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The dynamics of a delayed stochastic model simulating wastewater treatment process are studied. We assume that there are
stochastic fluctuations in the concentrations of the nutrient and microbes around a steady state, and introduce two distributed
delays to the model describing, respectively, the times involved in nutrient recycling and the bacterial reproduction response to
nutrient uptake. By constructing Lyapunov functionals, sufficient conditions for the stochastic stability of its positive equilibrium
are obtained. The combined effects of the stochastic fluctuations and delays are displayed.

1. Introduction

In the last few years, the use of mathematical models
describing wastewater treatment is gaining attention as a
promisingmethod [1–6]. A basic chemostatmodel describing
substrate-microbe interaction in an activated sludge process
is as follows:

𝑑𝑆

𝑑𝑡
=

𝑄 (𝑆
0

− 𝑆)

𝑉
−

𝑘𝑥𝑆

𝐾
𝑆

+ 𝑆

𝐷O
𝐾O + 𝐷O

,

𝑑𝑥

𝑑𝑡
= 𝑥 (

𝑘𝑌𝑆

𝐾
𝑆

+ 𝑆
− 𝐾
𝑑
)

𝐷O
𝐾O + 𝐷O

−
𝑄
𝑤

𝑥

𝑉
,

(1)

where 𝑆(𝑡) and 𝑥(𝑡) represent the concentrations of the
substrate (biochemical oxygen demand) and microbes in an
aeration tank at time 𝑡, respectively.𝑄 is thewashout rate, 𝑆0 is
the input concentration of the substrate, and𝑉 is the effective
volume of the aeration tank; 𝑘 is the maximum uptake rate of
the substrate; 𝐾

𝑆
and 𝐾O are the half-saturation constants of

the substrate and oxygen; respectively, 𝐾
𝑑
is the decay rate

of microbes and 𝑄
𝑤
is the emission rate of the sludge; 𝐷O is

the concentration of the dissolved oxygen and𝐷O/(𝐾O+𝐷O)

is a switching function describing the effect of 𝐷O on the
uptake rate 𝑘 and the decay rate 𝐾

𝑑
; 𝑌 ∈ (0, 1) is the ratio

of the concentration of mixed liquor suspended solids to the

substrate. Some extensions and generalizations of the model
have been proposed by many researchers (see [7–27], etc.).

Even though deterministic model (1) has a stable positive
equilibrium (𝑆

∗
, 𝑥
∗
) under certain conditions, oscillations

have been observed frequently in the growth ofmicrobes dur-
ing the experiments [28, 29], which have also been confirmed
by many mathematical works for some extended chemostat
models incorporating factors such as time delay [15–18, 30–
32], periodic nutrient input [19–21, 33–35], feedback control
[22–24], and stochastic environmental perturbations [25–
27]. For a better understanding of microbial population
dynamics in the activated sludge process, we take two steps
towards developing model (1).

On the one hand, we take into account time delays
that may exist in the process of wastewater treatment. By
the death regeneration theory of Dold and Marais [36], the
active biomass dies at a certain rate; of the biomass lost,
the biodegradable portion adds to the slowly biodegradable
organic matter which passes through the various stages to
be utilised for active biomass synthesis, which requires some
time for the completion of the regeneration. Also there
is a time delay that accounts for the time lapse between
the uptakes of substrates and the incorporation of these
substrates, which has ever been observed from chemostat
experiments with microalgae Chlamidomonas Reinhardii
even when the limiting nutrient is at undetectable small
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concentration (see [37, 38], etc.). In the recent years, chemo-
stat models with such time delays have been given much
attention (see, e.g., [9, 14, 16–18, 39], etc.). In this paper, we
will use distributed delays to describe the nutrient recycling
and the time lapse between the uptakes of nutrient and the
incorporation of this nutrient with delay kernels 𝑓(𝑠) and
𝑔(𝑠), respectively.

On the other hand, in a real process of wastewater
treatment there will be fluctuations in concentration of the
substrate and microbe population due to stochastic pertur-
bations from external sources such as temperature, light, and
the like, or inherent sources in the chemical-physical and
biological processes [40]. So we assume that model (1) is
exposed by stochastic perturbations which are of white noise
type and are proportional to the distances 𝑆(𝑡), 𝑥(𝑡) from
values of the positive equilibrium 𝑆

∗
, 𝑥
∗, influence on the ̇𝑆(𝑡)

and 𝑥̇(𝑡), respectively. By this way, model (1) becomes in the
following form:

𝑑S = [
𝑄 (𝑆
0

− 𝑆)

𝑉
− 𝑘𝑈 (𝑆)

𝐷O
𝐾O + 𝐷O

+𝜇𝐾
𝑑

𝐷O
𝐾O + 𝐷O

∫

∞

0

𝑓 (𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠] 𝑑𝑡

+ 𝜎
1

(𝑆 − 𝑆
∗
) 𝑑𝐵
1

(𝑡) ,

𝑑𝑥 = [𝑥 (𝑌𝑘 ∫

∞

0

𝑔 (𝑠) 𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠 − 𝐾
𝑑
)

×
𝐷O

𝐾O + 𝐷O
−

𝑄
𝑤

𝑥

𝑉
] 𝑑𝑡 + 𝜎

2
(𝑥 − 𝑥

∗
) 𝑑𝐵
2

(𝑡) ,

(2)

where 𝐵
𝑖
(𝑡) (𝑖 = 1, 2) are standard independent Wiener

processes and 𝜎
𝑖
≥ 0 (𝑖 = 1, 2) represent the intensities of the

noises. 𝜇 ∈ (0, 1) is the fraction of the substrate regenerated
from the dead biomass; 𝑈(𝑆) is a general specific growth
function.

Recently, stochastic biological systems and stochastic
epidemic models have been studied by many authors; see, for
example,Mao et al. [41, 42], Jiang et al. [43, 44], Liu andWang
[45, 46], and the references cited therein. But, as far as we
know, there are few works on model (2). In this paper, our
main purpose is to study the combined effect of the noises
and delays on the dynamics of model (2), that is, whether
and how the noises and delays affect the stability of 𝐸

∗. By
the construction of appropriate Lyapunov functionals, we
will show that the positive equilibrium keeps stochastically
stable if the noises and delays are small. Furthermore, the
sensitivities of the stability of 𝐸

∗ with respect to the delays
and noises are also discussed.

The paper is organized as follows. We first establish some
preliminary results in Section 2. By constructing Lyapunov
function(al)s, sufficient conditions for the stochastic stabil-
ity of the positive equilibrium of the model without and
with delays are obtained, respectively, in Sections 3 and 4.
Numerical simulations and discussions are finally presented
in Section 5.

2. Some Preliminaries

Define 𝑄/𝑉 = 𝐷, 𝑄
𝑤
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𝑤
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𝐾
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(𝐷O/(𝐾O + 𝐷O)) = 𝐷

1
, and 𝑌 = 𝛾. Then model (2) can

be simplified as follows:
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with initial value conditions

𝑆 (𝜃, 𝜔) = 𝜑
1

(𝜃) ≥ 0, 𝑥 (𝜃, 𝜔) = 𝜑
2
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𝜃 ∈ (−∞, 0] ,

(4)

where 𝜑
1
(𝜃), 𝜑

2
(𝜃) ∈ BC((−∞, 0],R

+
), the families of

bounded continuous functions from (−∞, 0] to R
+
.

The corresponding deterministic model of (3) is
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the special case of which when 𝐷 = 𝐷
𝑤
has ever been

investigated by He et al. [18]. It is easy to see that model (5)
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where
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. (7)

𝐸
∗
(𝑆
∗
, 𝑥
∗
) is globally asymptotically stable provided that the

average delays are sufficiently small. Obviously, 𝐸
∗ is still an

equilibrium of stochastic model (3) if condition (6) holds.
We assume that function 𝑈(𝑆) is nonnegative satisfying

𝑈 (0) = 0, 𝑈
󸀠
(𝑆) > 0,

𝑈
󸀠󸀠

(𝑆) < 0 for 𝑆 > 0, lim
𝑆→∞

𝑈 (𝑆) = 1.
(8)

And we extend the function 𝑈(𝑆) by defining

𝑈 (𝑆) = 𝑈
󸀠
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1

2
𝑈
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2 for 𝑆 ≤ 0, (9)

so that𝑈 is well defined inR and is still of classC2 inR.Thus
one can write

𝑈 (𝑆) = 𝑎 + 𝑏 (𝑆 − 𝑆
∗
) + 𝐹 (𝑆 − 𝑆

∗
) , (10)
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where 𝐹 represents terms of order ≥ 2 in 𝑆 − 𝑆
∗. Noting also

that 𝑎 = 𝑈(𝑆
∗
) and 𝑏 = 𝑈

󸀠
(𝑆
∗
), by condition (6), it follows

that 𝑚𝑎 > 𝜇𝐷
1
.

Introduce new variables 𝑢
1

= 𝑆 − 𝑆
∗, 𝑢
2

= 𝑥 − 𝑥
∗; then

model (3) can be rewritten as follows:
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where
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(12)

Note that if 𝑓(𝑠) = 𝑔(𝑠) = 𝛿(0), then model (11) has the form
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where

𝐹
2

= 𝛾𝑚𝑏𝑢
1
𝑢
2

+ (𝑢
2

+ 𝑥
∗
) 𝛾𝑚𝐹 (𝑢

1
) . (14)

Obviously, model (13) has the same equilibrium (0, 0) as
model (11), and the stochastic stability of the positive equi-
librium 𝐸

∗ of model (3) is equivalent to the zero solution of
model (11). We wonder how the stochastic perturbations and
delays affect the dynamics of model (3) or (11).

Before starting our analysis, we first give some basic the-
ories in stochastic differential equations and stochastic func-
tional differential equations [47–49]. Let (Ω,F, {F

𝑡
}
𝑡≥0

, 𝑃)

be a complete probability space with a filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is right continuous
and F

0
contains all 𝑃-null sets). Let 𝐵

𝑖
(𝑖 = 1, 2, . . . , 𝑛)

be the Brownian motions defined on this probability space.
Consider the following 𝑛-dimensional stochastic differential
equation:

𝑑𝑥 (𝑡) = 𝑓 (𝑥 (𝑡) , 𝑡) 𝑑𝑡 + 𝑔 (𝑥 (𝑡) , 𝑡) 𝑑𝐵 (𝑡) , 𝑡 ≥ 𝑡
0
. (15)

Definition 1. The trivial solution of system (15) is said to be as
follows:

(i) stochastically stable or stable in probability if for every
pair of 𝜀 ∈ (0, 1) and 𝑟 > 1, there exists a 𝛿 =

𝛿(𝜀, 𝑟, 𝑡
0
) > 0 such that

𝑃 {
󵄨󵄨󵄨󵄨𝑥 (𝑡; 𝑡

0
, 𝑥
0
)
󵄨󵄨󵄨󵄨 < 𝑟 ∀𝑡 ≥ 𝑡

0
} ≥ 1 − 𝜀, (16)

whenever |𝑥
0
| < 𝛿. Otherwise, it is said to be

stochastically unstable,
(ii) stochastically asymptotically stable if it is stochasti-

cally stable and, moreover, for every 𝜀 ∈ (0, 1), there
exists a 𝛿

0
= 𝛿
0
(𝜀, 𝑡
0
) > 0 such that

𝑃 { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} ≥ 1 − 𝜀, (17)

whenever |𝑥
0
| < 𝛿
0
,

(iii) globally asymptotically stable in probability if it is
stochastically asymptotically stable and,moreover, for
all 𝑥
0

∈ R𝑛

𝑃 { lim
𝑡→∞

𝑥 (𝑡; 𝑡
0
, 𝑥
0
) = 0} = 1. (18)

Lemma 2. If there exists a nonnegative function 𝑉(𝑥, 𝑡) ∈

𝐶
2,1

(R𝑛 × [𝑡
0
, ∞];R

+
), two continuous functions 𝜓

1
, 𝜓
2

:

R0
+

→ R0
+
, and a positive constant 𝐾 such that, for |𝑥| < 𝐾,

𝜓
1

(|𝑥|) ≤ 𝑉 (𝑥, 𝑡) ≤ 𝜓
2

(|𝑥|) (19)

hold.

(i) If

𝐿𝑉 ≤ 0, for |𝑥| ∈ [0, 𝐾] , (20)

then the trivial solution of system (A.1) is stochastically
stable.

(ii) If there exists a continuous function 𝜓
3

: R0
+

→ R0
+

such that

𝐿𝑉 ≤ −𝜓
3

(|𝑥|) (21)

holds, then the trivial solution of system (15) is stochas-
tically asymptotically stable.

(iii) If (ii) holds and moreover

lim
𝑟→∞

𝜓
1

(𝑟) = +∞, (22)

then the trivial solution of system (15) is globally
asymptotically stable in probability.

For the stability of the equilibrium of a nonlinear stochas-
tic system, it can be reduced to problems concerning stability
of solutions of the linear associated system. The linear form
of (15) is defined as follows:

𝑑𝑥 (𝑡) = 𝐹 (𝑡) ⋅ 𝑥 (𝑡) 𝑑𝑡 + 𝐺 (𝑡) ⋅ 𝑥 (𝑡) 𝑑𝐵 (𝑡) , 𝑡 ≥ 𝑡
0
. (23)

Lemma 3. If the trivial solution is stochastically stable for
the linear system (23) with constant coefficients (𝐹(𝑡) = 𝐹,
𝐺(𝑡) = 𝐺) and the coefficients of systems (15) and (23) satisfy
the following inequality:

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑡) − 𝐹 ⋅ 𝑥
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑥, 𝑡) − 𝐺 ⋅ 𝑥
󵄨󵄨󵄨󵄨 < 𝜌 |𝑥| (24)

in a sufficiently small neighborhood of 𝑥 = 0, with a sufficiently
small constant 𝜌, then the trivial solution of system (15) is
asymptotically stable in probability.
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Consider the following 𝑛-dimensional stochastic func-
tional differential equation

𝑑𝑥 = 𝑓 (𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝑔 (𝑡, 𝑥

𝑡
) 𝑑𝐵 (𝑡) (25)

with initial condition 𝑥
0

= 𝜑 ∈ H, where H is the space of
F
0
-adapted random variables 𝜑, with 𝜑(𝑠) ∈ R𝑛 for 𝑠 ≤ 0,

and
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩 = sup
𝑠≤0

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨 ,

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩
2

1
= sup𝐸 (

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨
2
) . (26)

Definition 4. The trivial solution of system (25) is said to be

(i) mean square stable if, for each 𝜀 > 0, there exists
𝛿(𝜀) > 0 such that for any initial process 𝜑(𝜃),

𝐸 (
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜑 (𝜃))

󵄨󵄨󵄨󵄨
2
) < 𝜀, (27)

for any 𝑡 ≥ 0 provided that sup
𝜃≤0

𝐸(|𝜑(𝜃)|
2
) < 𝛿(𝜀),

(ii) asymptotically mean square stable if it is mean square
stable and

lim
𝑡→∞

𝐸 (
󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜑)

󵄨󵄨󵄨󵄨
2
) = 0, (28)

(iii) stochastically stable if for any 𝜀
1

> 0 and 𝜀
2

> 0, there
exists a 𝛿 > 0 such that

𝑃 {sup
𝑡≥0

󵄨󵄨󵄨󵄨𝑥 (𝑡, 𝜑)
󵄨󵄨󵄨󵄨 ≤ 𝜀
1
} ≥ 1 − 𝜀

2
(29)

provided that 𝑃{‖𝜑‖ ≤ 𝛿} = 1.

3. Dynamical Behavior of the System
without Delays

We first study the stochastic stability of the equilibria (0, 0) of
model (13). Throughout the paper, we assume that the basic
hypotheses given in the Section 2 are satisfied.The linearized
system of model (13) is

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
] 𝑑𝑡

+ 𝜎
1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= 𝛾𝑚𝑏𝑥
∗
𝑢
1
𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
.

(30)

For convenience, let

𝑝 =
𝛾𝑚𝑏𝑥

∗

2 (𝑚𝑎 − 𝜇𝐷
1
)
, 𝑞 =

𝛾𝑚𝑏𝑥
∗

− 𝑝 (𝑚𝑎 − 𝜇𝐷
1
)

𝛾2 (𝑚𝑎 − 𝜇𝐷
1
) + 𝛾𝐷

. (31)

For linearized system (30), we have the following theorem.

Theorem 5. Let condition (6) hold. If

𝜎
2

1
< 2𝐷 + 2𝑚𝑏𝑥

∗
, 𝜎

2

2
<

2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
) , (32)

then the trivial solution of system (30) is globally asymptotically
stable in probability.

Proof. Define a smooth function 𝑉 : R2 → R
+
by

𝑉 (𝑢
1
, 𝑢
2
) = 𝑝𝑢

2

1
+ 𝑢
2

2
+ 𝑞(𝛾𝑢

1
+ 𝑢
2
)
2
. (33)

Then using Itô’s formula, for all (𝑢
1
, 𝑢
2
) ̸= (0, 0), we have

𝑑𝑉 (𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= 𝐿𝑉 (𝑢
1
, 𝑢
2
) 𝑑𝑡 + 2𝑝𝜎

1
𝑢
2

1
𝑑𝐵
1

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
) ,

(34)

where

𝐿𝑉 (𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
[− (𝐷 + 𝑚𝑏𝑥

∗
) 𝑢
1

+ (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
]

+ 𝑝𝜎
2

1
𝑢
2

1
+ 2𝛾𝑚𝑏𝑥

∗
𝑢
1
𝑢
2

+ 𝜎
2

2
𝑢
2

2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
)

× [−𝛾𝐷𝑢
1

+ 𝛾 (𝜇𝐷
1

− 𝑚𝑎) 𝑢
2
]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
)

= − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2
𝐷 − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷
1
) − (1 + 𝑞) 𝜎

2

2
] 𝑢
2

2

− 2 [𝑝 (𝑚𝑎 − 𝜇𝐷
1
) − 𝛾𝑚𝑏𝑥

∗

+ 𝑞𝛾
2

(𝑚𝑎 − 𝜇𝐷
1
) + 𝑞𝛾𝐷] 𝑢

1
𝑢
2
.

(35)

By (31), we obtain

𝐿𝑉 (𝑢
1
, 𝑢
2
)

= − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
𝐷 − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷
1
) − (1 + 𝑞) 𝜎

2

2
] 𝑢
2

2
.

(36)

We take 𝜓
𝑖
: 𝑅
0

+
→ 𝑅
0

+
(𝑖 = 1, 2, 3) by

𝜓
1 (|𝑢|) = min {𝑝, 1, 𝑞} |𝑢|

2
,

𝜓
2

(|𝑢|) = max {𝑝, 1, 𝑞} |𝑢|
2
,

𝜓
3

(|𝑢|) = min {2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
𝐷

− 𝑞𝛾
2
𝜎
2

1
, 2𝑞𝛾 (𝑚𝑎 − 𝜇𝐷

1
) − (1 + 𝑞) 𝜎

2

2
} |𝑢|
2
;

(37)

thus the thesis follows by Lemma 2.This completes the proof
of Theorem 5.
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Now, we are in a position to prove the stability of the
trivial solution (0, 0) of model (13).

Theorem6. Let condition (6) hold. If the conditions in (32) are
satisfied, then the trivial solution of model (13) is stochastically
asymptotically stable.

Proof. For a sufficiently small constant 𝜖 > 0, (𝑢
1
, 𝑢
2
) ∈

(−𝜖, 𝜖) × (−𝜖, 𝜖), we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑋) − 𝐹 ⋅ 𝑋
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑋) − 𝐺 ⋅ 𝑋
󵄨󵄨󵄨󵄨

= √𝐹2
1

(𝑢
1
, 𝑢
2
) + 𝐹2
2

(𝑢
1
, 𝑢
2
).

(38)

Note that 𝐹
1
, 𝐹
2
are the terms of order ≥ 2 in 𝑢

1
and 𝑢

2
; then

we have

lim
𝑢
2

1
+𝑢
2

2
→0

𝐹
2

1
(𝑢
1
, 𝑢
2
) + 𝐹
2

2
(𝑢
1
, 𝑢
2
)

𝑢2
1

+ 𝑢2
2

= 0. (39)

Thus for a sufficiently small constant 𝜌 > 0, we have

𝐹
2

1
(𝑢
1
, 𝑢
2
) + 𝐹
2

2
(𝑢
1
, 𝑢
2
) < 𝜌
2

(𝑢
2

1
+ 𝑢
2

2
) (40)

provided 𝑢
2

1
+ 𝑢
2

2
< 𝜖
2. Therefore,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑋) − 𝐹 ⋅ 𝑋
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑋) − 𝐺 ⋅ 𝑋
󵄨󵄨󵄨󵄨 < 𝜌 |𝑢| . (41)

Applying Lemma 3 andTheorem 5, we obtain the conclusion.

4. Dynamical Behavior of the System
with Delays

We now study the stability in probability of the equilibria
(0, 0) of system (11). Its corresponding linearized system is

𝑑𝑢
1

= [− (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠 − 𝑚𝑎𝑢

2
] 𝑑𝑡

+ 𝜎
1
𝑢
1
𝑑𝐵
1
,

𝑑𝑢
2

= 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠𝑑𝑡 + 𝜎

2
𝑢
2
𝑑𝐵
2
.

(42)

Define the average time lags as

𝑇
𝑓

= ∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠, 𝑇
𝑔

= ∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠, (43)

and let 𝑞, 𝑝 be defined in (31). For linearized system (42) we
have the following theorem.

Theorem 7. Let condition (6) hold. If

𝜎
2

1
+ 2𝜇𝐷

1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+
1 + 𝑞

𝑝 + 𝑞𝛾2
(𝐷 + 𝑚𝑏𝑥

∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

< 2𝐷 +
2𝑝𝑚𝑏𝑥

∗

𝑝 + 𝑞𝛾2
,

𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

<
2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
) ,

(44)

then the trivial solution of system (42) is asymptotically mean
square stable.

Proof. Consider the function 𝑉
1
(𝑢
1
, 𝑢
2
) defined in (33). It

follows from (42) and Itô’s formula that

𝑑𝑉
1

(𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= {2𝑝𝑢
1

[ − (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

−𝑚𝑎𝑢
2
]

+ 𝑝𝜎
2

1
𝑢
2

1
+ 2𝛾𝑚𝑏𝑥

∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 𝜎
2

2
𝑢
2

2
+ 2𝑞 (𝛾𝑢

1
+ 𝑢
2
)

× [ − 𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠 − 𝛾𝑚𝑎𝑢

2

+ 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
) } 𝑑𝑡

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
)

× (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
) + 2𝑝𝜎

1
𝑢
2

1
𝑑𝐵
1
.

(45)
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Straightforward computations lead to

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) = − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)] 𝑢
1
𝑢
2

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾
2
𝑚𝑏𝑥
∗
𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2 (𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾𝜇𝐷
1
𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠.

(46)

From the terms of the right-hand side of (46), we have

𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠 ≤
1

2
(𝑢
2

1
+ ∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠) ,

𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠 ≤
1

2
(𝑢
2

2
+ ∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠) .

(47)

For the term 𝑢
1

∫
∞

0
𝑓(𝑠)𝑢

2
(𝑡 − 𝑠)𝑑𝑠, it is clear that

𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
2 (𝜏) 𝑑𝑠 + ℎ

1 (𝑡)

= 𝑢
1
𝑢
2

− 𝛾𝑚𝑏𝑥
∗
𝐻
1

(𝑢
1
, 𝑢
2
) + ℎ
1 (𝑡)

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2 (𝜏) 𝑑𝐵

2 (𝜏) 𝑑𝑠,

(48)

where

ℎ
1 (𝑡) = −𝑢

1
∫

∞

𝑡

𝑓 (𝑠) (𝑢
2 (𝑡) − 𝑢

2 (𝑡 − 𝑠)) 𝑑𝑠, (49)

𝐻
1

(𝑢
1
, 𝑢
2
) = 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
1

(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

≤
1

2
∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V)

× (𝑢
2

1
(𝑡) + 𝑢

2

1
(𝜏 − V)) 𝑑V 𝑑𝜏 𝑑𝑠

=
1

2
𝑇
𝑓
𝑢
2

1
+

1

2
∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V)

× 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠.

(50)

For the term 𝑢
2

∫
∞

0
𝑔(𝑠)𝑢
1
(𝑡 − 𝑠)𝑑𝑠, we have that

𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
1

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡)

= 𝑢
1
𝑢
2

+ (𝐷 + 𝑚𝑏𝑥
∗
) 𝐻
2

(𝑢
1
, 𝑢
2
)

+ 𝑚𝑎𝐻
3

(𝑢
1
, 𝑢
2
) − 𝜇𝐷

1
𝐻
4

(𝑢
1
, 𝑢
2
)

+ 𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡) ,

(51)

where

ℎ
2

(𝑡) = −𝑢
2

∫

∞

𝑡

𝑔 (𝑠) (𝑢
1

(𝑡) − 𝑢
1

(𝑡 − 𝑠)) 𝑑𝑠, (52)

𝐻
2

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
1 (𝜏) 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠,

𝐻
3

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

(𝜏) 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠,

𝐻
4

(𝑢
1
, 𝑢
2
) = 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2 (𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

≤
1

2
𝑇
𝑔
𝑢
2

2
+

1

2
∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V)

× 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠.

(53)

Substituting (47)–(48) together with (51) into (46), we obtain

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 𝑞𝛾
2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)
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× (𝐷 + 𝑚𝑏𝑥
∗

+ 𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
) ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡)

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡) .

(54)

For technical reasons, we assume that ∫
∞

0
𝑠
2
𝑓(𝑠)𝑑𝑠 < ∞ and

∫
∞

0
𝑠
2
𝑔(𝑠)𝑑𝑠 < ∞. Then the function

𝑉
2

(𝑢
1
, 𝑢
2
)

= (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑟 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
)

× ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑟 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑟 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠)

× ∫

𝑡

𝑡−𝑠

∫

𝑡

𝑟

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑟 𝑑𝑠

(55)

is well defined. Using Itô’s formula, we have

𝐿 (𝑉
1

+ 𝑉
2
) ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜇𝐷
1
𝑇
𝑔

× ∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

× ∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡)

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡) .

(56)

We now consider the function

𝑉
3

(𝑢
1
, 𝑢
2
) = (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜇𝐷
1
𝑇
𝑔

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

× ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠.

(57)
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It follows from (56) and (57) that

𝐿 (𝑉
1

+ 𝑉
2

+ 𝑉
3
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠.

(58)

Therefore, for the function

𝑉 (𝑢
1
, 𝑢
2
) = 𝑉
1

(𝑢
1
, 𝑢
2
) + 𝑉
2

(𝑢
1
, 𝑢
2
) + 𝑉
3

(𝑢
1
, 𝑢
2
) , (59)

we have

𝐿𝑉 ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠.

(60)

By (44), we choose 𝜀 > 0 such that

2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) + 2𝑞𝛾

2
𝐷

> (𝑝 + 𝑞𝛾
2
) 𝜎
2

1
+ 2 (𝑝 + 𝑞𝛾

2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 + (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀,

2𝑞

1 + 𝑞
𝛾 (𝑚𝑎 − 𝜇𝐷

1
)

> 𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 + 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜖.

(61)

Let 𝑇 = 𝑇(𝜀) such that ∫
∞

𝑡
𝑓(𝑠)𝑑𝑠 < 𝜀 and ∫

∞

𝑡
𝑔(𝑠)𝑑𝑠 < 𝜀 for

all 𝑡 ≥ 𝑇. Then for all 𝑡 ≥ 𝑇, one has

𝐿𝑉 ≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
(𝐷 + 𝑚𝑏𝑥

∗
)

− 𝑞𝛾
2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜀] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠.

(62)
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For convenience, let

𝑄 = min {2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀 − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗
𝜀,

2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝜀

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝜀} .

(63)

Integrating both sides of (62) from 𝑇 to 𝑡 ≥ 𝑇, we have

𝐸 (𝑉 (𝑡)) + 𝑄 ∫

𝑡

𝑇

𝐸 (𝑢
2

1
(𝑠) + 𝑢

2

2
(𝑠)) 𝑑𝑠

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

𝑡

𝑇

∫

∞

𝑠

𝑓 (𝑢) 𝑑𝑢 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

∫

𝑡

𝑇

∫

∞

𝑡

𝑔 (𝑢) 𝑑𝑢 𝑑𝑠

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠

= 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2
𝑇
𝑓

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2
𝑇
𝑔

< ∞.

(64)

Discussing as that in He et al. [18], by the Barbălat lemma,
we conclude 𝐸(𝑢

2

1
(𝑡) + 𝑢

2

2
(𝑡)) → 0 as 𝑡 → ∞. Applying

Definition 4, we obtain the conclusion.

Now, we are in a position to prove the stability of the
trivial solution (0, 0) of nonlinear system (11) using the
Lyapunov functionals constructed above.

Theorem 8. Let condition (6) hold. If conditions (44) are
satisfied, then the trivial solution (0, 0) of the system (11) or the
equilibrium (𝑆

∗
, 𝑥
∗
) of system (6) is stochastically stable.

Proof. Consider the Lyapunov function 𝑉
1
(𝑢
1
, 𝑢
2
) defined in

(33). It follows from (11) and Itô’s formula that

𝑑𝑉
1

(𝑢
1
, 𝑢
2
) = 2𝑝𝑢

1
𝑑𝑢
1

+ 𝑝(𝑑𝑢
1
)
2

+ 2𝑢
2
𝑑𝑢
2

+ (𝑑𝑢
2
)
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) 𝑑 (𝛾𝑢

1
+ 𝑢
2
)

+ 𝑞(𝑑 (𝛾𝑢
1

+ 𝑢
2
))
2

= {2𝑝𝑢
1

[ − (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

− 𝑚𝑎𝑢
2

+ 𝐹
1
] + 𝑝𝜎

2

1
𝑢
2

1

+ 2𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑢
2
𝐹
2

+ 𝜎
2

2
𝑢
2

2
+ 2𝑞 (𝛾𝑢

1
+ 𝑢
2
)

× [ − 𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) 𝑢
1

+ 𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

− 𝛾𝑚𝑎𝑢
2

+ 𝛾𝐹
1

+ 𝛾𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠 + 𝐹
2
]

+ 𝑞 (𝛾
2
𝜎
2

1
𝑢
2

1
+ 𝜎
2

2
𝑢
2

2
) } 𝑑𝑡

+ 2𝜎
2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
)

+ 2𝑝𝜎
1
𝑢
2

1
𝑑𝐵
1

= 𝐿𝑉
1

(𝑢
1
, 𝑢
2
) 𝑑𝑡 + 2𝜎

2
𝑢
2

2
𝑑𝐵
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝜎
1
𝑢
1
𝑑𝐵
1

+ 𝜎
2
𝑢
2
𝑑𝐵
2
)

+ 2𝑝𝜎
1
𝑢
2

1
𝑑𝐵
1
,

(65)

where

𝐿𝑉
1

(𝑢
1
, 𝑢
2
) = − [2𝑝 (𝐷 + 𝑚𝑏𝑥

∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)] 𝑢
1
𝑢
2

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾
2
𝑚𝑏𝑥
∗
𝑢
1

∫

∞

0

𝑔 (𝑠) 𝑢
1 (𝑡 − 𝑠) 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

+ 2𝑞𝛾𝜇𝐷
1
𝑢
2

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠
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+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
) .

(66)

From the terms of the right-hand side of (66), we observe that

𝑢
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
2 (𝜏) 𝑑𝑠 + ℎ

1 (𝑡)

= 𝑢
1
𝑢
2

− 𝛾𝑚𝑏𝑥
∗
𝐻
1

(𝑢
1
, 𝑢
2
) − 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

− 𝑢
1

∫

𝑡

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
1

(𝑡) ,

(67)

where ℎ
1
(𝑡) is defined in (49), and

𝑢
2

∫

∞

0

𝑔 (𝑠) 𝑢
1

(𝑡 − 𝑠) 𝑑𝑠

= 𝑢
1
𝑢
2

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑑𝑢
1 (𝜏) 𝑑𝑠 + ℎ

2 (𝑡)

= 𝑢
1
𝑢
2

+ (𝐷 + 𝑚𝑏𝑥
∗
) 𝐻
2

(𝑢
1
, 𝑢
2
)

+ 𝑚𝑎𝐻
3

(𝑢
1
, 𝑢
2
) − 𝜇𝐷

1
𝐻
4

(𝑢
1
, 𝑢
2
)

− 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 𝑢
2

∫

𝑡

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝜎
2
𝑢
2

(𝜏) 𝑑𝐵
2

(𝜏) 𝑑𝑠 + ℎ
2

(𝑡) ,

(68)

where ℎ
2
(𝑡) is defined in (52). Substituting (67) and (68) into

(46), we get

𝐿𝑉
1

(𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 𝑞𝛾
2
𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 𝑚𝑎 + 𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎

+ 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥
∗
) − (1 + 𝑞) 𝛾𝑚𝑏𝑥

∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

× [𝜇𝐷
1

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑓 (V) 𝑢
2

2
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ (𝐷 + 𝑚𝑏𝑥
∗
) ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

1
(𝜏) 𝑑𝜏 𝑑𝑠

+ 𝑚𝑎 ∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝑢
2

2
(𝜏) 𝑑𝜏 𝑑𝑠]

+ 𝑞𝛾
2
𝑚𝑏𝑥
∗

∫

∞

0

𝑔 (𝑠) 𝑢
2

1
(𝑡 − 𝑠) 𝑑𝑠

+ 𝑞𝛾𝜇𝐷
1

∫

∞

0

𝑓 (𝑠) 𝑢
2

2
(𝑡 − 𝑠) 𝑑𝑠

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗

× ∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

∫

∞

0

𝑔 (V) 𝑢
2

1
(𝜏 − V) 𝑑V 𝑑𝜏 𝑑𝑠

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1 (𝑡)

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡) .

(69)

For the functions𝑉
2
(𝑢
1
, 𝑢
2
) and𝑉

3
(𝑢
1
, 𝑢
2
) defined in (55) and

(57), one has

𝐿 (𝑉
1

+ 𝑉
2

+ 𝑉
3
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1
+ 2𝑞𝛾

2
(𝐷 + 𝑚𝑏𝑥

∗
)

− 𝑞𝛾
2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

−2𝑞𝛾𝜇𝐷
1
] 𝑢
2

2

− 2 [𝑝𝑚𝑎 + 𝑞𝛾
2
𝑚𝑎 + 𝑞𝛾 (𝐷 + 𝑚𝑏𝑥

∗
)

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
] 𝑢
1
𝑢
2

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠

+ 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
ℎ
1

(𝑡)
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− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

+ 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
ℎ
2

(𝑡) .

(70)

It follows from the expression of ℎ
1
(𝑡) and ℎ

2
(𝑡) that

ℎ
1

(𝑡) ≤ 2𝑢
2

1
∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠 + (𝑢
2

2
+

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2
) ∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠,

ℎ
2 (𝑡) ≤ 2𝑢

2

2
∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠 + (𝑢
2

1
+

󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2
) ∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠.

(71)

For 𝑉(𝑢
1
, 𝑢
2
) = 𝑉
1
(𝑢
1
, 𝑢
2
) + 𝑉
2
(𝑢
1
, 𝑢
2
) + 𝑉
3
(𝑢
1
, 𝑢
2
), one has

𝐿𝑉 (𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

−2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠

+ 2𝑝𝑢
1
𝐹
1

+ 2𝑢
2
𝐹
2

+ 2𝑞 (𝛾𝑢
1

+ 𝑢
2
) (𝛾𝐹
1

+ 𝐹
2
)

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑢
2

∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1
𝑑𝜏 𝑑𝑠

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑢
1

∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2
𝑑𝜏 𝑑𝑠.

(72)

Since 𝐹
1
and 𝐹
2
are terms of order ≥ 2 in 𝑢

1
, 𝑢
2
, then we have

lim
𝑢
1
,𝑢
2
→0

𝐹
1

(𝑢
1
, 𝑢
2
)

√𝑢2
1

+ 𝑢2
2

= lim
𝑢
1
,𝑢
2
→0

𝐹
2

(𝑢
1
, 𝑢
2
)

√𝑢2
1

+ 𝑢2
2

= 0. (73)

For 𝜀 > 0, we can find a constant 𝜁 ∈ (0, 1) such that

𝐹
1

(𝑢
1
, 𝑢
2
) ≤

𝜀

√2

√𝑢2
1

+ 𝑢2
2
, 𝐹

2
(𝑢
1
, 𝑢
2
) ≤

𝜀

√2

√𝑢2
1

+ 𝑢2
2

(74)

provided that 𝑢
2

1
+ 𝑢
2

2
≤ 2𝜁

2. Now consider the class of
processes

Ψ = {𝜑 ∈ H | 𝑃 { sup
−∞≤𝑠≤0

󵄨󵄨󵄨󵄨𝜑 (𝑠)
󵄨󵄨󵄨󵄨 < 𝜁} = 1} . (75)

Notice that for 𝑢
𝑡

∈ Ψ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

0

𝑔 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
1

(𝜏) 𝑑𝜏 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀𝑇
𝑔
𝜁,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

∞

0

𝑓 (𝑠) ∫

𝑡

𝑡−𝑠

𝐹
2

(𝜏) 𝑑𝜏 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝜀𝑇
𝑓
𝜁

(76)

are valid. Substituting (74)-(76) into (72), we obtain

𝐿𝑉 (𝑢
1
, 𝑢
2
)

≤ − [2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) − 𝑝𝜎

2

1

+ 2𝑞𝛾
2

(𝐷 + 𝑚𝑏𝑥
∗
) − 𝑞𝛾

2
𝜎
2

1
− 2𝑞𝛾

2
𝑚𝑏𝑥
∗

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

− (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2 (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

1

− [2𝑞𝛾𝑚𝑎 − (1 + 𝑞) 𝜎
2

2
− (1 + 𝑞)

× (𝐷 + 𝑚𝑏𝑥
∗

+ 2𝑚𝑎 + 2𝜇𝐷
1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

− 2𝑞𝛾𝜇𝐷
1

− (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

− 2 (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠] 𝑢
2

2

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

∫

∞

𝑡

𝑔 (𝑠) 𝑑𝑠

+ 2𝜀 [𝑝 + 1 + 𝑞(𝛾 + 1)
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑇
𝑓
] 𝜁
2
.

(77)
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Integrating both sides of the above formula from 𝑇 to 𝑡 ∧ 𝑇
𝜀
1

yields

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

× ∫

𝑡∧𝑇
𝜀1

0

∫

∞

𝑠

𝑓 (𝜏) 𝑑𝜏 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

× ∫

𝑡∧𝑇
𝜀1

0

∫

∞

𝑠

𝑔 (𝜏) 𝑑𝜏 𝑑𝑠 + 2𝜀𝑘
1
𝜁
2

≤ 𝑉 (𝑇) + (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1

󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2

∫

∞

0

𝑠𝑓 (𝑠) 𝑑𝑠

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

× ∫

∞

0

𝑠𝑔 (𝑠) 𝑑𝑠 + 2𝜀𝑘
1
𝜁
2
,

(78)
where

𝑘
1

= 𝑝 + 1 + 𝑞(𝛾 + 1)
2

+ (1 + 𝑞) 𝛾𝑚𝑏𝑥
∗
𝑇
𝑔

+ (𝑝 + 𝑞𝛾
2
) 𝜇𝐷
1
𝑇
𝑓
.

(79)

By the definition of function𝑉(𝑢
1
, 𝑢
2
), we can find a constant

𝑘
2

> 0 such that

𝑉 (𝑇) ≤ 𝑘
2

(
󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2
) . (80)

Obviously,

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ 𝑘
3

(
󵄩󵄩󵄩󵄩𝜑
1

󵄩󵄩󵄩󵄩
2

+
󵄩󵄩󵄩󵄩𝜑
2

󵄩󵄩󵄩󵄩
2
) + 2𝜀𝑘

1
𝜁
2
, (81)

where 𝑘
3

= max{𝑘
2

+ (1 + 𝑞)𝛾𝑚𝑏𝑥
∗
, 𝑘
2

+ (𝑝 + 𝑞𝛾
2
)𝜇𝐷
1
}. Now

for 𝜀
1
, 𝜀
2

∈ (0, 1), let

𝛿 = min{(
1 ∧ 𝑝

2𝜀𝑘
1

+ 𝑘
3

𝜀
2
)

1/2

𝜀
1
,
𝜀
1

2
,
𝜁

2
} (82)

and ‖𝜑
1
‖
2

+ ‖𝜑
2
‖
2

< 𝛿
2. Then it follows that

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≤ (2𝜀𝑘
1

+ 𝑘
3
) 𝛿
2

≤ (1 ∧ 𝑝) 𝜀
2

1
𝜀
2
. (83)

On the other hand, we have

𝐸 (𝑉 (𝑡 ∧ 𝑇
𝜀
1

)) ≥ 𝐸 [1
{𝑇
𝜀1
≤𝑡}

𝑉 (𝑡 ∧ 𝑇
𝜀
1

)]

= 𝐸 [1
{𝑇
𝜀1
≤𝑡}

𝑉 (𝑇
𝜀
1

)]

= 𝑃 {𝑇
𝜀
1

≤ 𝑡} 𝑉 (𝑇
𝜀
1

)

≥ (1 ∧ 𝑝) 𝜀
2

1
𝑃 {𝑇
𝜀
1

≤ 𝑡} .

(84)

Hence, we have 𝑃{𝑇
𝜀
1

≤ 𝑡} ≤ 𝜀
2
. Let 𝑡 → ∞; then

𝑃 {𝑇
𝜀
1

< ∞} ≤ 𝜀
2
. (85)

Equivalently,

𝑃 {𝑢
2

1
+ 𝑢
2

2
< 𝜀
2

1
} ≥ 1 − 𝜀

2
. (86)

Applying Definition 4, we obtain the conclusion.

5. Simulations and Discussions

In this paper, we have considered a stochastic chemostat
model simulating the process of wastewater treatment. The
model incorporates a general nutrient uptake function and
two distributed delays. The first delay models the fact that
nutrient is partially recycled after the death of the biomass
by bacterial decomposition and the second indicates that the
growth of the species depends on the past concentration of
the nutrient. Furthermore, we consider the stochastic pertur-
bations which are of white noise type and are proportional
to the distances of 𝑆(𝑡), 𝑥(𝑡) from the values of the positive
equilibrium 𝑆

∗, 𝑥
∗. By constructing appropriate Liapunov-

like functionals, some sufficient conditions for the stochastic
stability of the positive equilibrium have been obtained.

For model (3), we have first analyzed the stochastic
stability of the positive equilibrium 𝐸

∗ in the case when the
delays are ignored, that is, the average delays 𝑇

𝑓
= 𝑇
𝑔

= 0.
Our findings in Theorem 6 reveal that 𝐸

∗ is stochastically
stable provided that the intensities of noises are small. When
at least one of the average delays 𝑇

𝑓
and 𝑇

𝑔
is not equal to

zero, our results in Theorem 8 reveal that 𝐸
∗ is stochastically

stable provided that the average delays 𝑇
𝑓
and 𝑇

𝑔
are both

small. Obviously, Theorem 8 reduces to Theorem 6 when
𝑇
𝑓

= 𝑇
𝑔

= 0, which indicates that if the average delays are
sufficiently small, 𝐸

∗ is still stochastically stable; and in the
case of 𝜎

𝑖
= 0 (𝑖 = 1, 2), Theorem 8 reduces to He et al. [18,

Theorem 3.1]; that is to say, the equilibrium 𝐸
∗ of model (3)

is still stable if 𝜎
1
and 𝜎

2
are sufficient small, which preserves

the dynamics of its corresponding deterministic counterpart
(5).

To illustrate the results obtained above, some numerical
simulations are carried out by using Milstein scheme [50].
Here we assume that the specific growth function 𝑈(𝑆) is of
Michaelis-Menten type

𝑈 (𝑆) =
𝑆

𝑎
1

+ 𝑆
, (87)

where 𝑎
1
is the half-saturation constant. For the kernel

functions 𝑓(𝑠) and 𝑔(𝑠), we consider two special cases: (1)
𝑓(𝑠) = 𝑔(𝑠) = 𝛿(0); (2) 𝑓(𝑠) = 𝛼𝑒

−𝛼𝑠 and 𝑔(𝑠) =

𝛽𝑒
−𝛽𝑠. For case (1), the discretization of model (3) for 𝑡 =

0, Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡 takes the form

𝑆
𝑖+1

= 𝑆
𝑖
+ [𝐷 (𝑆

0
− 𝑆
𝑖
) − 𝑚𝑈 (𝑆

𝑖
) 𝑥
𝑖
+ 𝜇𝐷
1
𝑥
𝑖
] Δ𝑡

+ 𝜎
1

(𝑆
𝑖
− 𝑆
∗
) √Δ𝑡𝜉

𝑖
,

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝑥
𝑖
[− (𝐷

𝑤
+ 𝐷
1
) + 𝛾𝑚𝑈 (𝑆

𝑖
)] Δ𝑡

+ 𝜎
2

(𝑥
𝑖
− 𝑥
∗
) √Δ𝑡𝜉

𝑖
,

(88)

where time increment Δ𝑡 > 0 and 𝜉
𝑖
is 𝑁(0, 1)-distributed

independent random variables which can be generated
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Figure 1: The dynamics of stochastic model compared with deterministic model with 𝜎
1

= 0.1 and 𝜎
2

= 0.08. Here 𝑆(0) = 0.3, 𝑥(0) = 0.5.
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Figure 2: The dynamics of stochastic model with different values of 𝜎
1
and 𝜎

2
. Here 𝑆(0) = 0.3, 𝑥(0) = 0.5.

numerically by pseudorandom number generators. For case
(2), define

𝑦 (𝑡) = ∫

∞

0

𝛼𝑒
−𝛼𝑠

𝑥 (𝑡 − 𝑠) 𝑑𝑠,

𝑧 (𝑡) = ∫

∞

0

𝛽𝑒
−𝛽𝑠

𝑈 (𝑆 (𝑡 − 𝑠)) 𝑑𝑠,

(89)

then the discretization of model (3) for 𝑡 = 0,Δ𝑡, 2Δ𝑡, . . . , 𝑛Δ𝑡

takes the form

𝑆
𝑖+1

= 𝑆
𝑖
+ [𝐷 (𝑆

0
− 𝑆
𝑖
) − 𝑚𝑈 (𝑆

𝑖
) 𝑥
𝑖
+ 𝜇𝐷
1
𝑦
𝑖
] Δ𝑡

+ 𝜎
1

(𝑆
𝑖
− 𝑆
∗
) √Δ𝑡𝜉

𝑖
,

𝑥
𝑖+1

= 𝑥
𝑖
+ 𝑥
𝑖
[− (𝐷

𝑤
+ 𝐷
1
) + 𝛾𝑚𝑧

𝑖
] Δ𝑡

+ 𝜎
2

(𝑥
𝑖
− 𝑥
∗
) √Δ𝑡𝜉

𝑖
,

𝑦
𝑖+1

= 𝑦
𝑖
+ (−𝛼𝑦

𝑖
+ 𝛼𝑥
𝑖
) Δ𝑡,

𝑧
𝑖+1

= 𝑧
𝑖
+ (−𝛽𝑧

𝑖
+ 𝛽𝑈 (𝑆

𝑖
)) Δ𝑡.

(90)

Let in model (3) 𝐷 = 𝐷
𝑤

= 0.3, 𝐷
1

= 0.1, 𝑆
0

= 5, 𝑚 =

0.7, 𝑎
1

= 0.4, 𝜇 = 0.3, 𝛾 = 0.8. It is easy to compute that
𝑎 ≐ 0.7143, 𝑏 ≐ 0.2041, 𝑝 ≐ 0.3100, 𝑞 ≐ 0.2694, and 𝐸

∗
=

(1, 2.55).
The first two examples given below concern case (1) when

the delays are ignored; that is to say, it is assumed that the
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Figure 3: The dynamics of stochastic functional model with different 𝛼, 𝛽. Here 𝑆(0) = 0.3, 𝑥(0) = 0.5, 𝑦(0) = 0.3, 𝑧(0) = 0.5.
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Figure 4: The dynamics of stochastic functional model with different 𝜎
1
, 𝜎
2
and 𝛼, 𝛽. Here 𝑆(0) = 0.3, 𝑥(0) = 0.5, 𝑦(0) = 0.3, 𝑧(0) = 0.5.

process of nutrient recycling and the growth response of the
species are immediate and, therefore, 𝑇

𝑓
= 𝑇
𝑔

= 0. Example 1
verifies the results obtained inTheorem 6.
Example 1. Let 𝜎

1
= 0.1 and 𝜎

2
= 0.08, then by

straightforward computations, we have that 0.01 = 𝜎
2

1
<

2𝐷 + 2𝑚𝑏𝑥
∗
=̇1.3285, 0.0064 = 𝜎

2

2
< (2𝑞/(1 + 𝑞))𝛾(𝑚𝑎 −

𝜇𝐷
1
)=̇ 0.1596. In view of Theorem 6, the equilibrium 𝐸

∗ of
(3) is stochastically asymptotically stable, which is consistent
with the simulation results as shown in Figure 1.

To further study the combined effects of 𝜎
𝑖
, 𝑖 = 1, 2 when

𝑇
𝑓

= 𝑇
𝑔

= 0, we need to consider four situations: (a) 𝜎
1

increases, 𝜎
2
increases; (b) 𝜎

1
increases, 𝜎

2
decreases; (c) 𝜎

1

decreases, 𝜎
2
increases; (d) 𝜎

1
decreases, 𝜎

2
decreases. Here

we only give one example about situation (a); other situations
can be considered similarly.

Example 2. Let the intensities 𝜎
𝑖
, 𝑖 = 1, 2 increase from

𝜎
1

= 0.1, 𝜎
2

= 0.08 to 𝜎
1

= 1, 𝜎
2

= 0.12, respectively.
Simulations show that the trajectories of model (3) still
approach ultimately to the positive equilibrium 𝐸

∗, but they
need to go throughmore oscillations andmore time to return
to 𝐸
∗ (see Figure 2).

The next two examples concern case (2) when 𝑓(𝑠) and
𝑔(𝑠) take weak kernels; that is, 𝑓(𝑠) = 𝛼𝑒

−𝛼𝑠 and 𝑔(𝑠) = 𝛽𝑒
−𝛽𝑠,
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1
, 𝑇
𝑓
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. Here 𝜎

2
= 0.08 and 𝑇

𝑔
= 0.2.
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which means that 𝑇
𝑓

= 1/𝛼 and 𝑇
𝑔

= 1/𝛽. Example 3 verifies
the results obtained inTheorem 8.

Example 3. Let 𝜎
1

= 0.1, 𝜎
2

= 0.08, 𝛼 = 1 and 𝛽 = 5. It is easy
to compute that (𝑝 + 𝑞𝛾

2
)𝜎
2

1
+ 2(𝑝 + 𝑞𝛾

2
)𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 +

𝑞)(𝐷 + 𝑚𝑏𝑥
∗
)𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

≐ 0.0624, 2𝑝(𝐷 + 𝑚𝑏𝑥
∗
)+2𝑞𝛾

2
𝐷 ≐

0.5154 and 𝜎
2

2
+(𝐷+𝑚𝑏𝑥

∗
+2𝑚𝑎+2𝜇𝐷

1
)𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

≐ 0.1069,
(2𝑞/(1 + 𝑞))𝛾(𝑚𝑎 − 𝜇𝐷

1
) ≐ 0.1596; thus conditions (44) are

satisfied. By Theorem 8, the equilibrium 𝐸
∗ of model (3) is

stochastically stable. Our simulation supports this result as
shown in Figure 3.

To examine the combined effects of the noise intensities
and the delays on the dynamics ofmodel (3), we first consider
the case when the values of 𝜎

𝑖
, 𝑖 = 1, 2 in Example 3 are fixed

and the values of 𝛼 and 𝛽 are reduced from 1 and 5 to 0.1

and 0.1, respectively. That is to say, the average delays 𝑇
𝑓

and 𝑇
𝑔
increase from 1 and 0.2 to 10 and 10, respectively.

Simulation results show that the solution of (3) will suffer
more oscillations andmore time to approach the equilibrium
𝐸
∗ when delays increase (see Figure 3).When both the values

of the noise intensities and the delays vary, the dynamics
of model (3) may become more complicated. Here we only
consider the case when 𝜎

𝑖
(𝑖 = 1, 2), 𝑇

𝑓
and 𝑇

𝑔
(i.e., 1/𝛼 and

1/𝛽) all increase. See the following Example.

Example 4. Let 𝜎
𝑖
(𝑖 = 1, 2), 𝑇

𝑓
and 𝑇

𝑔
(i.e., 1/𝛼 and 1/𝛽)

increase from 0.1, 0.08, 1, and 0.2 (i.e., 𝛼 = 1 and 𝛽 = 5) to
1, 0.8, 10, and 10 (i.e., 𝛼 = 0.1 and 𝛽 = 0.1), respectively. It is
found that the trajectories of model (3) fluctuate wildly and
suffer more oscillations and need more time to approach the
equilibrium 𝐸

∗; please see Figure 4.

Notice also that conditions (44) in Theorem 8 are only
sufficient conditions to insure the stochastic stability of 𝐸

∗,
which are dependent on parameters 𝜎

1
, 𝜎
2
,𝑇
𝑓
, and𝑇

𝑔
. Define

𝑀
0

= ((𝑝 + 𝑞𝛾
2
) 𝜎
2

1
+ 2 (𝑝 + 𝑞𝛾

2
) 𝜇𝐷
1
𝛾𝑚𝑏𝑥

∗
𝑇
𝑓

+ (1 + 𝑞) (𝐷 + 𝑚𝑏𝑥
∗
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔
)

× (2𝑝 (𝐷 + 𝑚𝑏𝑥
∗
) + 2𝑞𝛾

2
𝐷)
−1

,

𝑀
1

=
𝜎
2

2
+ (𝐷 + 𝑚𝑏𝑥

∗
+ 2𝑚𝑎 + 2𝜇𝐷

1
) 𝛾𝑚𝑏𝑥

∗
𝑇
𝑔

(2𝑞/ (1 + 𝑞)) 𝛾 (𝑚𝑎 − 𝜇𝐷
1
)

.

(91)

Thus, conditions (44) are equivalent to those when parame-
ters 𝜎

1
, 𝜎
2
, 𝑇
𝑓
, and 𝑇

𝑔
are seated in the following parameter

set:

Ω = {(𝜎
1
, 𝜎
2
, 𝑇
𝑓
, 𝑇
𝑔
) | max {𝑀

0
, 𝑀
1
} < 1,

𝜎
𝑖
≥ 0, 𝑇

𝑓
≥ 0, 𝑇

𝑔
≥ 0} ,

(92)

from which we can further perform some approximate
sensitivity analysis of the stochastic stability of 𝐸

∗ with
respect to these parameters. To do this, we can let two of the
parameters (e.g., 𝜎

1
and 𝑇

𝑓
) vary and the other two (𝜎

2
and

𝑇
𝑔
) be fixed, which have six cases in all.

Let us first consider the case when 𝜎
2

= 0.08 and𝑇
𝑔

= 0.2;
then 𝑀

0
and 𝑀

1
are both functions of 𝜎

1
and 𝑇

𝑓
. Then Ω

defined in (92) is equivalent to

Ω
𝜎
1
,𝑇
𝑓

= {(𝜎
1
, 𝑇
𝑓
) | (𝜎
1
, 0.08, 𝑇

𝑓
, 0.2) ∈ Ω} , (93)

which is the projection of surfaces 𝑀
0

= 𝑀
0
(𝜎
1
, 𝑇
𝑓
) and

𝑀
1

= 𝑀
1
(𝜎
1
, 𝑇
𝑓
) in the first octant such that max{𝑀

0
, 𝑀
1
} <

1 (see Figure 5). The positive equilibrium 𝐸
∗ is stochastically

stable provided that (𝜎
1
, 𝑇
𝑓
) ∈ Ω
𝜎
1
,𝑇
𝑓

.
To better observe the dependence of the stochastic stabil-

ity of 𝐸
∗ on all parameters, we further consider another two

cases when 𝜎
1

= 0.1 and 𝑇
𝑔

= 0.2 are fixed and 𝜎
1

= 0.1

and 𝜎
2

= 0.08 are fixed. Accordingly, Ω defined in (92) is
equivalent, respectively, to

Ω
𝜎
2
,𝑇
𝑓

= {(𝜎
2
, 𝑇
𝑓
) | (0.1, 𝜎

2
, 𝑇
𝑓
, 0.2) ∈ Ω} ,

Ω
𝑇
𝑓
,𝑇
𝑔

= {(𝑇
𝑓
, 𝑇
𝑔
) | (0.1, 0.08, 𝑇

𝑓
, 𝑇
𝑔
) ∈ Ω} ,

(94)

which are plotted, respectively, in Figures 6 and 7 (other three
cases can be considered similarly). From Figures 5–7, we find
that the stochastic stability of 𝐸

∗ is greatly affected by 𝜎
1
, 𝜎
2
,

and 𝑇
𝑔
and less affected by 𝑇

𝑓
(which is consistent with the

results observed in [13, 17]). We would like to point out here
that 𝐸

∗ may also be stable when the parameters are seated
outside of the set Ω, since (44) are only sufficient conditions
ensuring the stochastic stability of 𝐸

∗.
In conclusion, this paper presents an investigation on the

combined effect of the noises and delays on a bottom-microbe
model. Our findings are useful for better understanding of
the dynamics of microbial population in the activated sludge
process. We should point out that there are still some other
interesting topics about the wastewater treatment deserving
further investigation, for example, membrane reactor, and so
forth. We leave these for future considerations.
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