≤ −𝜇

1
(𝑡)𝑦
1
(𝑡), which

implies that lim
𝑡→+∞

𝑦
1
(𝑡) = lim

𝑡→+∞
(𝑁
ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0.

Further, from Lemma 6, we obtain that for any 𝜀 > 0, there
exists a 𝑇 > 0 such that

𝑆
∗

ℎ
(𝑡) − 𝜀 ≤ 𝑁ℎ (𝑡) ≤ 𝑆

∗

ℎ
(𝑡) + 𝜀, 𝑁V (𝑡) < 𝑁2, ∀𝑡 ≥ 𝑇.

(19)

Let 𝑦
2
(𝑡) = 𝑁V(𝑡) − 𝑆

∗

V (𝑡). From the second equation of
(17) and (19), we get

𝑑𝑦
2
(𝑡)

𝑑𝑡
= 𝑏 (𝑡)𝑁V (𝑡) [1 −

𝑁V (𝑡)

𝑚𝑁
ℎ (𝑡)

] − 𝜇
2
(𝑡) 𝐼V (𝑡)

− 𝑏 (𝑡) 𝑆
∗

V (𝑡) [1 −
𝑆
∗

V (𝑡)

𝑚𝑆
∗

ℎ
(𝑡)
]

≤ 𝑏 (𝑡)𝑁V (𝑡) [1 −
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

]

− 𝑏 (𝑡) 𝑆
∗

V (𝑡) [1 −
𝑆
∗

V (𝑡)

𝑚𝑆
∗

ℎ
(𝑡)
]

= 𝑏 (𝑡) (𝑁V (𝑡) − 𝑆
∗

V (𝑡)) [1 −
𝑆
∗

ℎ
(𝑡)

𝑆
∗

ℎ
(𝑡) + 𝜀

]

− 𝑏 (𝑡) (𝑁
∗

V (𝑡) − 𝑆
∗

V (𝑡))
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

+ 𝑏 (𝑡)
𝑆
∗2

V (𝑡) 𝜀

𝑚𝑆
∗

ℎ
(𝑡) (𝑆
∗

ℎ
(𝑡) + 𝜀)

= − 𝑏 (𝑡)
𝑁V (𝑡)

𝑚 (𝑆
∗

ℎ
(𝑡) + 𝜀)

𝑦
2
(𝑡) + Δ (𝜀)

(20)

for all 𝑡 > 𝑇, where

Δ (𝜀) = 𝑏 (𝑡) (𝑁V (𝑡) − 𝑆
∗

V (𝑡)) [1 −
𝑆
∗

ℎ
(𝑡)

𝑆
∗

ℎ
+ 𝜀

]

+ 𝑏 (𝑡)
𝑆
∗2

V (𝑡) 𝜀

𝑚𝑆
∗

ℎ
(𝑡) (𝑆
∗

ℎ
+ 𝜀)

.

(21)

Obviously, lim
𝜀→0

Δ(𝜀) = 0. Because 𝜀 is arbitrarily small,
then lim

𝑡→+∞
𝑦
2
(𝑡) = lim

𝑡→+∞
(𝑁V(𝑡) − 𝑆

∗

V (𝑡)) = 0. Hence,
the proof is completed.

Theorem 8. The disease-free periodic solution (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡),

0) is globally asymptotically stable if 𝑅
0
< 1, whereas it is

unstable if 𝑅
0
> 1.

Proof. From Theorem 4, we have that (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is
unstable if 𝑅

0
> 1, and (𝑆∗

ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is locally stable if
𝑅
0
< 1.Therefore, we only need to show the global attractivity

of (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) for 𝑅0 < 1.
Since 𝑅

0
< 1, by Theorem 4, we can choose 𝜖

1
> 0

sufficiently small such that

𝑟 (Φ
𝐹−𝑉+𝑀

𝜀
1

(𝜔)) < 1, (22)

where

𝑀
𝜖
1

(𝑡) = (
0 𝜖
1

𝜖
1
0
) . (23)

From Lemma 6 and (18), we have that, for above men-
tioned 𝜖

1
> 0, there exists a𝑇

1
> 0 such that 𝑆

ℎ
(𝑡) ≤ 𝑆

∗

ℎ
(𝑡)+𝜖
1
,

𝑆V(𝑡) ≤ 𝑆
∗

V (𝑡) + 𝜖1 for 𝑡 > 𝑇
1
. It follows from the second and

fourth equations that for 𝑡 > 𝑇
1
,

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
≤ 𝛽
1
(𝑡) (𝑆
∗

ℎ
(𝑡) + 𝜖

1
) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
≤ 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) + 𝜖1) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(24)



Abstract and Applied Analysis 5

Consider the following comparison system:

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) (𝑆

∗

ℎ
(𝑡) + 𝜖1) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) + 𝜖1) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(25)

In view of Lemma 1, we know that there exists a positive 𝜔-
periodic function V

1
(𝑡) such that 𝐽(𝑡) ≤ V

1
(𝑡) exp(𝑝

1
𝑡), where

𝐽(𝑡) = (𝐼
ℎ
(𝑡), 𝐼V(𝑡))

𝑇 and 𝑝
1
= (1/𝜔) ln 𝑟(Φ

𝐹−𝑉+𝑀
𝜖

(𝜔)) <

0. It follows from (22) that lim
𝑡→+∞

𝐼
ℎ
(𝑡) = 0 and

lim
𝑡→+∞

𝐼V(𝑡) = 0. By the comparison of theorem [18], we
have lim

𝑡→+∞
𝐼
ℎ
(𝑡) = 0 and lim

𝑡→+∞
𝐼V(𝑡) = 0. From (18),

we have

lim
𝑡→+∞

(𝑆
ℎ
(𝑡) − 𝑆

∗

ℎ
(𝑡)) = 0,

lim
𝑡→+∞

(𝑆V (𝑡) − 𝑆
∗

V (𝑡)) = 0.
(26)

Hence, the disease free periodic solution (𝑆∗
ℎ
(𝑡), 0, 𝑆

∗

V (𝑡), 0) is
globally attractive. This completes the proof.

4. Permanence

In this section, we show that if 𝑅
0
> 1, then the disease

persists.
Firstly, we define 𝑋 = {(𝑆

ℎ
, 𝐼
ℎ
, 𝑆V, 𝐼V) ∈ 𝑅

4

+
},𝑋
0
= {(𝑆
ℎ
, 𝐼
ℎ
,

𝑆V, 𝐼V) ∈ 𝑋 : 𝑆
ℎ
≥ 0, 𝐼

ℎ
> 0, 𝑆V ≥ 0, 𝐼V > 0}, and 𝜕𝑋

0
=

𝑋\𝑋
0
, andwedenote𝑢(𝑡, 𝑥

0
) as the unique solution of System

(1) with the initial value 𝑥
0
= (𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ).
Define Poincaré map 𝑃 : 𝑋 → 𝑋 associated with System

(1) as follows:

𝑃 (𝑥
0
) = 𝑢 (𝜔, 𝑥

0
) , ∀𝑥

0
∈ 𝑋. (27)

By Lemma 6, it is easy to see that both𝑋 and𝑋
0
are positively

invariant and 𝑃 is point dissipative. Set

𝑀
𝜕
= {(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝜕𝑋0 | 𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝜕𝑋0,

𝑚 ∈ 𝑍
+
} ,

(28)

where 𝑍+ = {0, 1, 2, . . .}. We claim that

𝑀
𝜕
= {(𝑆
ℎ
, 0, 𝑆V, 0) , 𝑆ℎ ≥ 0, 𝑆V ≥ 0} . (29)

Obviously, 𝑀
𝜕
⊇ {(𝑆

ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0}. Next we

want to show 𝑀
𝜕
\ {(𝑆
ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0} = 0. If it

does not hold, then there exists a point (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝑀𝜕 \

{(𝑆
ℎ
, 0, 𝑆V, 0), 𝑆ℎ ≥ 0, 𝑆V ≥ 0}.

Case 1. 𝐼0
ℎ
= 0 and 𝐼0V > 0. It is obvious that 𝐼V(𝑡) > 0 and

𝑆
ℎ
(𝑡) > 0 for any 𝑡 > 0. Then, from the second equation

of System (1), 𝑑𝐼
ℎ
(𝑡)/𝑑𝑡|

𝑡=0
= 𝛽
1
(0)𝑆
ℎ
(0)𝐼V(0) > 0 holds. It

follows that (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) ∉ 𝜕𝑋

0
for 0 < 𝑡 ≪ 1.

This is a contradiction.

Case 2. 𝐼0
ℎ
> 0 and 𝐼0V = 0. It is obvious that 𝐼

ℎ
(𝑡) > 0 and

𝑆V(𝑡) > 0 for any 𝑡 > 0. Then, from the fourth equation
of System (1), 𝑑𝐼V(𝑡)/𝑑𝑡|𝑡=0 = 𝛽

2
(0)𝑆V(0)𝐼ℎ(0) > 0 holds. It

follows that (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡)) ∉ 𝜕𝑋

0
for 0 < 𝑡 ≪ 1.

This is a contradiction.

That is to say, for any (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∉ {(𝑆ℎ, 0, 𝑆V, 0) : 𝑆ℎ ≥

0, 𝑆V ≥ 0}, then (𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∉ 𝑀𝜕.Therefore we have𝑀
𝜕
=

{(𝑆
ℎ
, 0, 𝑆V, 0) : 𝑆ℎ ≥ 0, 𝑆V ≥ 0}.
Next, we present the following result of the uniform

persistence of the disease.

Theorem 9. Suppose 𝑅
0
> 1. Then there is a positive constant

𝜖 > 0 such that each positive solution (𝑆
ℎ
(𝑡), 𝐼
ℎ
(𝑡), 𝑆V(𝑡), 𝐼V(𝑡))

of System (1) satisfies

lim inf
𝑡→+∞

𝐼
ℎ
(𝑡) ≥ 𝜖, lim inf

𝑡→+∞

𝐼V (𝑡) ≥ 𝜖. (30)

Proof. By Theorem 4, we obtain 𝑟(Φ
𝐹−𝑉

(𝜔)) > 1. So we can
choose 𝜂 > 0 small enough such that 𝑟(Φ

𝐹−𝑉−𝑀
𝜂

) > 1, where

𝑀
𝜂
= (

0 𝜂

𝜂 0
) . (31)

Put 𝑃
0
= {𝑆
∗

ℎ
(0), 0, 𝑆

∗

V (0), 0}. Now we proceed by contra-
diction to prove that

lim sup
𝑚→+∞

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) ≥ 𝛿. (32)

If it does not hold, then

lim sup
𝑚→+∞

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) < 𝛿 (33)

for some (𝑆0
ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) ∈ 𝑋
0
. Without loss of generality,

suppose that

𝑑 (𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V ) , 𝑃0) < 𝛿, ∀𝑚 ∈ 𝑍
+
. (34)

By the continuity of the solutions with respect to the initial
values, we obtain

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡, 𝑃

𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡, 𝑃0)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜂,

∀𝑡 ∈ [0, 𝜔] , ∀𝑚 ∈ 𝑍
+
.

(35)

For any 𝑡 ≥ 0, there exists a 𝑚 ∈ 𝑍
+
such that 𝑡 = 𝑚𝜔 + 𝑡

1
,

where 𝑡
1
∈ [0, 𝜔]. Then we have

󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡, (𝑆

0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡, 𝑃0)
󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩
𝑢 (𝑡
1
, 𝑃
𝑚
(𝑆
0

ℎ
, 𝐼
0

ℎ
, 𝑆
0

V , 𝐼
0

V )) − 𝑢 (𝑡1, 𝑃0)
󵄩󵄩󵄩󵄩󵄩
≤ 𝜂

(36)

for all 𝑡 ≥ 0, which implies that 𝑆∗
ℎ
(𝑡) − 𝜂 ≤ 𝑆

ℎ
(𝑡) ≤ 𝑆

∗

ℎ
(𝑡) + 𝜂,

𝑆
∗

V (𝑡) − 𝜂 ≤ 𝑆V(𝑡) ≤ 𝑆
∗

V (𝑡) + 𝜂. Then from (1) we have

𝑑𝐼
ℎ
(𝑡)

𝑑𝑡
≥ 𝛽
1
(𝑡) (𝑆
∗

ℎ
(𝑡) − 𝜂) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
≥ 𝛽
2
(𝑡) (𝑆
∗

V (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(37)
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Table 1: Parameter definitions and values used for numerical simulations of the Huanglongbing model.

Parameter Definition Average value Unit Reference
Λ The recruitment rate of citrus — month−1 Estimate
𝛽
1

Infected rate of citrus — month−1 Estimate
𝜇
1

Nature death rate of citrus 0.00275–0.004167 month−1 [20]
𝑑 Disease induced death rate of citrus 0.016667–0.027775 month−1 [21]
𝐷 Birth rate of psyllid 3.78327–33.526137 month−1 [20, 22]
𝛽
2

Infected rate of psyllid — month−1 Estimate
𝜇
2

Nature death rate of psyllid 0.1169825–0.95052 month−1 [23]
𝑚 Max abundance of psyllid per citrus 120–1000 — [24]

Table 2: Parameter functions for model (1) according to the values of Table 1.

Parameter functions Value Reference

𝛽
1
(𝑡) 0.0042925 + 0.003543 cos (2𝜋𝑡/12) Estimate

𝜇
1
(𝑡) 0.0034585 + 0.0007085 cos (2𝜋𝑡/12) [20]

𝑑 (𝑡) 0.022221 + 0.005554 cos (2𝜋𝑡/12) [21]

𝐷 (𝑡) 18.6547035 + 14.8714335 cos (2𝜋𝑡/12) [20, 22]

𝛽
2
(𝑡) 0.008779171 + 0.004838437 cos (2𝜋𝑡/12) Estimate

𝜇
2
(𝑡) 0.53375125 + 0.41676875 cos (2𝜋𝑡/12) [23]

𝑏 (𝑡) = 𝐷 (𝑡) − 𝜇
2
(𝑡) 18.120952 + 14.45466475 cos (2𝜋𝑡/12) [20, 22, 23]

𝑚 560 [24]

Consider the linear system

𝑑𝐼
ℎ (𝑡)

𝑑𝑡
= 𝛽
1 (𝑡) (𝑆

∗

ℎ
(𝑡) − 𝜂) 𝐼V (𝑡) − (𝜇1 (𝑡) + 𝑑 (𝑡)) 𝐼ℎ (𝑡) ,

𝑑𝐼V (𝑡)

𝑑𝑡
= 𝛽
2 (𝑡) (𝑆

∗

V (𝑡) − 𝜂) 𝐼ℎ (𝑡) − 𝜇2 (𝑡) 𝐼V (𝑡) .

(38)

By Lemma 1 and the standard comparison principle, we have
that there exists a positive𝜔-periodic function V

2
(𝑡) such that

𝐽(𝑡) = exp(𝑝
2
𝑡)V
2
(𝑡) is a solution of System (38), where 𝐽(𝑡) =

(𝐼
ℎ
(𝑡), 𝐼V(𝑡))

𝑇 and

𝑝
2
=
1

𝜔
ln 𝑟 (Φ

𝐹−𝑉−𝑀
𝜂

(𝜔)) . (39)

It follows from 𝑟(Φ
𝐹−𝑉−𝑀

𝜂

(𝜔)) > 1 that 𝑝
2
> 0 and 𝐽(𝑡) →

+∞ as 𝑡 → +∞. Applying the comparison principle [18], we
know that 𝐼

ℎ
(𝑡) → +∞ and 𝐼V(𝑡) → +∞ as 𝑡 → +∞. This

is a contradiction.Thus, we have proved that (32) holds and𝑃
is weakly uniformly persistent with respect to (𝑋

0
, 𝜕𝑋
0
).

According to the results of Lemma 7, we can easily obtain
that𝑃 has a global attractor𝑃

0
. It is easy to obtain that𝑃

0
is an

isolated invariant set in𝑋 and𝑊𝑠(𝑃
0
)∩𝑋
0
= 0.We know that

𝑃
0
is acyclic in𝑀

𝜕
and every solution in𝑀

𝜕
converges to 𝑃

0
.

According to Zhao [19], we have that𝑃 is uniformly persistent
with respect to (𝑋

0
, 𝜕𝑋
0
). This implies that the solution of

(1) is uniformly persistent with respect to (𝑋
0
, 𝜕𝑋
0
). Thus we

have that there exists a 𝜖 > 0 such that lim inf
𝑡→+∞

𝐼
ℎ
(𝑡) ≥ 𝜖,

lim inf
𝑡→+∞

𝐼V(𝑡) ≥ 𝜖.

5. Numerical Simulations
and Sensitivity Analysis

In this section, we will make numerical simulations bymeans
of Matlab 7.1 to support our theoretical results, to predict
the trend of the disease, and to explore some control and
prevention measures. Numerical values of parameters of
system (1) are given in Table 1 (most of the data are taken from
the literatures ([20–24])).

According to the periodicity of System (1) and Table 1, we
set 𝜇
1
(𝑡) = 𝛼

0

1
+ 𝛼
0

2
cos(2𝜋𝑡/12), where 𝛼0

2
= (0.004167 −

0.00275)/2 = 0.0007085 and 𝛼0
1
= 0.00275 + 𝛼

0

2
= 0.0034585.

By the similar method, we can obtain the other parameter
functions of model (1) (see Table 2). For the simulations that
follows, we apply the parameters in Table 2 unless otherwise
stated.

ChooseΛ(𝑡) = 0.00265+0.00235 cos(2𝜋𝑡/12).Then from
Lemma 5, we can compute 𝑅

0
= 0.9844 < 1 by means of

Matlab 7.1. FromTheorem 8 we obtain that the infected citrus
population 𝐼

ℎ
(𝑡) and the infected psyllid population 𝐼V(𝑡) of

system (1) are extinct (see Figures 1 and 2).
Choose Λ(𝑡) = 0.005 + 0.0035 cos(2𝜋𝑡/12). Then from

Lemma 5, we obtain that 𝑅
0
= 1.8342 > 1. From Theorem 9

we have that the infected citrus population 𝐼
ℎ
(𝑡) and the

infected psyllid population 𝐼V(𝑡) of System (1) are permanence
(see Figures 3 and 4).

From the formulae for 𝑅
0
, we can predict the general

tendency of the epidemic in a long term according to the
current situation, which is presented in Figures 1, 2, 3, and 4.
From the first two figures we know that the epidemic of
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Figure 1: Graphs of numerical simulations of (1) showings the tendency of the infected citrus population. (a) 𝑡 ∈ [0, 2500]; (b) 𝑡 ∈ [0, 500].
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Figure 2: It is similar to Figure 1.

Huanglongbing can be rising in a short time but cannot be
outbreak with the current prevention and control measures.
From Figures 3 and 4, we can see that the epidemic of
Huanglongbing dropped heavily after 100 months, while
there is still tendency to a stable periodic solution in a long
time.

Next, we perform some sensitivity analysis to determine
the influence 𝑅

0
on the parameters Λ(𝑡), 𝛽

1
(𝑡), and 𝛽

2
(𝑡).

We choose function Λ(𝑡) = Λ0
1
+ Λ
0

2
cos(2𝜋𝑡/12), where

Λ
0

1
, Λ0
2
denote the average and amplitude values of Λ(𝑡),

respectively, and Λ
0

1
= (1/12) ∫

12

0
Λ(𝑡)𝑑𝑡. From Figure 5,

we can observe that the blue line is linear relation between
𝑅
0
and Λ

0

2
, and 𝑅

0
increases as Λ0

2
increases. The red

curve reflects the influence of the average value of Λ(𝑡) on
𝑅
0
. Figure 5 shows that Λ0

1
is more sensitive than Λ

0

2
on

the basic reproduction number 𝑅
0
. Therefore, in the real

world, decreasing the average recruitment rate of citrus is the
valuable way to control Huanglongbing.

Now, we consider the combined influence of 𝛽
1
(𝑡) and

𝛽
2
(𝑡) on 𝑅

0
. Set Λ(𝑡) = 0.0027 + 0.00235 cos(2𝜋𝑡/12),

𝛽
1
(𝑡) = 𝑎

1
+ 𝑏
1
cos(2𝜋𝑡/12) and 𝛽

2
(𝑡) = 𝑎

2
+ 𝑏
2
cos(2𝜋𝑡/12).

Moreover, we know that 𝑎
1

= (1/12) ∫
12

0
𝛽
1
(𝑡)𝑑𝑡 and

𝑎
2
= (1/12) ∫

12

0
𝛽
2
(𝑡)𝑑𝑡. Other parameters can be seen in

Table 2.

Case (I). We fix 𝑏
1
= 0.003543 and 𝑏

2
= 0.004838437,

and let 𝑎
1
vary from 0.00001 to 0.015 and 𝑎

2
from 0.00001

to 0.02. For this case, it is interesting to examine how the
average values of adequate contact rate 𝛽

1
(𝑡) and 𝛽

2
(𝑡) affect

the basic reproduction number 𝑅
0
. Numerical results shown
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Figure 3: The figures show that the infected citrus population is permanence. (a) 𝑡 ∈ [0, 2500]; (b) 𝑡 ∈ [0, 500].
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Figure 4: It is similar to Figure 3.

in Figure 6 imply that the basic reproduction number𝑅
0
may

be less than 1 when 𝑎
1
or 𝑎
2
is small enough. And the results

also imply that 𝑅
0
increases as 𝑎

1
and 𝑎
2
increase. Further, we

can observe that from Figure 6(i)the smaller the values of 𝑎
1

or 𝑎
2
are, the more sensitive 𝑅

0
is; (ii) increasing 𝑎

2
may be

more sensitive for 𝑅
0
when 𝑎

1
is fixed; (iii) increasing 𝑎

1
may

be more sensitive for 𝑅
0
when 𝑎

2
is fixed.

Case (II). We fix 𝑎
1
= 0.0042925 and 𝑎

2
= 0.00877917, and

let 𝑏
1
vary from 0.000001 to 0.005 and 𝑏

2
from 0.000002 to

0.006.Then we obtain the result of numerical simulation and
it is shown in Figure 7. Obviously, Figure 7 shows that 𝑅

0
is

linearly related to both 𝑏
1
and 𝑏

2
with the pattern that 𝑅

0

decreases to a relatively small value (less than 1) only when
𝑏
1
and 𝑏
2
are very small.

By the above graphs of the basic reproduction number
𝑅
0
on the average values of recruitment rate of citrus Λ(𝑡)

and adequate contact rate 𝛽
1
(𝑡), 𝛽
2
(𝑡), we know that the basic

reproduction number 𝑅
0
is a monotonic increasing function

by the average values. From the sensitivity analysis diagrams,
we observe that 𝑅

0
falls to less than 1 by decreasing the values

of those parameters.

6. Conclusion

In this paper, we have analyzed a HLB transmission model
with Logistic growth in periodic environments. It is proved
that 𝑅

0
is the threshold for distinguishing the disease extinc-

tion or permanence. The disease-free periodic solution is
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globally asymptotically stable and the disease dies out when
𝑅
0
< 1. When 𝑅

0
> 1, the disease persists.

The numerical simulations shown in Figure 5 show that
there are some parameter ranges of Λ

1
and Λ

2
such that the

threshold parameter 𝑅
0
is smaller than 1. It indicates a useful

way to eradicate Huanglongbing by limiting the recruitment
of citrus, including the average value and amplitude of
recruitment function.

The results shown in Figure 6 (Figure 7) show that if the
amplitudes of infected functions 𝑏

1
, 𝑏
2
(the average infected

rate 𝑎
1
, 𝑎
2
) are fixed, we can control the infection of citrus

and psyllid by limiting the average infected rates 𝑎
1
, 𝑎
2
(the

amplitudes of infected functions 𝑏
1
, 𝑏
2
).

According to the above theoretical analysis andnumerical
simulations, we can conclude that the recruitment of citrus
and the infection of citrus and psyllid have significant
effects on Huanglongbing transmission. In order to prevent
the epidemic disease from generating endemic, making an
appropriate reduction of the recruitment rate of citrus and
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.

decreasing the contact rate between psyllid and the citrus are
effective measures to control Huanglongbing.
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